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In this paper, we attempt to build a unified model with the democratic texture, that has some unification
between up-type Yukawa interactions Yν and Yu. Since the S3L × S3R flavor symmetry is chiral, the unified
gauge group is assumed to be Pati-Salam type SUð4Þc × SUð2ÞL × SUð2ÞR. The breaking scheme of the
flavor symmetry is considered to be S3L × S3R → S2L × S2R → 0. In this picture, the four-zero texture is
desirable for realistic masses and mixings. This texture is realized by a specific representation for the
second breaking of the S3L × S3R flavor symmetry. Assuming only renormalizable Yukawa interactions,
type-I seesaw mechanism, and neglecting CP phases for simplicity, the right-handed neutrino mass matrix
MR can be reconstructed from low energy input values. Numerical analysis shows that the texture of MR

basically behaves like the “waterfall texture.” SinceMR tends to be the “cascade texture” in the democratic
texture approach, a model with type-I seesaw and up-type Yukawa unification Yν ≃ Yu basically requires
fine-tunings between parameters. Therefore, it seems to be more realistic to consider universal waterfall
textures for both Yf and MR, e.g., by the radiative mass generation or the Froggatt-Nielsen mechanism.
Moreover, analysis of eigenvalues shows that the lightest mass eigenvalue MR1 is too light to achieve
successful thermal leptogenesis. Although the resonant leptogenesis might be possible, it also requires fine-
tunings of parameters.
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I. INTRODUCTION

The flavor puzzle is one of the most stringent problems
in the current particle physics. In particular, the fermion
mixing matrices UCKM [1,2] and UPMNS [3,4] are curiously
different. Various models and ideas have been considered to
explain the underlying flavor dynamics of the standard
model (SM). Typical approaches treat the flavor sym-
metries [5] and/or specific flavor textures [6,7]. In the
latter approach, many researchers have studied the demo-
cratic texture [8–25]. In this approach, Yukawa interactions
are assumed to have the “democratic matrix” (1), which is
realized by S3L × S3R symmetry.
In order to explore a more fundamental understanding of

flavor, building some unified model is a standard method.
The grand unified theory (GUT) with the democratic
texture is only discussed in [26,27], as far as the author
knows. However, since these papers assumed a degenerated
neutrino Yukawa matrix Yν, unification between Yν and
other Yf is difficult. In this paper, we attempt to build
another unified model with the democratic texture, which
has some unification between up-type Yukawa interactions
Yν and Yu. Since the S3L × S3R flavor symmetry is chiral,
the unified gauge group is assumed to be Pati-Salam (PS)
type SUð4Þc × SUð2ÞL × SUð2ÞR (G422) [28]. The break-
ing scheme of the flavor symmetry is considered to be
S3L × S3R → S2L × S2R → 0. In this picture, the four-zero
texture [29–32] is desirable for realistic masses and mix-
ings. This texture is realized by a specific representation for

the second breaking of the S3L × S3R flavor symmetry
[33–35].
Assuming only renormalizable Yukawa interactions,

type-I seesaw mechanism [36], and neglecting CP phases
for simplicity, the right-handed neutrino mass matrix MR
can be reconstructed from low energy input values.
Numerical analysis shows that the texture of MR basically
behaves like the “waterfall texture” in Table I. Since MR
tends to be the “cascade texture” in the democratic texture
approach, a model with type-I seesaw and up-type Yukawa
unification Yν ≃ Yu basically requires fine-tunings between
parameters (including its CP phases, errors of the input
parameters, and schemes of gauge symmetry breaking). If
we realize the breaking scheme S3L×S3R→S2L×S2R→0
by some mechanism, the sector of νR might be too
complicated to obtain cascade Yf and waterfall MR in a
unified picture. Therefore, it seems to be more realistic to
consider universal waterfall textures for both Yf and MR,
e.g., by the radiative mass generation [37] or the Froggatt-
Nielsen mechanism [38].

TABLE I. The cascade and waterfall texture, with 1 ≫ δ ≫ ϵ
[39].

 ϵ ϵ ϵ
ϵ δ δ
ϵ δ 1

!  
ϵ2 ϵδ ϵ
ϵδ δ2 δ
ϵ δ 1

!

Cascade Waterfall
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Moreover, analysis of eigenvalues shows that the lightest
mass eigenvalue MR1 is too light to achieve successful
thermal leptogenesis [40]. Although the resonant lepto-
genesis [41,42] might be possible, it also requires fine-
tunings of parameters.
In this study, we assume only renormalizable Yukawa

interactions. However, this strong tendency to the waterfall
texture originates from the seesaw relation MR ∼ YT

uYu.
Therefore, it would be rather robust for nonrenormalizable
Yukawa interactions, as far as the type-I seesaw mechanism
is assumed.
This paper is organized as follows. The next section is a

review of the Yukawa matrices with the democratic texture.
In Sec. III, we construct a unified model with the S3L × S3R
flavor symmetry. Section IV is a numerical analysis of
mass matrix MR in this model. Section V is devoted to
conclusions.

II. THE FOUR-ZERO TEXTURE FROM THE
DEMOCRATIC MATRIX APPROACH

The democratic matrix is defined as

Y0
f ¼ Kf

3

0
B@

1 1 1

1 1 1

1 1 1

1
CA≡ Kf

3
D; ð1Þ

which is invariant under S3L × S3R, the permutation sym-
metry between rows and columns. It is diagonalized by the
unitary matrix UDC,

UDC ¼

0
BBB@

1ffiffi
2

p 1ffiffi
6

p 1ffiffi
3

p

− 1ffiffi
2

p 1ffiffi
6

p 1ffiffi
3

p

0 −
ffiffi
2

pffiffi
3

p 1ffiffi
3

p

1
CCCA; ð2Þ

and eigenvalues are given by Y0
fi ¼ diagð0; 0; KfÞ. Then,

the democratic matrix produces mass only for the third
generation. In order to provide masses for the first and
second generations, the breaking scheme of the flavor
symmetry is chosen as S3L × S3R → S2L × S2R → 0. Then,
Yukawa matrices are represented as

Yf ¼ Kf

3
Dþ δfYδ

f þ ϵfYϵ
f; ð3Þ

where Yδ
f, Y

ϵ
f breaks S3L × S3R and S2L × S2R, respectively.

This breaking scheme is discussed in several papers
[35,43–47]. The origin and specific realization of this
breaking scheme have not been discussed by the authors
who proposed it. For example, the radiatively generated
light fermion masses by broken S3 symmetry [37] could
explain this breaking scheme. In Ref. [37], S3 breaking
effects induce departures from the democratic texture only

radiatively, and light fermion masses are suppressed by
typical loop factors ½1=ð16π2Þ�1−2. It naturally predicts the
hierarchical relation

Kf ≫ δf ≫ ϵf; ð4Þ

which is required from realistic masses and mixings.
A pedagogical explanation is also found in the review
[48]. The following discussion is equivalent to Ref. [35].
The term δfYδ

f is invariant under S2L × S2R between first
and second indices, in order to provide mass only for the
second generation. The most general form of the S2L × S2R
invariant symmetric Yδ

f is

Yδ
f ¼

0
B@

a a b

a a b

b b c

1
CA: ð5Þ

For later convenience, we parametrize δfYδ
f as follows:

δfYδ
f ¼ δf

0
BBB@

ffiffi
2

p
r

3
þ 1

6

ffiffi
2

p
r

3
þ 1

6
− r

3
ffiffi
2

p − 1
3ffiffi

2
p

r
3

þ 1
6

ffiffi
2

p
r

3
þ 1

6
− r

3
ffiffi
2

p − 1
3

− r
3
ffiffi
2

p − 1
3

− r
3
ffiffi
2

p − 1
3

2
3
− 2

ffiffi
2

p
r

3

1
CCCA: ð6Þ

In Eq. (6), there are only two free parameters r, δf.
However, it does not lose generality, because one of the
parameters in Eq. (5) can be absorbed by the redefinition of
Kf. Similarly, ϵfYϵ

f provide mass for the first generations.
References [34,35] proposed that ϵfYϵ

f may be the doublet
complex tensorial representation of the S3ðLþRÞ diagonal
subgroup:

ϵfYϵ
f ¼

0
B@

ϵ1 iϵ2 −ϵ1 − iϵ2
−iϵ2 −ϵ1 ϵ1 þ iϵ2

−ϵ1 þ iϵ2 ϵ1 − iϵ2 0

1
CA: ð7Þ

In this case, the Yukawa matrices are approximately
diagonalized as

U†
DCYfUDC ¼ U†

DC

�
Kf

3
Dþ δfYδ

f þ ϵfYϵ
f

�
UDC

¼

0
BB@

0 ϵfeiϕf 0

ϵfe−iϕf δf rδf
0 rδf Kf

1
CCA; ð8Þ

where ϵfeiϕf ¼ ffiffiffi
3

p ðϵ1 þ iϵ2Þ. Then, these Yukawa matri-
ces lead to the “four-zero texture” or the “modified Fritzsch
texture” [29–32]. This relationship between the democratic
texture and the four-zero texture is studied by several
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authors [33–35]. In Eq. (8), r ∼Oð1Þ is required to obtain
the successful Cabibbo-Kobayashi-Maskawa (CKM)
matrix. This is a natural condition because S3L × S3R
breaking would produce a relation Y22 ∼ Y23.
For simplicity, we neglect all CP phases of the Yukawa

matrices [cf. ϕf ¼ 0 in Eq. (8)]. The effect of CP phases is
discussed later. However, the qualitative result is consid-
ered to be rather robust with finite CP phases.
For the real Yukawa matrices, Eq. (8) is perturbatively

diagonalized as

B†
fU

†
DCYfUDCBf ¼ diagðy1f; y2f; y3fÞ; ð9Þ

where

y1f ≃ −
ϵ2f
δf

−
r2ϵ2f
Kf

; y2f ≃ δf þ
ϵ2f
δf

−
r2δ2f
Kf

;

y3f ≃ Kf þ
r2δ2f
Kf

: ð10Þ

The unitary matrix Bf at leading order is found to be

Bf ≃

0
BBB@

1 − ϵf
δf

0

ϵf
δf

1 r δf
Kf

−r ϵf
Kf

−r δf
Kf

1

1
CCCA

≃

0
BBBBB@

1 −
ffiffiffiffiffiffiffiffiffi
− yf1

yf2

q
0ffiffiffiffiffiffiffiffiffi

− yf1
yf2

q
1 r yf2

yf3

−r
ffiffiffiffiffiffiffiffiffi
− yf1

yf2

q
yf2
yf3

−r yf2
yf3

1

1
CCCCCA: ð11Þ

Note that yf1=yf2 ≃ −ϵ2f=δ2f is always negative.

Therefore, the CKM matrix VCKM ¼ B†
uBd (without

complex phase) is calculated as

VCKM ≃

0
BBB@

1
ffiffiffiffiffi
mu
mc

q
−r

ffiffiffiffiffi
mu
mc

q
mc
mt

−
ffiffiffiffiffi
mu
mc

q
1 −r mc

mt

0 r mc
mt

1

1
CCCA

0
BBBBB@

1 −
ffiffiffiffiffi
md
ms

q
0ffiffiffiffiffi

md
ms

q
1 r ms

mb

−r
ffiffiffiffiffi
md
ms

q
ms
mb

−r ms
mb

1

1
CCCCCA ð12Þ

≃

0
BBBBB@

1 −
h ffiffiffiffiffi

md
ms

q
−

ffiffiffiffiffi
mu
mc

q i
r
h ffiffiffiffiffi

mu
mc

q
ms
mb

−
ffiffiffiffiffi
mu
mc

q
mc
mt

i
h ffiffiffiffiffi

md
ms

q
−

ffiffiffiffiffi
mu
mc

q i
1 r

h
ms
mb

− mc
mt

i
r
h ffiffiffiffiffi

md
ms

q
mc
mt

−
ffiffiffiffiffi
md
ms

q
ms
mb

i
−r
h
ms
mb

− mc
mt

i
1

1
CCCCCA: ð13Þ

Here, we omit the minus sign in the square root
(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−mu=mc

p
→

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu=mc

p
). It predicts Vcb and Vts at

leading order as follows:

Vcb ≃ −Vts ≃ r

�
ms

mb
−
mc

mt

�
: ð14Þ

If the parameters Kf, δf, ϵf have CP phases, each
CKM matrix element obtains overall phases and relative

phases, such as
ffiffiffiffiffi
md
ms

q
−

ffiffiffiffiffi
mu
mc

q
→ eiϕ

h ffiffiffiffiffi
md
ms

q
− eiη

ffiffiffiffiffi
mu
mc

q i
. In

particular, the best value of χ2 fit r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
81=32

p ≃ 1.59
[35] gives excellent agreement between the prediction and
the observation of absolute values of the CKM matrix
elements.

III. SUð4Þc × SUð2ÞL × SUð2ÞR MODEL WITH
DEMOCRATIC TEXTURE

In order to explore a more fundamental understanding of
flavor, building some unified model is a standard method.
The grand unified theory (GUT) with the democratic
texture is only discussed in [26,27], as far as the author
knows. However, since these papers assumed degenerated
Yν, unification between Yν and other Yf is difficult. In this
paper, we attempt to build another unified model with the
democratic texture, which has some unification between Yν

and Yu. Since the S3L × S3R flavor symmetry is chiral,1 the

1In the SOð10Þ GUT, the flavor symmetry should be single
S3, and the condition cf ¼ 0 similar to Eq. (31) should be
assumed.
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unified gauge group is assumed to be Pati-Salam (PS) type
SUð4Þc × SUð2ÞL × SUð2ÞR (G422) [28].
To produce realistic fermion masses, we consider the

minimal contents of Higgs fields with the following
representations under the G422 group:

Φ∶ð1; 2; 2Þ; Σ∶ð15; 2; 2Þ; ΔR∶ð10; 1; 3Þ: ð15Þ

Although other representations are also possible, such as
(4,1,2) in [49,50], we consider only renormalizable inter-
actions to control Yukawa interactions.
The field contents of the unified model are in Table II.

These Higgs contents are sufficient to break the PS gauge
group G224 to the SM gauge group GSM. For example, a
breaking scheme of the gauge symmetry with these Higgs
contents is discussed in the context of the noncommutative
geometry [51,52]. We do not discuss the energy scales and
order of the symmetry breakings. However, the final result
is considered to be rather independent from breaking
schemes.
The renormalizable Yukawa interactions invariant under

G422 are found to be

LYukawa ¼ Ψ̄RiðY1
ijΦþ Y15

ij ΣÞΨLj þ H:c: ð16Þ

Note that Yukawa matrices Y1;15 become symmetric matri-
ces if we impose the left-right symmetry between
ΨL ↔ ΨR. These Y1;15 are divided into S3L × S3R preserv-
ing and breaking parts respectively:

Y1 ¼ K1Dþ δY1; Y15 ¼ K15Dþ δY15: ð17Þ

In order to obtain the desirable masses and mixings, we
assume K15 ¼ 0 and δY1 does not have S3L × S3R breaking
elements δf. Then Y15 is treated as a perturbation, as in the
previous study [26]. Vacuum expectation values of these
Higgs fields are taken to be

hΦi ¼ Diagð1; 1; 1; 1Þ ×
�
v1u 0

0 v1d

�
;

hΣi ¼ Diagð1; 1; 1;−3Þ ×
�
v15u 0

0 v15d

�
; ð18Þ

in the representation space ofΨL;R ¼ ðq1L;R;q2L;R;q3L;R; lL;RÞ.
This setup leads to the following mass matrices [53–55]:

Mu ¼ v1uðK1Dþ δY1Þ þ v15u δY15

¼ v1uK1Dþ v1uδY1 þ v15u δY15; ð19Þ

MD
ν ¼ v1uðK1Dþ δY1Þ − 3v15u δY15

¼ v1uK1Dþ v1uδY1 − 3v15u δY15; ð20Þ

Md ¼ v1dðK1Dþ δY1Þ þ v15d δY15

¼ v1dK1Dþ v1dδY1 þ v15d δY15; ð21Þ

Me ¼ v1dðK1Dþ δY1Þ − 3v15d δY15

¼ v1dK1Dþ v1dδY1 − 3v15d δY15: ð22Þ

In particular, effective Yukawa matrices are explicitly
written as

Yu ¼

0
B@

0 ϵu 0

ϵu δu rδu
0 rδu Ku

1
CA; Yd ¼

0
B@

0 ϵd 0

ϵd δd rδd
0 rδd Kd

1
CA;

ð23Þ

Yν ¼

0
B@

0 ϵν 0

ϵν δν rδν
0 rδν Kν

1
CA; Ye ¼

0
B@

0 ϵe 0

ϵe δe rδe
0 rδe Ke

1
CA;

ð24Þ

with

Ku;d ¼ Kν;e; δu;d ¼ −
1

3
δν;e; ϵu;d ¼ ϵν;e: ð25Þ

These conditions lead to the famous Georgi-Jarlskog
relation [56]

md ¼ 3me; ms ¼
1

3
mμ; mb ¼ mτ; ð26Þ

and similar formulas hold for up-type fermions.

IV. ANALYSIS OF THE RIGHT-HANDED
MAJORANA NEUTRINO MASS MATRIX

In this section, we analyze the right-handed neutrino
mass matrixMR in the PS model with the four-zero Yukawa

TABLE II. The charge assignments of the SM fermions and
Higgs fields under the gauge and the flavor symmetries.

SUð4Þc SUð2ÞL SUð2ÞR S3L S3R

ΨLi ¼ ðqαLi; lLiÞ 4 2 1 1L þ 2L 1R

ΨRi ¼ ðqαRi; lRiÞ 4 1 2 1L 1R þ 2R

Φ 1 2 2 1L 1R
Σ 15 2 2 1L 1R
ΔR 10 1 3 1L 1R
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textures. Many papers have studied this kind of model, such
as SO(10) GUT with the four-zero texture [30,31,57,58].
However, the purpose of this paper is to analyze texture of
MR quantitatively in a united model with the democratic
texture.
MR emerges from the following interaction:

LMajorana ¼ Ψ̄c
RiY

10
ij ΔRΨRj þ H:c:; ð27Þ

when ΔR obtain a vacuum expectation value

hΔRi ¼ Diagð0; 0; 0; 1Þ ×
�

0 0

vR 0

�
: ð28Þ

Because Y10 is transformed as ð1R þ 2RÞ × ð1R þ 2RÞ, it
has two S3R invariant terms [14]

Y10 ¼ K10Dþ c1013 þ δY10; ð29Þ

where 13 is the 3 × 3 identity matrix.
To obtain the observed light neutrino masses, we assume

the type-I seesaw mechanism [36]

mν ¼
v2

2
YT
νM−1

R Yν: ð30Þ

In this case,

δY10 ≫ c10 ≃ 0 ð31Þ

is required by phenomenological reason. The numerical
analysis shown later reveals that Yν with a large c10 ≫ δY10

are incompatible to obtain the observed large neutrino
mixings.

If the flavor symmetry breaking S3L × S3R → S2L×
S2R → 0 also controls the structure of MR, and if there
is no fine-tuning between the parameters, the form of MR
should be the following cascade texture in Table I:

MR ∼ vR

0
B@

ϵ ϵ ϵ

ϵ δ δ

ϵ δ 1

1
CA: ð32Þ

The light neutrino mass, Eq. (30), is diagonalized by

mν ≡ V�
νm

diag
ν V†

ν; ð33Þ

where mdiag
ν ¼ diagðm1; m2; m3Þ. This mass matrix is

rewritten as

mν ¼ B�
eU�

PMNSm
diag
ν U†

PMNSB
†
e; ð34Þ

with the neutrino mixing matrix UPMNS ¼ B†
eVν and Be

(11) for the charged leptons.
Ignoring all of the complex phases for simplicity, we can

reconstruct MR by the seesaw formula:

MR ¼ v2

2
YT
νm−1

ν Yν ð35Þ

¼ v2

2
YT
νBeUPMNSðmdiag

ν Þ−1UT
PMNSB

T
eYν: ð36Þ

As a benchmark,MRðΛGUTÞ¼YνðΛGUTÞTmνðΛGUTÞYν×
ðΛGUTÞ at the GUT scale ΛGUT ¼ 2 × 1016 GeV can be
evaluated as

MRðΛGUTÞ
½GeV� ≃ ½meV�

m1

0
B@

1.876 × 107 −3.623 × 108 −1.009 × 1011

−3.623 × 108 6.996 × 109 1.948 × 1012

−1.009 × 1011 1.948 × 1012 5.424 × 1014

1
CA ð37Þ

þ ½meV�
m2

0
B@

3.302 × 107 −2.173 × 109 −2.849 × 1011

−2.173 × 109 1.429 × 1011 1.874 × 1013

−2.849 × 1011 1.874 × 1013 2.457 × 1015

1
CA ð38Þ

þ ½meV�
m3

0
B@

6.255 × 107 1.012 × 1010 3.975 × 1011

1.012 × 1010 1.637 × 1012 6.431 × 1013

3.975 × 1011 6.431 × 1013 2.526 × 1015

1
CA: ð39Þ

The parameters used here are summarized in Table III. The fermion masses at the GUT scalemfðΛGUTÞ are taken from [59].
In most cases of this model, the order of light neutrino masses mi becomes the normal hierarchy. The inverted hierarchy
m1 ≃m2 ≫ m3 is unnatural because the hierarchy of MR should overcome the ratio m2

t =m2
c. The renormalization of the

neutrino mass can be neglected for the normal hierarchy case [60,61]. Then, neutrino mixing angles and mass square
differences are taken from the latest global fit [62], without renormalization running. A similar parameter set is used in [63].
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Equations (37)–(39) shows that the right-handed
neutrino mass matrix MR ∼ YT

uYu rather tends to be the
waterfall texture in Table I,

MR ∼ vR

0
B@

ϵ2 ϵδ ϵ

ϵδ δ2 δ

ϵ δ 1

1
CA; ð40Þ

for each small mass eigenvalue mi. Then, it seems to be
difficult to explain this texture by the breaking scheme
S3L × S3R → S2L × S2R → 0. Hereafter we precisely check
the form of the MR by numerical analysis.

A. Numerical results

Using the mass difference values Δm2
3i in Table III,

m3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 2457

q
½meV�;

m2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ 75

q
½meV�; ð41Þ

the mass matrices MR (37)–(39) is expressed as a function
of m1, MRðΛGUTÞ ¼ MRðm1Þ.
Figure 1 shows lighter matrix elements ðMRÞ11; ðMRÞ12;

ðMRÞ13, and ðMRÞ22 of the MRðm1Þ at the GUT scale
ΛGUT ¼ 2 × 1016½GeV�, as a function ofm1. The signatures
of m2 and m3 are taken as the top of the figures.
From Fig. 1, we can see the hierarchical structure of the
MR. These matrix elements basically behave like the
waterfall texture ðMRÞ22 ∼ ðMRÞ13 ≫ ðMRÞ22 ≫ ðMRÞ11.
Several changes of sign are due to cancellations among
Eqs. (37)–(39).
This behavior shows that the cascade texture ðMRÞ22 ≫

ðMRÞ13 ∼ ðMRÞ22 ∼ ðMRÞ11 cannot be realized without
fine-tunings of parameters in this model. In particular,
the four-zero texture for MR [equivalent to ðMRÞ11 ¼
ðMRÞ13 ¼ 0] is also difficult to realize without fine-tuning.
However, in this analysis, approximate four-zero texture

TABLE III. Input values (for the SM) at the scale MGUT ¼
2 × 1016 GeV. A similar parameter set is used in [63].

mu (MeV) 0.48 θl12 33.48°

mc (GeV) 0.235 θl23 42.3°

mt (GeV) 74.0 θl13 8.5°

me (MeV) 0.470 Δm2
31 ðeV2Þ 2.457 × 10−3

mμ (MeV) 99.14 Δm2
21 ðeV2Þ 7.50 × 10−5

mτ (MeV) 1685
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FIG. 1. Lighter matrix elements ðMRÞ11, ðMRÞ12, ðMRÞ13, and ðMRÞ22 of the MRðm1Þ at the GUT scale ΛGUT ¼ 2 × 1016½GeV�, as a
function of m1. The signatures of m2 and m3 are taken as the top of the figures.
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ðMRÞ12 ≫ ðMRÞ13 ∼ ðMRÞ11 is realized aroundm1∼4meV
with m2;3 < 0.
So far, the parameters of the model have been assumed to

be real. Here we will discuss the effect of CP phases
shortly. Figure 2 shows lighter matrix elements ðMRÞ11;
ðMRÞ12; ðMRÞ13, and ðMRÞ22 of the MRðm1Þ, with finite
dirac CP phase δCP ¼ π=2 of the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix. Other parameters are
taken to be the same as Fig. 1 (for m2, only negative sign
m2 < 0 is presented). In Fig 2, the cancellations of ðMRÞij
found in Fig. 1 vanish by the finite CP phases, and the
cascade texture is evidently impossible with this parameter
set. By assuming finite CP phases for other parameters, we
found that the cancellations are basically smoothed or
vanished. It is plausible that MR strongly tend to be the
waterfall texture (40). Therefore, in this democratic matrix
approach, a model with type-I seesaw and up-type Yukawa
unification Yν ≃ Yu basically requires fine-tunings between
parameters (including its CP phases, errors of the input
parameters, and gauge symmetry breaking schemes). If we
realize the breaking scheme S3L × S3R → S2L × S2R → 0
by some mechanism, the sector of νR might be too
complicated to obtain cascade Yf and waterfall MR in a
unified picture. Therefore, it seems to be more realistic to

consider universal waterfall textures for both Yf and MR,
e.g., by the radiative mass generation [37] or the Froggatt-
Nielsen mechanism [38].

B. Mass eigenvalues and thermal leptogenesis

Figure 3 shows three mass eigenvalues MRi of the
MRðm1Þ at the GUT scale ΛGUT ¼ 2 × 1016½GeV�, as a
function of m1. The parameters are taken to be the same as
Fig. 1 (for m2, only negative sign m2 < 0 is presented).
Basically the eigenvalues MRi are strongly hierarchical,
because MR has large hierarchy such as MR ∼ YT

uYu. The
largest eigenvalue MR3 changes its sign around
m1 ∼ 2 meV. This is due to cancellation for the 33 element
of MR, between Eq. (37) and Eq. (38) around the region
m2 ∼ 5m1. Similarly, the cancellation for ðMRÞ11 induces the
change of sign for two smaller eigenvalues, MR1 and MR2.
These figures exhibit that the lightest mass eigenvalue

tends to be rather small, MR1 ≲ 105 GeV, except the
cancellation regions. The successful thermal leptogenesis
[40] requires MR1 > 4.9 × 108 GeV for the hierarchical
MRi [64,65]. Then, it is nearly impossible to explain the
observed baryon asymmetry by the thermal leptogenesis in
this model. The resonant leptogenesis [41,42] would be
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FIG. 2. Lighter matrix elements ðMRÞ11, ðMRÞ12, ðMRÞ13, and ðMRÞ22 of the MRðm1Þ, with finite dirac CP phase δCP ¼ π=2 of the
PMNS matrix. Other parameters are taken to be the same as Fig. 1 (for m2, only negative sign m2 < 0 is presented).

MR 3

MR 2

MR 1

0.1 0.5 1.0 5.0 10.0 50.0
1000

106

109

1012

1015

m1 meV

E
ig

en
va

lu
es

G
eV

m2 0, m3 0

MR 3

MR 2

MR 1

0.1 0.5 1.0 5.0 10.0 50.0
1000

106

109

1012

1015

m1 meV

E
ig

en
va

lu
es

G
eV

m2 0, m3 0
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possible in the cancellation region with MR1 ≃MR2
(m3 < 0; m1 ≃ 3 meV). Similar results for SO(10) are
found in Ref. [58]. However, this cancellation region can
be easily vanished by finite CP phases. Therefore, suc-
cessful leptogenesis also requires fine-tunings of the
parameters in this model.
In this study, we assume only renormalizable Yukawa

interactions. However, this strong tendency to the waterfall
texture originates from the seesaw relation MR ∼ YT

uYu.
Therefore, it would be rather robust for nonrenormalizable
Yukawa interactions, as far as the type-I seesaw mechanism
is assumed.

V. CONCLUSIONS

In this paper, we attempt to build a unified model with
the democratic texture, which has some unification
between up-type Yukawa interactions Yν and Yu. Since
the S3L × S3R flavor symmetry is chiral, the unified gauge
group is assumed to be Pati-Salam (PS) type SUð4Þc ×
SUð2ÞL × SUð2ÞR (G422). The breaking scheme of the
flavor symmetry is considered to be S3L × S3R → S2L×
S2R → 0. In this picture, the four-zero texture is desirable
for realistic mass and mixings. This texture is realized by a
specific representation for the second breaking of the S3L ×
S3R flavor symmetry.
Assuming only renormalizable Yukawa interactions,

type-I seesaw mechanism, and neglecting CP phases for
simplicity, the right-handed neutrinomassmatrixMR can be
reconstructed from low energy input values. Numerical
analysis shows that the texture of MR basically behaves

like the waterfall texture in Table I. SinceMR tends to be the
cascade texture in the democratic texture approach, a model
with type-I seesaw and up-typeYukawa unificationYν ≃ Yu
basically requires fine-tunings between parameters (includ-
ing its CP phases, errors of the input parameters, and
schemes of gauge symmetry breaking). If we realize the
breaking scheme S3L × S3R → S2L × S2R → 0 by some
mechanism, the sector of νR might be too complicated to
obtain cascade Yf and waterfall MR in a unified picture.
Therefore, it seems to be more realistic to consider universal
waterfall textures for both Yf andMR, e.g., by the radiative
mass generation or the Froggatt-Nielsen mechanism.
Moreover, analysis of eigenvalues shows that the lightest

mass eigenvalue MR1 is too light to account the baryon
asymmetry of the universe by the thermal leptogenesis.
Although the resonant leptogenesis might be possible, it
also requires fine-tunings of parameters.
In this study, we assume only renormalizable Yukawa

interactions. However, this strong tendency to the waterfall
texture originates from the seesaw relation MR ∼ YT

uYu.
Therefore, it would be rather robust for nonrenormalizable
Yukawa interactions, as far as the type-I seesaw mechanism
is assumed.

ACKNOWLEDGMENTS

This study is financially supported by the Iwanami
Fujukai Foundation, and the Sasakawa Scientific
Research Grant from The Japan Science Society,
No. 28-214.

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652

(1973).
[3] B. Pontecorvo, Zh. Eksp. Teor. Fiz. 34, 247 (1957) [Sov.

Phys. JETP 7, 172 (1958)].
[4] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys.

28, 870 (1962).
[5] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada,

and M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010).
[6] H. Fritzsch, Phys. Lett. B 73, 317 (1978).
[7] H. Fritzsch and Z.-z. Xing, Prog. Part. Nucl. Phys. 45, 1

(2000).
[8] H. Harari, H. Haut, and J. Weyers, Phys. Lett. B 78, 459

(1978).
[9] Y. Koide, Phys. Rev. D 28, 252 (1983).

[10] Y. Koide, Phys. Rev. D 39, 1391 (1989).
[11] M. Tanimoto, Phys. Rev. D 41, 1586 (1990).
[12] H. Fritzsch and J. Plankl, Phys. Lett. B 237, 451 (1990).
[13] H. Fritzsch and Z.-Z. Xing, Phys. Lett. B 372, 265

(1996).

[14] M. Fukugita, M. Tanimoto, and T. Yanagida, Phys. Rev. D
57, 4429 (1998).

[15] M. Tanimoto, T. Watari, and T. Yanagida, Phys. Lett. B 461,
345 (1999).

[16] N. Haba, Y. Matsui, N. Okamura, and T. Suzuki, Phys. Lett.
B 489, 184 (2000).

[17] K. Hamaguchi, M. Kakizaki, and M. Yamaguchi, Phys. Rev.
D 68, 056007 (2003).

[18] T. Watari and T. Yanagida, Phys. Lett. B 544, 167 (2002).
[19] M. Kakizaki and M. Yamaguchi, Phys. Lett. B 573, 123

(2003).
[20] T. Kobayashi, H. Shirano, and H. Terao, Prog. Theor. Phys.

113, 1077 (2005).
[21] H. Fritzsch and Z.-z. Xing, Phys. Lett. B 598, 237 (2004).
[22] T. Kobayashi, Y. Omura, and H. Terao, Phys. Rev. D 74,

053005 (2006).
[23] Z.-z. Xing, D. Yang, and S. Zhou, Phys. Lett. B 690, 304

(2010).
[24] S. Zhou, Phys. Lett. B 704, 291 (2011).
[25] M. J. S. Yang, Phys. Lett. B 760, 747 (2016).

MASAKI J. S. YANG PHYSICAL REVIEW D 95, 055029 (2017)

055029-8

https://doi.org/10.1103/PhysRevLett.10.531
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1143/PTPS.183.1
https://doi.org/10.1016/0370-2693(78)90524-5
https://doi.org/10.1016/S0146-6410(00)00102-2
https://doi.org/10.1016/S0146-6410(00)00102-2
https://doi.org/10.1016/0370-2693(78)90485-9
https://doi.org/10.1016/0370-2693(78)90485-9
https://doi.org/10.1103/PhysRevD.28.252
https://doi.org/10.1103/PhysRevD.39.1391
https://doi.org/10.1103/PhysRevD.41.1586
https://doi.org/10.1016/0370-2693(90)91205-P
https://doi.org/10.1016/0370-2693(96)00107-4
https://doi.org/10.1016/0370-2693(96)00107-4
https://doi.org/10.1103/PhysRevD.57.4429
https://doi.org/10.1103/PhysRevD.57.4429
https://doi.org/10.1016/S0370-2693(99)00871-0
https://doi.org/10.1016/S0370-2693(99)00871-0
https://doi.org/10.1016/S0370-2693(00)00911-4
https://doi.org/10.1016/S0370-2693(00)00911-4
https://doi.org/10.1103/PhysRevD.68.056007
https://doi.org/10.1103/PhysRevD.68.056007
https://doi.org/10.1016/S0370-2693(02)02503-0
https://doi.org/10.1016/j.physletb.2003.08.040
https://doi.org/10.1016/j.physletb.2003.08.040
https://doi.org/10.1143/PTP.113.1077
https://doi.org/10.1143/PTP.113.1077
https://doi.org/10.1016/j.physletb.2004.07.061
https://doi.org/10.1103/PhysRevD.74.053005
https://doi.org/10.1103/PhysRevD.74.053005
https://doi.org/10.1016/j.physletb.2010.05.045
https://doi.org/10.1016/j.physletb.2010.05.045
https://doi.org/10.1016/j.physletb.2011.09.027
https://doi.org/10.1016/j.physletb.2016.06.079


[26] M. Fukugita, M. Tanimoto, and T. Yanagida, Phys. Rev. D
59, 113016 (1999).

[27] M. Fukugita, M. Tanimoto, and T. Yanagida, arXiv:hep-ph/
9903484.

[28] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); 11,
703(E) (1975).

[29] H. Fritzsch and Z.-z. Xing, Phys. Lett. B 353, 114 (1995).
[30] H. Nishiura, K. Matsuda, and T. Fukuyama, Phys. Rev. D

60, 013006 (1999).
[31] K. Matsuda, T. Fukuyama, and H. Nishiura, Phys. Rev. D

61, 053001 (2000).
[32] Z.-z. Xing and H. Zhang, Phys. Lett. B 569, 30 (2003).
[33] Z.-z. Xing, J. Phys. G 23, 1563 (1997).
[34] K. Kang and S. K. Kang, Phys. Rev. D 56, 1511 (1997).
[35] A. Mondragon and E. Rodriguez-Jauregui, Phys. Rev. D 59,

093009 (1999).
[36] P.Minkowski, Phys. Lett. B67, 421 (1977); T.Yanagida,KEK

ReportNo.KEK-79-18, p. 95;M.Gell-Mann, P. Ramond, and
R. Slansky, in Supergravity, edited by D. Z. Freedman and P.
van Nieuwenhuizen (North-Holland, Amsterdam, 1979).

[37] K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 64, 2747
(1990).

[38] C. Froggatt and H. B. Nielsen, Nucl. Phys. B147, 277
(1979).

[39] N. Haba, R. Takahashi, M. Tanimoto, and K. Yoshioka,
Phys. Rev. D 78, 113002 (2008).

[40] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).
[41] A. Pilaftsis, Phys. Rev. D 56, 5431 (1997).
[42] A. Pilaftsis and T. E. J. Underwood, Nucl. Phys. B692, 303

(2004).
[43] A. Mondragon, M. Mondragon, and E. Peinado, Phys. Rev.

D 76, 076003 (2007).
[44] J. Barranco, F. Gonzalez Canales, and A. Mondragon, Phys.

Rev. D 82, 073010 (2010).
[45] F. González Canales, A. Mondragón, M. Mondragón, U. J.

Saldaña Salazar, and L. Velasco-Sevilla, Phys. Rev. D 88,
096004 (2013).

[46] F. Gonzalez Canales, A. Mondragon, and M. Mondragon,
Fortschr. Phys. 61, 546 (2013).

[47] U. J. Saldaña-Salazar, Phys. Rev. D 93, 013002 (2016).
[48] K. S. Babu, arXiv:0910.2948.
[49] T. Blazek, S. F. King, and J. K. Parry, J. High Energy Phys.

05 (2003) 016.
[50] S. F. King, J. High Energy Phys. 08 (2014) 130.
[51] U. Aydemir, D. Minic, C. Sun, and T. Takeuchi, Int. J. Mod.

Phys. A 31, 1550223 (2016).
[52] U. Aydemir, D. Minic, C. Sun, and T. Takeuchi, Mod. Phys.

Lett. A 31, 1650101 (2016).
[53] K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 70, 2845

(1993).
[54] A. Masiero, S. K. Vempati, and O. Vives, Nucl. Phys. B649,

189 (2003).
[55] S. Bertolini, T. Schwetz, and M. Malinsky, Phys. Rev. D 73,

115012 (2006).
[56] H. Georgi and C. Jarlskog, Phys. Lett. B 86, 297

(1979).
[57] M. Bando, S. Kaneko, M. Obara, and M. Tanimoto, Phys.

Lett. B 580, 229 (2004).
[58] M. Bando, S. Kaneko, M. Obara, and M. Tanimoto, Prog.

Theor. Phys. 112, 533 (2004).
[59] Z.-z. Xing, H. Zhang, and S. Zhou, Phys. Rev. D 77, 113016

(2008).
[60] S. Antusch, J. Kersten, M. Lindner, and M. Ratz, Nucl.

Phys. B674, 401 (2003).
[61] S. Antusch, J. Kersten, M. Lindner, M. Ratz, and M. A.

Schmidt, J. High Energy Phys. 03 (2005) 024.
[62] M. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, Nucl.

Phys. B908, 199 (2016).
[63] G. Altarelli and D. Meloni, J. High Energy Phys. 08 (2013)

021.
[64] W. Buchmuller, P. Di Bari, and M. Plumacher, Nucl. Phys.

B643, 367 (2002); 793, 362(E) (2008).
[65] G. F. Giudice, A. Notari, M. Raidal, A. Riotto, and A.

Strumia, Nucl. Phys. B685, 89 (2004).

ANALYSIS OF THE RIGHT-HANDED MAJORANA … PHYSICAL REVIEW D 95, 055029 (2017)

055029-9

https://doi.org/10.1103/PhysRevD.59.113016
https://doi.org/10.1103/PhysRevD.59.113016
http://arXiv.org/abs/hep-ph/9903484
http://arXiv.org/abs/hep-ph/9903484
https://doi.org/10.1103/PhysRevD.10.275
https://doi.org/10.1103/PhysRevD.11.703.2
https://doi.org/10.1103/PhysRevD.11.703.2
https://doi.org/10.1016/0370-2693(95)00545-V
https://doi.org/10.1103/PhysRevD.60.013006
https://doi.org/10.1103/PhysRevD.60.013006
https://doi.org/10.1103/PhysRevD.61.053001
https://doi.org/10.1103/PhysRevD.61.053001
https://doi.org/10.1016/j.physletb.2003.07.008
https://doi.org/10.1088/0954-3899/23/11/006
https://doi.org/10.1103/PhysRevD.56.1511
https://doi.org/10.1103/PhysRevD.59.093009
https://doi.org/10.1103/PhysRevD.59.093009
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1103/PhysRevLett.64.2747
https://doi.org/10.1103/PhysRevLett.64.2747
https://doi.org/10.1016/0550-3213(79)90316-X
https://doi.org/10.1016/0550-3213(79)90316-X
https://doi.org/10.1103/PhysRevD.78.113002
https://doi.org/10.1016/0370-2693(86)91126-3
https://doi.org/10.1103/PhysRevD.56.5431
https://doi.org/10.1016/j.nuclphysb.2004.05.029
https://doi.org/10.1016/j.nuclphysb.2004.05.029
https://doi.org/10.1103/PhysRevD.76.076003
https://doi.org/10.1103/PhysRevD.76.076003
https://doi.org/10.1103/PhysRevD.82.073010
https://doi.org/10.1103/PhysRevD.82.073010
https://doi.org/10.1103/PhysRevD.88.096004
https://doi.org/10.1103/PhysRevD.88.096004
https://doi.org/10.1002/prop.201200121
https://doi.org/10.1103/PhysRevD.93.013002
http://arXiv.org/abs/0910.2948
https://doi.org/10.1088/1126-6708/2003/05/016
https://doi.org/10.1088/1126-6708/2003/05/016
https://doi.org/10.1007/JHEP08(2014)130
https://doi.org/10.1142/S0217751X15502231
https://doi.org/10.1142/S0217751X15502231
https://doi.org/10.1142/S0217732316501017
https://doi.org/10.1142/S0217732316501017
https://doi.org/10.1103/PhysRevLett.70.2845
https://doi.org/10.1103/PhysRevLett.70.2845
https://doi.org/10.1016/S0550-3213(02)01031-3
https://doi.org/10.1016/S0550-3213(02)01031-3
https://doi.org/10.1103/PhysRevD.73.115012
https://doi.org/10.1103/PhysRevD.73.115012
https://doi.org/10.1016/0370-2693(79)90842-6
https://doi.org/10.1016/0370-2693(79)90842-6
https://doi.org/10.1016/j.physletb.2003.11.052
https://doi.org/10.1016/j.physletb.2003.11.052
https://doi.org/10.1143/PTP.112.533
https://doi.org/10.1143/PTP.112.533
https://doi.org/10.1103/PhysRevD.77.113016
https://doi.org/10.1103/PhysRevD.77.113016
https://doi.org/10.1016/j.nuclphysb.2003.09.050
https://doi.org/10.1016/j.nuclphysb.2003.09.050
https://doi.org/10.1088/1126-6708/2005/03/024
https://doi.org/10.1016/j.nuclphysb.2016.02.033
https://doi.org/10.1016/j.nuclphysb.2016.02.033
https://doi.org/10.1007/JHEP08(2013)021
https://doi.org/10.1007/JHEP08(2013)021
https://doi.org/10.1016/S0550-3213(02)00737-X
https://doi.org/10.1016/S0550-3213(02)00737-X
https://doi.org/10.1016/j.nuclphysb.2007.11.030
https://doi.org/10.1016/j.nuclphysb.2004.02.019

