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We investigate the two-particle twist-3 distribution amplitudes (DAs) of the pseudoscalar mesons,
in particular pseudoscalar [ϕP

3;MðxÞ] and pseudotensor [ϕσ
3;MðxÞ] DAs of the pion and kaon, in the light-

front quark model based on the variational principle. We find that the behavior of the conformal symmetry
in each meson distribution amplitude depends on the chiral-limit characteristics of the light-front trial
wave function taken in the variational principle. We specifically take the two different light-front trial wave
functions, Gaussian vs power-law type, and discuss their characteristics of the conformal symmetry in the
chiral symmetry limit as well as their resulting degree of the conformal symmetry breaking in ϕP

3;MðxÞ and
ϕσ
3;MðxÞ depending on the trial wave function taken in the computation. We present numerical results of

transverse moments, Gegenbauer moments and ξ-moments and compare them with other available model
estimates. The SU(3) flavor-symmetry breaking effect is also quantified with the numerical computation.
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I. INTRODUCTION

Hadronic distribution amplitudes (DAs) are the longi-
tudinal projection of the hadronic wave functions obtained
by integrating the transverse momenta of the fundamental
constituents [1–3]. These nonperturbative quantities are
defined as vacuum-to-hadron matrix elements of particular
nonlocal quark or quark-gluon operators and thus encode
important information on bound states in QCD. Especially,
the electromagnetic and transition form factors at high Q2

as well as the B-physics phenomenology in the context of
SU(3) flavor symmetry breaking effect require a detailed
information of meson DAs. Meson DAs are also indispen-
sable for the analysis of hard exclusive electroproduction
based on the QCD factorization [4]. In particular, the shape
of the pion DA has been extensively discussed due to the
nature of the pion as the massless Nambu-Goldstone boson
[5,6]. Finding the fundamental nonperturbative information
of QCD motivated many theoretical studies to calculate
meson DAs using nonperturbative methods such as the
QCD sum rule [3,7–15], the chiral-quark model from the
instanton vacuum [16–18], the Nambu-Jona-Lasinio (NJL)
model [19,20], the Dyson-Schwinger equation (DSE)
approach [21,22], and the light-front quark model
(LFQM) [23,24]. Among them, the LFQM appears to be
one of the most effective and efficient tools in studying
hadron physics as it takes advantage of the distinguished
features of the light-front dynamics (LFD) [25]. Working in
Minkowski space, the LFD allows the study of physical
observables both in spacelike and timelike kinematic regions.
The rational energy-momentum dispersion relation of LFD,
namely p−¼ðp2⊥þm2Þ=pþ, yields the sign correlation

between the light-front (LF) energy p−ð¼p0 − p3Þ and
the LF longitudinal momentum pþð¼p0 þ p3Þ and leads
to the suppression of vacuum fluctuations in LFD. It
facilitates the partonic interpretation of the hadronic ampli-
tudes. The LFD also carries themaximum number (seven) of
the kinetic (or interaction independent) generators and
thus less effort in dynamics is necessary in order to get
the QCD solutions that reflect the full Poincaré sym-
metries. Based on the advantage of LFD, the LFQM has
been quite successful in describing various static and
nonstatic properties of hadrons [26–42] such as meson
mass spectra [26,27], the decay constants (i.e. the lowest
moments of light-cone DAs) [23,28], electromagnetic
and weak transition form factors [29–40] and generalized
parton distributions [41,42]. The LFQM analysis of
the pion form factor [38,39] has also provided compatible
results both in spacelike and timelike regions with the
holographic approach to LF QCD [43] based on the
five-dimensional anti–de Sitter (AdS) spacetime and
the conformal symmetry which has given insight into
the nature of the effective confinement potential and the
resulting LF wave functions for both light and heavy
mesons [44].
Through the recent analysis of the twist-2 and twist-3

DAs of pseudoscalar and vector mesons [45–48], we
discussed also the link between the chiral symmetry of
QCD and the LFQM. In Ref. [24], we have analyzed the
two-particle twist-2 DAs of pseudoscalar [ϕA

2;MðxÞ] and

vector [ϕjj
2;VðxÞ] mesons using our LFQM [26]. We then

extended our LFQM to analyze two-particle twist-3 pseu-
doscalar [ϕP

3;MðxÞ] DAs of pseudoscalar mesons [45,46]
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and chirality-even twist-3 [ϕ⊥
3;VðxÞ] DAs of vector mesons

[47] to discuss the link between the chiral symmetry of
QCD and the numerical results of the LFQM. In particular,
through the analysis of twist-3 DAs of π and ρ mesons, we
observed that the LFQM with effective degrees of freedom
represented by the constituent quark and antiquark could
provide the view of effective zero-mode cloud around the
quark and antiquark inside the meson. Our numerical
results appeared consistent with this view and effectively
indicated that the constituent quark and antiquark in the
LFQM could be considered as the dressed constituents
including the zero-mode quantum fluctuations from the
vacuum.
To discuss the wave function dependence of the LF zero-

mode [49–58] contributions to ϕP
3;MðxÞ and ϕ⊥

3;VðxÞ, we
analyzed both the exactly solvable manifestly covariant
Bethe-Salpeter (BS) model and the more phenomenologi-
cally accessible realistic LFQM [24,26] in the standard LF
approach. The purpose of taking the exactly solvable
covariant BS model was to check the existence (or absence)
of the zero mode in each channel, e.g. ϕP

3;MðxÞ or ϕ⊥
3;VðxÞ,

without any ambiguity. For example, performing the LF
calculation in the covariant BS model with the multipole
type qq̄ bound state vertex function, we not only showed
that the twist-3 ϕP

3;MðxÞ and ϕ⊥
3;VðxÞ receive both the

zero-mode and the instantaneous contributions but also
identified the zero-mode operator corresponding to the
zero-mode contribution. As discussed in Refs. [45,47], we
also found the universal mapping [see e.g. Eq. (35) in [45]]
between the covariant BS model and the standard LFQM
for any two-point and three-point functions. With this
mapping, we were able to boost the exactly solvable
covariant BS model computation into the more phenom-
enologically accessible LFQM computation. In practice,
the LF vertex function obtained in the covariant BS
model was mapped into the phenomenological, typically
Gaussian, LF trial wave function which has been scruti-
nized by the standard LFQM analysis of meson mass
spectroscopy based on the variational principle and other
meson phenomenology [26,27]. The remarkable finding
from this practice was that the zero-mode contribution as
well as the instantaneous contribution revealed in the
covariant BS model became absent in the LFQM with
the LF on-mass-shell constituent quark and antiquark
degrees of freedom. Without involving the zero-mode
and instantaneous contributions, our LFQM with the
Gaussian trial wave function provided the result of twist-
3 DAs ϕP

3;MðxÞ and ϕ⊥
3;VðxÞ which not only satisfied the

fundamental constraint (i.e., symmetric form with respect
to x) anticipated from the isospin symmetry but also
provided the consistency both with the chiral symmetry
and the conformal symmetry (e.g., the correct asymptotic
form in the mq → 0 limit) expected from the QCD. Our
LFQM predictions with the Gaussian wave function such

as ϕjj
2;ρðxÞ → 6xð1 − xÞ and ϕ⊥

3;ρðxÞ→ ð3=4Þ½1þð2x−1Þ2�
for ρ and ϕP

3;πðxÞ → 1 for π in the chiral symmetry limit
reproduce the exact functional forms anticipated from
QCD’s conformal limit [7,59]. This exemplifies that our
LFQM prediction with the Gaussian wave function satisfies
both the chiral symmetry and the conformal symmetry
consistent with the QCD if one correctly implements the
zero-mode link to the QCD vacuum.
It is important, however, to realize that satisfying both

the chiral symmetry and the conformal symmetry depends
on the choice of the LF trial wave function. The key in the
Gaussian LF wave function is the factorization of the
transverse momentum dependence from the dependence of
scale independent parameters such as mass. It allows that
the mq → 0 limit satisfies both the chiral symmetry and the
conformal symmetry simultaneously. If the LF trial wave
function is not taken as Gaussian but for example taken as
power-law (PL) type, then the factorization of the trans-
verse momentum dependence from the scale independent
parameter dependence cannot be fulfilled and thus the
mq → 0 limit may not satisfy the conformal symmetry
although it may still satisfy the chiral symmetry. This
dependence on the LF trial wave function indicates that
some particular meson DAs may not satisfy the conformal
symmetry while they still satisfy the chiral symmetry
consistent with QCD. Similarly, the DSE approach in
[22] provided the asymptotic form of the pion ϕP

3;πðxÞ
with a broad downward concave shape in the central region
of x rather than ϕP

3;πðxÞ → 1 anticipated from QCD’s
conformal limit [7]. There are two independent two-particle
twist-3 DAs of a pseudoscalar meson, namely, pseudoscalar
DA ϕP

3;M and pseudotensor DA ϕσ
3;M [7–11,17,20]. The

authors in [22] also analyzed the pseudotensor DA ϕσ
3;MðxÞ,

and found that the asymptotic form of the pion ϕσ
3;πðxÞ

coincides with the anticipated expression of QCD’s con-
formal limit, 6xð1 − xÞ.
These developments motivate our present work for the

more-in-depth analysis of the two-particle twist-3 pion
and kaon DAs in LFQM with different forms of LF trial
wave functions. We first extend our previous work [45] to
analyze the twist-3 pseudotensor DA ϕσ

3;MðxÞ of a pseu-
doscalar meson within the LFQM. We also discuss the
discrepancy of the asymptotic forms of ϕP

3;πðxÞ between
DSE approach [22] and QCD’s conformal limit expression
[7] from the perspective of dependence of DA on the form
of LF trial wave functions such as Gaussian wave function
vs PL wave function. Although the two-particle twist-3
pion DAs were briefly discussed in LC2016 [48], we
elaborate more in this work on the dependence of DA on
the form of LF trial wave functions as well as the SU(3)
flavor-symmetry breaking effect through the complete
analysis of two-particle twist-3 DAs of pseudoscalar
meson. In order to compute the twist-3 pseudotensor DA
ϕσ
3;MðxÞ, we again utilize the same manifestly covariant BS
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model used in [45–47] to check the existence (or absence)
of the LF zero-mode contribution. We then apply the
previously found universal mapping [see e.g. Eq. (35)
in [45]] between the covariant BS model and the standard
LFQM to map the vertex function obtained in the
exactly solvable covariant BS model into the more phe-
nomenologically accessible Gaussian and PL radial wave
functions provided from our LFQM variational principle
computation.
The paper is organized as follows. In Sec. II, we compute

the twist-3 pseudotensor DA ϕσ
3;MðxÞ in an exactly solvable

model based on the covariant BS model of (3þ 1)-dimen-
sional fermion field theory. We then link the covariant BS
model to the standard LFQM with the previously found
universal mapping between the two as discussed above and
present the resulting form of ϕσ

3;MðxÞ as well as ϕP
3;MðxÞ in

our LFQM. In Sec. III, we present our numerical results
of ϕσ

3;MðxÞ and ϕP
3;MðxÞ for the pion and kaon and discuss

the results in the chiral vs conformal symmetry limit. The
SU(3) flavor symmetry breaking effects on the twist-3 DAs
for the kaon are also discussed. The summary and dis-
cussion follow in Sec. IV. In the Appendix, the derivation of
twist-3 DAs of pseudoscalar meson is presented.

II. MODEL DESCRIPTION

A. Manifestly covariant BS model

The ϕP
3;M and ϕσ

3;M are defined in terms of the following
matrix elements of gauge invariant nonlocal operators in
the light-front gauge [7–9]:

h0jq̄ðzÞiγ5qð−zÞjMðPÞi ¼ fMμM

Z
1

0

dxeiζP·zϕP
3;MðxÞ;

ð1Þ

and

h0jq̄ðzÞσαβγ5qð−zÞjMðPÞi

¼ −
i
3
fMμMðPαzβ − PβzαÞ

Z
1

0

dxeiζP·zϕσ
3;MðxÞ; ð2Þ

where z2 ¼ 0 and P is the four-momentum of the meson
(P2 ¼ m2

M) and the integration variable x corresponds to
the longitudinal momentum fraction carried by the quark
and ζ ¼ 2x − 1 for the short-hand notation. The normali-
zation parameter μM ¼ m2

M=ðmq þmq̄Þ results from quark
condensate. For the pion, μπ ¼ −2hq̄qi=f2π from the
Gell-Mann-Oakes-Renner relation [60]. We also note from
the argument in [21,22] that the pseudoscalar DA of the
pion, ϕP

3;πðxÞ, i.e. pseudoscalar projection of the pion’s LF
wave function, might be understood as describing the
probability distribution of the chiral condensate within
the pion [61]. The normalization of the two twist-3 DAs
Φ ¼ fϕP

3;M;ϕ
σ
3;Mg is given by

Z
1

0

dxΦðxÞ ¼ 1: ð3Þ

Defining zμ ¼ τημ using the lightlike vector η ¼
ð1; 0; 0;−1Þ, one can rewrite Eqs. (1) and (2) as [see
Appendix for the explicit derivation of Eqs. (4) and (5)]

ϕP
3;MðxÞ ¼

2ðP · ηÞ
fMμM

Z
∞

−∞

dτ
2π

e−iζτðP·ηÞ

× h0jq̄ðτηÞiγ5qð−τηÞjMðPÞi; ð4Þ

and

ϕσ
3;MðxÞ ¼ −

12

fMμM

Z
∞

−∞

dτ
2π

Z
x

0

dx0e−iζ0τðP·ηÞ

× h0jq̄ðτηÞiðPη − P · ηÞγ5qð−τηÞjMðPÞi; ð5Þ

respectively. The nonlocal matrix elements Mα ≡
h0jq̄ðτηÞiΓαqð−τηÞjMðPÞi for pseudoscalar (Γα ¼ γ5)
and pseudotensor (Γα ¼ ðPη − P · ηÞγ5) channels are given
by the following momentum integral in two-point function
of the manifestly covariant BS model (see Fig. 1),

Mα ¼ Nc

Z
d4k
ð2πÞ4 e

−iτk·ηe−iτðk−PÞ·η
H0

NpNk
Sα; ð6Þ

where Nc denotes the number of colors and Sα ¼
Tr½iγ5ðpþmqÞγ5ð−kþmq̄Þ� for pseudoscalar channel
and Tr½iðPη − P · ηÞγ5ðpþmqÞγ5ð−kþmq̄Þ� for pseudo-
tensor channel. The denominators Npð¼ p2 −m2

q þ iεÞ
and Nkð¼ k2 −m2

q̄ þ iεÞ come from the quark propagators
of mass mq and mq̄ carrying the internal four-momenta
p ¼ P − k and k, respectively. In order to regularize the
covariant loop, we use the usual multipole ansatz
[47,52,62,63] for the qq̄ bound-state vertex function
H0 ¼ H0ðp2; k2Þ of a meson: H0ðp2; k2Þ ¼ g=Nn

Λ, where
NΛ ¼ p2 − Λ2 þ iε, and g and Λ are constant parameters.
We note that the power n for the multipole ansatz should
be n ≥ 2 to regularize the loop integral and our essential
results in terms of the zero-mode issue do not depend on the
value of n.

FIG. 1. Feynman diagram for the one-quark-loop evaluation of
the meson decay amplitude in the momentum space.
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For the LF calculation, we use the metric convention
a · b ¼ 1

2
ðaþb− þ a−bþÞ − a⊥ · b⊥ and separate the trace

term Sα into the on-mass-shell propagating part ½Sα�on and
the off-mass-shell instantaneous part ½Sα�inst, i.e. Sα ¼
½Sα�on þ ½Sα�inst via q ¼ qon þ γþ

2
ðq− − q−onÞ. In the refer-

ence frame where P⊥ ¼ 0, i.e., P ¼ ðPþ;M2=Pþ; 0Þ, the
LF energies of the on-mass-shell quark and antiquark are
given by p−

on ¼ ðk2⊥ þm2
qÞ=xPþ and k−on ¼ ðk2⊥ þm2

q̄Þ=
ð1 − xÞPþ, respectively, where x ¼ pþ=Pþ is the LF
longitudinal momentum fraction of the quark.
After a little manipulation, we can rewrite Eq. (4) for the

pseudoscalar channel as

ϕP
3;MðxÞ ¼

Nc

fMμM

Z
d4k
ð2πÞ4 δ

�
1 − x −

k · η
P · η

�
H0

NpNk
SP

¼ Nc

fMμM

Z
d2k⊥
16π3

χðx;k⊥Þ
ð1 − xÞ ½SP�full; ð7Þ

where

χðx;k⊥Þ ¼
g

½xðm2
M −M2

0Þ�½xðm2
M −M2

ΛÞ�n
; ð8Þ

and

M2
0ðΛÞ ¼

k2⊥ þm2
qðΛ2Þ

x
þ k2⊥ þm2

q̄

1 − x
: ð9Þ

The full result of the trace term ½SP�full has been obtained in
[45] and it receives not only ½SP�on and ½SP�inst but also the
zero-mode contribution ½SP�Z:M: in this manifestly covariant
BS model, i.e. ½SP�full ¼ ½SP�on þ ½SP�inst þ ½SP�Z:M:, where
½SP�on ¼ 4ðpon · kon þ mqmq̄Þ ¼ 2½M2

0 − ðmq − mq̄Þ2�,
½SP�inst ¼ 2kþðp− − p−

onÞ ¼ 2ð1 − xÞðm2
M −M2

0Þ, and
½SP�Z:M: ¼ −2½xðm2

M − M2
0Þ þ m2

q − m2
q̄ þ ð1 − 2xÞm2

M�,
respectively. The detailed procedure to obtain the zero-
mode calculation is given in [45]. However, as we have
explained in great detail in [45], the full result of trace term
½SP�full in the more realistic LFQM using the Gaussian
or PL-type wave functions gives the same result for the
decay amplitude only with the on-mass-shell contribution
involving neither the zero-mode contribution nor the instan-
taneous contribution. Effectively, it indicates that the on-
mass-shell constituent quark and antiquark in the LFQM can
be considered as the dressed constituents including the zero-
mode and instantaneous quantum fluctuations from the
vacuum. The same observation has been made for the
calculation of the twist-2 and -3 DAs of the vector meson
[47] as well as the pion electromagnetic form factor [45].
Similarly, Eq. (5) for the pseudotensor twist-3 ϕσ

3;MðxÞ
can be rewritten as

ϕσ
3;MðxÞ ¼ −

6

fMμM

Nc

ðP · ηÞ
Z

d4k
ð2πÞ4

×
Z

x

0

dx0δ
�
1 − x0 −

k · η
P · η

�
H0

NpNk
Sσ;

¼ −
6

fMμM

Nc

Pþ

Z
d2k⊥
16π3

Z
x

0

dx0
χðx0;k⊥Þ
ð1 − x0Þ ½Sσ�full;

ð10Þ

where χðx0;k⊥Þ ¼ χðx → x0;k⊥Þ. We should note for this
pseudotensor channel that, due to the nature of the second
rank tensor operator contracting meson momentum, the
right-hand side (rhs) of Eq. (A.6) is not the DA itself but the
derivative of DA so that the x0-integration appears in
Eq. (10) with the integration range from 0 to x. One
may find without any difficulty that the manifestly covar-
iant calculation of the trace term Sσ would give a zero result
for the decay amplitude if the x0-integration is done from
zero to 1 since DA at the end point x ¼ 1 must be zero. As
the x0 integration range from 0 to x, the decay amplitude is
in general not zero unless x ¼ 1 or x ¼ 0. In the LF
calculation, the same observation can be made if we include
all three contributions, i.e. on-mass-shell, instantaneous,
and zero-mode contributions, in the full result of the
trace term ½Sσ�full ¼ ½Sσ�on þ ½Sσ�inst þ ½Sσ�Z:M:, where
½Sσ�on ¼ 4½ðP · konÞpþ − ðP ·ponÞkþ� ¼ 2Pþ½ð2x0− 1ÞM02

0 þ
m2

q̄ −m2
q�, ½Sσ�inst ¼ −2kþPþðp− − p−

onÞ ¼ −2Pþð1 − x0Þ
ðm2

M −M02
0 Þ, and ½Sσ�Z:M: ¼ 2Pþ½x0ðm2

M −M02
0 Þ þm2

q −
m2

q̄ þ ð1 − 2x0Þm2
M� with M0

0 ¼ M0ðx → x0Þ, respectively.
This indicates that not only the on-mass-shell contribution
but also both the instantaneous contribution and the zero-
mode contribution in principle exist in the LF calculation to
coincide with the manifestly covariant BS result. However,
it is remarkable to observe that the full result of trace term
½Sσ�full in the more realistic LFQM using the Gaussian or
PL-type wave functions which we discuss in the next
subsection, Sec. II B, is identical to the result when ½Sσ�full
is replaced by ½Sσ�on as discussed in the case of pseudo-
scalar channel. It assures that the on-mass-shell constituent
quark and antiquark in the LFQM can be regarded as the
dressed constituents including the zero-mode and instanta-
neous quantum fluctuations from the vacuum.

B. Application to standard light-front quark model

In the standard LFQM [26–42], the wave function of a
ground state pseudoscalar meson (JPC ¼ 0−þ) as a qq̄
bound state is given by

Ψλλ̄ðx;k⊥Þ ¼ ΦRðx;k⊥ÞRλλ̄ðx;k⊥Þ; ð11Þ

where ΦR is the radial wave function and the spin-orbit
wave function Rλλ̄ with the helicity λðλ̄Þ of a quark
(antiquark) that is obtained by the interaction-independent
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Melosh transformation [64] from the ordinary spin-orbit
wave function assigned by the quantum numbers JPC.
The covariant form of the spin-orbit wave function Rλλ̄ is
given by

Rλλ̄ ¼
ūλðpqÞγ5vλ̄ðpq̄Þffiffiffi

2
p ½M2

0 − ðmq −mq̄Þ2�1=2
; ð12Þ

and it satisfies
P

λλ̄R
†
λλ̄
Rλλ̄ ¼ 1. The normalization of our

wave function is then given by

X
λλ̄

Z
dxd2k⊥
16π3

jΨλλ̄ðx;k⊥Þj2 ¼
Z

dxd2k⊥
16π3

jΦRðx;k⊥Þj2:

ð13Þ

For the radial wave functionΦR, we try both the Gaussian
or harmonic oscillator (HO) wave function ΦHO and the
power-law (PL)-type wave function ΦPL [31] as follows:

ΦHOðx;k⊥Þ ¼
4π3=4

β3=2

ffiffiffiffiffiffiffi∂kz
∂x

r
expð−~k2=2β2Þ; ð14Þ

and

ΦPLðx;k⊥Þ ¼
ffiffiffiffiffiffiffiffiffiffi
128π

β3

s ffiffiffiffiffiffiffi∂kz
∂x

r
1

ð1þ ~k2=β2Þ2
; ð15Þ

where ~k2 ¼ k2⊥ þ k2z and β is the variational parameter fixed
by the analysis of meson mass spectra [26]. The longitudinal
component kz is defined by kz ¼ ðx − 1=2ÞM0 þ
ðm2

q̄ −m2
qÞ=2M0, and the Jacobian of the variable trans-

formation fx;k⊥g → ~k ¼ ðk⊥; kzÞ is given by

∂kz
∂x ¼ M0

4xð1 − xÞ
�
1 −

�
m2

q −m2
q̄

M2
0

�
2
�
: ð16Þ

As discussed in the previous section, Sec. I, the transverse

momentum k⊥ dependence factorizes as expð−~k2=2β2Þ ¼
expð−k2⊥=2β2Þ expð−k2z=2β2Þ in ΦHO while such factori-

zation of k⊥ dependence of 1=ð1þ ~k2=β2Þ2 is not feasible
in ΦPL. Thus, the scale (or conformal) invariance of the
transverse momentum k⊥ as well as the longitudinal
momentum fraction x is achieved in the massless (chiral)
limit for ΦHO while the conformal invariance of the trans-
verse momentum k⊥ does not hold in the chiral limit
for ΦPL. This distinguishes the behavior of the chiral limit
between ΦHO and ΦPL and leads to the difference in the
chiral limit for ϕP

3;MðxÞ depending on which LF model wave
function is applied for the computation. We present more
details of the chiral-limit behaviors for each case of the LF
trial wave functions discussed in this work.

In our previous analyses of twist-2 and pseudoscalar
twist-3 DAs of a pseudoscalar meson [45] and the chirality-
even twist-2 and twist-3 DAs of a vector meson [47], we
have shown that the results in the standard LFQM are
obtained by the mapping of the LF vertex function χ in BS
model into our LFQM wave function ΦR as follows [see
Eq. (35) in [45] or Eq. (49) in [47]]:

ffiffiffiffiffiffiffiffi
2Nc

p χðx;k⊥Þ
1 − x

→
ΦRðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þA2

p ; mM → M0; ð17Þ

where A ¼ ð1 − xÞmq þ xmq̄ and mM → M0 implies that
the physical mass mM included in the integrand of BS
amplitude has to be replaced with the invariant mass M0

since the results in the standard LFQM are obtained from
the requirement of all constituents being on their respective
mass shell. The correspondence in Eq. (17) is valid again in
this analysis of a pseudotensor twist-3 DA ϕσ

3;MðxÞ.
We now apply the same mapping to both ϕP

3;MðxÞ in
Eq. (7) and ϕσ

3;MðxÞ in Eq. (10) to obtain them in our LFQM
as follows:

ϕP
3;MðxÞ ¼

ffiffiffiffiffiffiffiffi
2Nc

p
fMμM

Z
d2k⊥
16π3

ΦRðx;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þA2

p ½M2
0 − ðmq −mq̄Þ2�;

ð18Þ

and

ϕσ
3;MðxÞ ¼

6
ffiffiffiffiffiffiffiffi
2Nc

p
fMμM

Z
d2k⊥
16π3

Z
x

0

dx0
ΦRðx0;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þA02p

× ½ð1 − 2x0ÞM02
0 þm2

q −m2
q̄�; ð19Þ

respectively, where A0 ¼ Aðx → x0Þ. It is remarkable to
observe that both the zero-mode contribution and the
instantaneous contribution are absorbed into the LF on-
mass-shell constituent quark and antiquark contribution as
shown in Eqs. (18) and (19).
For the point of view of QCD, one should note that the

quark-antiquark DAs of a hadron depend on the scale μ that
may separate nonperturbative and perturbative regimes.
In our LFQM, we can associate μ with the transverse
integration cutoff via jk⊥j ≤ μ. The dependence on the
scale μ is then consistently given by the QCD evolution
equation [1], while the DAs at a certain low scale can be
obtained by the necessary nonperturbative input from
LFQM. As the cutoff dependence becomes marginal
beyond a certain nonperturbative cutoff scale, the
Gaussian (or HO) and PL wave functions given by
Eqs. (14) and (15) are allowed to perform the integral
up to infinity without any appreciable loss of accuracy.
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III. NUMERICAL RESULTS

In the numerical computations, we use the linear and HO
confining potential model parameters for the Gaussian wave
function given in Table I, which were obtained from the
calculation of meson mass spectra using the variational
principle in our LFQM [24,26,28]. For the sensitivity
analysis depending on the form of the model wave func-
tions, we also use the PL wave function with the model
parameters adopted from Ref. [31]. Since our numerical
results for the twist-2 ϕA

2;MðxÞ and twist-3 ϕP
3;MðxÞ of π and

K mesons were presented in our previous works [24,45], we
shall focus on the calculation of the twist-3 ϕσ

3;MðxÞ of π and
K mesons together with some new results for ϕP

3;MðxÞ
including the PL wave function in this work.

Defining the LF wave function ψPðσÞ
3;M ðx;k⊥Þ for the

twist-3 pseudoscalar (pseudotensor) channel as

ϕPðσÞ
3;M ðxÞ ¼

Z
∞

0

d2k⊥ψ
PðσÞ
3;M ðx;k⊥Þ; ð20Þ

the nth transverse moment is obtained by

hkn⊥iPðσÞM ¼
Z

∞

0

d2k⊥
Z

1

0

dxψPðσÞ
3;M ðx;k⊥Þkn⊥: ð21Þ

For the pion case, our results of the second transverse
moments for ψP

3;πðx;k⊥Þ and ψσ
3;πðx;k⊥Þ obtained from

the linear [HO] parameters are hk2⊥iPπ ¼ ð553 MeVÞ2
½ð480 MeVÞ2� and hk2⊥iσπ ¼ ð481 MeVÞ2½ð394 MeVÞ2�,
respectively. For the kaon case, we obtain hk2⊥iPK ¼
ð582 MeVÞ2½ð510 MeVÞ2� and hk2⊥iσK ¼ ð481 MeVÞ2
½ð428 MeVÞ2� for the linear [HO] parameters, respectively.
Since the PL wave function given by Eq. (15) is not enough
power suppressed to give finite transverse moments unless
the transverse integration cutoff is performed, we do not
estimate them for the PL wave function case.
Figure 2 shows the 3D plots for the twist-3 pion LF wave

functions ψP
3;πðx;k⊥Þ (upper panel) and ψσ

3;πðx;k⊥Þ (lower
panel) obtained from the Gaussian wave functions with HO
model parameters (left panel) and the PL wave functions
(right panel), respectively. For the case of pseudoscalar
ψP
3;πðx;k⊥Þ, it shows the concave shape for low k2⊥ for both

Gaussian and PL wave functions but its DA ϕP
3;πðxÞ after

the k⊥-integration up to infinity shows rather convex shape
in the central region of x as we show in Fig. 3. On the other
hand, for the case of pseudotensor ψσ

3;πðx;k⊥Þ, it shows the
convex shape for any value of k2⊥ regardless of the choice
of the wave functions. For both pseudoscalar and pseudo-
tensor channels, the PL wave functions have more high
momentum tails than the corresponding Gaussian wave
functions for jk⊥j ≥ 1 GeV. Thus, the PL wave functions
are rather sensitive to the transverse momentum cutoff
values. We also should note that ψP

3;πðx;k⊥Þ is much more
sensitive to the choice of the LF wave functions than
ψσ
3;πðx;k⊥Þ. This may lead to different asymptotic behav-

iors for different LF wave functions in the chiral sym-
metry limit.
We show in Fig. 3 the corresponding two-particle twist-3

pion ϕP
3;πðxÞ (left panel) and ϕσ

3;πðxÞ (right panel) obtained
from the nonzero constituent quark masses using Gaussian
wave functions with HO (solid lines) model parameters and
PL wave functions (dashed lines). We also plot our results
in the chiral symmetry ðmuðdÞ → 0Þ limit for both Gaussian
(dotted lines) and PL (dot-dashed lines) wave functions
and compare them with the chiral-limit prediction of DSE
approach employing the dynamical chiral symmetry
breaking (DCSB) improved (BD) kernels [22] (double-
dot-dashed line) as well as the asymptotic result 6xð1 − xÞ
for the case ϕσ

3;πðxÞ. Our results for both ϕP
3;πðxÞ and

ϕσ
3;πðxÞ are normalized without the momentum cutoff

(i.e. jk⊥j→∞).
For the ϕP

3;πðxÞ case in Fig. 3, our results with nonzero
constituent quark masses show rather convex shapes for
both Gaussian and PL wave functions but they show
quite different end point behaviors, i.e. the end points
are more enhanced for the PL wave function than the
Gaussian wave function. The difference between the two
wave functions is more drastic in the chiral symmetry limit,
where the result of Gaussian wave function reproduces the
result ϕP

3;πðxÞ → 1 anticipated from the QCD’s conformal
limit [7] but the result of PL wave function shows the
concave shape similar to the result of the DSE approach
[22], in which the following asymptotic form was obtained:

ϕP
3;πðxÞ → 1þ ð1=2ÞCð1=2Þ

2 ð2x − 1Þ. This rebuts the remark
made in Ref. [22] that our LFQM has curvature of the
opposite sign on almost the entire domain of support in
conflict with a model-independent prediction of QCD. We
have shown in our previous works [45,47] that our LFQM
is indeed consistent with the nature of chiral symmetry in
QCD. While the authors in [22] explained that the differ-

ence, i.e. ð1=2ÞCð1=2Þ
2 ð2x − 1Þ term in the chiral symmetry

limit, may come from the mixing effect between the two-
and three-particle twist-3 amplitudes, we observe the
similar difference taking the power-law type LF wave
function in which the transverse momentum dependence
cannot be factorized from the scale independent parameter

TABLE I. Model parameters for the Gaussian wave function
with the linear and HO confining potentials [24,26,28] and for the
power-law wave function [31]. q ¼ u and d.

Model mq (GeV) ms (GeV) βqq̄ (GeV) βqs̄ (GeV)

Linear 0.22 0.45 0.3659 0.3886
HO 0.25 0.48 0.3194 0.3419
Power law 0.25 0.37 0.335 0.41
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dependence. Especially, we find that the end point behav-
iors of ϕP

3;πðxÞ also affect the asymptotic form in the chiral
symmetry limit. The cutoff dependent behaviors of ϕP

3;πðxÞ
obtained from both Gaussian and PL wave functions are
also presented in Ref. [46], where the concave shape for the
Gaussian wave function can also be seen with the cutoff
scale μ ¼ 1 GeV or less being taken but the cutoff
dependence was shown to be more sensitive for the PL
wave function than the Gaussian one.
For the ϕσ

3;πðxÞ case in Fig. 3, our results with nonzero
constituent quark masses for both Gaussian (solid line) and
PL (dashed line) show again different end point behaviors,
i.e. the end points are more enhanced for the PL wave
function than the Gaussian wave function. However, in
the chiral symmetry limit, Gaussian (dotted line) and PL
(dot-dashed line) wave functions show very similar shapes
with each other. Thus, the degree of conformal symmetry
breaking depends on the channel of DAs, ϕP

3;πðxÞ vs

ϕσ
3;πðxÞ. As expected, the result from the Gaussian wave

function reproduces exactly the asymptotic form 6xð1 − xÞ.
The same chiral-limit behavior was also obtained from the
DSE approach [22]. As one can see from Fig. 3, the twist-3
pseudoscalar ϕP

3;πðxÞ is more sensitive to the shape of the
model wave functions (Gaussian vs PL) than the twist-3
pseudotensor ϕσ

3;πðxÞ. It is quite interesting to note in the
chiral symmetry limit that while ϕP

3;πðxÞ is sensitive to the
shapes of model wave functions, ϕσ

3;πðxÞ is insensitive
to them.
Figure 4 shows the 3D plots for the twist-3 kaon LF wave

functions ψP
3;Kðx;k⊥Þ (upper panel) and ψσ

3;Kðx;k⊥Þ (lower
panel) obtained from the Gaussian wave functions with HO
model parameters (left panel) and the PL wave functions
(right panel), respectively. For the kaon case, we assign the
momentum fractions x for s-quark and ð1 − xÞ for the light
uðdÞ-quark. Due to the SU(3) flavor-symmetry breaking

FIG. 2. 3D plots for ψP
3;πðx;k⊥Þ (upper panel) and ψσ

3;πðx;k⊥Þ (lower panel) obtained from the HO (left panel) and the PL (right panel)
wave functions, respectively.
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FIG. 3. The twist-3 DAs ϕP
3;πðxÞ (left panel) and ϕσ

3;πðxÞ (right panel) of the pion.

FIG. 4. The 3D plots for ψP
3;Kðx;k⊥Þ (upper panel) and ψσ

3;Kðx;k⊥Þ (lower panel) obtained from the HO (left panel) and the PL (right
panel) wave functions.
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effect, the twist-3 kaon LF wave functions are distorted in
favor of the heavier s-quark. Other than the SU(3) flavor-
symmetry breaking effect, the general behavior is similar to
the pion case.
We show in Fig. 5 the corresponding two-particle twist-3

kaon ϕP
3;KðxÞ (left panel) and ϕσ

3;KðxÞ (right panel) obtained
from Gaussian wave functions with HO (solid lines)
and linear (dotted lines) model parameters and PL wave
functions (dashed lines). We also compare our results with
the prediction of the DSE approach employing the dynami-
cal chiral symmetry breaking-improved (BD) kernels [22]
(dot-dashed line). Our results for both ϕP

3;KðxÞ and ϕσ
3;KðxÞ

are normalized without the transverse momentum cutoff. In
both pseudoscalar and pseudotensor twist-3 kaon DAs, the
difference between the HO and linear model parameters
using the same Gaussian wave functions is less significant
than the difference between the Gaussian and PL wave
functions. On the other hand, the SU(3) flavor-symmetry
breaking effect is more pronounced in the Gaussian wave
function than the PL wave function. As in the case of the
pion, while some disagreements between our LFQM
prediction and DSE prediction are seen in ϕP

3;KðxÞ, some
agreements between them can also be seen in ϕσ

3;KðxÞ.
Especially, for the pseudotensor DA ϕσ

3;KðxÞ, our prediction
from PL wave function is in good agreement to the result
from the DSE approach including the end points behaviors.
As was discussed in [22], the SU(3) flavor-symmetry
breaking effect of two-particle twist-3 kaon DAs may be
quantified by considering a ratio, viz.

δ
ϕPðσÞ
3;K

¼
R 1=2
0 dx̄ϕPðσÞ

3;K ð1 − x̄ÞR 1=2
0 dxϕPðσÞ

3;K ðxÞ
; ð22Þ

where x̄ ¼ 1 − x. We obtain δϕP
3;K

¼ ð1.28; 1.38; 1.06Þ and
δϕσ

3;K
¼ ð1.33; 1.43; 1.05Þ for (linear, HO, PL) parameters,

respectively. The same formula as in Eq. (22) should
hold for twist-2 DA (ϕP

2;K) [24,45], and we obtain the
ratio as δϕP

2;K
¼ ð1.15; 1.28; 1.16Þ for (linear, HO, PL)

parameters. Our results should be compared with the
DSE approach [22] results using two different procedures,
i.e. rainbow-ladder (RL) truncation and the DCSB-
improved (DB) kernels: δϕP

3;K
¼ δϕσ

3;K
¼ ð1.28; 1.12Þ for

(RL, DB) and δϕP
2;K

¼ 1.14 for DB, respectively. As one

can see from our results, the SU(3) flavor-symmetry
breaking effect is larger for Gaussian wave function
than for PL wave function. Overall our results from the
PL wave function agree quantitatively with the DSE results
from DCSB-improved kernels. Regarding the flavor sym-
metry breaking effect, our LFQM results [24,28] of
leptonic decay constant ratios fK=fπ ¼ 1.24½1.18� and
fBs

=fB ¼ 1.24½1.32� obtained from Gaussian wave func-
tions with linear [HO] parameters can also be compared
with the experimental data fK=fπ ¼ 1.22 [65] and the
recent unquenched lattice-QCD fBs

=fB ¼ 1.22ð8Þ [66],
respectively.
The twist-3 pseudoscalar DA ϕP

3;MðxÞ and pseudotensor
DAϕσ

3;MðxÞ are usually expanded in termsof theGegenbauer

polynomials C1=2
n and C3=2

n , respectively, as follows [17]:

ϕP
3;M ¼

X∞
n¼0

aPn;MC
1=2
n ð2x − 1Þ;

ϕσ
3;M ¼ 6xð1 − xÞ

X∞
n¼0

aσn;MC
3=2
n ð2x − 1Þ: ð23Þ
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FIG. 5. The twist-3 DAs ϕP
3;KðxÞ (left panel) and ϕσ

3;KðxÞ (right panel) of the pion.
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The coefficients aPðσÞn;M are called the Gegenbauer moments
and can be obtained by

aPn;MðxÞ ¼ ð2nþ 1Þ
Z

1

0

dxC1=2
n ð2x − 1ÞϕP

3;MðxÞ;

aσn;MðxÞ ¼
4nþ 6

3n2 þ 9nþ 6

Z
1

0

dxC3=2
n ð2x − 1Þϕσ

3;MðxÞ;

ð24Þ

using the orthogonal condition for the Gegenbauer
polynomials,

Z
1

0

dx½xð1 − xÞ�l−1=2Cl
mð2x − 1ÞCl

nð2x − 1Þ

¼ π21−4lΓð2lþ nÞ
n!ðnþ lÞΓ2ðlÞ δmn: ð25Þ

The Gegenbauer moments with n > 0 describe how much
the DAs deviate from the asymptotic one. In addition to the
Gegenbauer moments, one can also define the expectation
value of the longitudinal momentum, so-called ξ-moments,
as follows:

hξniPðσÞM ¼
Z

1

0

dxξnϕPðσÞ
3;M ðxÞ; ð26Þ

where ξ ¼ 2x − 1.
Since we calculated Gegenbauer and ξ-moments of the

pseudoscalar twist-3 ϕP
3;MðxÞ as well as the twist-2 ϕA

2;MðxÞ
in our previous works [24,45], we do not list them here.
In Table II, we list the calculated Gegenbauer and ξ-

moments of the pseudotensor twist-3 pion ϕσ
3;πðxÞ

obtained from the Gaussian wave function with linear
and HO potential models and PL wave function. We also
compare our results with other model predictions, e.g.
QCD sum rules (SR) [9], DSE approach [22] and the
chiral quark model (χQM) [17]. As expected from the
isospin symmetry, all odd Gegenbauer and ξ-moments are
zero. It is interesting to note that the sign of aσ2;π is negative
from our LFQM and χQM predictions but is positive for
QCDSR prediction. Larger positive value of aσ2;π leads to a
more flat shape of DA but the larger negative value leads
to a more narrower shape of DA as one can see from
Fig. 3. Knowing our LFQM results from the HO model are
exact to the asymptotic result in the chiral-symmetry limit
as shown in Fig. 3, i.e. ½hξ2iσπ�HO ¼ ½hξ2iσπ�asy in the mq → 0

limit, one can see that the ξ-moments are reduced when
the chiral symmetry is broken. We also should note for the
same reason that our LFQM results are in good agreement
with DSE results in the chiral-symmetry limit of ϕσ

3;πðxÞ.
In Table III, we list the calculated Gegenbauer and ξ-

moments of the pseudotensor twist-3 kaon ϕσ
3;KðxÞ

obtained from the Gaussian wave function with linear
and HO potential models and PL wave function and
compare them with other model estimates [9,17,22]. For
the kaon case, the odd moments are nonzero due to the
flavor SU(3) symmetry breaking effects. We again note
that the sign of Gegenbauer and ξ-moments are the same
between our LFQM and χQM [17] predictions but different
from QCDSR [9] and DSE [22] predictions.

TABLE II. The Gegenbauer moments and ξ-moments of twist-
3 pion DAs obtained from the linear and HO potential models
compared with other model estimates.

Models aσ2;π aσ4;π aσ6;π hξ2iσπ hξ4iσπ hξ6iσπ
HO −0.1155 −0.0268 −0.0046 0.1604 0.0565 0.0263
Linear −0.0803 −0.0256 −0.0082 0.1725 0.0647 0.0318
PL −0.0375 −0.0092 −0.0031 0.1871 0.0762 0.0406
SR [9] 0.0979 −0.0016 −0.0011 0.2325 0.1075 0.0624
DSE [22] � � � � � � � � � 0.20 0.085 0.047
χQM [17] −0.0984 −0.0192 −0.0037 0.1663 0.0612 −0.0015
6xð1 − xÞ � � � � � � � � � 0.20 0.086 0.048

TABLE III. The Gegenbauer moments and ξ-moments of twist-2 and twist-3 K meson DAs obtained from the
linear and HO potential models compared with other model estimates.

Models aσ1;K aσ2;K aσ3;K aσ4;K aσ5;K aσ6;K

HO −0.1501 −0.1474 0.0198 −0.0162 0.0137 −0.00036
Linear −0.1262 −0.1165 0.0031 −0.0203 0.0101 −0.0031
PL −0.0218 −0.0385 −0.0003 −0.0090 0.0004 −0.0030
DSE [22] 0.049 −0.0034 � � � � � � � � � � � �
χQM [17] −0.00474 −0.1180 −0.0030 −0.0131 −0.0007 −0.0028

Models hξ1iσK hξ2iσK hξ3iσK hξ4iσK hξ5iσK hξ6iσK
HO −0.0901 0.1495 −0.0348 0.0503 −0.0173 0.0227
Linear −0.0757 0.1601 −0.0319 0.0570 −0.0169 0.0269
PL −0.0131 0.1868 −0.0057 0.0760 −0.0031 0.0405
SR [9] 0.0612 0.2022 0.0328 0.0895 0.0221 � � �
DSE [22] 0.029 0.20 0.017 0.088 0.011 0.049
χQM [17] −0.0028 0.1596 −0.0018 0.0574 −0.0012 � � �
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IV. SUMMARY AND DISCUSSION

We analyzed the two twist-3 DAs of the pion and kaon,
i.e. pseudoscalar ϕP

3;MðxÞ and pseudotensor ϕσ
3;MðxÞ, within

the LFQM. We also discussed the discrepancy of the
asymptotic forms of ϕP

3;πðxÞ between the DSE approach
[22] and QCD’s conformal limit expression [7] from the
perspective of dependence of DA on the form of LF trial
wave functions, e.g. Gaussian vs PL wave functions. While
the Gaussian wave function satisfies the conformal sym-
metry in the chiral symmetry limit, the PL wave function
does not fulfill the conformal (or scale) invariance in the
same limit. In order to compute the twist-3 pseudotensor
DA ϕσ

3;MðxÞ, we utilized the same manifestly covariant BS
model used in [45–47] and then mapped the LF vertex
function in the covariant BS model to the more phenom-
enologically accessible Gaussian and/or PL wave func-
tions. Linking the covariant BS model to the standard
LFQM, we used the same correspondence (or mapping)
relation given by Eq. (17) between the two as previously
found in [45,47]. The remarkable finding in mapping the
covariant BS model to the standard LFQM is that the
treacherous points such as the zero-mode contributions and
the instantaneous ones existed in the covariant BS model
become absent in the LFQM with the Gaussian or PL wave
function.
Our LFQM descriptions of both twist-3 ϕP

3;π and ϕσ
3;π

satisfy the fundamental constraint (i.e. symmetric form
with respect to x) anticipated from the isospin symmetry.
For the ϕP

3;πðxÞ case, our results with nonzero constituent
quark masses show rather convex shapes for both Gaussian
and PL wave functions but they show quite different end
point behaviors, i.e. the end points are more enhanced for
the PL wave function than the Gaussian wave function.
The difference between the two wave functions are more
drastic in the chiral symmetry limit, where the result of the
Gaussian wave function reproduces the result ϕP

3;πðxÞ → 1

anticipated from the QCD’s conformal limit [7] but the
result of the PL wave function shows the concave shape
similar to the result of the DSE approach [22]. This may be
understood by the different conformal symmetry behaviors
between Gaussian and PL wave functions. While the
authors in [22] explained that this difference may come
from the mixing effect between the two- and three-particle
twist-3 amplitudes, we observe that this difference is linked
to the different behaviors of conformal symmetry in the
chiral limit of LF trial wave functions. For the ϕσ

3;πðxÞ case,
our results in the chiral symmetry limit, both Gaussian
and PL wave functions show very similar shapes with
each other. Especially, the result from the Gaussian
wave function reproduces exactly the asymptotic form
6xð1 − xÞ anticipated from QCD’s conformal limit. The
same chiral-limit behavior was also obtained from the DSE
approach [22]. We have now provided the reason why our
predictions for the two twist-3 DAs of π and chirality-even

twist-2 and twist-3 DAs of ρ [47] obtained from the
Gaussian wave function in the chiral limit exactly repro-
duce the forms anticipated from QCD’s conformal limit.
For the kaon case, due to the SU(3) flavor-symmetry
breaking effect, the twist-3 kaon LF wave functions are
distorted in favor of the heavier s-quark. The violation of
SU(3) flavor symmetry breaking was estimated using
Eq. (22) for twist-2 and twist-3 DAs of kaon. The SU(3)
flavor symmetry breakings are (15, 28, 16)% in twist-2
ϕA
2;KðxÞ, (28, 38, 6)% in twist-3 ϕP

3;KðxÞ, and (33, 43, 5)% in
twist-3 ϕσ

3;KðxÞ for (linear, HO, PL) parameters, respec-
tively. In comparison with the DSE approach, while our
results from the Gaussian wave function are quite different
from those of the DSE approach, the results from the PL
wave function are consistent with those of the DSE
approach. We may understand these results from the
characteristic difference of the conformal symmetry in
the chiral symmetry limit of the LF trial wave functions
taken for the variational principle computation.
The idea of our LFQM is to provide the nonperturbative

wave functions at the momentum scale consistent with the
use of constituent quark mass. The DAs determined from
this nonperturbative wave functions can be fed into the
QCD evolution equation to provide the shorter distance
information of the corresponding hadrons. The DAs
obtained without the cutoff should not be regarded as
the fully evolved DAs but still be nonperturbative as they
just mean that the cutoff dependence becomes marginal
beyond a certain nonperturbative cutoff scale.
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APPENDIX: DERIVATION OF TWIST-3 DAs
OF A PSEUDOSCALAR MESON

Defining zμ ¼ τημ using the lightlike vector η ¼
ð1; 0; 0;−1Þ, one can rewrite Eq. (1) as

h0jq̄ðτηÞiγ5qð−τηÞjMðPÞi ¼ fMμM

Z
1

0

dxeiζτðP·ηÞϕP
3;MðxÞ:

ðA1Þ

By integrating Eq. (A1) using the dummy variable x0
(and ζ0 ¼ 2x0 − 1) with respect to τ asZ

∞

−∞

dτ
2π

e−iζ
0τðP·ηÞh0jq̄ðτηÞiγ5qð−τηÞjMðPÞi

¼ fMμM

Z
∞

−∞

dτ
2π

Z
1

0

dxe−iðζ0−ζÞτðP·ηÞϕP
3;MðxÞ; ðA2Þ
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and changing the variable τðP · ηÞ ¼ T, we obtain the rhs of
Eq. (A2) as fMμM

2ðP·ηÞϕ
P
3;Mðx0Þ. Therefore, the twist-3 ϕP

3;MðxÞ
for the pseudoscalar channel is given by

ϕP
3;MðxÞ ¼

2ðP · ηÞ
fMμM

Z
∞

−∞

dτ
2π

e−iζτðP·ηÞ

× h0jq̄ðτηÞiγ5qð−τηÞjMðPÞi: ðA3Þ

Similarly, Eq. (2) can be rewritten as

h0jq̄ðτηÞσαβγ5qð−τηÞjMðPÞi

¼ −
i
3
fMμMτðPαηβ − PβηαÞ

Z
1

0

dxeiζτðP·ηÞϕσ
3;MðxÞ:

ðA4Þ

Multiplying ðPαηβ − PβηαÞ on both sides of Eq. (A4) and
using the following identities ðPαηβ−PβηαÞðPαηβ−PβηαÞ¼
−2ðP·ηÞ2 and σαβðPαηβ − PβηαÞ ¼ 2iðPη − P · ηÞ, we
obtain

h0jq̄ðτηÞðPη − P · ηÞγ5qð−τηÞjMðPÞi

¼ 1

3
fMμMτðP · ηÞ2

Z
1

0

dxeiζτðP·ηÞϕσ
3;MðxÞ: ðA5Þ

Once again, by integrating Eq. (A5) using the dummy
variable x0 (and ζ0 ¼ 2x0 − 1) with respect to τ asZ

∞

−∞

dτ
2π

e−iζ
0τðP·ηÞh0jq̄ðτηÞðPη − P · ηÞγ5qð−τηÞjMðPÞi

¼ 1

3
fMμMðP · ηÞ2

Z
1

0

dx
Z

∞

−∞

dτ
2π

τe−iðζ0−ζÞτðP·ηÞϕσ
3;MðxÞ;

ðA6Þ

and changing the variable 2τðP · ηÞ ¼ T, we obtain the rhs

of Eq. (A6) as i
12
fMμM

∂ϕσ
3;Mðx0Þ
∂x0 . Therefore, the twist-3

ϕσ
3;MðxÞ for tensor channel is obtained by

ϕσ
3;MðxÞ ¼ −

12

fMμM

Z
∞

−∞

dτ
2π

Z
x

0

dx0e−iζ0τðP·ηÞ

× h0jq̄ðτηÞiðPη − P · ηÞγ5qð−τηÞjMðPÞi: ðA7Þ
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