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In the framework of the effective field theory approach to heavy supersymmetry radiative corrections in
the Higgs sector of the minimal supersymmetric standard model (MSSM) for the effective potential
decomposition up to the dimension-six operators are calculated. Symbolic expressions for the threshold
corrections induced by F- and D-soft supersymmetry breaking terms are derived, and the Higgs boson
mass spectrum respecting the condition mh ¼ 125 GeV for the lightest CP-even scalar is evaluated.
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I. INTRODUCTION

The absence of a signal of supersymmetric partners at the
LHC up to the mass range of 1–2 TeV [1] increased an
interest in the “heavy supersymmetry” scenarios [2] of the
minimal supersymmetric standard model (MSSM), where
the condition mh ¼ 125 GeV for the lightest CP-even
scalar state, perhaps, observed by the ATLAS and CMS
Collaborations [3] is respected explicitly in the MSSM
parameter space. Large radiative corrections to the MSSM
two-Higgs doublet sector which raise up mh from the
maximal tree-level value of mZ to the observable value of
125 GeVappear due to large values of soft supersymmetry
breaking parameters, which are associated with large
masses of third generation quark supersymmetric partners,
associated with large mixing of supersymmetric partners,
and restricted from the above by the availability of the
perturbative regime. For this reason, acceptable domains of
the MSSM parameter space are rather limited [4] although
there are several variants of such “fine-tuning.” To ease
tensions of parametric scenarios of the MSSM, two ways of
action are appropriate: first, more precise calculations of
radiative corrections at higher loops/decomposition of the
effective potential in the higher inverse powers of MS [i.e.,
including effective operators 1=Mn

SOðΦnþ4Þ in the decom-
position of the Coleman-Weinberg type potential]; second,
the transition to extensions of the MSSM. For example,
extensions of the MSSM where the superpotential includes
an additional chiral singlet field [next to minimal super-
symmetric standard model (NMSSM) [5] ], or more chiral
fields, are known. It is assumed that some new physics
beyond the MSSM exists at an energy scale that is not too
far away. Probably, such a scale of the order of 101 TeV is
somewhat higher than the mass scale of superpartners MS.

In the framework of a picture where MSSM is a low-
energy limit of an extended theory (not only NMSSM, for
example, supersymmetric grand unification models [6] or
supersymmetric left-right models [7]) all possible effective
operators of higher dimension should be introduced with the
following separation of the observables which are sensitive
to effects of the extended theory for phenomenological
analysis. The effective Lagrangian of the MSSM extension
can be written as a sum of operators suppressed by inverse
powers of the new physics scale M−1 and M−2, each of
which is SUð3Þc × SUð2ÞL ×Uð1ÞY invariant and respects
R parity. In the extended theory, such operators are generated
either at the tree level or at the loop level. It was expected that
contributions of the tree-level operators to the specific
observables were more important because the loop-level
operators have additional suppression factors proportional to
1=16π2. However, additional enhancements by large MSSM
parameters (such as tan β ¼ v2=v1, which can compensate
also for an extra power of the mass scale M) make the
situation with various contributions rather nontrivial. A
number of studies prior to the Higgs boson discovery can
be found in the literature. A complete list of the tree-level
dimension-five and dimension-six effective operators can be
found in [8]. Note that supersymmetry (SUSY) restricts
possible effective operator categories; for example, no
operators of dimension-five involving Higgs-Higgsino
supermultiplet and gauge-gaugino supermultiplet exist since
no gauge invariant form can be constructed using three
MSSM chiral superfields. Analogously, no operators of
dimension-six involving Higgs-Higgsino supermultiplet
exist because operators of this type must contain five chiral
superfields; apparently, such forms violate gauge invariance.
Various aspects related to extensions by the dimension-five/
dimension-six operators were systematically analyzed in [9].
As mentioned above, radiative corrections coming from

the loop diagrams with top quark and top superpartner are
very important [10,11] for both large tan β and small tan β
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parameters. The tree-level mass of the lightest CP-even state
h is maximized at large tan β. For small trilinear parameters
At;b and large stop mass scale MS when At=MS and μ=MS

are less than one (in other words, in the case of moderate stop
mixing parameter Xt ¼ At − μ cot β), the correction tomh at
the one loop is controlled by the logarithm logMS=mtop

which is large enough for MS of the order of 10–100 TeV.
For large trilinear parameters At;b (or in the case of the large
stop mixing parameter) the correction is maximized at At ¼
MS

ffiffiffi
6

p
(so-called “maximal mixing scenario” at the one

loop), and much smallerMS values of the order of 1 TeVare
appropriate. At tan β ∼ 1 or even smaller, large mixing may
appear due to large Higgs superfield mass parameter μ of
about 10 TeV. The nontrivial interplay of At;b; μ;MS, and
tan β parameters at the level of the one-loop resummed
Higgs potential was analyzed in detail for the potential
decomposition in the inverse powers of MS up to operators
of dimension-four. The case of small mass splittings for
quark superpartners [12] was generalized for the situation
when each stop and sbottom is independently decoupled at
its specific mass scale [13] for some special MSSM effective
potentials. Note that the two-loop effects may be included by
using a renormalization group improvement of the effective
potential [14]. The scale dependence of the one-loop result is
reduced if the two-loop renormalization group improvement
of the one-loop effective potential is accounted for [12,15].
In this paper the effective MSSM Higgs potential

decomposition up to operators of the dimension-six involv-
ing scalars only is considered. The contribution of the
dimension-six operators to observables can be separated
insofar, as already mentioned above, the dimension-six
operators involving only scalar isodoublets appear at the
loop level only. In Sec. II the mass basis for the extended
Higgs sector is constructed. In Sec. III analytical expres-
sions for the threshold corrections are derived, and some
numerical evaluations for the mass spectra are performed.

II. MASS BASIS FOR THE CASE OF
EFFECTIVE POTENTIAL WITH
THE DIMENSION-SIX TERMS

In this section we construct the basis for the mass states
of physical scalars following [16], where the case of
dimension-four operators has been considered. Two
Higgs doublets of the form

Φi ¼
�
ϕþ
i ðxÞ

ϕ0
i ðxÞ

�
¼

� −iωþ
i

1ffiffi
2

p ðvi þ ηi þ iχiÞ
�
; i ¼ 1; 2;

ð1Þ

are used to define the general two-Higgs doublet potential.
Calculation of quantum corrections to the Higgs potential
requires a resummation of Feynman diagrams to all
orders of perturbation theory. Because of loop graphs,
self-interactions of Higgs fields acquire additional higher-
order terms. At the one loop, the resummed potential can be
written as

U ¼ Uð2Þ þ Uð4Þ þUð6Þ þ � � � ; ð2Þ

where the upper index shows the operator dimension in
fields,

Uð2Þ ¼ −μ21ðΦ†
1Φ1Þ − μ22ðΦ†

2Φ2Þ − ½μ212ðΦ†
1Φ2Þ þ H:c:�;

ð3Þ

Uð4Þ ¼ λ1ðΦ†
1Φ1Þ2 þ λ2ðΦ†

2Φ2Þ2 þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ
þ λ4ðΦ†

1Φ2ÞðΦ†
2Φ1Þ þ ½λ5=2ðΦ†

1Φ2ÞðΦ†
1Φ2Þ

þ λ6ðΦ†
1Φ1ÞðΦ†

1Φ2Þ þ λ7ðΦ†
2Φ2ÞðΦ†

1Φ2Þ þ H:c:�;
ð4Þ

Uð6Þ ¼ κ1ðΦ†
1Φ1Þ3 þ κ2ðΦ†

2Φ2Þ3 þ κ3ðΦ†
1Φ1Þ2ðΦ†

2Φ2Þ þ κ4ðΦ†
1Φ1ÞðΦ†

2Φ2Þ2
þ κ5ðΦ†

1Φ1ÞðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ κ6ðΦ†
1Φ2ÞðΦ†

2Φ1ÞðΦ†
2Φ2Þ

þ ½κ7ðΦ†
1Φ2Þ3 þ κ8ðΦ†

1Φ1Þ2ðΦ†
1Φ2Þ þ κ9ðΦ†

1Φ1ÞðΦ†
1Φ2Þ2

þ κ10ðΦ†
1Φ2Þ2ðΦ†

2Φ2Þ þ κ11ðΦ†
1Φ2Þ2ðΦ†

2Φ1Þ þ κ12ðΦ†
1Φ2ÞðΦ†

2Φ2Þ2
þ κ13ðΦ†

1Φ1ÞðΦ†
1Φ2ÞðΦ†

2Φ2Þ þ H:c:�; ð5Þ

so the parameters μ1, μ2, and μ12 are dimension of mass,
λi; i ¼ 1;…; 7 are dimensionless, and the dimension of
κi; i ¼ 1;…; 13 is of inverse mass squared. In the general
case μ21; μ

2
2, λ1;…; λ4 and κ1;…; κ6 are real, and all other

parameters can be complex. In this section the mass basis for
the general case of explicitly CP-violating potential [16,17]
with nonzero imaginary parts of μ, λ, and κ parameters
will be constructed. Transformations of the SUð2Þ states

η1;2; χ1;2;ω�
1;2, Eq. (1), to themass states h,H,A,H�,G0,G�

can be performed using two orthogonal rotations
�
η1

η2

�
¼ Oα

�
H

h

�
;

�
χ1

χ2

�
¼ Oβ

�
G0

A

�
;

�
ω�
1

ω�
2

�
¼ Oβ

�
G�

h�

�
; ð6Þ
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where

OX ¼
�
cosX − sinX

sinX cosX

�
; X ¼ α; β ð7Þ

(in the followingwedenote cosX ¼ cX, sinX ¼ sX, etc.) and
the Higgs potential (2) up to I6 terms takes the form

U ¼ c0Aþ c1hAþ c2HAþm2
h

2
h2 þm2

H

2
H2 þm2

A

2
A2

þm2
H�HþH− þ I3 þ I4 þ I5 þ I6: ð8Þ

Here I3;4;5;6 denote the interaction terms of physical scalars
and the coefficientsci, i ¼ 0, 1, 2,which are dependent on the
imaginary parts of λi, κi,

c1 ¼ v2ð−1=2 · Imλ5cαþβ þ Imλ6sαcβ − Imλ7cαsβÞ

þ v4

4
f−cαþβs2βð3Imκ7 þ Imκ11 þ Imκ13Þ

þ 4ðsαc3βImκ8 − cαs3βImκ12Þ
þ 2½s2βð−3cαcβ þ sαsβÞImκ10

− c2βðcαcβ − 3sαsβÞImκ9�g; ð9Þ

c2 ¼ −v2
�
1=2 · Imλ5sαþβ þ Imλ6cβcα þ Imλ7sβsα

�
−
v4

2
½2Imκ8c3βcα þ Imκ9c2βðsαþβ þ 2cαsβÞ

þ Imκ10s2βðsαþβ þ 2cβsαÞ þ 2Imκ12s3βsα þ
1

2
ð3Imκ7 þ Imκ11 þ Imκ13Þs2βsαþβ� ð10Þ

are equal to zero in the mass basis. In a local minimum where derivatives of the potential in the fields are zero, μ21 and μ
2
2 can

be expressed as

μ21 ¼ −Reμ212tβ þ
v2

4
½4λ1c2β þ 3Reλ6s2β þ 2s2βðλ345 þ Reλ7tβÞ�

þ v4

4
f3κ1c4β þ 5Reκ8c3βsβ þ 3ðReκ7 þ Reκ11 þ Reκ13Þcβs3β

þ ½Reκ9 þ ðκ3 þ κ5Þ=2�s22β þ ðκ4 þ κ6 þ 2Reκ10 þ Reκ12tβÞs4βg; ð11Þ

μ22 ¼ −Reμ212 cot β þ
v2

4
½4λ2s2β þ 3Reλ7s2β þ 2c2βðλ345 þ Reλ6 cot βÞ�

þ v4

4
f3κ2s4β þ 5Reκ12s3βcβ þ 3ðReκ7 þ Reκ11 þ Reκ13Þsβc3β

þ ½Reκ10 þ ðκ4 þ κ6Þ=2�s22β þ ðκ3 þ κ5 þ 2Reκ9 þ Reκ8 cot βÞc4βg: ð12Þ

The real part of μ212 is fixed by zero eigenvalue
of the mass matrix (which ensures a massless
Goldstone boson state and defines the CP-odd scalar
mass m2

A)

Reμ212 ¼ sβcβ

�
m2

A þ v2

2
ð2Reλ5 þ Reλ6 cot β þ Reλ7 tan βÞ

�

þ v4fReκ9c3βsβ þ Reκ10cβs3β

þ 1

4
½Reκ8c4β þ Reκ12s4β

þ ð9Reκ7 þ Reκ11 þ Reκ13Þs2βc2β�g: ð13Þ

The requirement c0 ¼ 0 in Eq. (8) fixes the imaginary
part of μ212,

Imμ212 ¼
v2

2
ðsβcβImλ5 þ c2βImλ6 þ s2βImλ7Þ

þ v4

4
½Imκ8c4β þ 2Imκ9c3βsβ

þ ð3Imκ7 þ Imκ11 þ Imκ13Þc2βs2β
þ 2Imκ10cβs3β þ Imκ12s4β�: ð14Þ

Minimization conditions above must be performed for a
generic two-doublet potential. In the following, the case
of the MSSM potential will be analyzed. The one-loop
resummed MSSM potential at the renormalization scale
mtop using dimensional reduction and the MS scheme
can be written in the form

Ueff ¼ U0 þ 3

32π2
trM4

�
ln

M2

m2
top

−
3

2

�
; ð15Þ
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where U0 is a tree-level potential at the scale MS,

U0 ¼−μ21ðΦ†
1Φ1Þ−μ22ðΦ†

2Φ2Þ− ½μ212ðΦ†
1Φ2ÞþH:c:�

þg21þg22
8

½ðΦ†
1Φ1Þ2þðΦ†

2Φ2Þ2�

þg22−g21
4

ðΦ†
1Φ1ÞðΦ†

2Φ2Þ−
g22
4
ðΦ†

1Φ2ÞðΦ†
2Φ1Þ; ð16Þ

and M2 ¼ M2
M þM2

Γ þM2
Λ is the squark mass matrix

squared (see Appendix). At the mass scale of quark
superpartners, the mass matrix elements are

M2
11 ¼ m2

As
2
β þm2

Zc
2
β; M2

22 ¼ m2
Ac

2
β þm2

Zs
2
β;

M2
12 ¼ −sβcβðm2

A þm2
ZÞ: ð17Þ

Radiative corrections to these tree-level expressions are
parametrized using

λiðMÞ ¼ λtreei ðMSÞ − ΔλiðMÞ=2; i ¼ 1; 2;

λiðMÞ ¼ λtreei ðMSÞ − ΔλiðMÞ; i ¼ 3;…; 7; ð18Þ

where λtree1;2 ¼ g2
1
þg2

2

8
; λtree3 ¼ g2

2
−g2

1

4
; λtree4 ¼ − g2

2

2
;

λtree5;6;7 ¼ 0; κtreei ¼ 0, i ¼ 1;…; 13, so corrections to
the matrix elements of CP-even states mass matrix are

ΔM2
11 ¼ −v2ðΔλ1c2β þ ReΔλ5s2β þ ReΔλ6s2βÞ

þ v4½3κ1c4β þ 4Reκ8c3βsβ

þ ðκ3 þ κ5 þ 3Reκ9Þc2βs2β
þ ð3Reκ7 þ Reκ11 þ Reκ13Þcβs3β þ Reκ10s4β�;

ð19Þ

ΔM2
22 ¼ −v2ðΔλ2s2β þ ReΔλ5c2β þ ReΔλ7s2βÞ

þ v4½Reκ9c4β þ ð3Reκ7 þ Reκ11 þ Reκ13Þc3βsβ
þ ðκ4 þ κ6 þ 3Reκ10Þc2βs2β
þ 4Reκ12cβs3β þ 3κ2s4β�; ð20Þ

ΔM2
12 ¼ −v2ðΔλ34sβcβ þ ReΔλ6c2β þ ReΔλ7s2βÞ

þ v4½Reκ8c4β þ ðκ3 þ κ5 þ Reκ9Þc3βsβ
þ 2ðReκ11 þ Reκ13Þc2βs2β
þ ðκ4 þ κ6 þ Reκ10Þcβs3β þ Reκ12s4β�: ð21Þ

Then the masses of CP-even scalars can be expressed as

m2
H;h ¼

1

2

�
m2

A þm2
Z þ ΔM2

11 þ ΔM2
22

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

A þm4
Z − 2m2

Am
2
Zc4β þ C

q �
; ð22Þ

where

C ¼ 4ΔM4
12 þ ðΔM2

11 − ΔM2
22Þ2 − 2ðm2

A −m2
ZÞðΔM2

11

− ΔM2
22Þc2β − 4ðm2

A þm2
ZÞΔM2

12s2β; ð23Þ

and the mixing angle α is defined by

tan 2α ¼ 2ΔM2
12 − ðm2

Z þm2
AÞs2β

ðm2
Z −m2

AÞc2β þ ΔM2
11 − ΔM2

22

: ð24Þ

The CP-odd scalar mass mA can be expressed through
mh. Using Eq. (22) one can define mA as an internal
model parameter if the numerical value of the Higgs
mass mh ¼ 125 GeV is fixed,

m2
A¼

m2
hðC1−m2

hÞþm2
ZðC2−C3Þ−ΔM2

11ΔM2
22þΔM4

12

C1−C2−C3þm2
Zc

2
2β

;

ð25Þ

where

C1 ¼ ΔM2
11 þ ΔM2

22;

C2 ¼ m2
h − ΔM2

12s2β;

C3 ¼ ΔM2
11s

2
β þ ΔM2

22c
2
β:

The mass of the charged Higgs boson in the form

m2
H� ¼ m2

W þm2
A −

v2

2
ðReΔλ5 − Δλ4Þ

þ v4

4
½c2βð2Reκ9 − κ5Þ þ s2βð2Reκ10 − κ6Þ

− s2βðReκ11 − 3Reκ7Þ� ð26Þ

can be obtained diagonalizing the corresponding mass
matrix. Two important conditions that restrict implicitly
the MSSM parameter space follow from Eq. (22):

m4
A þm4

Z − 2m2
Am

2
Zc4β þ C ≥ 0;

m4
A þm4

Z þ ΔM2
11 þ ΔM2

22 − 2m2
h ≥ 0: ð27Þ

III. SYMBOLIC EXPRESSIONS FOR
κi AND NUMERICAL RESULTS

The one-loop expressions for parameters κi in front of
the dimension-six terms can be obtained decomposing the
effective potential (15) in the inverse powers of MS in
the approximation of degenerate squark masses [12,18]. In
the following we are using the notation MS ¼ M ~Q; ~U; ~D (see
Appendix). Effective potential terms of the dimension-six
in the decomposition are
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Uð6Þ
eff ¼

3

32M2
Sπ

2

	
1

3
trðM2

ΛÞ3 −
1

2M2
S
tr½ðM2

ΓÞ2ðM2
ΛÞ2� þ

1

6M4
S
tr½ðM2

ΓÞ4M2
Λ� −

1

60M6
S

trðM2
ΓÞ6



: ð28Þ

Given the Lagrangian of the Higgs boson–squarks interaction (see Appendix), squark mass matrices M can be calculated
and κi factors in front of the dimension-six terms can be derived. For example, factors κ1 and κ2 written in the form that uses
powers of (μ=MS) and (A=MS) are

κ1 ¼
h6D

32M2
Sπ

2

�
2 −

3jADj2
M2

S
þ jADj4

M4
S

−
jADj6
10M6

S

�
− h4D

g21 þ g22
128M2

Sπ
2

�
3 − 3

jADj2
M2

S
þ jADj4

2M4
S

�

þ h2D
512M2

Sπ
2

�
5

3
g41 þ 2g21g

2
2 þ 3g42

��
1 −

jADj2
2M2

S

�
− h6U

jμj6
320M8

Sπ
2
þ h4U

ðg21 þ g22Þjμj4
256M6

Sπ
2

− h2U
ð17g41 − 6g21g

2
2 þ 9g42Þjμj2

3072M4
Sπ

2
þ g21
1024M2

Sπ
2
ðg41 − g42Þ; ð29Þ

κ2 ¼ −h6D
jμj6

320M8
Sπ

2
þ h4D

ðg21 þ g22Þjμj4
256M6

Sπ
2

− h2D
ð5g41 þ 6g21g

2
2 þ 9g42Þjμj2

3072M4
Sπ

2

−
h6U

32M2
Sπ

2

�
−2þ 3jAUj2

M2
S

−
jAUj4
M4

S
þ jAUj6
10M6

S

�
− h4U

g21 þ g22
128M2

Sπ
2

�
3 − 3

jAUj2
M2

S
þ jAUj4

2M4
S

�

þ h2U
3072M2

Sπ
2
ð17g41 − 6g21g

2
2 þ 9g42Þ

�
2 −

jAUj2
M2

S

�
−

g21
1024M2

Sπ
2
ðg41 − g42Þ: ð30Þ

In a more compact notation κi, i ¼ 1;…; 13 can be rewritten using gauge coupling dependent factors Gi, i ¼ 1;…; 4, and
parameter dependent factors Aj, Bk, and Cl,

κ1 ¼ h6DC
D
9 − h4DG4CD

8 þ h2DG2BD
1 þ h6UA1 þ h4UG4A2 − h2UG3A3 þ G1; ð31Þ

κ2 ¼ h6DA1 þ h4DG4A2 − h2DG2A3 þ h6UC
U
9 − h4UG4CU

8 þ h2UG3BU
1 −G1; ð32Þ

κ3 ¼ h6DC
D
7 þ h4DG4BD

3 − h2DG2ð2BD
1 þ A3Þ þ h6UC

U
1 − h4UG4BU

4 jμj2 þ h2UG3ðBU
1 þ 2A3Þ − 3G1; ð33Þ

κ4 ¼ h6DC
D
1 − h4DG4BD

4 jμj2 þ h2DG2ðBD
1 þ 2A3Þ þ h6UC

U
7 þ h4UG4BU

3 − h2UG3ð2BU
1 þ A3Þ þ 3G1; ð34Þ

κ5 ¼ h6DC
D
7 þ h4DG4BD

3 − h2DG2ð2BD
1 þ A3Þ þ h6UC

U
1 − h4UG4BU

4 jμj2 þ h2UG3ðBU
1 þ 2A3Þ − 3G1; ð35Þ

κ6 ¼ h6DC
D
1 − h4DG4BD

4 jμj2 þ h2DG2ðBD
1 þ 2A3Þ þ h6UC

U
7 þ h4UG4BU

3 − h2UG3ð2BU
1 þ A3Þ þ 3G1; ð36Þ

κ7 ¼
μ3

320M8
Sπ

2
ðA3

Dh
6
D þ A3

Uh
6
UÞ; ð37Þ

κ8 ¼ h6DC
D
6 þ 2h4DG4CD

4 þ h2DG2AD
7 þ h6UA

U
2 þ h4UG4AU

5 þ h2UG3AU
7 ; ð38Þ

κ9 ¼ h6DC
D
2 − h4DG4AD

6 þ h6UA
U
4 þ h4UG4AU

6 ; ð39Þ

κ10 ¼ h6DA
D
4 þ h4DG4AD

6 þ h6UC
U
2 − h4UG4AU

6 ; ð40Þ

κ11 ¼ h6DC
D
3 þ h4DG4CD

5 − 2h2DG2AD
7 þ h6UC

U
3 þ h4UG4CU

5 − 2h2UG3AU
7 ; ð41Þ

κ12 ¼ h6DA
D
2 þ h4DG4AD

5 þ h2DG2AD
7 þ h6UC

U
6 þ 2h4UG4CU

4 þ h2UG3AU
7 ; ð42Þ

κ13 ¼ h6DC
D
3 þ h4DG4CD

5 − 2h2DG2AD
7 þ h6UC

U
3 þ h4UG4CU

5 − 2h2UG3AU
7 ; ð43Þ

where (X ¼ U, D)
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G1 ¼
1

M2
S

g21ðg41 − g42Þ
1024π2

; G2 ¼
5g41 þ 6g21g

2
2 þ 9g42

3072π2
; G3 ¼

17g41 − 6g21g
2
2 þ 9g42

3072π2
; G4 ¼

g21 þ g22
256π2

; ð44Þ

A1 ¼ −
jμj6

320M8
Sπ

2
; A2 ¼

jμj4
M6

S

; A3 ¼
jμj2
M4

S
; AX

2 ¼ 3AXμjμj4
320M8

Sπ
2
;

AX
4 ¼ −

3A2
Xμ

2jμj2
320M8

Sπ
2
; AX

5 ¼ −
2AXμjμj2

M6
S

; AX
6 ¼ A2

Xμ
2

M6
S

; AX
7 ¼ μAX

M4
S
; ð45Þ

BX
1 ¼ −

jAXj2
M4

S
þ 2

M2
S
; BX

2 ¼ −
4jAXj2
M6

S

þ 6

M4
S
; BX

3 ¼ CX
8 þ jμj2BX

2 ; BX
4 ¼ jμj2

M6
S

þ BX
2 ; ð46Þ

CX
1 ¼ jμj4

320π2

�
−
9jAXj2
M8

S

þ 10

M6
S

�
; CX

2 ¼ A2
Xμ

2

320π2

�
−
3jAXj2
M8

S

þ 10

M6
S

�
;

CX
3 ¼ AXμjμj2

320π2

�
9jAXj2
M8

S

−
20

M6
S

�
; CX

4 ¼ AXμ

�jAXj2
M6

S

−
3

M4
S

�
;

CX
5 ¼ −2AXμ

�jAXj2 − jμj2
M6

S

−
3

M4
S

�
; CX

6 ¼ AXμ

320π2

�
3jAXj4
M8

S

−
20jAXj2
M6

S

þ 30

M4
S

�
;

CX
7 ¼ −

jμj2
320π2

�
9jAXj4
M8

S

−
40jAXj2
M6

S

þ 30

M4
S

�
; CX

8 ¼ jAXj4
M6

S

−
6jAXj2
M4

S
þ 6

M2
S
;

CX
9 ¼ −

1

320π2

�jAXj6
M8

S

−
10jA4

Xj
M6

S

þ 30jAXj2
M4

S
−

20

M2
S

�
: ð47Þ

FIG. 1. The dimensionless parameters λi, i ¼ 1;…; 7 (light gray) calculated using the analytical results of [16] and κj ·M2
S,

j ¼ 1;…; 13 (dark gray) calculated at the squark mass scale (a) MS ¼ 5 TeV and (b) MS ¼ 7 TeV for At ¼ Ab ¼ 10 TeV,
μ ¼ 14 TeV, and tan β ¼ 5.

FIG. 2. The dimensionless parameters (a) λi and (b) κi ·M2
S as a function ofMS for At ¼ Ab ¼ 10 TeV, μ ¼ 14 TeV, tan β ¼ 5. λi are

evaluated using analytical formulas from [16], where the contribution of nonleading D terms is accounted for.

M. N. DUBININ and E. YU. PETROVA PHYSICAL REVIEW D 95, 055021 (2017)

055021-6



Meaningful numerical results following from the effec-
tive potential expansions in the inverse powers of MS
are using the assumption of small mass splitting among
the squark mass eigenstates (or simultaneous decoupling
of squark fields). In the literature it is usually considered
that the expansion is valid if ðm2

~t1
−m2

~t2
Þ=ðm2

~t1
þm2

~t2
Þ<0.5

where m~t1;2 are the stop masses. Then M2
S can be defined

as the average ðm2
~t1
þm2

~t2
Þ=2.1 The contribution of

dimension-six operators is small in the phase with
softly broken symmetry if at least 2jmtopAtj < M2

S and
2jmtopμj < M2

S [12]. However, the dimension-six terms
may play an important role in the A, μ parameter range
of about/of the order of 101 TeV and moderate MS.

For example, values of κi evaluated for A ¼ 10 TeV,
μ ¼ 14 TeV, tan β ¼ 5 are shown in Fig. 1, where the
dimensionless couplings κi ·M2

S are depicted for MS

values of 5 and 7 TeV. The behavior of λi and κi ·M2
S as

a function of MS at the multi-TeV energy scale is shown
in Fig. 2. One can see that significant values of κi ·M2

S
are observed in the MS range less than 8 TeV.
The Higgs boson masses mH;A;H� evaluated for two

(tan β, A, μ) parameter sets at fixed values of the lightest
CP-even state mass mh ¼ 125 GeV and large Xt mixing
parameter of the order of 10 TeV are shown in Fig. 3 as
a function of the squark mass scale MS. The CP-odd
scalar mass mA is calculated using Eq. (25), where mh is
an input parameter with fixed value. A pole of m2

AðMSÞ
may take place when the denominator in Eq. (25) is
zero. In the unphysical region of MS, for example,
to the left of the pole in Fig. 3(c), the restrictions
imposed by Eq. (27) are not respected. The contribution
of the dimension-six terms Uð6Þ to masses of scalars is
very small in comparison with the dimension-four terms
Uð4Þ for moderate MS [MS ≥ 3 TeV, Fig. 3(a), and
MS ≥ 7 TeV, Fig. 3(b)], but for smaller MS corrections

FIG. 3. Higgs boson masses and mixing angles combination as functions of the squark mass scale MS. Thin lines correspond to the
effective potential Uð4Þ including terms with the maximal dimension four in the fields, and thick lines are the results for masses
calculated with the effective potential Uð6Þ including the dimension-six operators. The MSSM parameter sets: (a) tan β ¼ 4,
A ¼ 10 TeV, μ ¼ 8 TeV; (b) tan β ¼ 8, A ¼ 25 TeV, μ ¼ 30 TeV; (c), (d) tan β ¼ 5, A ¼ 10 TeV, and μ ¼ 5 TeV. The discontinuity
in (c) at MS of about 3 TeV corresponds to the zero denominator of Eq. (25).

1Besides the above-mentioned approach developed in [13],
recent direct comparison of results for the one-loop MSSM
amplitudes ggh and γγh obtained by means of the diagrammatic
calculation and the covariant derivative expansion method [19]
for the case of either degenerate or nondegenerate stop mass
spectrum can be found in [20]. For large tan β the approximation
of (almost) degenerate stop masses is not satisfactory at
m~t < 0.5 TeV and large Xt mixing parameter values of a few
TeV; however, mh ¼ 125 GeV is mostly available.
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are very important. In Fig. 3(a) the physical region of
m2

h > 0 indicated by vertical lines narrows to 2.3 TeV
(lower bound). In Fig. 3(b), the CP-odd scalar mass
squared is not positively defined for the MS range from
6.3 to 8 TeV. At moderate tan β ≈ 10 positively defined
masses squared of H, A, and H� consistent with the
input mh ¼ 125 GeV are not possible for MS greater
than 12 TeV. Note that a nonstandard mass spectrum
with an extremely light pseudoscalar is available in this
case. At fixed mh ¼ 125 GeV the CP-odd state A can be

as light as 25–30 GeV with H and H� states in the
decoupling regime or with masses of the order of the
electroweak scale. For example, Higgs masses for
the Fig. 3(b) parameter set and MS ≃ 6.3 TeV are
mh ¼ 125 GeV, mH ¼ 190 GeV, mA ¼ 27 GeV, mH� ¼
170 GeV. The alignment limit [21] when α ≈ β − π=2
takes place for set 3(b) in the vicinity of MS ¼ 5.5 TeV;
it is possible for A;H;H� in the decoupling regime
only. The regime of alignment without decoupling
without small mA is available if tanβ¼5, A¼10TeV,
and μ ¼ 5 TeV. For this parameter set [see Fig. 3(c)],

FIG. 4. Left panel: Contours for the Higgs boson massmð4Þ
h calculated with the dimension-four potential terms; right panel: the relative

difference in percent between mð6Þ
h and mð4Þ

h masses; the parameter set A ¼ 10 TeV, μ ¼ 8.3 TeV, MS ¼ 2 TeV (a), (b) and
MS ¼ 5 TeV (c), (d).
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when curves are more stable with respect to corrections,
there are two alignment limits. In Fig. 3(d) the first
alignment limit takes place at MS ¼ 2.98 TeV without
decoupling, and the second limit at 5.1 TeV demon-
strates decoupling of H, A, and H� states. Figure 4
illustrates an increasing role of corrections from the Uð6Þ
terms to mh in the case of “low tan β” scenarios [4],
which are found to be about 1% at MS ¼ 5 TeV and A,
μ more than 10 TeV and about 20% for the lower
superpartner mass scale MS ¼ 2 TeV and A, μ less than
10 TeV. In Fig. 5 the condition mh ¼ 125� 3 GeV is
translated to the mixing parameter–quark superpartner
mass plane ðXt=m~t; m~tÞ, demonstrating sensitivity of the
contours in the regime μ ¼ 0 (see also [20], where
similar contours are reconstructed using the diagram-
matic calculation [22]). Increasing the μ parameter of a
few hundreds of GeV changes strongly these exclusion
contours, leaving only a small acceptable domain in the
left upper corner of the plot.

IV. SUMMARY

In the absence of direct evidence motivating extensions of
the Standard Model-like Higgs sector, the effective field
theory (EFT) approach is a convenient framework to
describe possible new physics either in a model-independent
or in a model-dependent way. In both cases, the MSSM
Lagrangian is extended by higher-dimensional operators that
are suppressed by the mass scale of new physics. In the
model-dependent case of the MSSM when the resummed
effective potential is expanded up to dimension-six operators
induced by the soft supersymmetry breaking terms, we
calculated symbolically corrections to the effective sextic
couplings and used them to determine the post-Higgs
discovery mass spectrum of the heavy MSSMHiggs bosons.
An improved precision can be reached using such procedure,

especially at the low EFT cutoff scale. Corrections to the
mass spectrum depend strongly on the domain in the MSSM
parameter space and are defined mainly by the quark
superpartner mass scale and mixing in the sector of soft
SUSY-breaking terms. Even at the moderate mixing param-
eter values significant contributions to the heavy scalar
mass spectrum of the order of 10%–20% induced by the
dimension-six operators are found at the squark mass scale
MS ∼ 2–3 TeV. Thus, for moderately heavy supersymmetry
additional corrections induced by higher-order terms in the
expansion of the effective potential should be taken into
account. One can observe that in a number of cases the
restrictions on the MSSM parameter space are not so much a
consequence of the condition mh ¼ 125 GeV as the pres-
ence of the mass basis for the five Higgs bosons, where mass
hierarchy is acceptable from the experimental point of view
and there are no tachyonic states.
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APPENDIX: HIGGS BOSON—SQUARKS
INTERACTIONS

The most general scalar potential, including the Higgs
boson and one generation of squarks, can be written
as [18,23]

V0 ¼ VM þ VΓ þ VΛ þ V ~Q; ðA1Þ

where VM contains mass squark terms, VΓ–F terms, VΛ–D
terms of Higgs-squark interactions and V ~Q–quartic squark
interaction terms,

FIG. 5. Domains of the Higgs boson massmh ¼ 125� 3 GeV formA ¼ 300 GeV and the Higgs superfield mass parameter μ equal to
zero, tan β ¼ 20, calculated with (a) the dimension-four operators and (b) the dimension-six operators.
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VM ¼ −μ2ijΦ
†
iΦj þM2

~Q
ð ~Q† ~QÞ þM2

~U
ð ~U� ~UÞ þM2

~D
ð ~D� ~DÞ;

ðA2Þ

VΓ ¼ ΓD
i ðΦ†

i
~QÞ ~Dþ ΓU

i ðiΦT
i σ2 ~QÞ ~U þ H:c:; ðA3Þ

VΛ ¼ Λjl
ikðΦ†

iΦjÞðΦ†
kΦlÞ

þ ðΦ†
iΦjÞ½ΛQ

ijð ~Q† ~QÞ þ ΛU
ijð ~U� ~UÞ þ ΛD

ijð ~D� ~DÞ�
þ ΛQ

ijðΦ†
i
~QÞð ~Q†ΦjÞ

þ 1

2
½ΛϵijðiΦT

i σ2ΦjÞ ~D� ~U þ H:c:�; ðA4Þ

and Γ, Λ are determined by the tree-level SUSY
relations,

ΛQ ¼ diag

�
1

4
ðg22 − g21YQÞ; h2U −

1

4
ðg22 − g21YQÞ

�
; ðA5Þ

ΛQ ¼ diag

�
h2D −

1

2
g22;

1

2
g22 − h2U

�
; ðA6Þ

ΛU ¼ diag

�
−
1

4
g21YU; h2U þ 1

4
g21YU

�
; ðA7Þ

ΛD ¼ diag
�
h2D −

1

4
g21YD;

1

4
g21YD

�
; ðA8Þ

Λ ¼ −hUhD; ðA9Þ

ΓU
1;2 ¼ hUð−μ; AUÞ; ΓD

1;2 ¼ hDðAD;−μÞ; ðA10Þ

g1;2 are couplings of SUð2ÞL × Uð1ÞY , YQ;U;D ¼ f1
3
ð−1Þ;

2
3
ð2Þ;− 4

3
g–squark (slepton) hypercharges, hU ¼ g2mUffiffi

2
p

mWsβ
;

hD ¼ g2mDffiffi
2

p
mWcβ

–Yukawa couplings, AU;D–trilinear couplings,
μ–Higgs superfield mass parameter.
The squark mass matrix is obtained by taking derivatives

M2
a;b ¼

∂2V0

∂Ψa∂Ψ�
b
; ðA11Þ

where Ψ ¼ ð ~Q; ~U�; ~D�Þ.
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