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We present a detailed discussion of the lepton flavor and number violating conversion of bound muons
into positrons. This process is a viable alternative to neutrinoless double beta decay, and, given that
experiments on ordinary μ−–e− conversion are expected to improve their sensitivities by several orders of
magnitude in the coming years, we can also assume the limit on μ−–eþ conversion to improve by roughly
the same factor. We discuss how new physics at a high scale can lead to short-range contributions to this
conversion process, and we present one explicit case in great detail (the single one for which the
corresponding nuclear matrix element is presently known). The main goal of our discussion is to make the
respective computation accessible to the particle physics community, so that promising models can be
investigated while the nuclear physics community can simultaneously advance the computation of nuclear
matrix elements. Given the progress to be expected on the experimental side, it may even be possible that
lepton number violation in the eμ-sector is discovered by μ−–eþ conversion before neutrinoless double beta
decay can show its existence in the ee-sector.
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I. INTRODUCTION

The StandardModel (SM) of particle physics is an almost
perfect description of the smallest building blocks we know
of the Universe. With the only exception of neutrino
oscillations [1] (and possibly the anomalous magnetic
moment of the muon [2–5]), the SM passes all experimental
tests. We can turn the logic around, too, and instead derive
predictions from the SM which we can test. Among these
predictions are the absence of lepton flavor and number
violation (abbreviated LFV and LNV, respectively), arising
from an accidental symmetry. Experimentally, while LFV
is in fact already proven by neutrino oscillations, LNV seems
to be more elusive.
Nevertheless, LNV is something particle theorists

strongly expect to exist. While the SM Lagrangian seems
to conserve lepton number, it does in fact only do so at the
perturbative level; one can show that—even within the
SM—nonperturbative processes exist which violate lepton
number [6,7]. Thus, this quantum number is not sacrosanct.
The notion of LNV being something to naturally occur is
supported by the effective operator of lowest nonrenorma-
lizable dimension, the Weinberg operator [8], violating
lepton number, too. Thus, as to be expected, any new
physics scenario realizing the Weinberg operator does
indeed exhibit LNV.
Still, it is hard to look for any sign of LNV in an

experiment, due to the corresponding processes only having
very small rates. The most promising and most intensely
investigated process is probably neutrinoless double beta
decay (0νββ) [9], where a nucleus with atomic number Z

and mass number A decays while producing two electrons
but not other leptons, ðZ; AÞ → ðZ þ 2; AÞ þ 2e−, which is
clearly an LNV transition. Experiments such as EXO-200
[10], KamLAND-Zen [11], andGERDA [12] have been able
to push the limits on the lifetimes of isotopes potentially
undergoing 0νββ to values above 1025 yr.
Limits on other LNV processes like kaon decays

[e.g., NA48 [13]: BRðK� → π∓μ�μ�Þ < 8.6 × 10−11 at
90% C.L.], B-meson decays [for BABAR [14], BRðDþ →
K−eþμþÞ < 1.9 × 10−6 at 90% C.L., and for BELLE [15],
BRðBþ → D−eþμþÞ < 1.8 × 10−6 at 90% C.L.], and τ
decays [BELLE [16]: BRðτ− → eþπ−π−Þ < 2.0 × 10−8 at
90% C.L.] cannot compete with 0νββ. However, note that
some processes do not only exhibit LNVbut also LFV. Thus,
they areworth investigating, since even for the simple case of
lightMajorana neutrinos, themee element of themassmatrix
can be subdominant compared to meμ=eτ [17].
In a recent paper [18], we pointed out that the process

μ−–eþ conversion (note the positron in the final state) could
be an interesting route to pursue, as this process would also
exhibit both LFV and LNV at the same time. This process
had already been theoretically proposed [19–21] and
experimentally studied [22–28] in the past; however,
new advances on the related LFV-only process of μ−–e−

conversion may push the limits on both processes by about
5 orders of magnitude within the coming years [29,30].
As we pointed out in Ref. [18], advances are necessary on

different frontiers: particle, nuclear, and experimental phys-
ics. Indeed, at least the particle physics community seems to
have picked up our motivational paper well, with studies of
interpretations of a detection in what concerns the flavor
space [31], of several types of effective operators [32], and of
the complementarity to LFV processes with muons [33]
appearing shortly after our work.
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However, what has been unavailable is a detailed
computation of μ−–eþ conversion on a level accessible
to particle physicists. In this work, we try to make the first
step to remedy the situation by presenting a detailed
computation of the process when based on the effective
operator with the coefficient ϵxyz3 , where x; y; z ∈ fL; Rg
denote chiralities, cf. Eq. (1) and Ref. [18]. For illustrative
purposes, we will constantly relate this operator to concrete
realisations of new physics scenarios, like mediation by
doubly charged scalars [34–37], R-parity violating super-
symmetry [38,39], or heavy right-handed neutrinos [40].
Note that some results of Ref. [40] for the case of heavy
right-handed neutrinos carry over to our more general
computation, which is particularly true for the nuclear
matrix elements (NMEs). However, we add several decisive
bits needed for the important results of Ref. [40] to be used
by particle physicists: (1) we provide a guideline on how to
realize effective operators by concrete new physics scenar-
ios; (2) we provide the tools to compare different particle
physics models to each other, which is the key to under-
standing which settings could be constrained by μ−–eþ
conversion [18]; and (3) last but not least, we provide a
much more explicit computation than presented in
Ref. [40], which will make the technical aspects easier
to grasp. Thus, at least for the one effective operator for
which NMEs have already been computed, we will make it
understandable which elements go into the computation.
Should more NME computations arise from the nuclear
physics side and should more effective operators be
investigated from the particle physics community, with
an eye on the comparison between different new physics
scenarios, the present paper will provide the glue necessary
to connect these efforts.
This paper is structured as follows. In Sec. II, we

introduce the effective operator language for μ−–eþ con-
version, which forms the basis for our discussion. The main
computation is laid out in Sec. III, where we derive the
decay rate for μ−–eþ induced by ϵxyz3 in sufficient detail to
enable the reader to reproduce our results. In Sec. IV, we
show how to map particle physics models to the operator
ϵxyz3 , which is the key to understanding how experimental
bounds constrain the possibilities for physics beyond the
SM. We conclude in Sec. V. To make the text as accessible
as possible, we have postponed technical aspects to the
Appendixes. Therefore, Appendix A is dedicated to
explaining the differences in our notation compared to
that of Ref. [40], Appendix B is devoted to detail on how
to handle the many spins appearing in the computation, and
Appendix C lists all Feynman rules used.

II. POSSIBLE SHORT-RANGE OPERATORS

We start by discussing the possible short-range contri-
butions to the LNVand LFV μ−–eþ conversion. While this
discussion had already been touched on in Ref. [18], we

will focus a bit more here on the technical aspects, in
particular when performing the matching of concrete
models to the effective operator coefficients.
In order to consider the short-range contributions to the

μ−–eþ conversion within a general framework, we turn to
an effective field theory treatment. Hence, the bound muon
and the positron interact with the quarks inside the nucleus
via pointlike vertices. Due to the charge flow, we can thus
imagine the process as having one muon μ− and two up
quarks u as ingoing particles and one positron eþ and two
down quarks d as outgoing, all of which are connected via a
“big” effective vertex.
We restrict ourselves to the lowest dimensional short-

range operators which have dimension 9.1 Thus, our
effective Lagrangian will consist of combinations of two
hadronic currents J and one leptonic current j, with a
prefactor G2

F=mp of mass dimension (−5) to balance out
the mass dimensions. Note that the factor G2

F is motivated
by the W-bosons that are often present in such a transition.
The strength of these vertices will be parametrized by
dimensionless coefficients ϵxyza , which are labeled by the
index a and of which the superscript xyz indicates the
currents’ chiralities involved in the operators.
Let us now write down the most general short-range

Lagrangian, which can be done analogously to 0νββ [42].
Taking into account Lorentz invariance, it is given by

Lμe
short-range ¼

G2
F

2mp

X
x;y;z¼L;R

½ϵxyz1 JxJyjz þ ϵxyz2 Jνρx Jy;νρjz

þ ϵxyz3 JνxJy;νjz þ ϵxyz4 JνxJy;νρj
ρ
z

þ ϵxyz5 JνxJyjz;ν þ ϵxyz6 JνxJ
ρ
yjz;νρ

þ ϵxyz7 JxJ
νρ
y jz;νρ þ ϵxyz8 Jx;ναJ

ρα
y jνz;ρ�; ð1Þ

where GF ¼ ffiffiffi
2

p
g2=ð8M2

WÞ is the Fermi constant and mp is
the proton mass. The hadronic currents are defined sim-
ilarly as in Ref. [43]:

JR;L ¼ d̄ð1� γ5Þu; JνR;L ¼ d̄γνð1� γ5Þu;
JνρR;L ¼ d̄σνρð1� γ5Þu: ð2Þ

The leptonic currents are defined analogously; however, for
μ−–eþ conversion, they must connect μ-e instead of e-e:

jR;L ¼ ecð1� γ5Þμ ¼ 2ðeR;LÞcμR;L;
jνR;L ¼ ecγνð1� γ5Þμ ¼ 2ðeL;RÞcγνμR;L;

and jνρR;L ¼ ecσνρð1� γ5Þμ ¼ 2ðeR;LÞcσνρμR;L: ð3Þ

1We will not consider long-range operators in the following;
i.e., we consider models in which the new physics contribution
only arises at high energies. However, in principle, the long-range
contributions could be parametrized in a similar manner; see
Ref. [41] for a thorough discussion for the case of 0νββ.
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According to Ref. [42], the terms proportional to ϵ6;7;8 can
be neglected for neutrinoless double beta decay. In fact,
when exploiting the identity of the two electrons, they can
even be shown to vanish exactly [44] and are thus strictly
irrelevant for 0νββ. The same line of reasoning is not valid
for μ−–eþ conversion, though, since obviously μ and e are
not identical. If we restrict the discussion to the part of the
process which is mediated between the ground states of the
nuclei, i.e., transitions from ground state to ground state
(∼40% of all transitions [40,45]), the outgoing positron
carries away an energy of roughly mμ, while the transfer to
the final state nucleus is small. In addition, one can assume
that the initial and final state nuclei are nonrelativistic
to a good approximation. Therefore, the hadronic currents
can be approximated by their nonrelativistic versions,
J−ν ðt; ~xÞ≃ J−ν ð~xÞeiEt, where E is the energy of the corre-
sponding state. By doing so, Eq. (20) shows that

eiðEf−EiÞtJσð~x1ÞJρð~x2Þ ¼ eiðEf−EiÞtJσð~x2ÞJρð~x1Þ; ð4Þ
which means that the expression is symmetric under the
exchange of ~x1 ↔ ~x2. Given that jνρR;L is antisymmetric
under ρ ↔ σ, the expressions related to the effective
couplings ϵ6;7;8 will thus not contribute to the decay rate.
Note that switching to an incoherent process leads to a final
state nucleus with different Jπ and an outgoing positron
with reduced kinetic energy. However, as long as both
initial and final state nuclei are nonrelativistic and one can
use a pointlike vertex, the above arguments remain valid.
Treating the short-range contributions via an effective

field theory (EFT) allows for a clean separation of the
nuclear physics part from the respective particle physics
part, valid for a rather large class of models (namely all that
realize the short-range operators under consideration). The
EFT formalism thereby allows for a (particle-) model-
independent computation (i.e., independent of the details of
the high-energy theory) of the NMEs. Consequently, it is
concurrently essential to determine the relevant μ−–eþ
conversion NMEs, such that limits from this LNV process
can be derived [18].

III. COMPUTING THE DECAY RATE: A VERY
EXPLICIT EXAMPLE

A general parametrization of the μ−–eþ conversion using
an EFT approach comprises two different regimes, namely
short-range and long-range contributions, which need to be
treated qualitatively differently. Within both regimes, the
EFT treatment allows for a (particle-) model-independent
treatment, respectively, and thus allows us to simultane-
ously discuss different settings. When contemplating LNV
processes, both heavy and light Majorana neutrinos auto-
matically offer exchange mechanisms. In the case of a
heavy neutrino exchange, one has to employ the short-
range formalism, whereas the light neutrino exchange is
described by the long-range formalism. Without making

use of an EFT treatment, both Majorana neutrino cases
were studied in Ref. [40], revealing that their rates are too
small even for distant-future experiments to detect. Given
that no detailed treatment on either short- or long-range
contributions currently exists from the particle physics side,
we want to initiate the discussion by focusing on the most
informative case. Although there are promising settings
leading to long-range operators, for example the R-parity
violating (RPV) supersymmetry (SUSY) diagrams reported
in Ref. [46] (realizing the long-range ϵ1;2), the candidates
we have found do not realize the long-range operator ϵ3
which, at the moment, is the only case for which NMEs
have been computed (see Ref. [40]). On the contrary, there
are several settings known that realize the short-range
operator ϵ3. Consequently, we take a closer look at these
short-range realizations in this work.
The aim of this section is to perform the computation for

the decay rate for one particular short-range operator,
which we choose to be ϵLLR3 . This choice is motivated
by several arguments:
(1) First of all, ϵxxz3 (with x, z ¼ L, R) is the only choice

for which the NMEs have already been computed (in
fact, for both short- and long-range contributions
[40]). Reference [40] actually aimed to compare the
two cases of light and heavy neutrino exchange, with
the latter realizing ϵLLL3 . However, once the identifi-
cation with the operator coefficients has been per-
formed (seeourSec. IV), the results in fact carryover to
our case, which in particular holds for the NME.

(2) Second, while the explicit computation has been
performed to some extent in Ref. [40], the compu-
tation presented mostly focuses on nuclear physics
aspects and is not easily accessible for the average
particle physicist. We would like to remedy this
issue by presenting all relevant steps in detail, so that
the pervious results are easier to use for the particle
physics community.

(3) After all, many aspects of the computation would not
change if another operator were chosen from Eq. (1).
Given that all these operators are pointlike, it is
mainly the external projections that change, as well
as the connection of the hadronic currents to the
nucleus, but the more involved aspects of the
computation basically remain the same.

(4) We already discussed in Ref. [18] the physics
potential of future experiments in constraining the
operator ϵ3. Some of the results anticipated there will
be much easier to grasp with the background of the
explicit computation at hand. Furthermore, in that
previous reference, we already listed several exam-
ple models which could potentially be constrained
by a future measurement of μ−–eþ conversion.

(5) Finally, in the following, we will also include a
particular example to show how the operator ϵ3 can
be obtained from a concrete underlying model.
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While this may sound like a slightly ambiguous
strategy, it serves the additional purpose of showing
how the operator matching can be performed in
passing when doing the full computation. The
alternative, but of course equivalent, strategy would
be to match on the level of Lagrangians and simply
use the Feynman rules for the effective model. Since
the latter option is implicitly contained in the
following derivation, from Eq. (13) onward, we
have, however, decided to show an example as
explicit as possible.

Having justified our procedure, we start by quickly
addressing the explicit example.

A. Example chosen

While the few earlier references available [40,47–50]
focused on μ−–eþ conversion mediated by heavy Majorana
neutrinos, we will present the computation by means of a
model which extends the SM by only one doubly charged
scalar [35–37]. In this scenario, μ−–eþ conversion is
realized via the diagram in Fig. 1, and the following
interactions are required for its description:

Lint ¼ f�abS
þþðlRaÞclRb −

g2v4ξ
4Λ3

Wþ
ν WþνS−−

þ g

2
ffiffiffi
2

p VudW−
ν d̄γνð1 − γ5Þuþ H:c: ð5Þ

Here, ξ is an effective coupling connecting S�� to the W-
bosons, Λ is the UV cutoff of the model, and f�ab ¼ f�ba is
symmetrically coupling the doubly charged scalar to right-
handed charged leptons; see Ref. [35] for details. Given the
weak interaction contained in Eq. (5), it can already be

anticipated that the only operators possibly realized from
Eq. (1) are ϵLLx3;6 , with x ¼ L, R (where we sloppily but
conventionally refer to the operator coefficient as “oper-
ator”). Since Fig. 1 is realized by the effective coupling in
Eq. (5), there is no operator with ϵ6. Furthermore, the
doubly charged scalar S−− coupling to the two right-handed
leptons, cf. Eq. (5), implies that x ¼ R. Thus, we expect our
computation to yield a term ϵLLR3 at some point.

B. How to obtain the amplitude

To generate the diagram in Fig. 1, we need to go to fourth
order in perturbation theory. Hence, the resulting leading
order amplitude reads

hN0; fjSð4ÞjN; ii

¼ 1

4!
hN0; fj

Z
d4x1d4x2d4x3d4x4T̂

× fLintðx1ÞLintðx2ÞLintðx3ÞLintðx4ÞgjN; ii; ð6Þ

where T̂ indicates time ordering. The external (real) states are
denoted by hN0j and jNi for the final and initial state nucleus
as well as hfj and jii for the final state positron and the initial
bound muon. Upon assigning the space-time 4-vectors xi to
fixed vertices, we obtain a combinatorial factor of 4!.
Furthermore, we need to take into account that there is an
additional factor 2 due to the symmetric property of f�ab, i.e.,
½f�eμðlReÞclRμþf�μeðlRμÞclRe�Sþþ ¼ 2f�eμðlReÞclRμSþþ. This
way, the amplitude takes the form

hN0; fjSð4ÞjN; ii

¼ −
f�eμg4v4ξV2

ud

16Λ3
hN0; fj

×
Z

d4x1d4x2d4x3d4x4T̂fJL;νðx1ÞW−νðx1ÞJL;ρðx2Þ

×W−ρðx2ÞWþ
σ ðx3ÞWþσðx3ÞS−−ðx3ÞSþþðx4ÞðlReÞc

× ðx4ÞlRμðx4ÞgjN; ii: ð7Þ

The next step is to contract the boson fields. There are two
indistinguishable options to contract the W-bosons, which
leads to an additional factor 2,

ð8Þ

FIG. 1. Realization of μ−–eþ conversion via a doubly charged
scalar. The xi denote the space-time points as used in Eq. (7).
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when phrased in terms of propagators in coordinate space.
The propagators in coordinate space can bewritten as Fourier
transforms of their momentum space representations,

ΔSðx − yÞ ¼
Z

ddq
ð2πÞd e

−iq·ðx−yÞ i
q2 −M2

S þ iε
;

Δνσ
W ðx − yÞ ¼

Z
ddq
ð2πÞd e

−iq·ðx−yÞ −i
q2 −M2

W þ iε

×

�
gνσ −

qνqσ

M2
W

�
; ð9Þ

where themomentaq propagate from space-time point y to x,
respectively. That way, we introduce the momenta q (propa-
gating from x4 to x3), l (propagating from x3 to x2), and k
(propagating from x3 to x1).
At this point, instead of obstinately pursuing the com-

putation, it is useful to take a closer look at the energy
scales of the conversion process; see, e.g., Refs. [40,51].
We only consider the g:s: → g:s.. process, which means
that both the initial and final nuclei are in the ground state
(g:s.). Although the g:s: → g:s: process is estimated to
constitute only about ∼40% of the total amount of nuclear
transitions [45], it is experimentally favored due to its
minimal background for the outgoing positron, as it carries
away the maximal energy. The basic concept of the μ−–eþ
conversion is that a muon is trapped by an atom, cascades
down in energy levels until it is bound in the 1s state, and
gets then captured by the nucleus, thereby emitting a
positron. The total energy of the muon in the 1s bound
state is given by Eμ ¼ mμ − εb, wheremμ is the muon mass
and εb is its binding energy. Since the binding energy is
roughly εb ≃ mμ

me
· 13.6 eV · Z ≪ mμ, the muon can in any

case be considered as nonrelativistic. The energy of the
positron hence results in

Ee ¼ mμ − εb|fflfflfflffl{zfflfflfflffl}
∼Oð100 MeVÞ

− ðEf − EiÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
∼OðMeVÞ

∼Oð100 MeVÞ; ð10Þ

where Ei;f are the energies of the initial and final nuclear
ground states, respectively. Both nuclei are—to a good
approximation—at rest, which in combination with the
nuclei not being excited leads to Ef − Ei ∼OðMeVÞ [48].
Two things can therefore be concluded:
(1) The positron energy peaks around mμ, which allows

for a clear separation from possible background
positrons stemming from, e.g., βþ decay stemming
from potential impurities. This will hold as long as
the experiment is able to distinguish positrons from
electrons (which is nontrivial if they are fast).

(2) The energy transfer from the bound muon to the
nucleus is small,OðMeVÞ, which implies that l2, k2,
q2 ≪ M2

S, M2
W . The latter amounts to effectively

integrating out both the W-bosons and the doubly
charged scalar.

Upon contracting the bosonic propagators, the matrix
element takes the form

− i
f�eμg4v4ξV2

ud

8Λ3M2
SM

4
W

Z
d4x1d4x2d4x3d4x4

×
Z

d4qd4kd4l
ð2πÞ12 hN0; fje−iq·ðx3−x4Þe−ik·ðx1−x3Þ

× e−il·ðx2−x3ÞT̂fJL;νðx1ÞJνLðx2ÞðlReÞcðx4ÞlRμðx4Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼1=2jRðx4Þ

gjN; ii:

ð11Þ

Since we contracted the gauge boson propagators, it is
reasonable to also switch to a notation using Fermi’s
constant, i.e., GF=

ffiffiffi
2

p ¼ g2=ð8M2
WÞ. At this point, we

can also identify the short-range operator coefficient. For
brevity, we introduce the operator coefficient that is
realized in this scenario, as derived in more detail in
Sec. IV B:

ϵLLR3 ≡ 4V2
udmp

f�eμv4ξ
Λ3M2

S
: ð12Þ

We furthermore note that x3-dependences solely remain
in the exponential functions. Hence, we obtain a four-
dimensional delta function, ð2πÞ4δð4Þðl − qþ kÞ, upon
performing the x3-integration. We can dispose of the
l-integration subsequently. That way, we obtain

− i
G2

F

2mp
ϵLLR3

Z
d4x1d4x2d4x4

×
Z

d4qd4k
ð2πÞ8 hN0; fjeiq·x4e−ik·x1e−iðq−kÞ·x2

× T̂fJL;νðx1ÞJνLðx2ÞjRðx4ÞgjN; ii: ð13Þ

Next, we consider the remaining structures,

hN0; fjT̂fJL;νðx1ÞJνLðx2ÞjRðx4ÞgjN; ii
¼ hN0jT̂fJL;νðx1ÞJνLðx2ÞgjNihfjjRðx4Þjii; ð14Þ

which allows us to split the structure into hadronic and
leptonic parts.
Starting with the leptonic part, we need to take into

account that neither the muon nor the positron are freely
propagating. The muon is bound in the 1s state, whereas the
positron is a free particle which propagates under the
influence of the Coulomb potential of the nucleus.
Consequently, we need to modify the spinors u and v of
the muon and the positron, respectively, to describe a bound
state and a continuum state subject to a potential, instead of
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freely propagating particles and antiparticles. This can be
done by using [40,48]2

ufreeμ → ϕμð~x4Þufreeμ

and vfreee →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðZ − 2; EeÞ

p
vfreee ; ð15Þ

where the bound muon wave function ϕμ and the Fermi
function FðZ; EÞ are given by3

ϕμð~xÞ ¼
Z3=2

ðπa3μÞ1=2
e−

Z
aμ
j~xj and FðZ;EÞ

¼
�

2

Γ½2γ1 þ 1�
�
2

ð2j~pejRÞ2ðγ1−1ÞjΓ½γ1 − iy�j2e−πy:

Here, aμ ¼ 4π=ðmμe2Þ is the muon’s Bohr radius,

γ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðαZÞ2

p
, y ¼ αZE=j~pej, and α≃ 1=137 is the

fine structure constant. Furthermore, Z denotes the atomic
number, and R ¼ 1.1A1=3 fm denotes the nuclear radius for
an atom with mass number A. We will abbreviate uμ ≡ ufreeμ

and ve ≡ vfreee in the following. That way, the leptonic part
of the amplitude can be rewritten such that

hfjjRðx4Þjii
¼ 2eike·x4e−ikμ·x4|fflfflffl{zfflfflffl}

≈e−iEμ ·x
0
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðZ − 2; EeÞ

p
ϕμð~x4ÞveðkeÞPRuμðkμÞ;

ð16Þ

with PR ≡ ð1þ γ5Þ=2 and the muon (positron) momentum
denoted by kμ (ke). Given that we assume the muon to be
nonrelativistic, we can thus simplify Eq. (13) using

Z
d4x1;2;4

Z
d4qd4k
ð2πÞ8 eiq·x4e−ik·x1e−iðq−kÞ·x2eike·x4e−iEμ·x04

¼
Z

d4x1;2d3x4

Z
d3qd4k
ð2πÞ7 e−ik·ðx1−x2Þ

× e−i~q·ð~x4−~x2Þe−i~ke·~x4e−iðEμ−EeÞx02 : ð17Þ

Moving on to the hadronic part, we need to incorporate the
information that the quarks are not locally fixed, but instead
distributed within the nucleons. This can be done by
introducing so-called nucleon form factors, which model
the charge distribution. We use the dipole parametrization
such that

~Fð~p2;ΛiÞ ¼
1

ð1þ ~p2=Λ2
i Þ2

; ð18Þ

where the scale Λi ∼OðGeVÞ depends on how the
quarks interact. As there are two nucleon interactions
taking place, we thus include an additional factor

of ~Fð~k2;ΛiÞ ~Fðð~k − ~qÞ2;ΛiÞ. We can neglect the
~q-dependence due to the momentum transfer being of
the ordermμ ≪ Λi. As a result, not only the k0- but also the
~q-dependence restricts itself to the exponential functions,
allowing for

Z
d4x1;2d3x4

Z
d3qd4k
ð2πÞ7 e−ik·ðx1−x2Þ

× e−i~q·ð~x4−~x2Þe−i~ke·~x4e−iðEμ−EeÞx02 ~F2ð~k2;ΛiÞϕμð~x4Þ

¼
Z

d4x1;2

Z
d3k
ð2πÞ3 e

i~k·ð~x1−~x2Þe−i~ke·~x2e−iðEμ−EeÞx02

× δðx01 − x02Þ ~F2ð~k2;ΛiÞϕμð~x2Þ: ð19Þ

Moreover, we can reexpress the hadronic part using a
nonrelativistic approximation, which leads to

hN0jT̂fJL;νðx1ÞJνLðx2ÞgjNi
¼

X
n

fΘðx01 − x02ÞeiðEf−EnÞx01eiðEn−EiÞx02hN0jJL;νð~x1Þjni

× hnjJνLð~x2ÞjNi þ Θðx02 − x01ÞeiðEf−EnÞx02

× eiðEn−EiÞx01hN0jJL;νð~x2ÞjnihnjJνLð~x1ÞjNig; ð20Þ

where ΘðxÞ denotes the Heaviside function. Here, we
take the sum over the virtual intermediate nuclear states
labeled by n and make use of JL;νð~xÞ≡ JL;νð0; ~xÞ.
Further simplifications arise from the aforementioned
considerations that implied x01 ¼ x02. The latter results in
n-independent factors which allow us to carry out the
sum explicitly and make use of the completeness of the
set of states introduced:

P
n jnihnj ¼ 1. In combination

with Θð0Þ ¼ 1=2, the hadronic part, Eq. (20), takes the
following form after performing the x01-integration:

eiðEf−EiÞx02hN0jJL;νð~x1ÞJνLð~x2ÞjNi: ð21Þ

Checking for x02-dependences, we note that, at this
point, x02 only appears in exponents. Upon carrying out
this integration, we finally obtain the conservation of
external energies, ð2πÞδðEf − Ei þ Ee − EμÞ, as to be
expected.
Combining these modifications that enter due to the

physical properties of the process, we can rewrite Eq. (13)
into

2Note that Ref. [40] uses a different normalization for the
spinors than we do, which also reflects in different relations for
the spin sums. The translation will be discussed in Appendix A.

3Note that we consistently use the nonrelativistic approxima-
tion for the bound muon wave function. Note also that the sign of
y is opposite to the usual one quoted in Fermi functions, due to
the emitted particle being a positron rather than an electron,
cf. Appendix F.3 in Ref. [52].
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− i
G2

Fϵ
LLR
3

mp
ð2πÞδðEf − Ei þ Ee − EμÞveðkeÞPRuμðkμÞ

×
Z

d3x1;2

Z
d3k
ð2πÞ3 hN

0jei~k·ð~x1−~x2Þ

× e−i~ke·~x2 ~F2ð~k2;ΛiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðZ − 2; EeÞ

p
ϕμð~x2Þ

× JL;νð~x1ÞJνLð~x2ÞjNi: ð22Þ

Within the nonrelativistic approximation, the hadronic
currents can be written in terms of effective transition
operators. These consist of the basic spin and isospin
structures. In principle, there are five spin structures and
only one isospin structure [45]. As explained in
Refs. [40,45,47,51], however, two spin structures are
expected to be most important: the Fermi (∝ gV) and
Gamow-Teller (∝ gA) parts. Hence, the hadronic current
can be rephrased as

~Fð~k2;ΛiÞJL;νð~xÞ →
X
m

τ−mðgV ~Fð~k2;ΛVÞgν0

þ gA ~Fð~k2;ΛAÞgνjσjmÞδð3Þð~x − ~rmÞ; ð23Þ

where we sum over all nucleons, with ~rm being the position
of the mth nucleon. Here, τ−m is the nuclear isospin raising
operator, which means that it can change protons into
neutrons (as needed for μ−–eþ conversion):

τ−mjprotonim ¼ jneutronim and τ−mjneutronim ¼ 0:

ð24Þ

The Gamow-Teller operator flips the spin of the mth
nucleon into the jth direction. Note that we have employed
different scales Λi, with i ¼ V, A, depending on the type of
interaction. Generic values are ΛV ¼ 0.71 GeV and ΛA ¼
1.09 GeV [40].
Now, we have collected all ingredients to obtain the

final version of the amplitude. Using Eq. (22) together
with

~Fð~k2;Λi1ÞJL;νð~x1Þ ~Fð~k
2;Λi2ÞJνLð~x2Þ

→
X
m;l

τ−mτ
−
l ðg2V ~F2ð~k2;ΛVÞ − g2A ~F

2ð~k2;ΛAÞ~σm · ~σlÞ

× δð3Þð~x1 − ~rmÞδð3Þð~x2 − ~rlÞ; ð25Þ

we obtain the final version of the amplitude:

M ¼ G2
Fϵ

LLR
3 g2Ame

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðZ − 2; EeÞ

p
× δðEf − Ei þ Ee − EμÞv̄eðkeÞPRuμðkμÞMðμ−;eþÞϕ:

ð26Þ

In accordance with Ref. [40], cf. Appendix B, in order to
understand the equivalence in detail, we define nuclear
matrix element to be4

Mðμ−;eþÞϕ ≡ 4π

ð2πÞ3
R

mpme

Z
d3khN0j

X
m;l

τ−mτ
−
l

×

�
~F2ð~k2;ΛAÞ~σm · ~σl −

g2V
g2A

~F2ð~k2;ΛVÞ
�

× ei~k·ð~rm−~rlÞe−i~ke·~rlϕμð~rlÞjNi: ð27Þ

We have now reached an important point: once the
reader’s favorite nuclear physics expert has computed
numerical values for the NME Mðμ−;eþÞϕ, this can be
directly inserted into Eq. (26) and used to constrain any
particle physics model leading to the operator ϵLLR3 . The
same could in principle be done for all other short-range
operators in Eq. (1), provided that the corresponding
NMEs are known.
Let us end this subsection by a remark that enables the

reader to understand how to derive and use the decay rate in
case ϵxyz3 is realized. It is important to note that, in case the
conversion is realized by means of a right-handed hadronic
current, one has to rephrase this hadronic current as

~Fð~k2;ΛiÞJR;νð~xÞ →
X
m

τ−mðgV ~Fð~k2;ΛVÞgν0

− gA ~Fð~k2;ΛAÞgνjσjmÞδð3Þð~x − ~rmÞ; ð28Þ

in contrast to the left-handed hadronic current in Eq. (23).
This means that in case x ¼ y, the NME in Eq. (27) is valid
for both x ¼ L, R. On the other hand, in case x ≠ y, the sign
in front of the Gamow-Teller part in Eq. (27) is changed.
Naturally, this change translates to the NME given in
Eq. (36).

C. From the amplitude to the decay rate

In order to derive the decay rate from the matrix element
obtained above, we need to employ Fermi’s Golden Rule,

Γ ¼ 2π
V=T
ð2πÞ3

Z
d3kejMj2; ð29Þ

where an integral over the positron’s momentum ke is
performed. Here, T is some time interval covering the
process, and V is some volume that we set to be unity, i.e.,

4Note that Eqs. (37) and (49) in Ref. [40], which both are
supposed to contain expressions for the NME in case of a
realization via heavy Majorana neutrinos, differ by a factor of 2.
After carefully checking an analogous discussion for 0νββ [53],
we reckon that Eq. (49) of Ref. [53] is the correct normalization,
while the additional factor of 2 in Eq. (37) of Ref. [53] is a typo.
Our matrix element in Eq. (27) is defined to be consistent with
Eq. (49) in Ref. [40].
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V ¼ 1. The latter was already done silently when intro-
ducing the electron wave function in Eq. (16).5

Next, we take the spin average over the initial and the
spin sum over the final states. With respect to the free
spinors and the Lorentz structure, we deal with the
expression

1

2

X
r;s

jvreðkeÞPRusμðkμÞj2 ¼
1

4
: ð30Þ

Note that we obtain this result independently of the
normalization that was used for the free spinors, because
the normalization of the spinors and the according spin
sums ultimately cancel in the squared amplitude (as they
should in order to yield a consistent result). In doing so,
we get

1

2

X
spins

jiMj2 ¼ g4Am
2
eG4

FjϵLLR3 j2
16R2

jFðZ − 2; EeÞj“

× δðEf − Ei þ Ee − EμÞ2”jMðμ−;eþÞϕj2;
ð31Þ

where we encounter two issues that we need to discuss
briefly.
First of all, we can assume to good approximation

that the muon wave function only varies slowly within
the nucleus, which is justified both by the muon being
nonrelativistic and by the size of the nucleus being tiny
compared to the muon’s Bohr radius. Thus, the follow-
ing standard approximation is valid [55]:

jMðμ−;eþÞϕj2 ¼ hϕμi2jMðμ−;eþÞj2 with

jMðμ−;eþÞj ¼ jMðμ−;eþÞϕjϕ¼1: ð32Þ

We can use hϕμi2 ¼ α3m3
μ

π
Zeff
Z as an approximation

for the muon average probability density [55], where
Zeff denotes the effective atomic charge that accounts
for the deviation from the wave function at the origin
[51]. It can be conveniently obtained by taking the
average of the muon wave function over the nuclear
density [56,57].
Second, we also encounter the standard “issue” of

squaring the delta function. How to treat this square is
discussed thoroughly in many textbooks, see, e.g.,
Ref. [58], and it results in

“δðEf − Ei þ Ee − EμÞ2” ¼
T
2π

δðEf − Ei þ Ee − EμÞ:
ð33Þ

Putting everything together, the decay rate takes the form

Γ ¼ g4Am
2
eG4

FjϵLLR3 j2
16R2

jFðZ − 2; EeÞjhϕμi2

×
Z

d3ke
ð2πÞ3 δðEf − Ei þ Ee − EμÞjMðμ−;eþÞj2: ð34Þ

For a g:s: → g:s: transition, we can assume that Ei ≃ Ef.
In addition, we take the positron to be highly relativistic,

i.e., Ee ≃ j~kej, while the muon is perfectly nonrelativistic,
i.e., Eμ ≃mμ. As a consequence, the delta function

reduces considerably, δðEf−EiþEe−EμÞ→δðj~kej−mμÞ.
Furthermore, as shown in Appendix B, the NME only

depends on the absolute value of ~ke but not on its direction.
Hence, the angular integration simply provides a factor

of 4π, and the remaining j~kej-integration only enforces

j~kej ¼ mμ. So, the decay rate—after performing the phase
space integration of the NME—takes its final form:

Γ ¼ g4AG
4
Fm

2
em2

μjϵLLR3 j2
32π2R2

jFðZ − 2; EeÞjhϕμi2jMðμ−;eþÞj2:
ð35Þ

The NME used here is obtained from combining Eqs. (27)
and (B14):

Mðμ−;eþÞ ¼ 8R
mpme

Z
dkk2hN0j

X
m;l

τ−mτ
−
l

×

�
~F2ð~k2;ΛAÞ~σm · ~σl −

g2V
g2A

~F2ð~k2;ΛVÞ
�
j0ðkrlmÞ

×
X
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λþ 1

p
jλðkeRlmÞjλðkerlm=2Þ

× fYλðΩrlmÞ ⊗ YλðΩRlm
Þg00jNi: ð36Þ

Note that our decay rate, Eq. (35), differs from the one
obtained in Ref. [40] by a factor of π, even upon using the
translations discussed in Appendix A. The tension between
the results only appears at the level of decay rates. As
shown in Appendix A, the results agree on the level of
amplitudes.
So far, the NME for the short-range operator ϵxxz3 for 48Ti

is accessible, taking the value jMðμ−;eþÞj ¼ 5.2 [40]. Using
this value, one can compute the decay rate by means of
Eq. (35), in case the particle physics model of choice
realizes ϵxxz3 . Since it is not clear how much LNV is present
in which corner of flavor space, it is useful to estimate the
muon conversion rates for different settings and compare

5In our normalization with respect to free spinors, the wave
function is given by ψ̄e ¼ eike ·xv̄e, where V ≡ 1 has already been
employed. So, the electron wave function is “normalised to one
particle in the volume V ¼ 1” [54].
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the discovery potential for future μ−–eþ conversion and
0νββ experiments, which has been done in Ref. [18].
Equation (35) is the desired result: given a concrete

particle physics model that reproduces ϵ3, one can match
this operator coefficient to fundamental model parameters.
As soon as the NMEMðμ−;eþÞ is known, all other quantities
contained in the decay rate are either known constants of
nature6 or can be computed easily. Apart from the obvious
dependence on the NME, nuclear characteristics are con-
tained in the radius R (i.e., the atomic number A) and in the
Fermi function FðZ − 2; EeÞ. However, at least for the set
of isotopes discussed in the literature on muon conversion,
the main variation with Z and/or A lies within the NME
itself, whereas all other isotope-dependent quantities vary
comparatively mildly.

IV. MATCHING CONCRETE PARTICLE PHYSICS
MODELS ONTO EFFECTIVE OPERATOR

COEFFICIENTS

In this section, we will discuss how to map certain
particle physics models onto the effective operator coef-
ficients contained in Eq. (1). Given that in our computation
performed in the previous section we drew the explicit
comparison to Ref. [40] in several places, we will start this
section by a simplified discussion focusing on drawing the
parallels between the heavy neutrino exchange discussed in
that reference and our example model featuring the doubly
charged scalar. We will then present a more detailed
discussion on how to obtain ϵ-coefficients from several
concrete models. Feynman rules which may be necessary to
reproduce our results are listed in Appendix C.

A. Heavy neutrino exchange vs doubly charged
scalar exchange

In order to use the NMEs as derived for the exchange of
heavy Majorana neutrinos [40], we calculated the con-
version amplitude, factorized it into particle and nuclear
physics contributions, and determined the factorized decay
rate; see Sec. III. To further check if we performed every
step of the computation consistently, we now match the
amputated diagram for the realization of μ−–eþ conversion
via the doubly charged scalar to the version with the heavy
Majorana neutrino. With this procedure, we can compare
our decay rate, Eq. (35), where the short-range operator was
explicitly given by Eq. (12), with Eq. (50) from Ref. [40].
From the Feynman diagrams in Fig. 2, we obtain two

amplitudes from which we amputate the nuclear parts. This
is a reasonable procedure since for both realizations of the
μ−–eþ conversion the nuclear part of the process—depicted

by the grayish circle—is identical. Starting with the left-
hand side of Fig. 2, we extract

vePRuμ
−ig2f�eμv4ξgσ0ρ0

Λ3

i
q2 −M2

S

−igσσ0

k21 −M2
W

−igρρ0

k22 −M2
W

→
M2

S;W≫k2
1;2;q

2

vePRuμ
ig2f�eμv4ξgσρ

M4
WΛ3M2

S
: ð37Þ

Analogously, we obtain

X
k

ve γρ0PRγσ0uμVekVμk
g2

2

iMk

l2 −M2
k

−igσσ0

k21 −M2
W

−igρρ0

k22 −M2
W

→
M2

k;W≫k2
1;2;l

2

ve γρPRγσuμ
ig2

2M4
W

X
k¼4;5;…

UekUμk

M2
k|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

≡hM−1
N iμe

ð38Þ

from the heavy Majorana neutrino exchange, where the
sum extends over all heavy mass eigenstates Nk with
admixtures Uak to the active flavors a.
At first sight, something seems to be wrong, given that

the Lorentz structures of Eqs. (37) and (38) differ. However,
taking into account that the hadronic part is symmetric
under exchange of the indices, i.e., Jσð~x1ÞJρð~x2Þ ¼
Jσð~x2ÞJρð~x1Þ, it becomes clear that only the symmetric
part of

γρPRγσ ¼ γργσPL ¼
�
gρσ þ

1

2
½γρ; γσ�

�
PL

contributes to the decay rate. Consequently, the relevant
part of Eq. (38) is given by

v̄ePLuμ
ig2gσρ
2M4

W
hM−1

N iμe: ð39Þ

In contrast to the doubly charged scalar, which only couples
to right-hand charged leptons, the heavy Majorana neutrino
interacts weakly, which leads to left-handed “external”
leptons. Upon calculating the decay rate, both amplitudes
are spin summed and spin averaged. As a result, only

1

2

X
spins

jv̄ePRuμj2 and
1

2

X
spins

jv̄ePLuμj2 ð40Þ

are of importance to the final result. Since both expressions
equally lead to the factor 1=4, the chirality of the external
leptons does not play a role and can be neglected for the
matching. We thus obtain the following correspondence
between the two models,

2f�eμv4ξ
Λ3M2

S
⇔ hM−1

N iμe; ð41Þ

6Note that, however, the value of the axial vector coupling gA
may be affected by quenching [59], similar to 0νββ. On the other
hand, at present, there is no agreement on whether this is an actual
issue or not [60].
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which can be understood when comparing Eqs. (37)
and (39).

B. Matching particle physics models onto the
corresponding operator coefficients

Now, that we have compared two concrete settings to
each other, we will show that this is not a mere coincidence
and demonstrate on general grounds how to match a model
onto the general effective vertex coefficients presented in
Eq. (1), and thus justify Sec. IVA.
We start with the model already used in the previous

subsection, in which the SM particle content is extended by
a number n of SM singlet, right-handed Majorana neutrinos
Nk, as used in Ref. [40]. When rotating the full neutrino
mass matrix to a diagonal shape, we end up with k ¼ 3þ n
Majorana neutrinos with masses mk. Choosing the specific
setting of a seesaw model [61–66], one obtains three very
light (active) neutrinos ν1;2;3 and n heavy (sterile) neutrinos
N4;5;…. Vice versa, the SM’s neutrino flavor eigenstates νa
can be expressed in terms of light and heavyMajorana mass
eigenstates,

νa ¼
X

l¼1;2;3 ðlightÞ
Ualνl þ

X
l¼4;5;… ðheavyÞ

UalNl;

which allows for the suppressed coupling of charged
leptons to heavy Majorana neutrinos, see Fig. 7, the

strength of which is parametrized by the active-sterile
mixing element Ual (where l ¼ 4; 5;…). This coupling
results in the realization of the μ−–eþ conversion, as
depicted on the left-hand side of Fig. 3. Note that, within
this model, the analogous process with light instead of
heavy neutrinos leads to a contribution to the long-range
part of ϵ3, which we disregard for the time being.
From the left-hand side of Fig. 3, we obtain

iMk ¼ d̄
ig

2
ffiffiffi
2

p Vudγ
νð1 − γ5Þud̄

ig

2
ffiffiffi
2

p Vudγ
ρð1 − γ5Þ

× u
−igνν0

l21 −M2
W

−igρρ0
l22 −M2

W
· ēc

−ig
2

ffiffiffi
2

p Uekγ
ν0 ð1þ γ5Þ

×
iðqþMkÞ
q2 −M2

k

ig

2
ffiffiffi
2

p Uμkγ
ρ0 ð1 − γ5Þμ; ð42Þ

with a sum over the different k in case more than one heavy
neutrino exists. In the short-range limit (i.e., l21;2, q

2 ≪ M2
k,

M2
W) and by summing over all heavy mass eigenstates, this

turns into

iM ¼ i
g4

64M4
W
V2
udhM−1

N iμed̄γνð1 − γ5Þud̄γρ

× ð1 − γ5Þuēcγνð1þ γ5Þγρð1 − γ5Þμ: ð43Þ

FIG. 3. Model with heavy Majoranas Nk mapped onto short-range operators.

FIG. 2. Realization of μ− − eþ conversion via (left) a doubly charged scalar or (right) a heavy Majorana neutrino.
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The leptonic current is expressed in terms of the bilinear
covariants to match Eq. (1),

ēcγνð1þ γ5Þγρð1 − γ5Þμ
¼ 2gνρēcð1 − γ5Þμ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼jL

þ 2iēcσνρð1 − γ5Þμ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼jL;νρ

: ð44Þ

In terms of Fermi’s constant and using hadronic and
leptonic currents, this amplitude then takes the form

iM ¼ i
G2

F

2mp
½2U2

udmphM−1
N iμe|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼ϵLLL
3

JνLJL;νjL

þ 2iV2
udmphM−1

N iμe|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ϵLLL

6

JνLJ
ρ
LjL;νρ�: ð45Þ

As already indicated on the right-hand side of Fig. 3, the
structures ϵLLL3;6 are realized in this model. Due to the
symmetry of the nonrelativistic hadronic currents, however,
we can simply omit ϵ6. Thus, in the end, the seesaw model
only admits the single operator

G2
F

2mp
ϵLLL3 JνLJL;νjL: ð46Þ

Another model that includes LNV is the SM extended by
a doubly charged scalar. This model was introduced in
Sec. III A. Within this setting, the LNV μ−–eþ conversion
is realized by the left-hand side of Fig. 4. The correspond-
ing amplitude is given by

iM ¼ d̄
ig

2
ffiffiffi
2

p Vudγ
νð1 − γ5Þud̄

ig

2
ffiffiffi
2

p Vudγ
ρð1 − γ5Þ

× u
−igνν0

l21 −M2
W

−igρρ0
l22 −M2

W
ēc2if�eμ

1

2
ð1þ γ5Þ

× μ
−ig2v4ξ
2Λ3

gρ
0ν0 i
q2 −M2

S
: ð47Þ

Taking the short-range limit (l21;2, q2 ≪ M2
S, M2

W), we
obtain

iM ¼ −i
G2

F

2mp

�
4V2

udmp
f�eμv4ξ
Λ3M2

S|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼ϵLLR

3

JνLJL;νjR

�
; ð48Þ

which is precisely the result used in Eq. (12). Note that we
have used the hadronic/leptonic currents from Eqs. (2) and
(3), as well as some standard identifications such as Fermi’s
constant.
Finally, wewant to briefly discuss another class of models

that generate LNV, which we have not yet mentioned, to
show that it is by far not only the two examples mentioned
that are covered by our formalism. The final example is the
so-called RPV SUSY theories. Within the framework of
RPV SUSY, there are several mechanisms that provide LNV
which are discussed broadly in the literature; see, e.g.,
Refs. [39,43,67] for the case of 0νββ. To demonstrate the
potential that lies in μ−–eþ conversion when contemplating
RPV SUSY, we consider the illustrative case of a gluino
exchange being the dominating conversion mechanism.
Although there are a number of Feynman diagrams contrib-
uting to the μ−–eþ conversion due to gluino exchange [67],
we will focus on the diagram given on the left-hand side of
Fig. 5 for demonstration purposes. The couplings necessary
to realize Fig. 5 can be taken from Ref. [38], Eq. (B.8), and
[39], Eq. (18), among others. They read

L ¼ λ0ijk ~d
�
kRlciRujL þ g3

λðaÞαβffiffiffi
2

p qαPL ~gðaÞ ~q
β
R: ð49Þ

Here, α and β denote the color indices, and λðaÞ are the
Gell-Mann matrices with a ¼ 1;…; 8. Upon employing the
orientation of fermion flow as given on the left-hand side of
Fig. 5, we obtain the amplitude

iM ∝
�
ig3ffiffiffi
2

p
�

2

λ0211λ
0
111

i
p2
1 −m2

~dR

i
p2
2 −m2

~dR

× ðμLÞcuLðecÞRuLdR
iðp1 − p2 þM ~gÞ
ðp1 − p2Þ2 −M2

~g

ðdRÞc: ð50Þ

FIG. 4. Model with doubly charged scalar S−− mapped onto a short-range operator.
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Taking the short-range limit, where p2
1, p

2
2, ðp1 − p2Þ2 ≪

m2
~dR
, M2

~g, the amplitude takes the form

iM ∝
ig23

2m4
~dR
M ~g

λ0211λ
0
111ððμLÞcuLÞððecÞRuLÞðdRðdRÞcÞ:

ð51Þ

To match this expression onto the operators in Eq. (1), we
need to rearrange the fermionic fields which can be done by
employing Fierz transformations and some algebraic acro-
batics. From rearranging the fermionic fields, we obtain the
following four effective operators:

ððμLÞcuLÞððecÞRuLÞðdRðdRÞcÞ

¼ −
1

2
ðd̄PLuÞðd̄PLuÞðēcPLμÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

→ϵLLL
1

− ðd̄σνρPLuÞðd̄σνρPLuÞðēcPLμÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
→ϵLLL

2

−
1

2
ðd̄σνρPLuÞðd̄PLuÞðēcσνρPLμÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

→ϵLLL
7

− iðd̄σνρPLuÞðd̄σνκPLuÞðēcσρκPLμÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
→ϵLLL

8

: ð52Þ

Note that, due to the nonrelativistic treatment of the hadronic
currents, the operators corresponding to ϵLLL7;8 will not
contribute to the decay rate at this level of approximation.
As already demonstrated in Ref. [18], the strength of this

formalism lies in its factorization of the nuclear physics
from the specifics of the particle physics model realizing
the conversion process. Consequently, by computing only a

small number of NMEs, a wide range of particle physics
models can be investigated. However, at this moment, only
the NME for ϵxxz3 is available, and we are in need of further
NME computations for future analysis of, e.g., RPV SUSY
models.

V. CONCLUSIONS

In this paper, we have presented the complete computation
of the rate for the lepton flavor and number violating μ−–eþ
conversion,mediated by the effective operator JνxJy;νjz. After
introducing the effective operator language in the way
appropriate for this process, we have detailed the whole
pathway from the amplitude to the decay rate. Our main
target group is particle physicists, which is why we had a
particular focus on displaying the steps related to the nuclear
physics part involved as explicitly as possible. We have
furthermore pointed out several concrete new physics real-
izations of the effective operator used, all of which can in
principle be experimentally probed by μ−–eþ conversion.
At the moment, with hardly any NME values being

available, this is about as far as one could possibly go when
aiming to obtain concrete numbers. However, given that we
have now detailed how to perform the computation for the
operator ϵ3, it should at least in principle be clear how to
approach the computation for other effective operators.
Furthermore, several nuclear physics theory groups have
already shown interest in the process, and if they succeed in
obtaining further NMEs, the results from both sides could
readily be put together, to seewhich types of new physics are
the most promising in what concerns this μ−–eþ conversion.
We want to end this text by stressing that the inves-

tigation of the μ−–eþ conversion process can potentially
yield interesting physics results. It is a rare occasion in
physics that we can expect near-future experiments to
realistically improve a limit by 4 to 5 orders of magnitude.

FIG. 5. Model with R-parity violation: realization via gluino exchange, mapped onto short-range operators. The red arrows denote the
fermion flow, i.e., the order in which each fermionic chain is written down.
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This is an opportunity we should not ignore, which is why
we hope to have provided one of the initial sparks for
further and more detailed investigations.
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APPENDIX A: DIFFERENCES BETWEEN OUR
NOTATION AND THAT FROM REF. [40]

To compare our results for the amplitude and sub-
sequently the decay rate for μþ–e conversion with those
from Ref. [40], further remarks are in order:
(1) First, note that the normalization of free spinors in

Ref. [40] differs from the one used in the derivation
above. The normalization of spinors as used in
Ref. [40] is stated in their Appendix A, and it
corresponds to the following spin sums:

X
r

jurðpÞurðpÞj2 ¼ pþm1 and

X
r

jvrðpÞv̄rðpÞj2 ¼ p −m1: ðA1Þ

We, on the other hand, use a normalization that leads
to

X
r

jurðpÞūrðpÞj2 ¼ 1

4E
ðpþm1Þ and

X
r

jvrðpÞv̄rðpÞj2 ¼ 1

4E
ðp −m1Þ: ðA2Þ

Although the resulting decay rate will not differ,
we must translate uμ → 1=

ffiffiffiffiffiffiffiffi
2Eμ

p
uμ and v̄e →

1=
ffiffiffiffiffiffiffiffi
2Ee

p
v̄e in order to compare on the matrix-

element level. Note that the spinor expression in
Eq. (A3) of Ref. [40] uses the nonrelativistic limit in
the Dirac representation.

(2) Second, it is important to take into account that one
will encounter an additional factor of 1=ð2πÞ3=2 in
the matrix element of Ref. [40], which arises from
using the phase space integral factor of 1=ð2πÞ3 in
the matrix element, which we do not.

(3) Third, Ref. [40] only introduces the relativistic Cou-
lomb factor FðZ − 2; EeÞ that accounts for the posi-
tron propagating under the influence of the nuclear
field when stating the decay rate. We, however,
already introduce it when deriving the amplitude.

(4) Fourth, we have to recall that Ref. [40] realizes
μ−–eþ conversion by means of a heavy Majorana,
whereas we depend on the doubly charged scalar.
Thus, we need to perform some sort of matching in
order to replace the model-dependent doubly
charged scalar contribution by the respective heavy
Majorana part, as discussed in detail in Sec. IVA.
From there, we obtain the relation

2f�eμV2
udv

4ξ

Λ3M2
S

⇔
ϵLLx3

2mp
⇔ hM−1

N iμe; ðA3Þ

with x ¼ L, R and hM−1
N iμe ¼

P
k¼4;5;…UekUμk=

M2
k, where Uak denotes the admixture of the heavy

neutrino mass eigenstate Nk to the active flavor a.
(5) Last but not least, the chiralities of the external

charged leptons have to be considered. While in our
scenario both the muon and positron are right-
handed, the charged leptons are left-handed when
coupling to the heavy Majorana neutrinos. Further-
more, note that Ref. [40] uses another convention for
the γ-matrices which is based on employing the
Pauli metric [68]7 instead of the Minkowski metric.
This results in the left-/right-handed projectors
having a reversed sign in front of γ5 with reference
to their definition in the basis we use, namely
gνρ ¼ fþ;−;−;−g. Since the spin sums lead to
the same factor independent of the charged leptons
being left- or right-handed, we can consistently
replace

veðkeÞPRuμðkμÞ→
Sþþ→Nk veðkeÞPLuμðkμÞ→

adapt notation

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4EeEμ

p 1

2
veðkeÞð1þ γ5ÞuμðkμÞ ðA4Þ

for the sake of comparing our computation to the
amplitude in Ref. [40].8

Combining the above comments, our matrix element from
Eq. (26) translates into

M ¼
�
GFffiffiffi
2

p
�

2

hM−1
N iμe

g2Ampme

R

× δðEf − Ei þ Ee − EμÞMðμ−;eþÞϕ

×
1

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4EeEμ

p v̄eðkeÞð1þ γ5ÞuμðkμÞ; ðA5Þ

which agrees with Eq. (32) of Ref. [40].

7It is useful to check footnote 3 on page 676.
8Here, in the very last step, we switched to Ref. [40]’s

normalization of free spinors and to the Pauli metric notation.
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APPENDIX B: UNDERSTANDING EQ. (49)
FROM REF. [40]

To understand the notation in Eq. (49) of Ref. [40], we
use this Appendix to demonstrate in detail how to rewrite
the exponential functions from Eq. (27),

Z
dkk2dΩkhN0jei~k·ð~rm−~rlÞe−i~ke·~rl jNi; ðB1Þ

with k ¼ j~kj. Since we only take care of the angular

integration in the following, we dropped some ~k2-dependent
parts of Eq. (27). Introducing new coordinates,

~rlm ¼ ~rl − ~rm with rlm ¼ j~rlmj;

and ~Rlm ¼ ~rl þ ~rm
2

with Rlm ¼ j~Rlmj; ðB2Þ

we perform the angular integration,

Z
dΩkei

~k·ð~rm−~rlÞ ¼ 4πj0ðkrlmÞ; ðB3Þ

and replace the remaining exponential function by its plane
wave decomposition,

e−i~k·~x ¼ ðei~k·~xÞ� ¼ 4π
X∞
λ¼0

ð−iÞλjλðkxÞ

×
Xλ

mλ¼−λ
Ymλ
λ ðϑk;φkÞYmλ

λ ðϑx;φxÞ; ðB4Þ

where k ¼ j~kj and x ¼ j~xj. Here, ϑk;x and φk;x are the

azimuthal and polar angles which fix the directions of ~k
and ~x, respectively. Furthermore, jλ denotes the spherical
Bessel function, and Ymλ

λ denotes the spherical harmonic.
Thus, Eq. (B1) takes the form

ð4πÞ3
Z

dkk2hN0jj0ðkrlmÞ

×
X
λ;λ0

ð−iÞλþλ0jλðkeRlmÞjλ0 ðkerlm=2Þ

×
X
mλ;mλ0

Ymλ
λ ðϑke ;φkeÞYmλ

λ
�ðϑRlm

;φRlm
ÞYmλ0

λ0

× ðϑke ;φkeÞY
mλ0
λ0

�ðϑrlm ;φrlmÞjNi: ðB5Þ

Next, we employ the well-known addition theorem for
Legendre polynomials,

Pλðcosϑnn0 Þ ¼
4π

2λþ 1

Xλ
mλ¼−λ

Ymλ
λ ðϑn;φnÞYmλ

λ ðϑn0 ;φn0 Þ;

ðB6Þ

where cos ϑnn0 ¼ ~n · ~n0 ¼ cos ϑn cos ϑn0 þ sin ϑn sin ϑn0
cosðφn − φn0 Þ. Note that ~n and ~n0 are unit vectors. The
resulting Legendre polynomials Pλ can themselves be
phrased in terms of spherical harmonics,

Pλðcos ϑnn0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2λþ 1

r
Y0
λðϑnn0 ;φnn0 Þ; ðB7Þ

and we hence obtain

ð4πÞ2
Z

dkk2hN0jj0ðkrlmÞ

×
X
λ;λ0

ð−iÞλþλ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2λþ 1Þð2λ0 þ 1Þ

p
jλðkeRlmÞjλ0 ðkerlm=2Þ

× Y0
λðΩkeRlm

ÞY0
λ0 ðΩkerlmÞjNi; ðB8Þ

with ΩkeRlm
≡ ðϑkeRlm

;φkeRlm
Þ and Ωkerlm ≡ ðϑkerlm ;φkerlmÞ.

We can further rephrase the spherical harmonics by using
the inverse Clebsch-Gordan relation, see Eq. (4-b) in
complement CX of Ref. [69],

Ym
λ ðΩ1ÞYm0

λ0 ðΩ2Þ ¼
X
LM

ðλm1λ
0m2jLMÞ ΦLMðΩ1;Ω2Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

≡fYλðΩ1Þ⊗Yλ0 ðΩ2ÞgLM

;

ðB9Þ

where the connection to the irreducible tensors is estab-
lished with help of Eq. (1) in Chap. 5.16 of Ref. [70].
One can connect the Clebsch-Gordan coefficients to the

3j symbols by means of

ðλ1m1λ2m2jLMÞ

¼ ð−1Þλ2−λ1−M ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p �
λ1 λ2 L

m1 m2 M

�
; ðB10Þ

as stated in Eq. (1.44) of Ref. [71].
In the case of a g:s: → g:s: transition, the operator has to

be a scalar, which enforces L ¼ 0 (see also Ref. [70],
Chap. 3.2.1). Furthermore, the 3j symbols satisfy the
following properties,

m1 þm2 ¼ M;�
λ1 λ2 0

m1 m2 0

�
¼ ð−1Þλ1−m1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ1 þ 1

p δλ1λ2δm1;−m2
;

ðB11Þ

which can be found in Ref. [71] under Eqs. (1.41)
and (1.42). Since we have mλ ¼ mλ0 ¼ 0, the quantum

TANJA GEIB and ALEXANDER MERLE PHYSICAL REVIEW D 95, 055009 (2017)

055009-14



numbers of the coupled system are fixed to L ¼ M ¼ 0.
That way, the initial expression in Eq. (B1) can be
rearranged to

ð4πÞ2
Z

dkk2hN0jj0ðkrlmÞ

×
X
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λþ 1

p
jλðkeRlmÞjλðkerlm=2Þ

× fYλðΩkerlmÞ ⊗ YλðΩkeRlm
Þg00jNi; ðB12Þ

valid for the case of a g:s: → g:s: nuclear transition.
This can be simplified further when taking into account

that according to Ref. [72]’s Eq. (4)

Pλð~n · ~n0Þ ¼ ð−1Þλ4πfYλð~nÞ ⊗ Yλð ~n0Þg00
¼ ð−1Þλ4πfYλðϑn;φnÞ ⊗ Yλðϑn0 ;φn0 Þg00:

ðB13Þ

Applying this relation to f� � �g00 in Eq. (B12), it
becomes obvious that this expression does indeed not

depend on ~ke anymore. We can, consequently, discard
the dependence on the positron’s momentum and state
the final form of the angular part for g:s: → g:s:
transitions,

Z
dkk2dΩkhN0jei~k·ð~rm−~rlÞe−i~ke·~rl jNi→g:s:→g:s:ð4πÞ2

×
Z

dkk2hN0jj0ðkrlmÞ

×
X
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2λþ 1

p
jλðkeRlmÞjλðkerlm=2Þ

× fYλðΩrlmÞ ⊗ YλðΩRlm
Þg00jNi; ðB14Þ

where ΩRlm
and Ωrlm fix the directions of ~Rlm and ~rlm

independently of ~ke.

APPENDIX C: RELEVANT FEYNMAN RULES

In order to perform the matching of the model-dependent coefficients in Sec. IV, we make use of the Feynman rules given in
Figs. 6, 7, 8, 9. Here, PL;R are the left-/right-handed projectors; the indices α and β are Dirac spinor indices; the indices a,
b ¼ e, μ, τ denote the lepton flavor; and k ¼ 4; 5;… refer to the mass eigenstates of the heavy Majorana neutrinos. We use a
model where the conversion is mediated by a doubly charged scalar S�� which couples to the right-handed charged leptons
via a LNV vertex [35]. We aim to compare this to a model where the conversion is mediated by a heavyMajorana neutrinoNk.

FIG. 6. Coupling the doubly charged scalar to the SM.

FIG. 7. Coupling the Majorana neutrino to the SM.
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Note that, because there are LNV vertices in our theory, we naturally encounter vertices orMajorana propagators with clashing
arrows. For a consistent treatment using the Feynman rule language, we choose a fixed orientation of the “fermion flow”
for each diagram, i.e., the order in which each fermionic chain is written down, and adjust the Feynman rules [73–75].
For example, when reversing the fermion flow from Figs. 7(a) to 7(b), we instead work with the antifield lca ¼ Cl̄aT and alter
the Feynman rules accordingly. In Figs. 6, 7, 8, 9, the red arrow indicates the orientation of the fermion flow, i.e., of the lepton
number.
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