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Existence of different types of interference in the spectrum of radiation emitted by a doubly hard
scattered electron is demonstrated. The spectrum develops oscillations in two regions: the hard, where they
depend on the electron Lorentz factor, and the soft, where the oscillations depend on the electron scattering
angles. This interference pattern owes to the presence of jetlike radiation configurations, formed by a
piecewise-rectilinearly moving electron and the accompanying photon. The corresponding nondipole
decomposition relation is derived. Notions describing proper field formation and interference, and
presumably being applicable more generally, are discussed in detail.
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I. INTRODUCTION

Relatively recently, it was recognized that gamma radi-
ation from ultrarelativistic electrons in noncrystalline finite
targets can exhibit salient “nondipole” interference effects
when the electron deflection angles exceed the natural scale
for radiation emission angles set by the electron inverse
Lorentz factor [1–4]. The existence of such effects was
confirmed by CERN experiments, which observed oscilla-
tions in the hard part of angle-integral photon emission
spectra from ∼200 GeV electrons passing through a pair of
amorphous foils separated by a submillimeter gap [5].
Understanding of the behavior of radiation spectra in such
cases, however, still seems to be incomplete. Reasoning of
[4] had explained the shape and location of features in the
hard spectral domain, whereas the soft domain was assumed
to be featureless. But that holds only for spectra averaged
over a broad scattering angle distribution like that in
amorphous foils in experiments [5].
Qualitative assessment of any interference effects in

radiation relies on the notion of photon formation length,
which is confronted with intrinsic geometrical scale(s)
in the problem (in the case mentioned above—with the
interfoil distance). The conventionally defined photon
formation length

lf ¼
2

ωðγ−2 þ θ2Þ ; ð1Þ

besides the photon frequency ω, depends on its emission
angles θ, and through them, indirectly, on electron scatter-
ing angles. Thus, in practice, one has first to accurately
determine which angles are relevant, and from which
particular direction they are to be counted off. For instance,
the Landau-Pomeranchuk-Migdal suppression of the soft

part of radiation spectrum from an electron in a thick
amorphous target [6,7] is known to be described by the
photon formation length depending on the mean square
deflection angle accumulated by the electron in the target,
with θ2 ∼ hχ2i ≫ γ−2 [8–10]. On the contrary, the afore-
mentioned case of nondipole bremsstrahlung on a pair of
amorphous foils [5] seems to be related only with the free
photon formation length (defined in the absence of electron
scattering), when θ ≲ γ−1 [4]. It may be puzzling how to
reconcile this with the fact that the corresponding oscil-
lations fully develop only when typical scattering angles
overtake the inverse Lorentz factor. Basically, that can be
due to incidental insensitivity of the period and phase of the
oscillations in the hard spectral domain to the mean square
angles of scattering in both targets, but a principal question
remains—is there a signature of the electron scattering
angle dependent photon formation length anywhere among
the radiation observables?
To answer this question, and pave the way for further

developments, it is expedient to revisit the cornerstone
problem—radiation from an electron undergoing succes-
sive double scattering through certain angles, not subject to
any averaging. Such a problem was discussed in a number
of instances before: The space-time evolution of the
retarded electromagnetic field was analyzed by Purcell
[11], whereas general properties of the quantum amplitude,
by Feynberg [12].
The object of our study, however, will be the radiation

spectrum integrated over emission angles, to which exper-
imental observation in the ultrarelativistic case is usually
restricted, as long as photons are typically emitted in a
narrow cone around the forward direction. For this observ-
able, the interference pattern appears to be richer than one
might naively expect, and effectively involves manifesta-
tions of several photon formation lengths, showing up in
different spectral regions.Wewill deduce the corresponding*bon@kipt.kharkov.ua
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decomposition relation, and investigate the physical mean-
ing of its entries.
Examination of the emerging structure then leads us to

more profound conclusions. All the discovered spectral
features prove to be consequences of the presence of
electron-photon jetlike configurations, which can partici-
pate in interference phenomena in spite of their narrow
collimation properties. That gives rise to notions such as
intermediate electron line and “radio” contributions (among
which the first is independent of electron deflection angles,
while the second is independent of the electron Lorentz
factor), and “proper field form factors” multiplying the
radio contribution. The latter notions may be applicable
in a broad class of problems. To reach their versatile
understanding, it appears beneficial to discuss the problem
from several points of view.
Specifically, after setting forth the initial assumptions in

Sec. II, we turn in Sec. III to evaluating the spectrum in
terms of photon emission angles. That reveals the existence
of jetlike and interjet radiation, but hides their spatial
ordering. Additional insight is gained in Sec. IV by
considering the process in transverse coordinates (impact
parameters), which best elucidates the origin of electron
proper field form factors. In Sec. V, that is complemented
by a study of longitudinal evolution of photon formation
and interference, aiming to demonstrate that the long and
short scales anticipated to be photon formation lengths do
correspond to the process development in time. Section VI
includes a brief analysis of experimental realizability of the
considered process. Section VII provides the summary. In
the Appendix, we derive the covariant form of the double
time integral representation for the radiation spectrum, and
highlight its gauge properties, which prove relevant in the
present context.

II. PRELIMINARIES

For the interference effects discussed in this paper to be
pronounced, energies of the emitted photons are to be low
compared with the electron energy. That creates premises
for applicability of classical electrodynamics: The possible
quantal nature of the electron motion in the domains of
scattering is inessential provided the photon formation
length greatly exceeds the extent of each of those scattering
areas. Then, the factorization theorem asserts that the
differential probability of the entire bremsstrahlung process
splits into a product of two differential cross sections of
elastic electron scattering and the differential probability of
emission of an electromagnetic wave from an angle-shaped
charged particle trajectory [9,13]. Our study in this paper
will focus on the photon emission probability alone, which
is tractable purely classically. Moreover, at high energies,
the motion of the electron in macroscopic-field deflectors
may be semiclassical, as well (see Sec. VI).
We thus consider radiation from a classical charge e

(physically representing an electron or positron) moving

along a double-angle-shaped trajectory rðtÞ, with velocity
vðtÞ ¼ dr=dt depending on time t. Specifically, as was
mentioned in the Introduction, we shall evaluate the angle-
integral radiation spectrum, which in the ultrarelativistic case
γ ¼ ð1 − v2Þ−1=2 ⋙ 1 is the prime experimental observ-
able. It involves several operations [14]: a time integral with
conjugate plane-wave factor eiωt−ik·r depending on the
photon frequency ω and emission direction n ¼ k=ω,
subsequent amplitude squaring, and integration over direc-
tions of n:

dI
dω

¼ ω2

Z
d2n

���� e
2π

Z
∞

−∞
dt½n × vðtÞ�eiωt−ik·rðtÞ

����
2

: ð2Þ

To reach proper understanding of its behavior, it is desirable
to reduce (2) at least to a single integral, enabling clear-cut
isolation of dominant contributions, and thereby, a rigorous
measure of the radiation coherence. The physical meaning of
the latter contributions will depend on the nature of the last
integration variable. We will describe three most informative
approaches, and demonstrate that although, inevitably, they
all lead to the same structure of the final result, their
interpretations elucidate different aspects of the radiation
process, thus being mutually complementary. Their amal-
gamation then leads to a cogent picture for interference
effects in bremsstrahlung at electron rescattering, which may
also prove relevant for other highly nondipole radiation
problems.

III. ANALYSIS IN TERMS OF ANGULAR
DISTRIBUTIONS

To fully describe the electron trajectory, we denote
its successive elastic deflection angles as χ 1 and χ 2
[γ−1 ≪ χ1;2 ≪ 1], and the separation time (or length)1

between the scatterings as T (see Fig. 1). Noncoplanarity
of the scattering angles is characterized by the azimuthal
angle between them, φ12 ¼ arccos ðχ 1 · χ 2=jχ 1jjχ 2jÞ. In this
abrupt scattering case, it is straightforward to integrate in (2)
first over time. That gives

dI
dω

¼ e2

π2

Z
d2θ

��
θ

γ−2 þ θ2
−

θþ χ 1
γ−2 þ ðθþ χ 1Þ2

�
2

þ
�

θ − χ 2
γ−2 þ ðθ − χ 2Þ2

−
θ

γ−2 þ θ2

�
2

þ 2

�
θ

γ−2 þ θ2
−

θþ χ 1
γ−2 þ ðθþ χ 1Þ2

�

·

�
θ − χ 2

γ−2 þ ðθ − χ 2Þ2
−

θ

γ−2 þ θ2

�
cos

ωT
2γ2

ð1þ γ2θ2Þ
�
:

ð3Þ

1We adopt units in which the speed of light equals unity.
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The behavior of the integrand of Eq. (3) in the θ
plane (the angular distribution of radiation) is depicted
in Figs. 2 and 3 for a case of exemplary scattering angles
jχ 1j ∼ jχ 2j ∼ 30γ−1, and progressively increasing values
of ωT

2γ2
. One can visualize there three cones of radiation

(associated with one internal and two external electron
lines), with concentric interference rings about the internal
line. The outreach of the latter rings depends on ωT. At
ωTχ2=2 → 0, the rings expand to infinity, and the angular
distribution of radiation at finite θ [the inner part of
Fig. 2(a)] tends to that at single electron scattering through
angle χ 1 þ χ 2 (cf., e.g., [15]).

2 At some finite ω, the radius
of the rings starts to come close to one of the deflection
angles. Successively, when this radius by far exceeds χ1, χ2,
there exists only interference between the external lines
[Fig. 2(a)], when it becomes on a par with the size of (one
of the) χ’s, there emerges interference between the internal
and an external line [Fig. 2(b)], and when it falls below χ1,
χ2, the latter interference is lost, as well [Fig. 2(c)], and only
interference within the internal line survives (Fig. 3).3

For arbitrary χ 1 and χ 2, the ω-independent (noninterfer-
ence) part of (3) consists of two separate (“Bethe-Heitler”)
contributions from the scattering vertices, each of which is
given by the well-known bremsstrahlung formula

dIBH
dω

ðγχÞ ¼ e2

π2

Z
d2θ

�
θ − χ

γ−2 þ ðθ − χ Þ2 −
θ

γ−2 þ θ2

�
2

ð4aÞ

≃
χ≫γ−1

2e2

π
ðln γ2χ2 − 1Þ: ð4bÞ

Integral (4a) converges due to mutual cancellation between
the terms in the brackets.
In contrast, for the nontrivial, interference part of (3), the

terms in its integrand may be treated independently,
because there the convergence is provided by the cosine
factor. The key observation is that different terms in the
integrand give dependence of dI=dω on ω at different

scales. Specifically, separating χ-dependent and -indepen-
dent parts gives

dI
dω

¼ dIBH
dω

ðγχ1Þ þ
dIBH
dω

ðγχ2Þ

þ 2e2

π

�
g

�
ωT
2γ2

�
þ rðχ 1; χ 2; γ−1;ωTÞ

�
; ð5Þ

1 2v

v 1
v 2 e

T

, n

FIG. 1. Geometry of the considered electron scattering process
and the accompanying radiation. For symmetry’s sake, all the
angles are counted off from the intermediate electron velocity.
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FIG. 2. Angular distributions of radiation from a doubly
scattered electron. Directions of initial and final electron motion
coincide with centers of the leftmost and the rightmost jetlike
features. (a) ωT

2γ2
¼ 0.001, (b) ωT

2γ2
¼ 0.01, (c) ωT

2γ2
¼ 0.1. For higher

ω, see Fig. 3 below. For discussion see text.

2It should be mentioned that Fig. 1 in [15], corresponding to the
total deflection angle 10γ−1, did not belong to the ultranondipole
regime yet, whereas our figure with jχ 1 þ χ 2j ∼ 50γ−1 does. That
is responsible for residual differences between the plots.

3Angular distributions similar to those in Fig. 3 were discov-
ered previously in other but related physical problems: radiation
from an electron in a straight section between magnets in a
storage ring, or in more elaborate synchrotron radiation sources
(see [16,17] and references therein).
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where4

g

�
ωT
2γ2

�
¼ −

1

π

Z
d2θ

θ2

ðγ−2 þ θ2Þ2 cos
ωT
2γ2

ð1þ γ2θ2Þ ð6aÞ

¼ Ci

�
ωT
2γ2

�
þ ωT
2γ2

si

�
ωT
2γ2

�
þ cos

ωT
2γ2

; ð6bÞ

with CiðzÞ ¼ −
R
∞
z

dx
x cos x, siðzÞ ¼ −

R
∞
z

dx
x sin x the

cosine and sine integral functions [18], and

rðχ 1; χ 2; γ−1;ωTÞ

¼ 1

π

Z
d2θ cos

ωT
2γ2

ð1þ γ2θ2Þ

×

�
θ

γ−2 þ θ2
·

�
θþ χ 1

γ−2 þ ðθþ χ 1Þ2
þ θ − χ 2
γ−2 þ ðθ − χ 2Þ2

�

−
θþ χ 1

γ−2 þ ðθþ χ 1Þ2
·

θ − χ 2
γ−2 þ ðθ − χ 2Þ2

�
:

ð7Þ

Note that
R
∞
0 dωgðωT

2γ2
Þ ¼ R

∞
0 dωrðχ 1; χ 2; γ−1;ωTÞ ¼ 0, as

a consequence of locality of electromagnetic energy emis-
sion in classical electrodynamics (see, e.g., [4]).
At ωT=2γ2 ≳ 1, when typical contributing angles are

restricted by θ ≲ γ−1 ≪ χ, part r is suppressed compared to
g by inverse powers of γχ, and can be neglected. Therewith,

dI
dω

≃
ωT
2γ2

≳1
dIBH
dω

ðγχ1Þ þ
dIBH
dω

ðγχ2Þ þ
2e2

π
g

�
ωT
2γ2

�
: ð8Þ

In the formal limit ωT=2γ2 → ∞, the spectrum exhibits
decreasing harmonic oscillations [4]5

dI
dω

≃
ωT
2γ2

≫1

dIBH
dω

ðγχ1Þ þ
dIBH
dω

ðγχ2Þ þ
2e2

π

�
2γ2

ωT

�
2

cos
T

l0ðωÞ
;

ð9Þ

where

l0ðωÞ ¼
2γ2

ω
ð10Þ

stands for the “free” photon formation length. It is relevant
here insofar as between the hard scatterings the electron
moves strictly rectilinearly (should there be some medium
or external field along its path, the situation might dras-
tically change). Note, too, that the decrease here follows
the law ∼ω−2 instead of ∼ω−1, owing to the integrand in (6)
vanishing at θ → 0 (a “hollow cone” distribution of
radiation emitted from an isolated straight electron line),
due to the vector and gauge character of electromagnetic
radiation.
When ω → 0, function (6b) logarithmically diverges,

so, ultimately, approximation (8) must break down. That
reflects physical limitedness of separate treatment of
individual terms in Eq. (5).6 At sufficiently low ω, all
the terms in (5) become comparable and simultaneously
important. Nonetheless, there still remains room for sim-
plifications: At χ ≫ γ−1, it is justified to entirely neglect
terms containing γ−2 (provided jχ 1 þ χ 2j ≫ γ−1, to avoid a

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.1

0.2

0.3

0.4

0.5

2 e2 2

dI

d d 2

hollow

cone

FIG. 3. Angular distribution of radiation intensity around the
direction of the intermediate electron velocity, for χ1 ¼ χ2 ¼
30γ−1 (there is no sensitivity to those angles, provided they are
large enough), and different ω in the hard region. In the displayed
domain, the distribution is virtually axially symmetric and
χ-independent. Red solid curve, ωT

2γ2
¼ 0.9 (the main maximum

of dI=dω in the hard region). Green dashed, ωT
2γ2

¼ 3.5 (the

following minimum of dI=dω). Blue dot-dashed, ωT
2γ2

¼ 6.5 (the

secondary maximum of dI=dω). For the corresponding features
in dI=dω, cf. Fig. 4(a) below. Black dotted curve, the envelope
2γ2θ2

ð1þγ2θ2Þ2.

4In [4], function gðωT
2γ2
Þ was denoted as gllð0; ωT2γ2Þ, to distinguish

it from dipole or mixed-strength radiation cases. Here, confining
ourselves to the strongly nondipole case alone, we omit nonin-
formative labels.

5Strictly speaking, (9) becomes numerically accurate only
in a rather far asymptotic region (see [4]). To reach higher
precision, it may be worth retaining the next-to-leading order
term in the phase, but we shall not indulge into such compli-
cations in the present paper.

6It must be remembered that the interpretation of individual
terms in (2) as stemming from isolated parts of the electron’s
trajectory is not gauge invariant, because at the ends of a finite
trajectory segment there is no conservation of charge. In this and
the following sections, we work, specifically, in the radiative
gauge. Nevertheless, since the entire spectral-angular distribution
(3) is gauge invariant, its terms with different dependencies on χ 1,
χ 2 may be singled out at least formally, and treated separately in
this sense.
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case of overlap of singularities, which will be touched
upon later). Physically, that means that in the softest
spectral (here called radio) region, the ensemble of
segments of the electron’s trajectory acts like a single
antenna (cf., e.g., [19])—viz., like a long “wire,” which is
significantly deformed within the photon formation
length, so that the electric current along it, representing
the passing electron, may be regarded as flowing exactly
at the speed of light. Evaluation of the corresponding
integral gives7

rðχ 1; χ 2; 0;ωTÞ ¼
1

π

Z
d2θ

�
θ

θ2
·

�
θþ χ 1

ðθþ χ 1Þ2
þ θ − χ 2
ðθ − χ 2Þ2

�

−
θþ χ 1

ðθþ χ 1Þ2
·

θ − χ 2
ðθ − χ 2Þ2

�
cos

ωTθ2

2

¼
Z

∞

χ2
1

dθ2

θ2
cos

ωTθ2

2
þ
Z

∞

χ2
2

dθ2

θ2
cos

ωTθ2

2

−
Z

∞

χ2
1

dθ2 cos
ωTθ2

2
Re

1

χ1χ̄2 þ θ2

−
Z

∞

χ2
2

dθ2 cos
ωTθ2

2
Re

1

χ1χ̄2 þ θ2

þ
Z

∞

0

dθ2 cos
ωTθ2

2
Re

1

χ1χ̄2 þ θ2
;

ð13aÞ

where χ1χ̄2 ¼ ðχ1x þ iχ1yÞðχ2x − iχ2yÞ ¼ jχ 1jjχ 2jeiφ12 .
Representation (13a) in terms of single integrals is

already suitable for assessment of coherence effects,
but those integrals can be readily taken, as well:

rðχ 1; χ 2; 0;ωTÞ

¼ −Ci
�
ωTχ21
2

�
− Ci

�
ωTχ22
2

�

þRe

�
cos

ωTχ1χ̄2
2

�
Ci

�
ωT
2

ðχ21 þ χ1χ̄2Þ
�

þ Ci

�
ωT
2

ðχ22 þ χ1χ̄2Þ
�
− Ci

�
ωT
2

χ1χ̄2

��

þ sin
ωTχ1χ̄2

2

�
si

�
ωT
2

ðχ21 þ χ1χ̄2Þ
�

þ si

�
ωT
2

ðχ22 þ χ1χ̄2Þ
�
− si

�
ωT
2

χ1χ̄2

���
: ð13bÞ

This function must be added to (6b), with a proviso that
owing to the admitted neglect of γ−1, the validity of
approximation (13b) is restricted to the domain ωT ≲ χ−2.
At γ−2 ≪ ωT ≪ γχ−1, approximation (13) devolves to

decreasing harmonic oscillations:

rðχ 1; χ 2; 0;ωTÞ≃ 2

ωT

�
Re

1

χ21 þ χ1χ̄2
−

1

χ21

�
sin

ωTχ21
2

þ 2

ωT

�
Re

1

χ22 þ χ1χ̄2
−

1

χ22

�
sin

ωTχ22
2

:

ð14Þ

But their decrease rate appears to be too slow, so in the far
asymptotics, approximation (14) needs to be corrected.
To this end, instead of considering the full integrand in (7),
it suffices to single out only its most singular parts—
vicinities of points θ ¼ −χ 1 and θ ¼ χ 2. The calculation
then gives

rðχ 1; χ 2; γ−1;ωTÞ

≃ 1

π

�
χ 1 þ χ 2

ðχ 1 þ χ 2Þ2
−
χ 1
χ21

�

·
Z

d2θ
θþ χ 1

γ−2 þ ðθþ χ 1Þ2
cos

ωT
2

½χ21 − 2χ 1 · ðθþ χ 1Þ�

þ 1

π

�
χ 2
χ22

−
χ 1 þ χ 2

ðχ 1 þ χ 2Þ2
�

·
Z

d2θ
θ − χ 2

γ−2 þ ðθ − χ 2Þ2
cos

ωT
2

½χ22 þ 2χ 2 · ðθ − χ 2Þ�

≃ −
χ 2 · ðχ 1 þ χ 2Þ
ðχ 1 þ χ 2Þ2

2

γχ1
sin

ωTχ21
2

K1

�
ωTχ1
γ

�

−
χ 1 · ðχ 1 þ χ 2Þ
ðχ 1 þ χ 2Þ2

2

γχ2
sin

ωTχ22
2

K1

�
ωTχ2
γ

�
; ð15Þ

7Integration over the azimuth of θ is alleviated by introduc-
ing a complex variable ζ ¼ θx þ iθy for Cartesian components
θx, θy of vector θ, and evaluating the encountered integrals by
residues:

Z
dϕθ

θ · ðθ − χ Þ
ðθ − χ Þ2 ¼ Re

Z
dϕθ

ðθx þ iθyÞðθx − iθy − χÞ
ðθx þ iθy − χÞðθx − iθy − χÞ

¼ Re
1

i

I
jζj¼jθj

dζ
ζ − χ

¼ 2πϑðjθj − jχ jÞ; ð11Þ

with ϑð…Þ the Heaviside unit step function, and

Z
dϕθ

ðθþ χ 1Þ · ðθ − χ 2Þ
ðθþ χ 1Þ2ðθ − χ 2Þ2

¼ Re
I
jζj¼jθj

dϕζ
1

ðζ̄ − χ̄2Þðζ þ χ1Þ

¼ Re
1

χ̄2χ1 þ jζj2
I
jζj¼jθj

dϕζ

�
ζ̄

ζ̄ − χ̄2
−

χ1
ζ þ χ1

�

¼ 2π½ϑðjθj − jχ 2jÞ − ϑðjχ 1j − jθjÞ�Re
1

χ̄2χ1 þ θ2
; ð12Þ

with χ1 ¼ χ1x þ iχ1y, χ̄2 ¼ χ2x − iχ2y.
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with K1 the Macdonald function [18]. At relatively low ω
(χ−2 ≪ ωT ≪ γχ−1), when K1ðωTχγ Þ → γ

ωTχ, form (15)
reduces to the high-ω asymptotics (14) of Eq. (13b).
Thus, equations (13b) and (15) can be unified by writing

rðχ 1; χ 2; γ−1;ωTÞ

≃ A1

�
ωTχ21
2

;
ωTχ1χ2

2
eiφ12

�
F⊥

�
ωTχ1
γ

�

þ A1

�
ωTχ22
2

;
ωTχ1χ2

2
eiφ12

�
F⊥

�
ωTχ2
γ

�

þ A2

�
ωTχ1χ2

2
eiφ12

�
: ð16Þ

Here

A1ðz1; z2Þ ¼ −Ciðz1Þ
þRefcos z2Ciðz1 þ z2Þ þ sin z2siðz1 þ z2Þg

ð17Þ

and

A2ðzÞ ¼ −Refcos zCiðzÞ þ sin zsiðzÞg ð18Þ

may be interpreted as “quasiantenna” form factors, and

F⊥ðzÞ ¼ zK1ðzÞ; ð19Þ

being normalized by condition F⊥ð0Þ ¼ 1, as the electron’s
proper field form factor. In the next section, we will
investigate its origin in more detail. Term A2 in (16)
(stemming from the low-θ part of interference between
the external lines) at ωTχ2 ≫ 1 decreases faster than A1:

A2ðzÞ ≃
z→∞

Re
1

z2
: ð20Þ

This coincides with the transient asymptotics of the original
integral as a whole, so it appears unnecessary to endow A2

with a suppressing form factor.8

Sine factors in (15) produce oscillations similar to those
in (9), but are related with a different (electron scattering
angle dependent) definition of the photon formation length:

sin
ωTχ2

2
¼ sin

T
lχðωÞ

; lχðωÞ ≃
γχ≫1

2

ωχ2
: ð21Þ

The reason why, in contrast to Eq. (9), we encounter here a
sine instead of cosine dependence is that in Eq. (13a),
cosine functions are integrated over photon emission angles
from χ21, χ

2
2 to infinity. Ultimately, those oscillations are

damped by the exponentially decreasing factor F⊥, but the
damping proceeds slowly, since F⊥ depends on ω on a
scale which is γχ times harder than the arguments of A’s.
So, there is enough room for the spectrum to make a
number of visible oscillations.
Contribution (16) may now be added to (8), and their

sum,

dI
dω

≃
χ1;2≫γ−1

dIBH
dω

ðγχ1Þ þ
dIBH
dω

ðγχ2Þ

þ 2e2

π

�
g

�
ωT
2γ2

�
þ A1

�
ωTχ21
2

;
ωTχ1χ2

2
eiφ12

�

× F⊥
�
ωTχ1
γ

�
þ A1

�
ωTχ22
2

;
ωTχ1χ2

2
eiφ12

�

× F⊥
�
ωTχ2
γ

�
þ A2

�
ωTχ1χ2

2
eiφ12

��
; ð22Þ

gives a satisfactory approximation to the exact result for
all ω. Term g here represents a hard contribution, whereas
the residual quasiantenna terms represent the soft contri-
bution, which is yet regulated by the appropriate proper
field form factors depending on ω on a scale intermediate
between soft and hard. At ω → 0, logarithmic divergences
of terms g and A2 mutually cancel, as they must, and up to
terms linear in ω, the result reads

dI
dω

≃
ωTχ2

1;2≪1

dIBH
dω

ðγjχ 1 þ χ 2jÞ − e2ωT
χ 1 · χ 2

2
: ð23Þ

Note that the last term here is negative when χ 1 · χ 2 > 0;
hence, in the low-ω domain, the spectrum suppression can
be nonmonotonous and somewhere dive below the infrared
limiting value.
A typical resulting spectrum for significant electron

deflection angles (which are let have equal values,
χ 1 ¼ χ 2) is shown in Fig. 4(a). It displays oscillations in
two nonoverlapping regions, with visibilities∼1= ln γ2χ2. If
jχ 1j and jχ 2j were unequal, according to Eq. (15), low-
omega oscillations would involve two periods, becoming
less regular.9 At lowest ω, in Fig. 4(a) there is a bump
predicted by Eq. (23). In practice, a superficially similar
bumplike structure often occurs due to transition radiation
on solid target boundaries (see [10]). However, we do not8With the account of Oðγ−1Þ corrections, (20) is actually

followed by slow oscillations − 1
ωTχ2 sin

ωT
2γ2
, which ensure thatR

∞
0 dωA2 exactly equals zero, as is

R
∞
0 dωA1. However, such a

faint contribution is virtually invisible against IBH and g, so it
seems harmless to neglect it entirely.

9If furthermore we average over an interval of χ1 and χ2 so
large that δχ1;2 ≳ χ1;2, soft oscillations would be washed out. That
is why they were not discovered in works [1–4].
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include here any medium polarization effects, the bump
being merely due to positive correlation between electron
deflection angles.
Comparing solid and dot-dashed curves in Fig. 4(b), we

can see that for the case of scattering angles coinciding
by absolute value, low-ω oscillations are virtually inde-
pendent of the azimuth between the scattering planes, given
that in Eq. (15), χ1·ðχ1þχ2Þ

ðχ1þχ2Þ2 ¼ χ2·ðχ1þχ2Þ
ðχ1þχ2Þ2 ¼ 1

2
. Anomalously

large oscillations emerge, however, at χ2 → −χ1 (dashed
curve). That corresponds to an overlap of radiation cones
aligned with initial and final electron lines, and leads to
breakdown of formula (15). Such a case is exceptional, and
generally will be beyond the scope of the present paper.

The causal connection between directions of electron
motion and that of photon emission means that together
they form a jet. More precisely, in this process there are two
categories of photons: intrajet (inside a jet) and interjet
(between the jets), as is evident from Fig. 2. In quantum
electrodynamics, in interpretations of radiative corrections
integrated over ω and all components of k, intrajet photons
are generally called collinear, whereas low-frequency
photons which do not have collinear properties (in our
case—interjet, although they may incidentally propagate
along one of the jet directions, as well) are called soft
[19,20]. In their terms, internal line resonances in the hard
spectral domain in Fig. 4(a) are due to “collinear-collinear”
radiation interference (interference between photons gen-
erated by the electron in the intermediate state and emitted
close to its velocity), whereas radio resonances in the soft
domain are “soft-collinear” interference (when only one of
the interfering photons is closely aligned with the initial or
final electron line).
The notion of jets also helps elucidate why photon

formation length (21) results from generic Eq. (1) by
exactly substituting θ → χ: The emission angle for inter-
fering photons is counted off from the direction of one of
the electron lines (internal) to the direction of another
(external) electron line, along which such photons are
actually emitted, and the indeterminacy of the emission
angle ∼γ−1 is much smaller than its mean value χ. This,
though, does not completely specify the process geometry
in position space yet. There also remains an issue why
the proper field form factors, which are asymptotically
exponential, depend on the absolute value of the deflection
angle. Finally, our assumption that l0 and lχ are the photon
formation lengths was actually not strictly proven within
the approach of the present section. It thus deserves
additional space-time considerations. In particular, one
can anticipate the factorization property for the low-ω part
also to be backed by some causality reasons.

IV. IMPACT PARAMETER REPRESENTATION

In this section, we will explore properties of trans-
verse spatial variables for emitted photons. They must be
Fourier-dual to the photon transverse wave vector, and
actually be in the spirit of ray optics. If conditions of ray
optics do apply, impact parameters10 should assume rather
well-defined values characterizing preferable light rays.
Some complications emerge in this regard, however,

since Eq. (2) involves not the local electromagnetic field,
but the radiation emission amplitude. Besides that, the
electromagnetic field is physically coupled to the electron,
which arrives from and moves off to infinity. Nonetheless,
well defined should be the notion of impact parameter of an
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FIG. 4. The spectrum of electromagnetic radiation from a
doubly scattered electron. (a) Full spectrum for a case of
scattering through equal angles χ 1 ¼ χ 2 ¼ χ , χ ¼ 30γ−1 (solid
curve). Approximation (22) is virtually indistinguishable from
this. The dot-dashed curve shows the behavior of asymptotics
(23). Two separate regions of oscillatory behavior at intermediate
and at high ω are determined by different photon formation
lengths. (b) Soft region of the radiation spectrum, for a more
general case jχ 1j ¼ jχ 2j ¼ 30γ−1 and different values of azimuth
φ12. Solid curve, φ12 ¼ 0 (as in the upper figure). Dot-dashed,
φ12 ¼ 3π=4 [evaluated by Eq. (22)]. Red dashed curve, φ12 ¼ π,
corresponding to the jet overlap, is evaluated by exact represen-
tations (6) and (7). In the latter case, the oscillations are
anomalously large.

10Here we actually deal with photon emission rather than
impact, but to stress the analogy with the equivalent photon
method, we adopt the same terminology.
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electromagnetic wave with respect to the initial or to the
final electron line. At that, since directions of electron
motion along those lines differ, there will arise simulta-
neously two instead of one species of the impact parameter
(in contrast to the Glauber description of short-wave
scattering on finite obstacles, where a single definition
for impact parameters is sufficient).
A formulation of the impact parameter view for the case

of electron double scattering can be attained as follows. In
representation (3), for each of the algebraic terms in the
brackets, apply transformation

θ

γ−2 þ θ2
¼ i

2π

Z
d2ξeiθ·ξ

∂
∂ξK0

�
ξ

γ

�

[obtained from well known identity 1
γ−2þθ2

¼
1
2π

R
d2ξeiθ·ξK0ðξγÞ by integrating by parts]. That leads to

representation [4], which for our present purposes more
conveniently casts as

dI
dω

¼ dIBH
dω

ðγχ1Þ þ
dIBH
dω

ðγχ2Þ

−
e2

π3ωT

ZZ
d2ξ1d2ξ2

∂
∂ξ1K0

�
ξ1
γ

�
·
∂
∂ξ2K0

�
ξ2
γ

�

×Imð1 − e−iχ 1·ξ1Þð1 − e−iχ 2·ξ2Þe−iωT2γ2
þi

ðξ1−ξ2Þ2
2ωT : ð24Þ

The impact parameter here is represented by ξ=ω rather
than ξ alone (the latter is dimensionless). Specifically, ξ1=ω
is the impact parameter with respect to the first scattering
vertex, and ξ2=ω is that with respect to the second vertex.
We will see shortly that this approach is largely similar to
the equivalent photon one [14], with a proviso that from the
outset we deal with strictly real photons, and do not restrict
ourselves to dipole approximation.
Examining structure (24), it is evident that at χ ≫ γ−1,

terms e−iχ 1·ξ1 and e−iχ 2·ξ2 are rapidly oscillating. Thus,
the main contribution to the integral is brought by the
χ-independent term

g

�
ωT
2γ2

�
¼ 1

2π2ωT

ZZ
d2ξ1d2ξ2

∂
∂ξ1K0

�
ξ1
γ

�

·
∂
∂ξ2K0

�
ξ2
γ

�
sin

�
ωT
2γ2

−
ðξ1 − ξ2Þ2

2ωT

�
; ð25Þ

which can be shown (e.g., by returning to the emis-
sion angle representation) to coincide with (6). The
high-ω asymptotics of Eq. (25) can be derived by noting
that therein typical contributing ξ1, ξ2 are small. It is,

however, impossible to entirely neglect term ðξ1−ξ2Þ2
2ωT in the

argument of the sine, because then the integrals over ξ1 and
ξ2 would vanish. Expanding through the next-to-leading
order

sin

�
ωT
2γ2

−
ðξ1 − ξ2Þ2

2ωT

�
≃ sin

�
ωT
2γ2

−
ξ21 þ ξ22
2ωT

�

þ ξ1 · ξ2
ωT

cos
ωT
2γ2

; ð26Þ

and inserting this to (25), reproduces Eq. (9).
In contrast, at low ω, we know from Sec. III that the

rest of the interference terms become important, as well,
but here it is justified to set γ−1 → 0. From the stand-
point of representation (24), that owes to the smallness
of contributing ξ1, ξ2. Integration in

rðχ 1; χ 2; 0;ωTÞ

¼ 1

2π2ωT

ZZ
d2ξ1d2ξ2

ξ1
ξ21

·
ξ2
ξ22

×Imðe−iχ 1·ξ1 þ e−iχ 2·ξ2 − e−iχ 1·ξ1−iχ 2·ξ2Þeiðξ1−ξ2Þ
2

2ωT

with the use of same conformal properties (11) and (12)
gives back the same integral sine and cosine
representation (13b).
Our main interest, however, lies in the case ωTχ2 ≫ 1,

since impact parameters then assume rather sharp values,
and suggest a direct physical interpretation. We thus
examine integral (24) under condition χ−2 ≪ ωT ≪ χ−1γ
more closely.
To begin with, in one of the χ-dependent terms of

Eq. (24),

1

2π2ωT
Im

ZZ
d2ξ1d2ξ2

∂
∂ξ1 K0

�
ξ1
γ

�
·
∂
∂ξ2K0

�
ξ2
γ

�

× e−iχ 1·ξ1þ i
2ωTðξ1−ξ2Þ2 ;

the dominant contribution comes from small ξ2, allowing it
to be approximated as

−
1

2π2ωT
Im

Z
d2ξ1

∂
∂ξ1K0

�
ξ1
γ

�
e−iχ 1·ξ1þ

i
2ωTξ

2
1

·
Z

d2ξ2
ξ2
ξ22

e−
i
ωTξ1·ξ2 : ð27Þ

Here the integral over ξ2 equals
R
d2ξ2

ξ2
ξ2
2

e−
i
ωTξ1·ξ2 ¼ 2πωT

i
ξ1
ξ2
1

,

and that over ξ1 engages a rapidly oscillating exponential
e−iχ 1·ξ1þ

i
2ωTξ

2
1 ¼ e

i
2ωTðξ1−ωTχ 1Þ2−i

2
ωTχ2

1 , which has a stationary
phase point at ξ1 ¼ ωTχ 1. That effectively fixes ξ1 in other
factors at this value:

∂
∂ξ1 K0

�
ξ1
γ

�
·
ξ1
ξ21

→ −
1

γωTχ1
K1

�
ωTχ1
γ

�
:

The result of integration in (27) then equals
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−
2

γχ1
sin

ωTχ21
2

K1

�
ωTχ1
γ

�
: ð28Þ

Similarly, the integral containing e−iχ 2·ξ2 reduces to

1

2π2ωT
Im

ZZ
d2ξ1d2ξ2

∂
∂ξ1K0

�
ξ1
γ

�
·
∂
∂ξ2 K0

�
ξ2
γ

�

× e−iχ 2·ξ2þ i
2ωTðξ1−ξ2Þ2

≃ −
2

γχ2
sin

ωTχ22
2

K1

�
ωTχ2
γ

�
: ð29Þ

Finally, the integral containing e−iχ 1·ξ1−iχ 2·ξ2 receives two
dominant contributions, in one of which ξ1 is small while ξ2
is finite, and in the other one ξ2 is small while ξ1 is finite:

−
1

2π2ωT
Im

ZZ
d2ξ1d2ξ2

∂
∂ξ1K0

�
ξ1
γ

�
·
∂
∂ξ2 K0

�
ξ2
γ

�

× e−iχ 1·ξ1−iχ 2·ξ2þ i
2ωTðξ1−ξ2Þ2

≃ 1

2π2ωT
Im

Z
d2ξ2e−iχ 2·ξ2þ

i
2ωTξ

2
2
∂
∂ξ2 K0

�
ξ2
γ

�

·
Z

d2ξ1
ξ1
ξ21

e−iðχ 1þ
ξ2
ωTÞ·ξ1

þ 1

2π2ωT
Im

Z
d2ξ1e−iχ 1·ξ1þ

i
2ωTξ

2
1
∂
∂ξ1 K0

�
ξ1
γ

�

·
Z

d2ξ2
ξ2
ξ22

e−iðχ 2þ
ξ1
ωTÞ·ξ2 :

Those integrals can be evaluated in exactly the same way as
above, giving

−
1

2π2ωT
Im

ZZ
d2ξ1d2ξ2

∂
∂ξ1K0

�
ξ1
γ

�
·
∂
∂ξ2 K0

�
ξ2
γ

�

× e−iχ 1·ξ1−iχ 2·ξ2þ i
2ωTðξ1−ξ2Þ2

≃ 2

γχ2

χ 2 · ðχ 1 þ χ 2Þ
ðχ 1 þ χ 2Þ2

sin
ωTχ22
2

K1

�
ωTχ2
γ

�

þ 2

γχ1

χ 1 · ðχ 1 þ χ 2Þ
ðχ 1 þ χ 2Þ2

sin
ωTχ21
2

K1

�
ωTχ1
γ

�
:

Combined with (28) and (29), it leads to result (15).
The derivation offered above elucidates the geometrical

origin of proper field form factor F⊥: It corresponds to the
impact parameter distribution amplitude for one of the
intrajet photons, at a fixed impact parameter Δb ¼ ξ1=ω ¼
Tχ 1 determined by the difference of impact parameters
between the vertices, since emission of an interjet photon is
completed in a relatively small spatial domain. The
corresponding form factors in Eq. (22),

F⊥
�
ωTχ
γ

�
¼ F⊥

�
ΔbðT; χÞ
l⊥ðγ;ωÞ

�
;

depend on the ratio of the aforementioned Δb and

l⊥ðωÞ ¼
γ

ω
; ð30Þ

which thus plays the role of a “transverse coherence
length.” One actually recognizes in (30) nothing but the
typical transverse scale for the electric field of an ultra-
relativistic particle, well known within, e.g., the equivalent
photon approach [14]. In the capacity of a coherence length
in our problem, it does not give rise to a new type of
oscillations, but describes damping of an old one.
The analogy with the equivalent photon approach is

strengthened by observing that Fourier expansion of the
transverse component of the electric or magnetic field of
ultrarelativistic electron E⊥ðb; z; tÞ ¼ Zeγb

½b2þγ2ðz−vtÞ2�3=2 gives

Z
∞

−∞
dteiωtE⊥ðb; 0; tÞ ¼

2Ze
vb

F⊥
�
ωb
vγ

�
;

where v → 1 in the ultrarelativistic case, and form factor
F⊥, absorbing all the ω-dependence, coincides with (19).
It may be instructive to compare virtues of the formalism

of the present section with that in Sec. III. In the hard
spectral domain, the interference of radiation is described
well enough by the photon emission angle representation of

T

T

11

1

l0 T

l

T

11
l0 T

T

l T

l0 T l0

a

b

c

FIG. 5. (a) High-ω interference diagram. (b) Low-ω interfer-
ence diagram, in the absence of jet overlap. In this case, there is
also a cross diagram, in which noncollinear photons are emitted
from the first scattering vertex, and collinear ones from the final
electron line. The condition of interference between collinear
and noncollinear photons, besides the coincidence of emission
directions, is the equality of impact parameters: l⊥ðωÞ ¼
Tχ. (c) Low-ω interference diagram in the case of jet overlap
(χ 2 ¼ −χ 1). For interfering collinear photons in this case, only
the difference of impact parameters is fixed.
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Sec. III, demonstrating that photons participating in the
interference emerge under fairly well-defined angles
close to the intermediate electron direction of motion
[see Fig. 5(a)]. The range of contributing angles shrinks
reciprocally with the increase of ω:

ðδθÞ2 ∼ 2

ωT
; ð31Þ

producing the power-law falloff factor in the spectral
oscillations. In the soft domain, however, a clearer physical
picture is offered by the impact parameter representation,
revealing that in addition to emission of the interfering
photons parallel to the initial or final electron line [as is
already clear in the emission angle representation of Sec. III,
particularly Fig. 2(b)], in the configuration space they must
yet nearly belong to a ray going parallel to the external
electron line at a distance such that it passes through the
opposite vertex [see Fig. 5(b)]. At that, the fraction of such
photons, quantified by the spread of the contributing impact
parameters in integral (24), δðξ=ωÞ2 ∼ T=ω, appears to be
significant compared to ðTχÞ2 if ωT ∼ χ−2. With the
increase of ω at χ fixed, this fraction decreases, because
of the exponential decrease of the intrajet photon wave
function at large impact parameters.
The impact parameter view also gives better under-

standing of the condition of applicability of classical
electrodynamics for the present process: The requirement
of negligibility of photon recoil, ω ≪ E=ℏ, in conjunction
with our estimate ω ∼ 1

Tχ2 for typical photon frequencies in

the soft interference domain expresses as

p⊥Δb ≫ ℏ;

where p⊥ ¼ Eχ is the electron transverse momentum,
while Δb ¼ Tχ, as before. Hence, the semiclassical trac-
tability of soft photon emission in the given process is
equivalent to the semiclassicality of transverse motion of
the electron within the intermediate trajectory segment.

V. TIME EVOLUTION

To corroborate our conjecture that l0 and lχ are the true
formation lengths for interfering photons in the correspond-
ing spectral domains, it is necessary to provide also some
longitudinal coordinate considerations. It is difficult to
simultaneously handle all three spatial coordinates and the
photon emission frequency, so we will restrict ourselves in
this section to a simplified treatment only in terms of the
photon emission times, which are manifestly present in
formula (2).
An emission time representation for the radiation spec-

trum derives from (2) by performing prior integration over
the radiation angles, which is manageable for a generic
electron trajectory rðtÞ. That relinquishes the issue of the
photon formation length dependence on the emission

angles, but instead introduces its direct dependence on
the electron deflection angles. Moreover, since we now
encounter a double time integral, coherence lengths dupli-
cate, and there may also occur a correlation between the
emission times. We will expound the corresponding pro-
cedure as briefly as possible.
In the photon emission spectrum, two-time correlation

on the electron trajectory, in effect, is mediated by the
photon propagator (see the Appendix), which depends on
the electromagnetic field gauge. The simplest for use is
Feynman gauge, in which the angle-integral radiation
spectrum reads

dI
dω

¼ ω
e2

π

Z
∞

0

dτ
τ

Z
∞

−∞
dt2

��
γ−2 þ 1

2
½vðt2Þ − vðt2 − τÞ�2

�

× sinω½τ − jrðt2Þ − rðt2 − τÞj�

− γ−2 sinωð1 − vÞτ
�
; ð32Þ

with τ ¼ t2 − t1. The coefficient in the argument of the last
sine here is chosen based on convenience reasons, in order
to make the integrand vanish for a uniform and rectilinear
charge motion. For jvðtÞj ¼ const, this term is independent
of the particle trajectory detail.
Representation (32) is commonly used in practice, so

we will embark on it, too. Although it involves a different
gauge compared to preceding sections, key elements,
contained in the phase of the sine, are gauge independent.
Given the presence of two integration times, for analysis

of the coherence, the integral should be reduced to a single
one with an oscillatory integrand, the leading contributions
from which may formally be related with coherence
properties. In capacity of such a variable in the present
case one can take a time ratio, which, just like photon
emission angles, is related with the process geometry. That
is tantamount to dispensing with kinematic definition (1),
and dealing with a more dynamical one.
For simplicity, in this section we will confine ourselves

to calculations for symmetric and coplanar electron scatter-
ing, when

χ 1 ¼ χ 2:

That will suffice for demonstration of relevance of
coherence length notions, and will also expose similarities
with other problems in which the electron motion is planar,
e.g., synchrotron radiation in a finite magnet.
Since in our case the electron trajectory is rectilinear in

each of the three intervals separated by the two scattering
points, in integral (32) nonzero are only mutual interference
terms between those intervals. Moreover, owing to the
symmetry of the trajectory with respect to its middle point,
interference integral of the inner part with the initial part is
the same as that with the final part, I ie ¼ Iei (see Fig. 6).
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Thus, the spectrum is comprised merely by two essentially
different contributions:

dI
dω

¼ 2e2

π
ðIee þ 2IeiÞ: ð33Þ

In the ultrarelativistic approximation,

Iee ¼
ω

2γ2

Z
∞

T=2
dt2

Z
∞

t2þT=2

dτ
τ

�
ð1þ 2γ2χ2Þ

× sinω

�
τ

2γ2
þ χ2

2

�
4t2

�
1 −

t2
τ

�
− T

��
− sin

ωτ

2γ2

�
;

ð34Þ

with t2 being counted off from the midpoint of the
intermediate time interval, and

Iei ¼
ω

2γ2

Z
T

0

dt02

Z
∞

t0
2

dτ
τ

�
ð1þ γ2χ2=2Þ

× sinω

�
τ

2γ2
þ χ2

2
t02

�
1 −

t02
τ

��
− sin

ωτ

2γ2

�
ð35Þ

with t02 ¼ t2 þ T=2 counted off from the point of first
scattering. Terms nonlinear in times in the arguments of
sine functions originate from transverse coordinate differ-
ence, as we expand

vτ − jrðt2Þ − rðt2 − τÞj

≃ 1

2vτ

�
v2τ2 −

�Z
t2

t2−τ
dtvðtÞ

�
2
�

≃ 1

2v

�Z
t2

t2−τ
dtv2⊥ðtÞ −

1

τ

�Z
t2

t2−τ
dtv⊥ðtÞ

�
2
�
: ð36Þ

Note that the latter expression in terms of transverse
velocity components, through which the longitudinal com-
ponent expresses, as well, is invariant under small rotations
of the Cartesian frame.
The advantage of choosing the origin for variables t2

and t02 in Eqs. (34) and (35) in different points (points of
crossing of the corresponding rectilinear segments) consists
in rendering the nonlinear terms in the phase scale
invariant.11 That enables exact integration over one of
the time variables, by introducing ratio w ¼ 2t2=τ instead
of t2 for Iee, and w ¼ t02=τ instead of t

0
2 for Iei. Integrations

over τ then reduce to that of a sine with a linear argument,
yielding12

Iee ¼
ω

4γ2

Z
2

0

dw
Z

∞

maxfTw; T
2−wg

dτ

�
ð1þ 2γ2χ2Þ

× sinω

�
τ

2γ2
þ χ2

2
½τwð2 − wÞ − T�

�
− sin

ωτ

2γ2

�

ð37aÞ

¼
Z

1

0

dw

�
1þ2γ2χ2

1þγ2χ2wð2−wÞcos
ωT
2γ2

�
1

w
þγ2χ2ð1−wÞ

�

−cos
ωT
2γ2w

�
ð37bÞ

and

Iei ¼
ω

2γ2

Z
1

0

dw
Z

T=w

0

dτ

�
ð1þ γ2χ2=2Þ

× sin
ωτ

2γ2
½1þ γ2χ2wð1 − wÞ� − sin

ωτ

2γ2

�
ð38aÞ

¼
Z

1

0

dw

�
cos

ωT
2γ2w

− 1þ 1þ γ2χ2=2
1þ γ2χ2wð1 − wÞ

×

�
1 − cos

ωT
2γ2

�
1

w
þ γ2χ2ð1 − wÞ

���
: ð38bÞ

Integrals (37b) and (38b) span the same integration interval,
and involve identical cosine factors, so they may reason-
ably be combined. Then, there arise significant cancella-
tions between the prefactors, which can be explicated by
splitting algebraic factors into simple fractions:

t1 t1 T 2

t2 t2 T 2

0 T

0

T

ee

ei

ie ei

ii 0

0

0

FIG. 6. Domains of continuity of the integrand of Eq. (32) in
the double time plane [areas of definition of integrands of partial
integrals (34) and (35)].

11If the electron scattering angles are not coplanar, one has to
perform a complex shift of the variable t2. Thereby, complex
integrals over w reduce to a form analogous to Eq. (13b).

12In (37b) we exploited the symmetry of the integrand, by
virtue of which

R
2
1 dw… ¼ R

1
0 dw….
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dI
dω

¼ 2
dIBH
dω

ðγχÞ þ 2e2

π

Z
1

0

dw

�
cos

ωT
2γ2w

þ
�

1

wþ 1
2γ2χ2

−
1

wþ 1
γ2χ2

þ 1

2 − w
−

1

1þ 1
γ2χ2

− w

�

× cos
ωT
2γ2

�
1

w
þ γ2χ2ð1 − wÞ

��
: ð39Þ

Here the noninterference contribution13

dIBH
dω

ðγχÞ ¼ 2e2

π

�Z
1

0

dw
1þ γ2χ2=2

1þ γ2χ2wð1 − wÞ − 1

�
ð40Þ

actually coincides with (4a).
The rest is straightforward. From the remaining integrals,

we assess typical w (either from the cosine arguments,
depending on ω, or from algebraic factors), but ultimately,
we need estimates for contributing times, so, to this end, we
return to double integrals (37a) and (38a). Note at once that
for given w and ω, typical τ are determined by the slope of
the τ-dependence of the phase, and by integration limits.
The contribution from the end point

τ ≈
T
w

ð41aÞ

in Eqs. (37), (38) has the spread

δτ ∼
2γ2

ω½1þ γ2χ2wð1 − wÞ� ; ð41bÞ

provided δτ ≲ τ, which holds for sufficiently large ω, or
sufficiently small w. For the contribution from the end point
τ ¼ 0, typical τ and δτ are of the same order:

τ; δτ ∼
2γ2

ω½1þ γ2χ2wð1 − wÞ� : ð42Þ

We will conduct this analysis up to the full spectral
decomposition.

A. Bethe-Heitler contribution

It will be instructive to begin with figuring out typical
contributing times for the simplest term dIBH

dω ðγχÞ. For visu-
alization, let us first of all plot the integrand of Eq. (35), which
is depicted in Fig. 7. More quantitative conclusions require
scrutinizing the corresponding single integral (40). There,

typicalwð1 − wÞ, i.e., effectively,minfw; 1 − wg, range from
∼1=γ2χ2 ≪ 1 to ∼1. According to Eq. (42), that corresponds
to typical τ∼ 2γ2

ω½1þγ2χ2wð1−wÞ� ranging from lχðωÞ to l0ðωÞ.
Invoking relations w ¼ t02=τ, 1 − w ¼ −t01=τ, that can be
expressed in terms of t01 and t02 as

max fjt01j; t02g
l0ðωÞ

þmin fjt01j; t02g
lχðωÞ

∼ 1:

The strong inequality between the contributing times, arising
when jt01j ∼ l0ðωÞ ≫ t02 ∼ lχðωÞ or jt01j∼ lχðωÞ≪ t02∼ l0ðωÞ,
reflects the fact that photons are intensely emitted along
the initial or final electron direction. Among those, photons
with coherence time jt01j ∼ l0ðωÞ must be collinear to the
initial electron (being intrajet), whereas t02 ∼ lχðωÞ then
represents the formation time for interjet photons
(cf. Fig. 2), being significantly different from that for
intrajet photon formation. The criterion of attributing the
corresponding contribution to a jet is its independence of
the electron scattering angle, whereas interjet radiation
embodies all the dependence on this angle.
The interference integral (39) may be treated in a similar

manner [first determining w, and next the times from
Eqs. (41) and (42)], but it requires different approximations
in different spectral regions.

B. High-ω domain: Intermediate electron
contribution in Feynman gauge

For the interference integral in Eq. (39), first consider the
domain of high ω, which is where the relatively simple

30 25 20 15 10 5 0
0

5

10

15

20

25

30

t1 l

t 2
l

FIG. 7. Integrand of Eq. (35) at χ ¼ 30γ−1 [case of single
scattering, corresponding to dIBH

dω ðγχÞ]. The extended populated
regions correspond to photon emissions along one of the external
electron lines.

13Structure (40) emerges also when evaluating integral (4a) by
Feynman parametrization. Relationships of Feynman parameters
with time variables were formerly found in quantum field
theory [21].
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intermediate line contributionmust build up. In this limit, the
cosine in Eq. (39) is rapidly oscillating. Generally, integrals
from oscillatory functions are dominated by points of sta-
tionary phase and end points of the integration interval [22].
In our case, there are no stationary phase points on the real
axis, whereas the lower end point essentially does not
contribute, because there cos ωT

2γ2
½1w þ γ2χ2ð1 − wÞ� oscillates

increasingly fast. Thus, the dominant contribution is brought
by the upper end point alone, with the leading terms there
being

Z
1

0

dw cos
ωT
2γ2w

−
Z

1

0

dw
1þ 1

γ2χ2
− w

cos
ωT
2γ2

�
1

w
þ γ2χ2ð1 − wÞ

�
: ð43Þ

In the second integral (stemming from Iei), at γχ ≫ 1 it is
always legitimate replace in the phase 1

w → 1, since away
from point w ¼ 1, this term plays a minor role for any ωT.
Besides that, the lower integration end pointmay be replaced
by −∞, as long as ωT

2γ2
is kept sizable. The result

Z
1

0

dw cos
ωT
2γ2w

−
Z

1

−∞

dw
1þ 1

γ2χ2
− w

× cos
ωT
2γ2

½1þ γ2χ2ð1 − wÞ� ¼ g

�
ωT
2γ2

�
ð44Þ

coincides with the intermediate electron line form factor (6).
It is worth noting that at ω→∞, the leading Oðω−1Þ

contributions from individual integrals in (43)mutually cancel,
and the physical behavior ∼ω−2 is brought by the next-to-
leading order contribution. In Sec. III, that property was
attributed to the vector character of electromagnetic radiation,
via formation of the hollow cone angular distribution. Here, in
the Feynman gauge, the cancellation engages the trajectory-
independent part, represented by the first integral in (43)
or (44).
From the lhs of Eq. (44), one infers that at ωT

2γ2
≫ 1, in

both integrals typical w ¼ t02=τ are close to unity. That
implies that t02 → τ ¼ t02 − t01, i.e., for Iei, the first corre-
lation time t01 → −0, tending to the first scattering point.
From Eq. (41a) we also see that τ ≈ T=w → T, whence
t02 → T, i.e., it tends to the second scattering point, as is
expectable physically. Finally, from the cosine factor of the
second integral in Eq. (44), yielding

1 − w ∼
2

ωTχ2
;

and from Eq. (41b), we get

δτ ∼ l0ðωÞ; ð45Þ

which is natural from the collinear-collinear interference
point of view.14 It is noteworthy that in spite of the
dependence of one of the δt’s on χ, the resulting inter-
mediate line spectral contribution (6b) is χ-independent,
insofar as the smallness of one of the time intervals, ∝ 1

γ2χ2
,

in the double time integral is exactly compensated by the
prefactor containing one power of γ2χ2 in the numerator. As
for the phase, it is independent of χ, granted that at t01 → 0,
jrðt02Þ − rðt01Þj≃ vt02 ≃ vτ. Physically, the negligibility of
the trajectory curvature, in spite of the trajectory bending to
a substantial angle, is chained to the fact that at high ω, this
bending is felt only along a short distance.

C. Low-ω domain: Radio contribution
and long time scales

Next, let us turn to the domain of low ω. It must be
remembered that the intermediate line contribution
extends there, as well. In fact, approximation w ≈ 1 for
the second term of Eq. (43) remains valid even when
ω → 0—not because of the influence of the cosine factor
(which varies slowly in the infrared limit), but due to the
prefactor 1

1þγ−2χ−2−w peaking near the end point. The only

difference is that at ωTχ2=2≲ 1, the lower end point in
the second term cannot be replaced by −∞, as in Eq. (44).
But to cope with the latter impediment, and extend
approximation (44) to the low-ω region (where its
behavior will become logarithmic), it suffices just to
subtract therefrom the corresponding lower end point
contribution

−
Z

0

−∞

dw
1þ 1

γ2χ2
− w

cos
ωT
2γ2

½1þ γ2χ2ð1 − wÞ�

≈ −
Z

0

−∞

dw
1 − w

cos
ωTχ2

2
ð1 − wÞ: ð48Þ

14If one desires to estimate not only δτ, but variations
of each of the contributing times, as well, it is necessary to
return to the original double-time representation (35), and
linearize the argument of the sine in Eq. (35) about point
t01 ¼ 0, t02 ¼ T:

sinω

�
τ

2γ2
−
χ2

2

t01t
0
2

T

�
≃ sin

�
ω

2γ2
ðT þ δt02Þ −

ωχ2

2
δt01

�
:

This shows that the extents of the contributing time regions are
unequal:

δt1 ∼ lχðωÞ ≪ δt2 ∼ l0ðωÞ ≪ T: ð46Þ
For the I ie part, vice versa, one would obtain

δt1 ∼ l0ðωÞ ≫ δt2 ∼ lχðωÞ: ð47Þ
Thus, at each end of the intermediate electron line, l0ðωÞ and
lχðωÞ enter on equal rights, although here, in contrast to IBH,
they are adjacent not to one, but to different vertices.
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Combining (48) with the rest of the terms of (39), in the
low-ω limit one gets radio contribution in the form

Z
0

−∞

dw
1 − w

cos
ωTχ2

2
ð1 − wÞ

þ
Z

∞

0

dw

�
1

wþ 1
2γ2χ2

−
1

wþ 1
γ2χ2

�
cos

ωT
2γ2

�
1

w
þ γ2χ2

�

þ
Z

1

0

dw
2 − w

cos
ωTχ2

2
ð1 − wÞ: ð49Þ

Here, in the second line we have neglected in the phase
the small term linear in w, given typical w≲ γ−2χ−2, and
accordingly replaced the upper integration limit by
infinity, whereas in the third line, on the contrary, term
∼w−1 in the phase was neglected, since it affects the
regular integrand only in a small vicinity of the origin.
Thereby one separates in (49) the pure contribution from
the end point w ¼ 1:

A2

�
ωTχ2

2

�
¼

Z
1

−∞

dw
2 − w

cos
ωTχ2

2
ð1 − wÞ; ð50Þ

while the rest includes

A1

�
ωTχ2

2

�
¼

Z
∞

0

dw
�

1

wþ 1
2γ2χ2

−
1

wþ 1
γ2χ2

�

× cos
ωT
2γ2

�
1

w
þ γ2χ2

�
ð51aÞ

and

Z
0

−∞
dw

�
1

1 − w
−

1

2 − w

�
cos

ωTχ2

2
ð1 − wÞ: ð51bÞ

A change of integration variable ~w ¼ − 1
γ2χ2w here proves

that contributions (51a) and (51b) are equal, hence, the

result of integration in (49) amounts 2A1ðωTχ
2

2
Þþ

A2ðωTχ
2

2
Þ, in agreement with Eq. (13b). The behavior of

form factors (50) and (51), which are now functions of a
single variable, is illustrated in Fig. 8.
For the evaluated radio part, again, it will be instructive

first to plot the integrand of Eq. (32) in the t01, t
0
2 plane (see

Fig. 9), and with it in mind, analyze Eqs. (50) and (51).
From Eq. (51a), it follows that w ∼ 1=γ2χ2 ≪ 1, so,
Eqs. (41), (45) give

τ ∼
T
w
¼ γ2χ2T; ð52Þ

and

δτ ∼
2γ2

ω
¼ l0ðωÞ ð53Þ

[which at ωTχ2 ∼ 1 is commensurable with (52)]. In terms
of absolute times, that implies

t2; t02 ∼ wτ ∼ T; jt1j ≈ τ ∼ γ2χ2T ≫ t2. ð54Þ

The long extent of one of those times (see Fig. 9), just like
in the case of IBH, indicates that the photon is formed
within the initial electron’s proper field, and subsequently is
stripped in the electron scattering region. Of course, there is

10 8 6 4 2 0
0
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t 2
T

ee
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ii

FIG. 9. Integrand of Eq. (32) at χ ¼ 30γ−1 and ωT
2γ2

¼ 10−3.
Most prominent is contribution Iee, similar to that of Fig. 7,
but now corresponding to dIBH

dω ð2γχÞ. Also noticeable are con-
tributions from Iei and I ie, corresponding to parts (50) and (51b)
of the radio contribution, while part (51a) is too broad to be
captured by this figure.
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T 2
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A2

FIG. 8. Antenna form factors in the case of coplanar electron
scattering through two equal angles. A1 (blue curve) is given by
Eq. (51), and A2 (red curve), by Eq. (50).
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also a cross-symmetric contribution, which has been taken
into account implicitly, by symmetry.
On the other hand, in integrals (50) and (51b) typical w

are of the order unity, entailing

jt1j ∼ t2 ∼ T: ð55Þ

That corresponds to the brightest spot in Fig. 9, but it is
directly related only with A2, since in artificial integral
(51b), all values of w are unphysical (negative).
As we know from the preceding two sections, at

ωT ∼ χ−2, there arise spectral oscillations ∼ 1
ωT sin

ωTχ2

2
,

related with soft-collinear interference. Now we see that
they partially [in integrals (51a) and (51b)] stem from small
time ratios w [in (51a), formally—from end point w ¼ ∞,
but presently, that just implies γ−2χ−2 ≪ w ≪ 1]. At the
same time, contributing times for A2 remain comparable
with T. That is the physical reason why A2 does not need to
be supplemented by a form factor.

D. Intermediate ω region: Decoherence
and limits on ray optics

With the increase of the photon frequency, terms∝ w and
w−1 in the phase in Eq. (39) eventually become competing.
That first happens in the spectral region ωT ∼ γ=χ, and
implies that bending of the electron trajectory during the
photon formation process becomes essential (in accord
with the notion of ray optics established in the previous
section).
As was already mentioned, there is no stationary phase

point on the real axis of w (in contrast to the situation in
Sec. IV), so, in order to find the saddle point, w should be
extended to the complex plane. But instead, it may suffice
merely to note that typical contributing w there are
∼1=γχ ≪ 1, and then, simplifications are still possible in
the prefactors, which reduce to pure power laws. Yet, there
is a nontrivial term 1

1þ 1

γ2χ2
−w cos

ωT
2γ2

½1w þ γ2χ2ð1 − wÞ�, which
contributes not only at w ∼ 1=γχ, but also in a vicinity of
end point w ¼ 1, where it blows up due to the smallness of
the denominator. Those two different contributions in the
same integral may be just added:

Z
1

0

dw
1

1þ 1
γ2χ2

− w
cos

ωT
2γ2

�
1

w
þ γ2χ2ð1 − wÞ

�

≃
Z

1

0

dw
1

1þ 1
γ2χ2

− w
cos

ωT
2γ2

½1þ γ2χ2ð1 − wÞ�

þ
Z

1

0

dw cos
ωT
2γ2

�
1

w
þ γ2χ2ð1 − wÞ

�
:

In the first (upper end point) term, the lower limit may be
replaced by −∞, and along with term

R
1
0 dw cos ωT

2γ2w, it

constitutes the omni-present intermediate electron line

contribution (44). The second (inner-point) term combines
with the rest in Eq. (39) to give, under conditions
γ−2χ−2 ≪ w ≪ 1,

Z
1

0

dw

�
1

wþ 1
2γ2χ2

−
1

wþ 1
γ2χ2

þ 1

2 − w
− 1

�

× cos
ωT
2γ2

�
1

w
þ γ2χ2ð1 − wÞ

�

≃ 1

2

Z
∞

0

dw

�
1

γ2χ2w2
− 1

�
cos

ωT
2γ2

�
1

w
þ γ2χ2ð1 − wÞ

�

¼ −
2

γχ
sin

ωTχ2

2
K1

�
ωTχ
γ

�
: ð56Þ

That is exactly asymptotics (15). Adding up intermediate
line and F⊥-modulated radio contributions, as in previous
sections, ultimately recovers nondipole decomposition (22).
To estimate the relevant contributing times, let us

note, again, that τ → T=w [Eq. (41a)], wherefore t2 ¼
wτ=2 → T=2, t02 ¼ wτ → T, confirming that the second
correlating time tends to the second scattering vertex, in the
spirit of Fig. 5(b). Estimate w ∼ 1=γχ further implies

τ ∼ γχT: ð57Þ

That is again consistent with the ray optic notions:
longitudinal scale (57) equals the (fixed) transverse
scale Tχ divided by the natural jet collimation angle γ−1.
Hence,

τ; jt1j ∼ γχT ≫ t2 ∼ T: ð58Þ

Of course, there also exists a symmetric contribution
jt1j ∼ T ≪ t2 ∼ γχT, which had been taken into account
implicitly by doubling Iei and

R
1
0 dw… in Iee.

Strong inequality (58) between the formation time scale
for interfering photons is in accord with the causal origin
of the factorization property: One of the two interfering
components of the electromagnetic wave forms up long
before or long after another (which forms fast), wherefore
they are causally disconnected. At the same time, compared
to the impact parameter approach, the notion of the ray of
light along which the interference builds up is more
uncertain here, because one of the correlating times is
broadly distributed (δτ ∼ τ). Thus, in the present problem,
even in the domain of its best applicability, the notion of ray
optics is limited: The ray is well defined within the double
scattering region, but cannot be extended down to the
emission point. That makes the photon formation process in
the present case akin to diffraction.
The exponential falloff here appears to be due to a

superficially different reason—decoherence: Formally, the
integrand in Eq. (56) assumes a saddle point on the
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imaginary axis of w, and it is the value of e
iωT
2γ2

½1wþγ2χ2ð1−wÞ�
in

this point which converts to the exponentially decreasing
factor. But physically, it is due to phase fluctuations (typical

values of the w-dependent terms) ωT
2γ2w ;

ωTχ2

2
w ∼ ωTχ

2γ ≲ 1,

which grow with ω, and progressively destroy the stability
of the phase.
Although the mechanism of attenuation of low-ω

spectral oscillations looks different in different frameworks,
there is a noteworthy universal relation between the
indeterminacies of the photon formation time and the
transverse screening scale:

χl−1⊥ ¼ δl−1f : ð59Þ
Here δl−1f is the indeterminacy of the reciprocal coherence
length considered as a function of θ [Eq. (1)], or function
of w,

l−1f ¼ ω

2γ2

�
1

w
þ γ2χ2ð1 − wÞ

�
; ð60Þ

with respect to typical indeterminacies δθ ¼ 2χ=γ or
δw ∼ 1=γχ.
In those basic considerations, we could not bring out all

the aspects of photon formation in the present process, so
they may deserve additional investigation in the future.

VI. EXPERIMENTAL FEASIBILITY

To accomplish the study of radiation at double electron
scattering, it may also be expedient to discuss prospects
for its experimental realization. Promising candidates for
prompt deflection of relativistic particles to angles in excess
of γ−1 are thin crystals. There are several known crystal-
assisted deflectionmechanisms: channeling in a bent crystal
[23], volume reflection in a bent crystal [24], and mirroring
in a straight ultrathin “half-wavelength” crystal [25]. The
acceptance to a stable channeling mode in practice may be
insufficiently high (see, e.g., [26]), whereas for mirroring in
a “half-wavelength” crystal, the relative spread in deflection
angles must be sizable due to the impact parameter
dependence. Volume reflection is not beset by such defi-
ciencies, so we examine it in the first place.
Volume reflection develops over a length ΔzVR ∼ Rθc,

and for the case of positively charged particles (for which it
works somewhat better) leads to deflection to an angle χ ≈
π
2
θc [27], where θc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0=E

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50 eV=E

p
is the critical

channeling angle. The intrinsic relative spread of the
deflected beam is Δχ=χ ∼ 2Rc=R, where Rc ¼ E=jFmaxj ¼
0.2 m E

GeV is the critical radius, and R the crystal bending
radius, which must be in excess of 4Rc.
Assuming positron energy E ¼ 500 GeV, which can

become available in the foreseeable future, such a positron
can be deflected to an angle χ ≈ 1.5θc ¼ 15 μrad ¼ 15γ−1

within a length ΔzVR ≈ R
Rc
10 μm ∼ 0.1 mm. The photon

energyω ∼ 1
Tχ2 ¼ 1 MeVmm

T will belong to soft gamma range

ω ∼ 1 MeV provided the gap width amounts T ∼ 1 mm. As
long as this is well in excess of ΔzVR, the suggested setup
should be feasible. At that, the additional angular spread
due to incoherent multiple scattering on atomic nuclei in
the crystal will be minor. An issue at such high an energy
can be synchrotron radiation background from steering and
focusing magnets, but it will be common for all the forward
physics problems. Other mechanisms of crystal deflection
demand more dedicated calculations.
Another option may be to utilize for deflection amor-

phous foils equipped by a position sensitivity system
(charged particle tracking) enabling reconstruction of the
electron trajectory and thereby selection of events of
double hard scattering through prescribed angles. An issue
therewith is that at momentum transfers Eχ ¼ meγχ ≳
20me ∼ 10 MeV, it may be important to take into account
inner structure of atomic nuclei. If such a setup nonetheless
proves feasible, the lower bound on the electron beam
energy could be relaxed. Condition γ ≳ ffiffiffiffiffiffiffiffiffiffiffiffi

ωT=2
p

(necessary
for probing intermediate electron line resonances) with ω ∼
1 MeV (to ensure transparency of both targets) and T >
0.2 mm implies E ¼ meγ > 15 GeV. It has been actually
tested in CERN, without electron tracking, at E ∼ 200 GeV
and ω ∼ 1 GeV [5]. As for condition χ−1 ∼ γ=30≳ffiffiffiffiffiffiffiffiffiffiffiffi
ωT=2

p
necessary for testing radio resonances, it can be

made compatible with CERN SPS energies E ∼ 200 GeV
for similar parameters ω ∼ 1 MeV and T ∼ 0.2 mm.
If any kind of electron hard rescattering and observation

of interference in the accompanying radiation will be
realized, it would open prospects for experimental tests of
coherence phenomena similar to those for quantum field
theory jets. Let us remind that it is actually the coherence
that distinguishes gauge field theory jets from purely
random parton cascading [19]. At that, the notion of jets is
usually associated with angular distributions, so it would
be desirable as well to measure angular distributions of
radiation like those in Fig. 2. Simultaneous measurement
of photon energy and (small) emission angle is a challenge
similar to that in gamma telescopes, which stimulates
development of pixellated detector arrays [28].
Finally, the electron deflection can be carried out by

means of magnet deflectors in vacuum, but since magnet
dimensions are always formidable, gap T must be large,
too, and correspondingly, the interesting radiation will not
fall into gamma range. Experiments in optical region,
including measurements of radiation angular distributions,
had been undertaken some time ago [29]. Under those
conditions, though, one generally has to regard near-field
effects (see, e.g., [17]).

VII. SUMMARY

The principal prediction of the present paper is that
when an electron is subjected to a double hard scattering
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through definite angles, the spectrum of the emitted
radiation exhibits oscillations in two regions, reflecting
manifestations of two coherence lengths: free [l0ðωÞ] and
electron scattering angle dependent [lχðωÞ].
The underlying reason for such an oscillatory behavior is

the interplay of two categories of photons: those formed
along straight parts of the electron’s trajectory, with
formation scale l0ðωÞ, and those emerging from relatively
small vicinities of the trajectory break points, and forming
at scale lχðωÞ. Radiation of the first type is narrowly
collimated along parent electron lines (intrajet, or collinear
radiation), whereas that of the second type is broadly
distributed in between the radiation jets (interjet radiation).
Fainter angular distribution of the latter (∼γ−2χ−2) is
compensated by its wider occupied phase space (∼γ2χ2),
so in the angle-integral spectrum those contributions are
comparable.
Spectral oscillations, persisting in spite of integration

over all photon emission angles, arise when there are two
interfering radiation components. At least one among them
must be of collinear type, because, by virtue of its natural
narrow collimation properties, it can carry a well-defined
phase. The second interfering component then must be
emitted along the same direction. For the certainty of the
phase, besides that, both components must have approx-
imately equal impact parameters, i.e., effectively belong to
the same ray in position space within the scattering region.
One should then distinguish two kinds of interference
geometries:
(1) Interference between electromagnetic waves emitted

from opposite ends of the intermediate segment of
the electron’s trajectory close to the direction of its
velocity, and having small impact parameters [see
Fig. 5(a)]. Both interfering waves here are collinear
to the same electron line. This type of interference
was discussed in [1–4,16,17].

(2) Interference between electromagnetic waves, one of
which is emitted from one of the external electron
lines and keeps collinear to it, and another one
(interjet), from the opposite vertex. Those waves
propagate nearly parallel to the corresponding ex-
ternal electron line, at an impact parameter such that
they pass through the opposite vertex [see Fig. 5(b)].
The photon formation length here amounts lχðωÞ—
in spite of formation length for one of the waves
being l0ðωÞ, the coherence length equals the smallest
between the two.

The formal realization of the scale separation property is
nondipole spectral decomposition (22). Therein, each
term or factor depends on ω at its intrinsic scale, and
contains appropriate approximations, but formally extends
through the whole ω range. Interfering radiation from the
intermediate electron line is associated with term
gðωT=2γ2Þ given by Eq. (17). The rest of the terms are
radio contributions factorizing into the quasiantenna

[Eqs. (17), (18)] and the suppressing proper field form
factors [Eq. (19)]. The latter form factors furnish the
exponential damping of the soft spectral oscillations with
the increase of ω due to localization of the interfering
waves at a nonzero impact parameter Tχ, and due to
decrease of the intrajet photon impact parameter distribu-
tion (on a scale given by the transverse coherence length),
or, equivalently, due to fluctuations of the longitudinal
coherence length [Eq. (59)]. Taken apart, soft and hard
terms in the spectral density diverge at ω → 0 logarithmi-
cally, g; r ∼� ln 1

ω (cf. [30]), but their sum is finite.
It is likely that similar decomposition and factorization

properties will prove relevant also in other problems
involving continuous targets with sharp boundaries.
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APPENDIX: DERIVATION OF
REPRESENTATION (32)

Representation (2) in form of a double time integral

dI
dω

¼
�
eω
2π

�
2
Z

d2n
ZZ

∞

−∞
dt1dt2½n × vðt1Þ� · ½n × vðt2Þ�

× eiωðt1−t2Þ−ik·½rðt1Þ−rðt2Þ� ðA1Þ

allows exact integration over radiation angles. To this end,R
d2n must be performed prior to integration over t1 and t2.

It should be minded that time integrals in (A1) are not
absolutely convergent, so change of the integration order
compared to Eq. (A1) must be done carefully. Problems
arise in the limit t2 → t1, where the angular integral from
the oscillatory exponential becomes singular. In particular,
it may be necessary to treat the emerging singular function
there as an improper one (a distribution).
Integration in (A1) can be simplified by employing

gauge invariance to reduce the power of n in the preexpo-
nential factor. Rewriting

½n × vðt1Þ� · ½n × vðt2Þ� ¼ viðt1Þvkðt2Þðδik − ninkÞ; ðA2Þ

one can replace the photon polarization density matrix
δik − nink by that in the covariant (Feynman) gauge,
proportional to the metric tensor gμν¼diagð1;−1;−1;−1Þ
in Minkowski space-time, and not involving n:
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dt1dt2viðt1Þvkðt2Þðδik − ninkÞ
→ −ds1ds2uμðt1Þuνðt2Þgμν
¼ dt1dt2½vðt1Þ · vðt2Þ − 1�; ðA3Þ

where uμ ¼ drμ=ds ¼ γð1; vÞ, ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dt2 − dr2

p
¼ dt=γ.

The validity of form (A3) can equally well be justified
via integration by parts in the second term of (A2):

Z
∞

−∞
dtn · vðtÞeifωt−k·rðtÞg ¼ i

ω

Z
∞

−∞
dteiωt

∂
∂t e

−ik·rðtÞ

¼ −
i
ω

Z
∞

−∞
dte−ik·rðtÞ

∂
∂t e

iωt

¼
Z

∞

−∞
dteiωt−ik·rðtÞ; ðA4Þ

for each of the times t1, t2. A change of the gauge as a result
of integration by parts is the fundamental property of
electrodynamics [14].
Inserting (A3) to (A1) and making simplifications

pertinent to the ultrarelativistic limit leads to [31]

dI
dω

¼ −
�
eω
2π

�
2
Z

d2n
ZZ

∞

−∞
dt1dt2

×

�
γ−2 þ 1

2
½vðt2Þ − vðt1Þ�2

�
eiωðt1−t2Þ−ik·½rðt1Þ−rðt2Þ�:

ðA5Þ

Here it was presumed that v2ðt1Þ ¼ v2ðt2Þ ¼ 1 − γ−2 is
time independent (otherwise γ−2 must be replaced by
1
2
½γ−2ðt1Þ þ γ−2ðt2Þ�).
Next, we employ the symmetry between t1 and t2 to

write ∬∞
−∞dt1dt2… ¼ 2Re

R∞
−∞ dt2

R
t2
−∞ dt1…, and note

that integral

Z
d2neik·½rðt2Þ−rðt1Þ� ¼ π

Z
∞

0

dn2⊥eiωð1−n
2⊥=2Þjrðt2Þ−rðt1Þj

will converge absolutely provided we replace
jrðt2Þ − rðt1Þj → jrðt2Þ − rðt1Þj − iϵ, where ϵ → þ0. The
integration then gives [32]

dI
dω

¼ −ω
e2

π

Z
∞

−∞
dt2

Z
t2

−∞
dt1

�
γ−2 þ 1

2
½vðt2Þ − vðt1Þ�2

�

×Im
1

t2 − t1 − iϵ
e−iω½t2−t1−jrðt2Þ−rðt1Þj�; ðA6Þ

where we replaced in the preexponential factor
jrðt2Þ − rðt1Þj ≈ t2 − t1, while in the phase factor such a
replacement is generally not justified.
The meaning of formula (A6) becomes obvious when

written covariantly as

dI
dω

¼ ω
e2

π

Z
∞

−∞
ds2

Z
s2

−∞
ds1uμðt1Þuνðt2Þ

×Ime−iωðt2−t1ÞDμνðω; jrðt2Þ − rðt1ÞjÞ; ðA7Þ

where

Dμνðω; rÞ ¼ −
gμν

r − iϵ
eiωr

is the photon propagator in Feynman gauge and frequency-
position representation [9] (appropriately regularized at
r ¼ 0, which would have no effect in quantum electrody-
namics, but is essential in classical). Equation (A7)
expresses nothing but the unitarity relation (cf., e.g., [9])
between the angle-integral real photon emission proba-
bility 1

ℏω
dI
dω and the imaginary part of a virtual photon

propagator inserted between two points on the electron
trajectory—as is graphically illustrated in Fig. 10. Notation
(A7) is gauge invariant, holding in any gauge for the photon
propagator, but the use of Feynman gauge is arguably the
simplest.
The effect of infinitesimal term −iϵ in the denominator

of Dμν is that

−Im
1

t2 − t1 − iϵ
e−iω½t2−t1−jrðt2Þ−rðt1Þj�

→
ϵ→þ0

sinω½t2 − t1 − jrðt2Þ − rðt1Þj�
t2 − t1

− πδðt2 − t1Þ: ðA8Þ

Here, since the singularity point of the emerging delta
function falls onto the integration domain edge in Eq. (A6),
due to the symmetry between t1 and t2, the contribution
from the delta function must be regarded as halved. Owing
to the last term, the radiation spectrum vanishes for a
uniform and rectilinear electron motion.
In practice, it may be convenient to replace the delta

function (the instantaneous term) in (A8) by a regular
function producing an identical effect. Customarily, it is
written as

dI
dω

¼ ω
e2

π

Z
∞

0

dτ
τ

Z
∞

−∞
dt2

��
γ−2 þ 1

2
½vðt2Þ − vðt2 − τÞ�2

�

× sinω½τ − jrðt2Þ − rðt2 − τÞj� − γ−2 sinKτ

�
ðA9Þ

d2n

2

Im
, n

t1
t2

D , r12 e

FIG. 10. Graphical illustration of Eq. (A7).
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with K → ∞, or, since
R
∞
0

dτ
τ sinKτ ¼ π

2
is actually

K-independent, in form (32). The advantage of the
latter form is that for a uniformly and rectilinearly
moving charge, the integrand rather than only the whole
integral turns to zero. (Yet, since the integrand becomes
decreasing as jt2j → ∞, it affords one to interchange
the order of integrations.) Equation (32) is the
subtracted Blankenbecler-Drell formula [33], which was

derived here without introducing the “vacuum” term
by hand.
It is also worth noting that representation (A9) with

K ¼ 2ω can be obtained directly if one integrates not only
over typical small photon emission angles, but over the
full solid angle [31]. Then, sin 2ωτ is associated with
“backward” radiation, which may be physically negligible,
but is suitable for regularizing the integral.
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