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We report the measurement of quark number susceptibilities (QNS) and their temperature dependence
from simulations of QCD with two flavors of light dynamical staggered quarks at finite temperature on
8 × 323 lattices. From the radius of convergence of the Taylor expansion we estimate the critical end point.
We use a Padé approximant to resum the series expansion and compute the equation of state at finite
chemical potential, namely the baryon number density and its contribution to the pressure. We also report
the isothermal compressibility of QCD matter at finite baryon density. Finally we explore the freeze-out
conditions for a measure of fluctuations. We examine some sources of systematic and statistical errors in all
of these measurements.
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I. INTRODUCTION

Quark number susceptibilities (QNS) [1,2] have become
important objects of study in recent years. They are
important ingredients in the determination of the phase
diagram of QCD [3] as well as the equation of state (EOS)
of strongly interacting matter [2,4]. They are also of interest
in experimental studies of event-to-event fluctuations of
conserved quantities [5–7]. We have earlier presented
results with two flavors of light dynamical quarks with
lattice spacing of 1=ð4TÞ (Nt ¼ 4) [3,4] and 1=ð6TÞ
(Nt ¼ 6) [8]. In this paper we push closer to the continuum
limit with momentum cutoff of 8T. Some preliminary
results from our current study were discussed in [9,10].
The pressure excess of strongly interacting matter at

finite temperature, T, and baryon chemical potential, μB,
over that at μB ¼ 0 is ΔPðμB; TÞ. We use the Maclaurin
series expansion of ΔP in powers of μB,

ΔPðμB; TÞ
T4

¼
X
n

χnBðTÞ
T4−n

zn

n!
; where z ¼ μB

T
; ð1Þ

and, due to CP symmetry, the series only has terms in even
n, starting from n ¼ 2. The coefficients are baryon number
susceptibilities (BNS). We shall often use the notation χB to
mean χ2B.
The Maclaurin expansion of Eq. (1) also gives us an

expansion for the first derivative, i.e., the baryon number
nðμB; TÞ, and the second derivative, i.e., χBðμB; TÞ. At the
QCD critical point, fμEB; TEg, there is a critical divergence

χBðμB; TEÞ
ðTEÞ2 ∝

1

jμ2B − ðμEBÞ2jψ
; ð2Þ

where ψ is a critical index. AWidom scaling argument was
used in [4] to show that ψ ¼ 0.79 for the Ising universality
class, in which the QCD critical point is expected to lie. We
have demonstrated earlier that with sufficient statistics one
can estimate both zE ¼ μEB=T

E [3,4,8] and ψ [4] from
lattice determinations of a small number of the baryon
number susceptibilities.
More detailed information comes from the QNS. Since

we work with two flavors of quarks, there can be two
independent chemical potentials, which can be chosen in
many ways [11]. One choice is to use them to get number
densities of the two flavors of quarks. If we call these μu
and μd, then the QNS are

χlm ¼ ∂lþmP
∂μlu∂μmd

����
μu¼μd¼0

: ð3Þ

The order of the susceptibility is lþm. In our lattice
computations the two flavors are degenerate, so χlm ¼ χml,
and we choose this freedom to set l ≥ m. The BNS are
combinations of the QNS. More details can be found in [2],
whose notation we follow.
The QNS have been used to test simplified models of

QCD, such as Polyakov-Nambu-Jona-Lasinio models [12],
effective models based on Schwinger-Dyson resummations
of weak-coupling expansions [13], and hadron resonance
gas models [14]. They have also been proposed as
diagnostics for the presence of composites in the plasma
state of QCD [15]. Currently the most interesting use of the
BNS is to compare with experiments [6]. All such attempts
make the assumption that heavy-ion experiments see
signals from thermalized matter whose temperature and
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chemical potentials are then extracted by comparison of
experimental data with predictions of equilibrium statistical
mechanics. A nontrivial statement about experiments is
likely to arise only when such treatments of quite different
data are compared. It was pointed out in [5,16] that a
comparison of the lattice predictions and experiments can
give either a new way of setting the lattice scale [17], or the
freeze-out T and μB for each collider energy [18].
In the next section we present the details of our

simulations, and the necessity of using large fermionic
statistics. After that we present results on the QNS and the
fμEB; TEg. In the fourth section we report our results on the
equation of state, n and ΔP, as well as the isothermal bulk
compressibility, κ. In the fifth section we deal with
measures of fluctuations and how they relate to experi-
ments. In this section we point out a substantial source of
theory systematic errors and suggest how to take care of
them. In the final section we summarize our main results
and point out certain interesting implications.

II. SIMULATIONS AND STATISTICS

Our simulations were carried out using two flavors of
dynamical staggered quarks withmπ=mρ ≃ 0.4 and Nt ¼ 8
(see Table I for details of the runs). It has been known for
long that Nf ¼ 2 QCD at finite quark mass has no phase
transition [19]. In [20] it was shown that there is no
privileged operator which measures a crossover temper-
ature. In fact, a follow-up study [21] showed that the
crossover in QCD with physical quark masses is so broad
that different measures of the crossover temperature built
using the renormalized chiral condensate alone gave results
which could differ by more than 7% of their mean. This is
about 5–6 times the error bar on each. The difference
between the crossover temperature determined using the
Wilson line and the chiral condensate is less than 3 times
the error bar. The lesson for subsequent lattice studies is
that it is sufficient to use the simplest of measures of the

crossover, unless the goal is to improve the precision of the
temperature scale. We have used the Wilson line suscep-
tibility, as we had in earlier studies. As a result, our
temperature scales and other results are directly comparable
to our older results on coarser lattice spacings.
A previous study with staggered quarks on Nt ¼ 8

lattices [22] used the chiral condensate and the Polyakov
loop, L, to locate a crossover coupling in the range
5.52 ≤ β ≤ 5.56. We had earlier set the scale for a study
with coarser lattices (Nt ¼ 6) using the maximum of the
Polyakov loop susceptibility, χL. Two-loop scaling using a
nonperturbative value of the gauge coupling [8] indicated
that the crossover measured by χL would lie close to
β ¼ 5.54. In our direct computation we found that the
crossover occurs at β ¼ 5.53. Such a shift corresponds to
an uncertainty in the temperature scale of about a percent
and is expected when using two-loop scaling with these
cutoffs [23]. Using the new, finer, lattice cutoff, we set the
relative temperature scale as before. The systematic errors
in scale setting are estimated by comparing computations in
different renormalization schemes. We found that this error
is about 1%.
Numerical computation of operators with multiple fer-

mion loops is time consuming. Fast and accurate compu-
tations of the trace of a large and sparse matrix, A, involves
a noisy estimator: 2TrA ¼ r†Ar where r is a complex
vector drawn randomly from an appropriate ensemble
(here, Gaussian), over which we average. Every fermion
loop is such a trace over the lattice discretized Dirac
operator. To get high accuracy in products of traces, we
need a large number,Nv, of random fermion source vectors.
Since the evaluation of thermal expectation values of traces
involves a Monte Carlo simulation (over fermion sources)
within a Monte Carlo simulation (over gauge configura-
tions), we use a bootstrap over both in order to estimate
means and errors.
To stabilize measurements of the QNS, we require

successively larger Nv as the order increases. This is
largely due to the increasing number of fermion-line
disconnected loops which can contribute as the order
increases. This can be seen even at the lowest nontrivial
order, i.e., for χ20. Below Tc, the operator O11 (see [3] for a
definition of these operators) contributes around 15% of the
mean value, but about 50% of the error. The situation is
much worse at 2Tc where this operator contributes about
0.2% of the mean, but about 33% of the error. Fermion-line
disconnected operators, On1n2n3���, are the main source of
noise since they turn out to be fat-tailed [4]. At present there
is no better way of controlling them than by increasing Nv.
In Fig. 1 we show that at low temperatures a reasonable

estimate of χnB for n ¼ 6 requires Nv as large as 1000. The
number of gauge configurations used is also important, and
we have used a minimum of around 400 gauge configu-
rations at low temperatures in order to get about 20% errors
for n ¼ 6. As one sees from the data shown in the figure,
such statistics are essential.

TABLE I. The details of the measurements on 8 × 323 lattices.
The statistics of gauge field configurations (N) is reported as the
number of MD trajectories discarded for thermalization plus the
separation between configurations times the number of configu-
rations used. Each MD trajectory was taken to be 6 MD time units
long.

β ma T=Tc N Nv

5.48 0.0144 0.90 (1) 400þ 10 × 140 2000
5.49 0.0139 0.93 (1) 15000þ 250 × 400 2000
5.50 0.0136 0.94 (1) 15000þ 125 × 737 2000
5.51 0.0133 0.96 (1) 15000þ 250 × 480 2000
5.52 0.0129 0.98 (1) 15000þ 125 × 684 2000
5.53 0.0127 1.00 15000þ 250 × 377 2000
5.54 0.0125 1.02 (1) 15000þ 250 × 375 2000
5.60 0.0113 1.14 (1) 15000þ 250 × 100 800
5.77 0.0083 1.53 (2) 15000þ 250 × 100 800
5.96 0.00625 2.07 (4) 15000þ 250 × 100 1600
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At high temperature the problem simplifies a little. In
Fig. 2 we show how the estimates for the QNS depend on
Nv at 2Tc. In the high temperature phase we see that Nv ≃
400 is enough to control errors. Configurations are also
smoother at high temperature, so the number of gauge
configurations required is also smaller. Nv ≃ 400 also
begins to control the approach to an accurate measurement
of eighth order susceptibilities. Of these the diagonal
susceptibility χ80T4 has the largest errors; we can trace
this to fluctuations in a single noisy operator, O2222. Since
the higher order QNS are divided by large factorials in
Taylor expansions, this degree of control over errors
suffices for extrapolations to finite chemical potential.
The figure also demonstrates that the off diagonal QNS
are in pretty good agreement with weak coupling compu-
tations at 2Tc.

III. SUSCEPTIBILITIES AND
THE CRITICAL POINT

In Fig. 3 we show the second order QNS as functions of
T=Tc for different lattice spacings. The measurements with
lattice spacing 1=ð4TÞ were presented in [3] and recently

updated in [4]. The data shown in Fig. 3 for this cutoff
comes from [4]. For lattice spacing of 1=ð6TÞ we use the
data of [8]. Two regions of temperature are clearly visible,
that above and below Tc. Below Tc the data on χ11=T2 from
lattices with cutoff of 6T are seen to be more noisy. This
reflects the fact that these older measurements used
significantly smaller number of gauge configurations.
Below Tc the diagonal QNS, χ20=T2, changes little when
the lattice cutoff is changed from 6T to 8T. This is shown
more clearly in the zoom presented in the second panel.
This indicates that finite lattice spacing effects are small in
χ20=T2 for T < Tc when going from Nt ¼ 6 to 8.
When the system is heated above Tc, χ11=T2 is very

close to zero in the weak-coupling expansion, and that is
also seen in this figure for T > Tc. However, χ20=T2 is seen
to have a strong dependence on the lattice spacing in this
region of T. The difference in the behavior of the two
second order QNS at high temperature is due to an
interesting phenomenon. There is an operator, O2, which
contributes to χ20=T2 but not to χ11=T2. This operator has a
nonzero value for free fermions, but is subject to a large
finite lattice spacing effect. Weak-coupling corrections to
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FIG. 1. The series coefficients of χ20 computed at T=Tc ¼ 0.94ð1Þ, shown as functions of the number of fermion source vectors, Nv,
(first panel) and the number of gauge configurations, N, (second panel) used. Note that χ4 is displaced slightly to the right in order to
alleviate clutter.
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FIG. 2. The fourth order (first panel), sixth order (second panel) and the eighth order (third panel) QNS at 2Tc as functions of the
number of fermion source vectors, Nv, used. Different QNS for the same order have been displaced from each other for visibility. χ40 has
been scaled down by a factor of 10 in order to fit into the scale shown. In the first panel the pink band is a weak coupling prediction for
χ40 and the blue band for χ22 [24]. In the second panel the pink band is a weak coupling prediction for χ60 and the blue band for χ42 [24].
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this operator are small. As a result, this QNS shows strong
finite lattice spacing effects. This was also seen when the
continuum limit of the quenched theory was taken [25].
Other QNS, including those shown in Fig. 2, are reasonably
close to their continuum weak-coupling limit already
for Nt ¼ 8.
In Fig. 4 we show two different series of susceptibilities.

The first panel shows diagonal QNS, χn0. A little below Tc
their magnitudes rise very rapidly with the order. A little
above Tc the higher order QNS also approach their weak-
coupling values. χ40 peaks near Tc, and then approaches a
nonvanishing ideal-gas value for large T. χ60T2 also seems
to peak around the same temperature, but it approaches zero
above Tc. In the second part of this figure we show the
BNS. Their magnitudes also rise very fast with order just
below Tc. While the second order QNS vary monotonically
with temperature, the fourth and sixth orders peak around
Tc [4]. Since these QNS are measured using the same

gauge configurations and fermion source vectors, their
errors are strongly correlated. This cannot be shown in the
figure, but is important for the error estimation in all the
succeeding analysis. Our bootstrap process is designed to
take care of these covariances.
By comparing the coefficients of any two terms in the

Maclaurin series for χB induced by the expansion given in
Eq. (1), we have estimators of the radius of convergence

μm=n
B ¼

�ðn − 2Þ!χmB
ðm − 2Þ!χnB

�
1=ðn−mÞ

: ð4Þ

The radius of convergence generally corresponds to a
singularity at complex μ. However, when all the χn are
positive, then this singularity lies on the real axis. In a
bootstrap analysis, one requires this criterion for all
samples, since the mean would have an imaginary part
otherwise. We find that this selects out β ¼ 5.50, which
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corresponds to a temperature of 0.94Tc. In each bootstrap
sample one obtains all possible μm=n

B . These bootstrap
estimators are shown in Fig. 5. In each bootstrap sample
one may take an average over all the estimators. The figure
also shows the bootstrap estimator of the average, drawn as
the band labeled Nt ¼ 8. This gives the location of the
critical point of QCD as

μEB
TE ¼ 1.85� 0.04; and

TE

Tc
¼ 0.94� 0.01: ð5Þ

This should be compared with the estimated μEB=T
E ¼

1.8� 0.1 for Nt ¼ 6 [8] and the recent high-statistics
determination μEB=T

E ¼ 1.5� 0.2 for Nt ¼ 4 [4], which
are also shown as bands labeled by Nt in Fig. 5. Note again
that our convention is to choose Tc to be the temperature at
which the Polyakov loop susceptibility peaks. The con-
tinuum value for this quantity was reported in [26].
A recent computation in 2þ 1 flavor QCD with an

imaginary chemical potential finds a lack of evidence for a
critical point after analytic continuation to real chemical
potential [27]. Since the phase diagram in imaginary
chemical potential is very different, it is not yet clear what
effect this has on the analytic continuation. Further com-
parison of computations with real and imaginary chemical
potential will be useful and interesting.

IV. CRITICAL BEHAVIOR AND
EQUATION OF STATE

Having determined the BNS, i.e., the Maclaurin series
coefficients ofΔP and n, one can use these to determine the
EOS at finite z through a truncated series expansion. This
must be a reasonable approximation to use when one needs
the EOS at small μB. However, how small these μB should

be is a question which must be determined using the series
itself. Clearly, in the temperature range close to our
estimated TE a truncated series expansion fails badly,
because each of the neglected terms could be as large as
the terms included. In this case one needs to resum the
series. After this is done one can quantitatively estimate the
range of μB where the truncated series is useful.
A power divergence in χB, as in Eq. (2), gives a pole in

m1ðz; TÞ ¼
∂ logðχB=T2Þ

∂z ¼ χ3Bðz; TÞ=T
χ2Bðz; TÞ=T2

: ð6Þ

We can convert the series for χB=T2 into a series for m1.
Since this has a simple pole, the series for m1=z can be
approximated by a [0, 1] Padé approximant in z2. The Padé
approximant form1 is then of the form 2ψz=ðz2E − z2Þ. This
two parameter form resums the series in the whole region of
z where the singular form is dominant [4]. χ2Bðz; TÞ is
obtained by exponentiating the integral of m1ðz; TÞ found
in this way.
The Padé analysis yields the critical point, i.e., the

position of the pole, zE, as well as the critical exponent
ψ [28]. The current statistics is still not good enough to give
a sharp estimate of ψ . An interesting point to note is that
statistical errors in the series coefficients translate into
errors in the location of the pole, thus leading to very large
errors in χB in the vicinity of zE. With increasing statistics,
this range of z shrinks, as we show in Fig. 6. The growth of
the errors as one approaches the radius of convergence is a
manifestation of critical slowing down.
If one assumes that the critical exponent is given by the

Ising model, i.e., ψ ¼ 0.79 [4], then one has a one parameter
Padé approximant to the series. This parameter is entirely
fixed by one term of the series. The series expansion of the
resulting Padé agrees within 68% confidence limits with the
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next terms of the known series. In Fig. 7 we show the ratio of
the Padé and the Ising-constrained Padé. They give similar
results for χ2BðT; μBÞ=T2. This implies, of course, that the
Ising exponent is compatible with this computation at the
90% confidence level. This computation is also consistent, at
the same level, with the mean field value ψ ¼ 0.66. In Fig. 7
we also show another ratio. This is the ratio of χ2BðT; μBÞ=T2

obtained from integrating the Padé approximant of m1, and
that using the truncated series expansion χ2BðTÞ=T2þ
χ4BðTÞz2=2. This truncation is called series (4) in the rest
of this paper. A truncation which keeps the z4 term also is
called series (6) later. As one can see from Fig. 7 this ratio is
very significantly different from unity, showing that the
higher order terms in the full series expansion become more
and more important as one approaches the radius of
convergence.
The Padé approximant is fitted using two terms of the

series expansion of m1 (one if the Ising critical exponent is
taken as an input). If one reexpands the Padé approximant
in powers of z, then one has predictions for the infinite
series. We verified that the third term of the series for m1

(coming from the fourth term for χB) is consistent with the
Padé approximant reexpanded in this way. Similarly we
checked for consistency of two terms when the Ising critical
exponents is taken as an input.
Using χ2B we can make an estimate of the width of the

critical region. This is not a very well-defined concept, but
is usually taken as an estimate of the region in which the
regular part of the free energy is negligible compared to the
singular part. We convert this to a numerical estimate by
asking at which value of z does χB become 5 times its value
at T ¼ TE and z ¼ 0. By this criterion one enters the
critical region when μB ¼ 1.6TE, i.e., at μB ¼ 0.87μEB.

If one asks the more stringent question, when does χB
become 10 times its value, then we find that the critical
region begins when μB ¼ 0.96μEB. These estimates use
mean values. As one can see in Fig. 8, the uncertainties
on these estimates are currently very large.
From this description of χB one obtains the EOS, namely

n and ΔP, by successive integrations. This is shown in
Fig. 8. Notice that χB=T2 is nearly constant until z≃ 0.5, as
a result of which n is close to linear and ΔP is almost
quadratic. Note also that the range of critical slowing down
is smaller with increasing number of integrations. The
reason for this is simply that the errors shown in the figures
are not pointwise errors in z, but are induced by an error in
zE. With increasing number of integrations, the singularity
at zE becomes milder, as a result of which the errors also
become easier to control.
It is interesting that this analysis is also a good numerical

description of the data at T=Tc ≃ 2. There the terms of the
series expansion beyond the fourth order are statistically
insignificant. The Padé resummation deals with this by
pushing the pole out to very large z. At such temperatures
we see that the truncated series and the Padé approximant
gives similar results.
Our main results for the EOS are shown in Fig. 9. We

display n, ΔP, and the isothermal bulk compressibility, κ,
as a function of μB=T at several fixed temperatures below
Tc, as well as a function of T=Tc for several different values
of μB=T. As before, there are two regimes of temperature:
above and below Tc. In the region T > Tc, the EOS is
dominated by the two QNS χ20 and χ40 which are non-
vanishing even in the ideal gas. These have strong lattice
spacing dependence, leading to large cutoff dependence in
the absolute value of the EOS in this high temperature
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region [29]. However, a comparison with the results of [4]
show that for T < Tc the EOS is beginning to stabilize even
for μB=T as large as 1.5.

V. FLUCTUATIONS AND FREEZE-OUT

The study of QNS in lattice QCD has been interesting
because of the possibility of contact with experimental data.

This may be confounded by the fact that the fluctuations
predicted by lattice computations are those in the conserved
baryon number, whereas those studied experimentally are
in the proton number. The connection between the two have
been addressed through hadronic Monte Carlo simulations
within event generators and seem to indicate that the
comparison is safe. We accept this current understanding
in this section, while cautioning the reader that this might

 0

 0.05

 0.1

 0.15

 0  0.5  1  1.5  2

n/
T

3

/TBμ

T/Tc
0.96 (1)
0.94 (1)
0.93 (2)

 0

 0.1

 0.2

 0.3

 0.4

 0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2

n/
T

3

T/Tc

/TBμ
1.25
1.00
0.75
0.50
0.25

 0

 0.05

 0.1

 0.15

 0  0.5  1  1.5  2

P
/T

4
Δ

/TBμ

T/Tc
0.96 (1)
0.94 (1)
0.93 (2)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2

P
/T

4
Δ

T/Tc

/TBμ
1.25
1.00
0.75
0.50
0.25

 1

 10

 100

 1000

 0  0.5  1  1.5  2

T
4

κ

/TBμ

T/Tc
0.96 (1)
0.94 (1)
0.93 (2)

 1

 10

 100

 1000

 0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2

T
4

κ

T/Tc

/TBμ
1.25
1.00
0.75
0.50
0.25

FIG. 9. The equation of state, nðμB; TÞ=T3 and ΔPðμB; TÞ=T4, and the isothermal bulk compressibility, T4κðμB; TÞ. These are
insensitive to the lattice spacing for T < Tc.
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change as the experimental error bars improve, or the inputs
to the event generators are updated.
Measures of fluctuations which have been discussed

before [5,16] are

mB
1 ðμB; TÞ ¼

χ3BðμB; TÞ=T
χ2BðμB; TÞ=T2

; and

mB
2 ðμB; TÞ ¼

χ4BðμB; TÞ
χ2BðμB; TÞ=T2

; ð7Þ

and their ratio mB
3 ¼ ðχ3B=TÞ=χ4B. The quantity

mB
0 ¼ nðμB; TÞ

χ2BðμB; TÞ
ð8Þ

has also been proposed, as have various other combinations
of these ratios [32]. Such ratios can also be defined for
charge fluctuations. The ansatz of Eq. 2 has been used to
investigate the ratios in Eq. (7). Predictions for these
observables in colliders have also been made using the
track of the freeze-out points across the phase diagram as
one changes

ffiffiffi
S

p
, the center of mass energy of the collider

[5]. First comparisons of lattice computations with exper-
imental results have successfully given rise to new ways of
approaching questions such as the physical value of Tc
[17], or conversely, the freeze-out conditions [18].
We have discussed the computation ofmB

1 in detail in the
previous section. Here we follow a program outlined in
[5,16] to discuss a detailed comparison with data from [7],
in order to find the point on the phase diagram where the
fluctuations freeze out. The extrapolation ofm1 in μB=T for
each temperature can be compared with the data to find

possible range of chemical potentials allowed by the data.
We show an example in the first panel of Fig. 10 where the
Padé approximant tomB

1 obtained at T=Tc ¼ 0.94� 0.01 is
compared to the data from the STAR experiment at

ffiffiffi
S

p ¼
200 GeV [7]. One can see that the error in the freeze-out
chemical potential is dominated by the statistical error in
the lattice computation. The analysis shown in this panel of
the figure is naive, since it compares the 68% probability
bands of the experiment with the lattice computation. We
improve this estimate by putting such a comparison within
a bootstrap and extracting the 68% confidence limits on the
fit using the bootstrap distribution of this estimate. We find
that this shifts the band marginally compared to the naive
estimate. In the same way, truncated series for m1 can be
used to determine freeze-out parameters.
One datum cannot determine both the parameters μB and

T, so this comparison gives us a strip of allowed values in
the phase diagram, as shown in the second panel of Fig. 10.
We have used Bernstein polynomials for smoothing. The
figure shows differences between a truncated power series
and the Padé approximant. Also the truncated power series
taken to different orders yields bands which are somewhat
different. Previous computations [18] have used a truncated
power series taken to the fourth order. We argued before
that this misses potentially large contributions from higher
order computations. In the figure we also show the
contribution when the power series includes the sixth order
BNS, and when the Padé resummation of the series is
performed. In the difference between the fourth and sixth
order series expansions, the systematic errors from the
truncation of the series are mixed with statistical errors in
the determination of the coefficients. The Padé approxim-
ant is an attempt to remove the systematic errors due to
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series truncation. We expect that further improvements in
computation will shrink the error bands.
The further condition that freeze-out occurs at the chiral

crossover is imposed in [18]. At this temperature [33], the
truncated series method gives a freeze-out value for μB
which roughly matches that found from a phenomenologi-
cal analysis of hadron yields [14]. However, our analysis
shows that there are significantly larger theory uncertain-
ties. Improvements in the statistical errors in lattice com-
putations will have many consequences for the late-stage
physics of heavy-ion collisions, including shedding light on
the very mechanism of freeze-out.

VI. CONCLUSIONS

In this paper we reported measurements of the QNS in
QCD at finite temperature with two flavors of light
staggered quarks using lattices with temporal extents of
Nt ¼ 8. We have determined the μB ¼ 0 crossover cou-
pling βc ¼ 5.53 using the peak in the Polyakov loop
susceptibility. In Sec. II we presented the evidence that
different numbers of source vector are required to obtain
reliable measurements of QNS at different orders. For the
second order QNS a hundred vectors is sufficient, but at
least 1000 fermion source vectors are needed to get good
measurements for QNS of order 6 for T < Tc whereas
substantially smaller number of source vectors are required
in the high temperature phase (see Fig. 1). We have used
2000 source vectors at each temperature below Tc and 800
or 1600 source vectors above Tc in this study.
We compared measurements of the off diagonal QNS

χ11=T2 made with different lattice spacings in Fig. 3. This
comparison indicates that the Nt ¼ 8 results for this QNS
may be close to the continuum limit. The diagonal QNS
χ20=T2 is also shown in this figure. Above Tc there is clear
evidence of finite lattice spacing effects in χ20=T2. The
reason for this is interesting. A particular operator which
contributes only to χ20=T2 has large lattice spacing effects
for free staggered quarks. All other QNS are close to the
continuum limit predicted by weak-coupling theory, as
shown in Fig. 2. In the temperature range below Tc there
is good agreement between earlier results for χ20=T2 for
Nt ¼ 6 [8] and the new results. This indicates that in
the confined state these results may be close to the
continuum limit.
We have also shown our measurements of several of the

higher order QNS in Fig. 4. There is structure visible in
these QNS in the neighborhood of Tc. The fact that these
measurements are made using the same configurations and
source vectors makes them strongly correlated with each
other, something that the error bars shown in the figures
cannot capture. This has consequences for all derived
measurements.
At T=Tc ¼ 0.94� 0.01 we find the radius of conver-

gence of the Taylor series expansion for the BNS is

μ=T ¼ 1.85� 0.04 (see Fig. 5). At this temperature all
the terms in the series which we can measure turn out to be
positive, implying that the singular point is on the real axis.
This leads us to believe that the radius of convergence
identifies a critical point of QCD. We note that this estimate
is completely consistent with that presented earlier for
Nt ¼ 6 in [8].
The existence of a finite radius of convergence of a series

expansion is a statement of the mathematical fact that the
successive terms of the series become equal at the radius of
convergence. This means that in deriving consequences
from the series, one cannot afford to truncate the series, but
must attempt to sum all the terms. A method of doing this
through Padé approximants was first used in [4] with lattice
spacing which is about twice of what we use here. This also
gives an independent, though coarse, check on the estimate
of the radius of convergence referred to earlier. We have
used the same method in Sec. IV to continue the equation of
state to finite chemical potential. Our results for the baryon
number density, nðμB; TÞ=T3, as a function of temperature
and chemical potential, the change in the pressure due to
the chemical potential, ΔPðμB; TÞ=T4, and the isothermal
bulk compressibility, T4κ, are shown in Fig. 9.
It is known that direct Monte Carlo simulations suffer

from critical slowing down, due to the unbounded growth
of correlations near a critical point. A similar phenomenon
is observed in the reconstruction of physical quantities
using series expansions, as demonstrated in Fig. 6. In spite
of this, we are able to extract the equation of state up to
μB=T ≃ 1.25 with reasonable accuracy.
In Sec. V we examine the influence of the full series

expansion in connecting to data on fluctuations. We show
that truncating the series expansion [18] leads to changes in
the determination of the freeze-out conditions for fluctua-
tions. This includes statistical and systematic theory
uncertainties. We have shown, in the right-hand panel of
Fig. 10, that the results shift when truncating the series
expansion up to the fourth order BNS or the sixth order. We
have also shown the results obtained when we try to
estimate the complete series by a Padé resummation.
These uncertainties can be bounded better in future by
going to larger orders in the series expansion. The full
analysis which was suggested in [5] is needed to make
contact with experimental data. This is, of course, equally
true for the equation of state.
We have examined a previously underappreciated source

of systematic errors in the reconstruction of physical
quantities from Taylor series expansions, namely the
truncation errors in the series expansion. While our
measurements are restricted to moderate lattice spacings,
i.e., 1=ð8TÞ, we have presented some evidence that the
systematic errors arising from extrapolations in lattice
spacing are much smaller than these truncation errors.
Future work will concentrate on reducing statistical and
both kinds of systematic errors.
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