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In this work, we use McGuire’s model to describe scattering of three spinless identical particles in one
spatial dimension; we first present analytic solutions of Faddeev’s equation for scattering of three spinless
particles in free space. The three particles interaction in finite volume is derived subsequently, and the
quantization conditions by matching wave functions in free space and finite volume are presented in terms
of two-body scattering phase shifts. The quantization conditions obtained in this work for the short-range
interaction are Lüscher’s formula-like and consistent with Yang’s results [Phys. Rev. Lett. 19, 1312 (1967)].

DOI: 10.1103/PhysRevD.95.054508

I. INTRODUCTION

Three-particle interaction plays an important role in
modern physics. In certain hadronic reaction processes,
three-particle dynamics may be a crucial component of
reaction. For example, the discrepancy of decay width of
η → 3π between experimental measurement [1] and χPT
calculations [2–5] can only be well understood when three-
body dynamics are properly considered [6–12]. Three-
particle or many-particle dynamics have also been proven
essential to illustrate or understand some important effects
in nuclear and atomic physics, such as precise knowledge
of nucleon interaction [13–16] and Efimov effect [17–22].
In the past, many different approaches have been developed
to describe three-body dynamics, for instance, quantum
field theory based relativistic Bethe-Salpeter equations
[23–25], nonrelativistic Faddeev’s equation [26–31],
and dispersion relation oriented Khuri-Treiman equation
[32–42]. Unfortunately, either approach provides a non-
expert friendly framework due to sophistication of three-
body dynamics. In recent years, three-body dynamics
started regaining some popularities in the hadron physics
community for many reasons. For examples, precision
theoretical hadron-interaction framework is urgently
needed for data analysis when high statistic data become
available, and a sensible finite volume theory of three-body
interaction is also currently demanded by the lattice QCD
community.
In the lattice QCD calculation, because computation is

performed in Euclidean space, we do not have direct access
to scattering amplitudes [43]. Fortunately, taking advantage
of the periodic boundary condition, a relation between the
energy spectrum extracted from lattice QCD computation
and two-body scattering amplitudes in the elastic region is
established [44], which is usually referred to as Lüscher’s
formula. The extension of the framework to moving frames
and to inelastic channels has also been developed by many

authors [45–56]. The finite volume scattering formalism
has been proven valid and effective in the lattice commu-
nity for extracting hadron-hadron two-body scattering
information [57–68].
There have been some attempts on finite volume three-

body interactions in recent years [69–76]. These recent
developments for the finite volume three-body scattering
problem [69–76] are typically momentum representation
of quantum field theory approaches, diagrammatic
approaches or the Faddeev equation based method. Most
of these developments are mathematics and physics
friendly to the majority of people in the physics commu-
nity. Hence, it is fair and reasonable to raise the question of
how one would check all these over sophisticated quanti-
zation conditions of the finite volume three-body problem
presented in these works? In the present work, we aim to
find a simple and exactly solvable three-body problem, so
that the analytic results of quantization conditions in this
simple case can be found. The result may serve as a
calibration to more realistic treatments of the three-body
problem in different approaches [69–76]. Moreover, an
exactly solvable three-body problem in finite volume could
be a very useful tool for understanding three-body dynam-
ics in finite volume and it may also be very helpful for
further development of the approximate method in more
realistic three-body problems. In order to make the three-
body scattering problem as simple as possible and exactly
solvable, we will ignore the relativistic effect and also
constrain ourself to one spatial dimension, so that analytic
solutions can be found and an infinite sum in finite volume
is easily carried out. We will further consider three non-
relativistic particles with equal masses, and the pairwise
and short-range interactions among three particles. Under
the above-mentioned assumptions, a simplified Faddeev’s
equation in free space (space with infinite volume) is
established and solved analytically. Instead of attacking
the finite volume problem in momentum representation, we
employ the approach developed in [56,77], and work our*pguo@jlab.org
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way out with the wave function of three-body in the
configuration representation. In our approach of solving
the three-body problem in finite volume, there are three
basic steps: first of all, the solutions of Faddeev’s equation
are used to construct the free space three-body wave
function. Next, for the problem of three particles in a finite
box, we show that the finite volume wave function of three-
body interaction can be constructed through the free space
three-body wave function. At last, the matching of the finite
volume wave function and the free space wave function
yields the Lusher’s formula-like quantization conditions of
the three-body interaction, which are sets of relations
between the two-body phase shift and three-particle
momenta in a finite box:

cot

�
P
3
þ q3

2

�
Lþ cot ðδð−q31Þ − δð−q23ÞÞ ¼ 0;

cot

�
P
3
þ q1

2

�
Lþ cot ð−δð−q31Þ − δðq12ÞÞ ¼ 0;

cot

�
P
3
þ q2

2

�
Lþ cot ðδð−q23Þ þ δðq12ÞÞ ¼ 0;

where δ denotes the two-body scattering phase shift and L
refers to the size of the box. The total momentum, P,
relative momentum qij between ith and jth particles, and
relative momenta qk between kth particle and pair ðijÞ will
be explained in Sec. II.
The advantage of using wave function in configuration

representation is that first of all, the wave function approach
is close to the way of solving traditional quantum mechanics
problems in a periodic potential. A short review of our
formalism for the two-body interaction in finite volume and
its applications to exactly solvable quantum mechanical
models are listed in Appendix D. Second, also the most
important fact is that the asymptotic form of wave function
displays physical on-shell transition amplitudes. As a well-
known fact, the solutions of Faddeev’s equation are not
equivalent to physical transition amplitudes [27,78–80].
Three-body scattering amplitudes possess singularities of
poles and δ-functions, the physical transition amplitudes are
in fact associated to the residue functions of these singu-
larities. These singularities are the consequence of existence
of different distinct physical processes in the three-body
system. For examples, unlike in the two-body system, the
formation of a bound pair is not precluded by energy
conservation, a pole is thus introduced by the presence of
a two-body bound state. The singularity of δ-functions is
associated with disconnected diagrams with an unscattered
third particle. Because of these singularities in three-body
amplitude, the three-body wave function in configuration
representation may have several different pieces that
decrease at a different rate and describe different physical
processes. The physical transition amplitudes for different
physical processes are thus also defined by asymptotic forms
of the three-body wave function [79–83].

In this work, to describe the scattering of the three-body
system, we adopt a one-dimensional model with the
interaction of equal strength, pair-wise δ-function potential
that was developed by McGuire in [84]. A brief review of
McGuire’s model is provided in Appendix C. McGuire’s
model is physically simple, but can still provide us a
qualitative description of the three-body scattering process
in finite volume. McGuire’s model was originally solved by
ray tracing and geometric optics consideration method [84],
McGuire found that diffraction effects in this particular
model are all canceled out, thus no new momenta are
created over the scattering process, though momenta are
allowed to be rearranged among three particles in the final
state. In consequence, any dissociation or recombination of
particles out of or into bound states is forbidden, bound
states sectors are decoupled from the three free particles
sector. The breakup process never happens when a particle
is incident on a bound state [85–87]. Nevertheless,
McGuire’s model still encompasses rearrangement effects
among three particles, it may even represent more realistic
physical models of the short-range interaction. Although,
the quantization conditions for the three-body problem in
finite volume are obtained by considering a particular
model, the final results are presented in terms of two-body
phase shifts. The quantization conditions may be tested
numerically in the future by one-dimensional lattice
models, such as ones developed in [77,88].
The paper is organized as follows. In Sec. II we discuss

the free space three-particle system. The finite volume
three-particle system is presented in Sec. III. The summary
and outlook are given in Sec. IV.

II. THREE-BODY SCATTERING FOR SHORT-
RANGE INTERACTION IN FREE SPACE

Considering three spinless identical particles scattering,
the short-range interactions among three-particle are pair-
wise and equal strength for all pairs, VðrÞ ¼ V0δðrÞ. In
general, the kernel for Faddeev’s integral equation is off-
shell two-body scattering amplitudes; the off-shell kernel
usually complicates three-body integral equations even in
one dimension and causes difficulties of solving Faddeev’s
equation. Fortunately, for the short-range δ-function poten-
tial, two-body scattering amplitude appears completely on
energy shell, see Eq. (D24). This feature dramatically
simplifies Faddeev’s integral equation, so that finding an
analytic solution is possible. For completeness, a brief
review of formal scattering theory and the general frame-
work of Faddeev’s equation is presented in Appendix A.
The wave function of the scattering three-particle

satisfies Schrödinger equation,

�
−

1

2m

X3
i¼1

d2

dx2i
þ V0δðr12Þ þ V0δðr23Þ þ V0δðr31Þ − E

�

×Ψðx1; x2; x3;p1; p2; p3Þ ¼ 0; ð1Þ
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where the mass of particle is m, the total energy of the

three-particle system is E ¼ P
3
i¼1

p2
i

2m, where pi (i ¼ 1, 2, 3)
stands for the particle’s momenta in the initial state. The
center of mass position is given by R ¼ x1þx2þx3

3
. rij ¼

xi − xj refers to relative position between ith and jth

particles, and rk ¼ xiþxj
2

− xk denotes the relative position
between the kth particle and pair ðijÞ. The conjugate total
and relative momenta are given by P ¼ p1 þ p2 þ p3,

qij ¼ pi−pj

2
and qk ¼ piþpj−2pk

3
, respectively. A change

of the pair of relative coordinates and corresponding
conjugate momenta from ðijÞk configuration to other
configurations, e.g. ðjkÞi configuration in which relative
coordinates and conjugate momenta are expressed in terms
of ðrjk; riÞ and ðqjk; qiÞ, is accomplished by

rjk ¼ −
1

2
rij þ rk; ri ¼ −

3

4
rij −

1

2
rk;

qjk ¼ −
1

2
qij þ

3

4
qk; qi ¼ −qij −

1

2
qk; ð2Þ

where ðijÞk or ðjkÞi always follows cyclic permutation
of (1,2,3).
The totalwave function of three particles can be expressed

by the product of a plane wave, eiPR, which describes
center of mass motion, and the relative wave function,
ψðrij; rk; qij; qkÞ, which describes relative motions of three
particles, Ψðx1; x2; x3;p1; p2; p3Þ ¼ eiPRψðrij; rk; qij; qkÞ.
For scattering with a free three-particle incoming wave,
the wave function has the following form [26,27],
Ψ ¼ Ψð0Þ þ

P
3
γ¼1ΨðγÞ, where Ψð0Þ refers to the incoming

free wave, and ΨðγÞ satisfies the equation

�
−

1

2m

X3
i¼1

d2

dx2i
þV0δðrαβÞ−E

�
ΨðγÞ

¼ −V0δðrαβÞ½Ψð0Þ þΨðαÞ þΨðβÞ�; γ ≠ α ≠ β: ð3Þ

The integral representation of Eq. (3) for relativewave function,
ψ ðγÞðrαβ; rγ; qij; qkÞ ¼ e−iPRΨðγÞðx1; x2; x3;p1; p2; p3Þ is
given by

ψ ðγÞðrαβ;rγ;qij;qkÞ

¼
Z

∞

−∞
dr0αβdr

0
γGðγÞðrαβ−r0αβ;rγ − r0γ;zσÞ

×mV0δðr0αβÞ½ψ ð0Þðr0αβ;r0γ;qij;qkÞþψ ðαÞðr0βγ;r0α;qij;qkÞ
þψ ðβÞðr0γα;r0β;qij;qkÞ�; ð4Þ

where zσ ¼ σ2 þ iϵ and σ2 ¼ mE − P2

6
¼ q2ij þ 3

4
q2k (k ¼ 1,

2, 3), and the Green’s function GðγÞ satisfies the equation

�
zσ þ

d2

dr2αβ
þ 3

4

d2

dr2γ
−mV0δðrαβÞ

�
GðγÞðrαβ − r0αβ; rγ; zσÞ

¼ δðrαβ − r0αβÞδðrγÞ; ð5Þ

and the solution of Eq. (5) is given by

GðγÞðrαβ − r0αβ; rγ; zσÞ

¼
Z

∞

−∞

dq0αβ
2π

dq0γ
2π

P
P¼�ψPðrαβ; q0αβÞψ�

Pðr0αβ; q0αβÞeiq
0
γrγ

zσ − q02αβ − 3
4
q02γ

:

ð6Þ

The ψ�ðrαβ; qαβÞ are parity two-body wave functions of
pair ðαβÞ, and the solution of ψ� for the δ-function potential
reads

ψPðr; kÞ ¼
eikr þ Pe−ikr

2
þ itPð ffiffiffiffi

zk
p ÞYPðkÞei

ffiffiffi
zk

p jrj; ð7Þ

where the on-shell two-body scattering amplitudes, t�, are
given in Eq. (D24): tþðkÞ ¼ − mV0

2kþimV0
and t−ðkÞ ¼ 0. t� are

normalizedbyrelation
tP−t�P
2i ¼ t�PtP .Using theunitarity relation

of two-body amplitude, it can be shown that

Z
∞

−∞
dr0γGðγÞðrαβ − r0αβ; rγ − r0γ; zσÞV0δðr0αβÞeiqr

0
γ

¼ ei
ffiffiffiffiffiffiffiffiffiffi
σ2−3

4
q2

p
jrαβ jeiqrγ

2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 3

4
q2

q
�
1þ itþ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 −

3

4
q2

r ��
V0δðr0αβÞ:

ð8Þ

Therefore, Eq. (4) can be written as

ψ ðγÞðrαβ; rγ; qij; qkÞ

¼
Z

∞

−∞

dq
2π

ei
ffiffiffiffiffiffiffiffiffiffi
σ2−3

4
q2

p
jrαβ jeiqrγ ×

h
1þ itþ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 3

4
q2

q �i

2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 3

4
q2

q

×
Z

∞

−∞
dr0αβdr

0
γe−iqr

0
γmV0δðr0αβÞ

× ½ψ ð0Þðr0αβ; r0γ; qij; qkÞ þ ψ ðαÞðr0βγ; r0α; qij; qkÞ
þψ ðβÞðr0γα; r0β; qij; qkÞ�: ð9Þ

Next, let us introduce amplitudes, TðγÞ, by

TðγÞðk;qij;qkÞ¼−
Z

∞

−∞
drαβdrγe−ikrγmV0δðrαβÞ

×ψðrαβ;rγ;qij;qkÞ; α≠ β≠ γ: ð10Þ

Using Eq. (9) and the property of two-body scattering
amplitude, we find
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TðγÞðk;qij;qkÞ¼−
�
1þ itþ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2−

3

4
k2

r ��

×
Z

∞

−∞
dr0αβdr

0
γe−ikr

0
γmV0δðr0αβÞ

× ½ψ ð0Þðr0αβ;r0γ;qij;qkÞþψ ðαÞðr0βγ;r0α;qij;qkÞ
þψ ðβÞðr0γα;r0β;qij;qkÞ�; α≠β≠ γ; ð11Þ

therefore the wave function ψ ðγÞ is related to TðγÞ
amplitude by

ψ ðγÞðrαβ; rγ; qij; qkÞ

¼ i
Z

∞

−∞

dq
2π

ei
ffiffiffiffiffiffiffiffiffiffi
σ2−3

4
q2

p
jrαβ jeiqrγ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 3

4
q2

q TðγÞðq; qij; qkÞ: ð12Þ

Let us also define functions vðγÞ,

vðγÞðk; qij; qkÞ ¼
Z

∞

−∞
drαβdrγe−ikrγ

×mV0δðrαβÞψ ð0Þðrαβ; rγ; qij; qkÞ: ð13Þ

Equations (11)–(13) all together thus yield coupled sets of
integral equation of TðγÞ ’s, which is exactly just Faddeev’s
equation for δ-function potential,

TðγÞðk; qij; qkÞ

¼
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 −

3

4
k2

r �
itþ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 −

3

4
k2

r ��
vðγÞðk; qij; qkÞ

imV0

þi
Z

∞

−∞

dq
2π

TðαÞðq; qij; qkÞ þ TðβÞðq; qij; qkÞ
σ2 − 3

4
q2 − ðkþ q

2
Þ2 þ iϵ

�
;

α ≠ β ≠ γ: ð14Þ

At last, the total three-body scattering amplitude is
defined by

Tðkαβ; kγ; qij; qkÞ ¼ −
Z

∞

−∞
drαβdrγe−ikαβrαβe−ikγrγ

×mV0½δðrαβÞ þ δðrβγÞ þ δðrγαÞ�
× ψðrαβ; rγ; qij; qkÞ: ð15Þ

As suggested in [26,27], T is thus represented as the sum of
three TðγÞ amplitudes,

Tðkαβ; kγ; qij; qkÞ ¼
X3
δ¼1

TðδÞðkδ; qij; qkÞ; ð16Þ

where kα ¼ −kαβ −
kγ
2
and kβ ¼ kαβ −

kγ
2
.

As already mentioned in the Introduction, unlike two-
body scattering, the solution of Faddeev’s equation defined
in Eq. (15) is not equivalent to the physical transition
amplitudes [27,78–80]. The physical transition amplitudes
for different physical processes are associated to the residue
functions of singularities of T-amplitude given in Eq. (15).
In general, the T-amplitude has two distinct type singu-
larities [27,79,80]. One type is called primary singularities,
e.g. ðσ2 þ χ212 − 3

4
q23Þ−1, where χ12 is bound state energy of

pair (12). The pole of the ðσ2 þ χ212 − 3
4
q23Þ−1 type presents

in driving terms of Faddeev’s equation and persists in all
terms of an iterative series of amplitudes. It arises when
relative momentum of the (12) pair hits the bound state pole
position of two-body scattering amplitude, tðq12Þ∼
ðq212 þ χ212Þ−1, and it describes the possibility of existence
of the two-body bound state in both initial and final states.
The other types of singularity, called secondary singular-
ities [27,79,80], only present in driving terms and first a few
iterations, and singularities are getting weaker and even-
tually disappear after a couple of iterations. A typical
example is the δ-functions that are related to disconnected
diagrams with the third particle remaining intact. The
existence of singularities in T-amplitude is the consequence
of the presence of multiple possible physical distinct
processes in a three-body system. Hence, these singularities
are directly associated with the different physically realiz-
able asymptotic states of the system. The explicit decom-
position of primary singularities of T-amplitude is given in
[27,79,80] by

Tðk12; k3; q12; q3Þ ¼
X3
k¼1

ð2πÞδðkk − qkÞð2qijÞtðkij; qijÞ

þ
X3
γ;k¼1

�
F ðγ;kÞðkαβ; kγ;qij; qkÞ

þ
ϕðγÞðkαβÞG�

ðγ;kÞðkγ; qij; qkÞ
σ2 þ χ2αβ − 3

4
k2γ

þ
Gðγ;kÞðkαβ; kγ; qkÞϕ�

ðkÞðqijÞ
σ2 þ χ2ij − 3

4
q2k

þ
ϕðγÞðkαβÞKðγ;kÞðkγ; qkÞϕ�

ðkÞðqijÞ
ðσ2 þ χ2αβ −

3
4
k2γÞðσ2 þ χ2ij − 3

4
q2kÞ

�
;

ð17Þ

where the t function in Eq. (17) stands for two-body off-
shell scattering amplitude, the ϕðγÞ function represents the
vertex function of the two-body bound state wave function,
ϕðγÞðkαβÞ ¼ ðk2αβ þ χ2αβÞψðkαβÞ. The residue functions that
are associated to physical transition amplitudes, F ðγ;kÞ,
Gðγ;kÞ and Kðγ;kÞ in Eq. (17), do not have any primary
singularities, though they may still have secondary singu-
larities. It has been shown in [27,79,80] that the first term
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on the right-hand side of Eq. (17) is from a disconnected
contribution and it describes the process that one of the
incident free particles is unscattered. The Kðγ;kÞ function in
the last term is the physical amplitude that describes the
processes of either direct or rearrangement scattering on a

bound state: ðijÞ þ k → ðαβÞ þ γ:
P

3
γ¼1 ½Gðγ;kÞ þ ϕðγÞKγ;k

σ2þχ2αβ−
3
4
k2γ
�

is the physical transition amplitude for breakup or capture
processes. The true 1þ 2þ 3 → 1þ 2þ 3 physical scat-
tering amplitude is given by on-shell T-amplitude in the
physical kinematic domain of three-particle momenta. The
singularities in momentum space generate a more compli-
cated asymptotic form of the three-body wave function than
that of the two-body wave function in configuration space.
The physical transition amplitudes can thus also be defined
by asymptotic forms of the wave function in the configu-
ration representation [80–83]. The asymptotic form of the
three-body wave function depends on the type of initial
state, and may behave quite differently and describe distinct
physical processes at different domains in the ðrij; rkÞ plane
[79–83]. For example, scattering of the third particle on a
bound state of (12) pair, the physical amplitudes of different
processes are given by the asymptotic wave function in
different domains: (i) direct channel scattering,
ð12Þ þ 3 → ð12Þ þ 3, is described in the domain of finite
r12 and large r3, the scattering part of the asymptotic
wave function is of the order of e−χ12jr12jOðjr3j−1Þ; (ii) rear-
rangement scattering processes, ð12Þ þ 3 → ð23Þ þ 1 or
ð12Þ þ 3 → ð31Þ þ 2, are given in domains of finite r23 and
large r1 or finite r31 and large r2 respectively, and the wave
function behaves as e−χ23jr23jOðjr1j−1Þ or e−χ31jr31jOðjr2j−1Þ
respectively; (iii) breakup process, ð12Þ þ 3 → 1þ 2þ 3,
appears as both r12 and r3 are large, but r12=r3 remains
constant [79,80], the wave function for breakup is of the
order ofOððr212 þ 4

3
r23Þ−

5
4Þ. In the case of three free incident

particles [81–83], the asymptotic form of the wave function
consists of several different pieces that decrease at different
rates and describes different distinct physical processes,
and its falloff also depends on the direction in configuration
space: (1) incident plane wave that does not decrease in any
direction; (2) terms describe the scattering of a pair by itself
without participation of the third particle, the wave function
is of the order of Oðjrijj−1Þ (kth particle as spectator). The
disconnected terms and incident free wave must be sub-
tracted out before other contributions become visible;
(3) the terms that describe capture of pair ðijÞ as a bound
state is of the order of e−χijjrijjOðjrkj−1Þ. (4) The terms
generated by on-shell double scattering is of the order of
Oððr212 þ 4

3
r23Þ−1Þ. (5) The true three-body scattering terms

are of the order of Oððr212 þ 4
3
r23Þ−

5
4Þ. Nevertheless, it is

clear that understanding of either singularities structure of
T-amplitude in momentum space or asymptotic form of
wave function in configuration space is a crucial step in
order to extract physical transition amplitudes.

As mentioned early in the Introduction, McGuire’s
model permits no diffraction and no breakup or capture
processes, only forward scattering (no new momenta are
created after collision). Therefore, the physical processes in
McGuire’s model are split into two decoupled sectors:
scattering on a bound state and three-to-three particles
scattering. The analytic solution of Faddeev’s equation for a
particle scattering on a bound state has been discussed in
[85–87]. In this work, we solve Faddeev’s equation,
Eq. (14), analytically for the 1þ 2þ 3 → 1þ 2þ 3 three
particles scattering process. As will be shown in following
sections, the T-amplitude for three-to-three scattering of
identical bosons in McGuire’s model has the form of

Tðk12;k3;q12;q3Þ

¼
X3
γ¼1

2ð2πÞδðk3−qγÞ
X3
k¼1

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2−

3

4
q2k

r �
tþ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2−

3

4
q2k

r �

þ
X3
γ¼1

RðkγÞ
ðkγ−q1Þðkγ−q2Þðkγ−q3Þ

; ð18Þ

where the first term again represents the disconnected
contribution and the second term represents the sum of
all the rescattering effects, and the RðkγÞ function is a
polynomial function of relative momenta of three-particle
and free of poles, the explicit expression of the RðkγÞ
function will be made clear later on in Sec. II B. The pole
structure in Eq. (18) yields the forward scattering of three
particles in the end. Notice that the exact solution of
Faddeev’s equation in Eq. (18) has only singularities of
poles and δ-function. This means that first of all, the branch
cut contribution during the iteration of Faddeev’s equation
has to be all canceled out, it turns out to be true, see Sec. B 1.
Second, higher order iterations of Faddeev’s equation in
one dimension do not completely eliminate the three-particle
propagator singularities, this is a distinct feature from three-
dimensional three-body physics. In both dimensions, off-
shell double scattering displays the similar singularity
structure of the three-particle propagator, e.g. ½q212−
ðk3 þ q3

2
Þ2 þ iϵ�−1, see Figs. 1(b) and 1(c). However, for

triple scattering, see Fig. 1(d), the singularity structure starts
diverging. A triple scattering in three dimensions has the
typical singularities of type

Z
d3q

1

k2
12 − ðqþ k3

2
Þ2 þ iϵ

1

q2
12 − ðqþ q3

2
Þ2 þ iϵ

¼ iπ2

j k3

2
− q3

2
j ln

q2
12 þ k2

12 þ j k3

2
− q3

2
j2

q2
12 þ k2

12 − j k3

2
− q3

2
j2 : ð19Þ

In one dimension, triple scattering appears as a one-
dimensional integral over the product of two three-particle
propagators,
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Z
∞

−∞
dq

1

k212 − ðqþ k3
2
Þ2 þ iϵ

1

q212 − ðqþ q3
2
Þ2 þ iϵ

; ð20Þ

it is easy to see that after picking up the poles in the
integrand, the result of the one-dimensional integral has only
poles and branch cuts. As shown in [27], in three dimensions,
the three-particle propagator singularities are smoothed out in
higher iterations and are thus considered as secondary
singularities. On the contrary, in one dimension, some poles
survived higher iterations and all the branch cuts are canceled
out after a sum over all the diagrams in McGuire’s model. In
the end, the exact solution of Faddeev’s equation displays
only singularities of poles and δ-function, as in Eq. (18).
On the other hand, it will also be shown in Sec. II B that

the principal part of the pole term in Eq. (18) is proportional
to a factor, ðσ2 − k212 − 3

4
k23Þ. As the consequence, the

solutions of Faddeev’s equation suffer no branch cut
singularities, all the branch cut singularities in Faddeev’s
equation are canceled out. The three-body wave function
consists of only six plane waves: eiqijr12eiqkr3 (k ¼ 1, 2, 3),
no diffraction effect is generated after scattering. When
three-particle T-amplitude is put on the energy shell,
σ2 ¼ k212 þ 3

4
k23, the principal part of the pole term van-

ishes, thus, the on-shell physical three-body amplitude
consists of only the terms that are proportional to the δ-
function from both disconnected diagrams and on-shell
three-body rescattering effect. Therefore, it allows us to
define the on-shell scattering physical amplitude as a
residue of T-amplitude at pole positions,

�
−
X3
γ¼1

2ð2πÞδðk − qγÞ
��

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 −

3

4
k2

r �
T ðkÞ

¼ T

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 −

3

4
k2

r
; k; q12; q3

�
; k ¼ q1;2;3: ð21Þ

In general, there are six possible independent incoming
plane waves in terms of permutation of incoming momenta,
see [84]. In Appendix B, we show details of how Faddeev’s
equation is solved for an incoming plane wave ψ ð0Þ ¼
eiq12r12eiq3r3 as an example. In the end of Appendix B 1, the
analytic solutions of Faddeev equation for scattering
amplitudes TðγÞ’s and physical on-shell S-matrix are pre-
sented for all six possible incoming plane waves. The three-
body wave function is constructed by using the solution of
Faddeev’s equation, TðγÞ’s, we also present the result of the
constructed three-body wave function for incoming plane
wave ψ ð0Þ ¼ eiq12r12eiq3r3 as an example in Appendix B 2.
Although, there are six independent sets of solutions of
Faddeev’s equation corresponding to six independent
incoming plane waves, for three spinless identical particles,
only solutions for totally symmetric and totally antisym-
metric wave functions have meaningful physical corre-
spondences: scattering of three spinless bosons and three
spinless fermions, respectively. Hence, in the following
sections, the attention is focused on three spinless bosons
and three spinless fermions scattering only.

A. Solutions of Faddeev’s equation
for three spinless fermions

For three spinless identical fermions, the wave function
has to be totally antisymmetric under exchange of any two
particles coordinates; the free incoming wave for totally
antisymmetric three fermions is

ψ anti
ð0Þ ¼

X3
k¼1

ðeiqijr12 − e−iqijr12Þeiqkr3 : ð22Þ

Given the solutions of scattering amplitudes for each
individual wave in Sec. B 1, it is easy to see that the
solutions of Faddeev’s equation for three spinless identical
fermions all vanish, TðγÞ ¼ 0; γ ¼ 1, 2, 3. Therefore, the
totally antisymmetric wave function for three identical
fermions is given by the free incoming wave solution,
ψ antiðr12; r3; qij; qkÞ ¼ ψ anti

ð0Þ .

B. Solutions of Faddeev’s equation
for three spinless bosons

For three spinless identical bosons, the three-body wave
function has to be totally symmetric under exchange of
arbitrary two particles coordinates, the free incoming wave
for totally symmetric three bosons is given by

ψ sym
ð0Þ ¼

X3
k¼1

ðeiqijr12 þ e−iqijr12Þeiqkr3 ; ð23Þ

therefore

vð1;2;3Þðk;q12; q3Þ ¼ mV0

X3
k¼1

2ð2πÞδðk − qkÞ: ð24Þ

FIG. 1. (a) The disconnected diagram for the third particle as a
spectator. (b) and (c) Double scattering contributions from pair
(23) and (31) into (12) pair. (d) A triple scattering contribution.
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Again using the solutions of scattering amplitudes for each
individual wave in Sec. B 1, we found that the solution of
Faddeev’s equation for three identical bosons are

Tð1;2;3Þðk;qij;qkÞ¼2ð2πiÞδðk−q1Þ
imV0

1− imV0

2q23

þ2ð2πiÞδðk−q2Þ
imV0

1− imV0

2q31

þ2ð2πiÞδðk−q3Þ
imV0ð1þ imV0

2q23
Þ

ð1þ imV0

2q12
Þð1− imV0

2q23
Þ

−2

6ðimV0Þ2k
ð1þimV0

2q12
Þð1−imV0

2q23
Þð1−imV0

2q31
Þ

ðk−q3− iϵÞðk−q2− iϵÞðk−q1þ iϵÞ :

ð25Þ

All three TðγÞ’s are identical due to Bose symmetry. By
picking up the contribution of poles, k ¼ q2 þ iϵ, q3 þ iϵ,
and q1 − iϵ in Eq. (25), we introduce three on-shell
scattering amplitudes for later convenience of presentation,

iT 3 ¼
ð− imV0

2q12
Þð1 − imV0

2q23
imV0

2q31
Þ

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ ;

iT 1 ¼
ðimV0

2q23
Þð1 − imV0

2q31
imV0

2q12
Þ

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ ;

iT 2 ¼
ðimV0

2q31
Þð1 − imV0

2q23
imV0

2q12
Þ

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ ; ð26Þ

and

iT1¼ iT 1− itþð−q23Þ; iT2¼ iT 2− itþð−q31Þ;
iT3¼ iT 3− itþðq12Þð1þ2itþð−q23ÞÞ¼ iT2− iT1; ð27Þ

where tþ again is two-body scattering amplitude given in
Eq. (D24). The on-shell scattering contribution of TðγÞ is
thus given by

TðphysÞ
ðγÞ ðk;qij;qkÞ¼ 2ð2πiÞδðk−q1Þð2q23ÞiT 1

þ2ð2πiÞδðk−q2Þð2q31ÞiT 2

−2ð2πiÞδðk−q3Þð2q12ÞiT 3: ð28Þ

The on-shell amplitudes T γ in Eq. (26) satisfy unitarity
relations,

ImT γ ¼ T �
γðT 3 þ T 1 þ T 2Þ; γ ¼ 1; 2; 3: ð29Þ

The three-body off-shell scattering amplitude thus reads

Tðk12; k3;qij; qkÞ ¼
X3
γ¼1

TðphysÞ
ðγÞ ðkγ;qij; qkÞ

− 2
X3
γ¼1

P

6ðimV0Þ2kγ
ð1þimV0

2q12
Þð1−imV0

2q23
Þð1−imV0

2q31
Þ

ðkγ − q3Þðkγ − q2Þðkγ − q1Þ
;

ð30Þ
where P stands for the principal part of poles, and k1 ¼
−k12 − 1

2
k3 and k2 ¼ k12 − 1

2
k3. It is easy to show that

X3
γ¼1

P
kγ

ðkγ − q3Þðkγ − q2Þðkγ − q1Þ
∝
�
σ2 − k212 −

3

4
k23

�
;

ð31Þ

therefore, the principal part on the right-hand side of
Eq. (30) vanishes for on-shell scattering amplitude. The
Bose symmetry warrants that all six on-shell S-matrices are
identical and given by Ssym ¼ 1þ 2iT , where as defined
in Eq. (21), T is physical scattering amplitude, and
T ¼ P

3
k¼1 T k, thus, we find

Ssym ¼
ð1 − imV0

2q12
Þð1þ imV0

2q23
Þð1þ imV0

2q31
Þ

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ : ð32Þ

The on-shell physical scattering amplitudes and S-matrix
can be expressed in terms of a single two-body scattering
phase shift, tþðqÞ ¼ e2iδðqÞ−1

2i , thus, we obtain

iT 3 ¼
�
e2iδðq12Þ − 1

2

��
e2iδð−q23Þ þ e2iδð−q31Þ

2

�
;

iT 1 ¼
�
e2iδð−q23Þ − 1

2

��
1þ e2iδð−q31Þe2iδðq12Þ

2

�
;

iT 2 ¼
�
e2iδð−q31Þ − 1

2

��
1þ e2iδð−q23Þe2iδðq12Þ

2

�
;

Ssym ¼ e2iðδðq12Þþδð−q23Þþδð−q31ÞÞ: ð33Þ

It can be easily checked that the phase shift expressions of
on-shell amplitudes T γ in Eq. (33) are the consequence of
unitarity relations in Eq. (29), therefore Eq. (33) may be
more general for pairwise and short-range interactions of
three identical particles scattering.
The totally symmetric wave function can be constructed

by using Eq. (12) and solutions of Faddeev’s equation
given in Eq. (25). An example of construction of the wave
function from solutions of Faddeev’s equation is given in
Appendix B 2, the construction is rather lengthy and
tedious, so we do not present all the details in the text.
The totally symmetric wave function is expressed in terms
of a single independent coefficient,
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ψ symðr12; r3; qij; qkÞ − ψ sym
ð0Þ

¼ ðAsymðr12; r3Þeiq12r12 þ Asymð−r12; r3Þe−iq12r12Þeiq3r3
þ ðAsymðr31; r2Þeiq23r12 þ Asymð−r23; r1Þe−iq23r12Þeiq1r3
þ ðAsymðr23; r1Þeiq31r12 þ Asymð−r31; r2Þe−iq31r12Þeiq2r3 ;

ð34Þ

where r23 ¼ − r12
2
þ r3 and r31 ¼ − r12

2
− r3, and

Asymðr12; r3Þ ¼ 1þ θðr12Þ2itþðq12Þ½1þ 2itþð−q23Þ�
þ θð−r23Þ2itþð−q23Þ þ θð−r31Þ2itþð−q31Þ
− θðr12Þθðr23Þ4iT1 þ θðr12Þθð−r31Þ4iT2:

ð35Þ

III. THREE-BODY SCATTERING
IN FINITE VOLUME

For three particles interaction in a one-dimensional
periodic box with the size of L, the wave function of the
three-particle in finite volume, ΨðLÞðx1; x2; x3;p1; p2; p3Þ,
must satisfy the periodic boundary condition,

ΨðLÞðx1 þ nx1L; x2 þ nx2L; x3 þ nx3L;p1; p2; p3Þ
¼ ΨðLÞðx1; x2; x3;p1; p2; p3Þ; nx1;x2;x3 ∈ Z: ð36Þ

The finite volume three-body wave function, ΨðLÞ, is
constructed from the three-body free space wave function,
Ψ, by

ΨðLÞðx1; x2; x3;p1; p2; p3Þ

¼ 1

V

X
nx1 ;nx2 ;nx3∈Z

Ψðx1 þ nx1L; x2 þ nx2L; x3

þ nx3L;p1; p2; p3Þ; ð37Þ

in this way, the periodic boundary condition in Eq. (36) is
warranted. Factorizing the center of mass wave function and
relative wave function, and also defining new variables,
n ¼ nxk , nij ¼ nxi − nxj andnk ¼ ðnxi þ nxjÞ − 2nxk , whereðn; nij; nkÞ ∈ Z, thus, we find

ΨðLÞðx1; x2; x3;p1; p2; p3Þ

¼ 1

V

�X
n∈Z

eiPnL
�
eiPRψ ðLÞðrij; rk;qij; qkÞ;

ψ ðLÞðrij; rk;qij; qkÞ

¼
X

nij;nk∈Z
ei

P
3
nkLψ

�
rij þ nijL; rk þ

1

2
nkL;qij; qk

�
; ð38Þ

where ψ ðLÞ represents the relative finite volume wave func-
tion, and the normalization factor of infinite summation V is

given by V ¼ P
n∈Ze

iPnL ¼ 2π
L

P
d∈ZδðPþ 2π

L dÞ. The inte-
ger variables ðnij; nkÞ are related to relative coordinates
ðrjk; rkÞ in ðijÞk configuration. The relative variables in other
configurationscanbeexpressed in termsofvariables ðnij; nkÞ,
e.g. integer variables ðnjk; niÞ in ðjkÞi configuration are
given by

njk ¼ −
1

2
nij þ

1

2
nk; ni ¼ −

3

2
nij −

1

2
nk; i ≠ j ≠ k:

ð39Þ
After removal of center ofmassmotion, theperiodic boundary
condition for the relative finite volume wave function now
reads

ψ ðLÞ
�
rijþnijL;rkþ

1

2
nkL;qij;qk

�

¼ e−i
P
3
nkLψ ðLÞðrij; rk;qij;qkÞ; P¼ 2π

L
d;d∈Z: ð40Þ

With the solution of wave functions, for instance, the totally
symmetricwave functiongiven inEqs. (34) and (35), the finite
volume three-body wave function is constructed by using
Eq. (38). The infinite summation in one dimension can be
performed by using the property of geometric series

X∞
n¼α

xn ¼ xα

1 − x
; ðn; αÞ ∈ Z: ð41Þ

Hence the analytic solutions in one dimension for the
δ-function potential can be obtained.As have beenmentioned
in previous sections, not all six independent wave functions
correspond to physical systems, except totally antisymmetric
and symmetric wave functions given in Secs. II A and II B,
which represent three identical fermions and bosons scatter-
ing respectively. The other four wave functions are not related
to any physical processes, and indeed, we found no physical
solutions in finite volume except three spinless bosons and
fermion systems. In the case of three spinless identical
fermions, because two-body interaction by the δ-function
potential vanishes for identical spinless fermions, three
identical fermions experience zero scattering effect, and
behave as free particles. Therefore, the three-body wave
function has a trivial solution in free space, as shown in
Sec. II A. In finite volume, the periodic boundary condition
leads to thequantization of themomenta of three fermions as a
free particle in a finite box,pi¼2π

L nxi ;nxi∈Z. Nevertheless, in
what follows, wewill only work out all the details of the finite
volume wave function for three the identical bosons system.
In the case of three spinless identical bosons, the

expression of the three-body wave function is dramatically
simplified by symmetry consideration, the three-body wave
function in free space is expressed by a single independent
coefficient only, see Eqs. (34) and (35). Therefore we only
need to perform the infinite sum for a single plane wave, the
rest of the components of the finite volume wave function
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are easily obtained by symmetry consideration. For in-
stance, we can pick the plane wave eiq12r12eiq3r3 component,
the corresponding coefficient of the plane wave in finite
volume is then given by

AðLÞ
symðr12; r3Þ ¼

X
n12;n3∈Z

eiq12n12Leið
P
3
þq3

2
Þn3L

× Asym

�
r12 þ n12L; r3 þ

1

2
n3L

�
: ð42Þ

For nontrivial solutions, only the last two terms in Eq. (35)
survive in the finite box.
First of all, for the term proportional to θðr12Þθðr23Þ in

Eq. (35), the infinite sum reads

Xn23¼n3−n12
2

n12;n3∈Z
eiq12n12LeiðP3þ

q3
2
Þn3Lθðr12 þ n12LÞθðr23 þ n23LÞ

¼
X∞

n12¼θð−r12Þ
e−ið

2
3
Pþq1Þn12L

X∞
n23¼θð−r23Þ

eið
2
3
Pþq3Þn23L

¼
�
θðr12Þ þ

e−ið
2
3
Pþq1ÞL

1 − e−ið23Pþq1ÞL

��
θðr23Þ þ

eið
2
3
Pþq3ÞL

1 − eið23Pþq3ÞL

�
:

ð43Þ
Next, for the term proportional to θðr12Þθð−r31Þ in

Eq. (35), we have

Xn31¼−n3þn12
2

n12;n3∈Z
eiq12n12LeiðP3þ

q3
2
Þn3Lθðr12 þ n12LÞθð−r31 − n31LÞ

¼
X∞

n12¼θð−r12Þ
eið23Pþq2Þn12L

X−θðr31Þ
n31¼−∞

e−ið23Pþq3Þn31L

¼
�
θðr12Þ þ

eið23Pþq2ÞL

1 − eið
2
3
Pþq2ÞL

��
θð−r31Þ þ

eið23Pþq3ÞL

1 − eið
2
3
Pþq3ÞL

�
:

ð44Þ
Putting everything together, we obtain the finite volume

coefficient of plane wave eiq12r12eiq3r3 ,

AðLÞ
symðr12; r3Þ ¼−θðr12Þθðr23Þ4iT1þ θðr12Þθð−r31Þ4iT2

− θðr23Þ4iT1

e−ið
2
3
Pþq1ÞL

1− e−ið23Pþq1Þ

þ θð−r31Þ4iT2

eið
2
3
Pþq2ÞL

1− eið23Pþq2ÞL

þ θðr12Þ4iT3

eið
2
3
Pþq3ÞL

1− eið23Pþq3ÞL

þ 4iT2

eið
2
3
Pþq2ÞL

1− eið23Pþq2ÞL
eið

2
3
Pþq3ÞL

1− eið23Pþq3ÞL

− 4iT1

e−ið
2
3
Pþq1ÞL

1− e−ið23Pþq1ÞL
eið

2
3
Pþq3ÞL

1− eið23Pþq3ÞL
: ð45Þ

The coefficients for other waves in finite volume are
obtained by symmetry consideration, e.g. for plane wave

e−iq12r12eiq3r3 , the coefficient is given by AðLÞ
symð−r12; r3Þ, etc.

Therefore, the three-body wave function for spinless
bosons system in finite volume yields

ψ ðLÞ
symðr12; r3; qij; qkÞ
¼ ðAðLÞ

symðr12; r3Þeiq12r12 þ AðLÞ
symð−r12; r3Þe−iq12r12Þeiq3r3

þ ðAðLÞ
symðr31; r2Þeiq23r12 þ AðLÞ

symð−r23; r1Þe−iq23r12Þeiq1r3
þ ðAðLÞ

symðr23; r1Þeiq31r12 þ AðLÞ
symð−r31; r2Þe−iq31r12Þeiq2r3 :

ð46Þ
Asdemonstrated in the two-bodyscatteringcase in [56,77],

the secular equations or quantization conditions for three-
body interaction in the finite box are obtained by thematching
condition, ψ ðLÞ

symðr12; r3;qij; qkÞ ¼ ψ symðr12; r3; qij; qkÞ. All
six plane waves are independent in Eqs. (34) and (46),
therefore, secular equations are equivalently obtained by
matching coefficients of six independent plane waves. To
obtain secular equations, we first consider the coefficient
for a combination of ðeiq12r12 − e−iq12r12Þeiq3r3 , which is
antisymmetric under exchange of r12 ↔ −r12 and is obvi-
ously forbidden for the bosons system. The matching con-
dition for this particular wave reads

Asymðr12; r3Þ − Asymð−r12; r3Þ
¼ AðLÞ

symðr12; r3Þ − AðLÞ
symð−r12; r3Þ: ð47Þ

Using Eqs. (35) and (45), the matching condition leads to

4iT3½θðr12Þ − θð−r12Þ�

×

�
eið23Pþq3ÞL

1 − eið23Pþq3ÞL
−

e2iðδð−q23Þ−δð−q31ÞÞ

1 − e2iðδð−q23Þ−δð−q31ÞÞ

�

− 4iT1½θðr23Þ − θð−r31Þ�

×

�
e−ið23Pþq1ÞL

1 − e−ið23Pþq1ÞL
−

e−2iðδð−q31Þþδðq12ÞÞ

1 − e−2iðδð−q31Þþδðq12ÞÞ

�

− 4iT2½θðr23Þ − θð−r31Þ�

×

�
eið

2
3
Pþq2ÞL

1 − eið23Pþq2ÞL
−

e−2iðδð−q23Þþδðq12ÞÞ

1 − e−2iðδð−q23Þþδðq12ÞÞ

�
¼ 0: ð48Þ

Thematching condition has to be satisfied in all regions in the
ðr12; r3Þ plane, see Fig. 2, choosing region for an example ðIÞ:
r12 < 0, r23 > 0 and r31 < 0, thus, we obtain our first secular
equation,

eið23Pþq3ÞL ¼ e2iðδð−q23Þ−δð−q31ÞÞ: ð49Þ
The other two secular equations are obtained similarly by
considering the combination of ðeiq23r12 − e−iq23r12Þeiq1r3 and
ðeiq31r12 − e−iq31r12Þeiq2r3 respectively,
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eið23Pþq1ÞL ¼ e2iðδð−q31Þþδðq12ÞÞ; ð50Þ

eið23Pþq2ÞL ¼ e−2iðδð−q23Þþδðq12ÞÞ: ð51Þ
Although the above three secular equations for three-boson
interaction are obtained by choosing a particular region, it is
easy to check thatEqs. (49)–(51) are indeed the solutionsof all
six matching conditions in all regions on the ðr12; r3Þ plane.
As a matter of fact, the secular equations displayed in
Eqs. (49)–(51) have been obtained long ago by Yang
in [89] as a specific case of the N-particle system as
N ¼ 3. In [89], based on Bethe’s hypothesis [90–92], i.e.
“no diffraction” hypothesis, Yang considered a more general
situationofN identical particles problem in onedimension for
δ-interaction. Nevertheless, all three secular equations for the
three-boson system appear as Lüscher’s formula-like quan-
tization conditions,

cot

�
P
3
þ q3

2

�
Lþ cot ðδð−q31Þ − δð−q23ÞÞ ¼ 0;

cot

�
P
3
þ q1

2

�
Lþ cot ð−δð−q31Þ − δðq12ÞÞ ¼ 0;

cot

�
P
3
þ q2

2

�
Lþ cot ðδð−q23Þ þ δðq12ÞÞ ¼ 0: ð52Þ

As can be easily see from Eqs. (49)–(51), only two
conditions in Eq. (52) are in fact independent that are both
given by a single two-body phase shift and relative
momenta of three particles. All the relative momenta of
three particles are determined by two independent particle
momenta as well. Therefore, the quantization conditions
are finally given by two coupled equations that depend on
two independent particle momenta and a two-body phase
shift. Three-body energy spectrum in finitevolume thus can
be obtained by solving two independent particle momenta
given that a two-body phase shift is known or can be
modeled.

IV. DISCUSSION AND CONCLUSION

Using quantization conditions in Eqs. (49)–(51), we
also obtain relations for relative momenta qij, for an
example,

cot
q12L
2

þ cot

�
δðq12Þ þ

δð−q23Þ þ δð−q31Þ
2

�
¼ 0: ð53Þ

The δðq12Þ comes from the disconnected scattering con-

tribution in the (12) pair, see Fig. 1(a), δð−q23Þþδð−q31Þ
2

is the
net result of the sum over all rescattering contributions from
other channels into the (12) pair. The physical picture is
somehow quite similar to the three-body rescattering effect
in three-body decay processes [32–42]. Based on the
Khuri-Trieman equation approach, the decay process of
a particle (0) into three final particles is described by a sum
of all possible decay chains: 0→ ð12Þ3þ 1ð23Þ þ ð31Þ2→
123. For each individual decay chain, the amplitude is the
product of two-body amplitude and a scalar function that
describes the net effect of three-body rescattering corrections
to the disconnected two-body contribution. The analogue to

rescattering in three-body decay processes, δð−q23Þþδð−q31Þ
2

may be interpreted as the three-body rescattering corrections
to the disconnected two-body contribution, δðq12Þ.
Assuming that we can treat Faddeev’s equation, Eq. (14),

as a perturbation theory, and the leading order solution of
Eq. (14) is a disconnected contribution,

Tð0Þ
ðγÞðk;qij;qkÞ

¼ ð2πÞδðk−qγÞ
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2−

3

4
q2γ

r �
tþ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2−

3

4
q2γ

r �
: ð54Þ

Therefore, the total scattering amplitude Tðk12; k3; qij; qkÞ ¼P
3
γ¼1 T

ð0Þ
ðγÞðkγ; qij; qkÞ only has the contribution of three

disconnected scattering amplitudes, 1þ 2 → 1þ 2 with
particle-3 as a spectator, 2þ 3 → 2þ 3 with particle-1 as a
spectator and 3þ 1 → 3þ 1 as particle-2 as a spectator.
Iterating Eq. (14) once, thus, the next-leading order contri-
bution of TðγÞ is given by

Tð1Þ
ðγÞðk; qij; qkÞ ¼

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 −

3

4
k2

r �
itþ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 −

3

4
k2

r �

×
X
α≠γ

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 3

4
q2α

q �
itþ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 3

4
q2α

q �
σ2 − 3

4
q2α − ðkþ qα

2
Þ2 þ iϵ

:

ð55Þ
Thediagrammatic representationofTð1Þ

ð3Þ is shown inFigs. 1(b)
and 1(c), which are double scattering contributions from
pair (23) and (31) into the (12) pair. Now both leading and
next-leading order contributions to the on-shell scattering
amplitude T 3 are

FIG. 2. Diagram show six segments from ðIÞ − ðVIÞ in (r12, r3)
plane, the δ-function potentials are nonzero only at lines, r12 ¼ 0,
r23 ¼ 0 and r31 ¼ 0. The arrows show the positive direction of
each variable.
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T ð0Þ
3 þ T ð1Þ

3 ¼ tþðq12Þ½1þ itþð−q23Þ þ itþð−q31Þ�: ð56Þ

InEq. (56), theperturbation result of scattering amplitude,T 3,
on right-hand side of the equation now indeed appears as the
product of disconnected two-body scattering amplitude
tþðq12Þ and the rescattering corrections to leading order
contribution, tþðq12Þ.
On the other hand, the asymptotic behavior of the two-

body phase shift is given by δðqÞ → − mV0

2q as q → ∞,
where V0 > 0 for repulsive interaction and V0 < 0 for
attractive interaction. For large q3 [the momentum of the
third particle is well separated from relative momentum of
pair (12)], thus, q23 →

3
4
q3 and q31 → − 3

4
q3, and

δð−q23Þþδð−q31Þ
2

→
q3→∞

−
mV0

3

�
1

q3
−

1

q3

�
¼0;

δð−q23Þ−δð−q31Þ
2

→
q3→∞

−
2mV0

3q3
∼δ

�
3

4
q3

�
;

itþð−q23Þþ itþð−q31Þ→
q3→∞ 2imV0

3

�
1

q3
−

1

q3

�
¼0: ð57Þ

Therefore, at large q3, the rescattering between an energetic
third particle and particles in pair (12) is less likely to
happen. The quantization condition in Eq. (53) and the first
condition in Eq. (52) are thus reduced to isobar model type
conditions, cot q12L

2
þ cot δðq12Þ ¼ 0 and cotðP

3
þ q3

2
ÞLþ

cot δð3
4
q3Þ ¼ 0, in which the rescattering effect from third

particle is weak and neglected. The reduction of quantiza-
tion conditions can be understood in the following argu-
ments. Diagrammatically, rescattering amplitudes, such
as Figs. 1(b) and 1(c), are proportional to propagators

1
ðk−q3Þðk−q1Þ and 1

ðk−q3Þðk−q2Þ respectively. When off-shell

momentum q is taken close to q3, the amplitude at the
pole k ¼ q3 position leads to on-shell scattering amplitude
T 3 given in Eq. (33), meanwhile, the contributions from
Figs. 1(b) and 1(c) are proportional to 1

2q31
and 1

2q23
respectively. Hence, for large q3, the rescattering contri-
bution from channel (23) and (31) into pair (12) are both
highly suppressed by 1

q3
, so that quantization conditions for

both q12 in Eq. (53) and q3 in the first condition in Eq. (52)
are reduced to isobar model like quantization conditions,
and the dominant contribution is from the disconnected
diagram.
Although, McGuire’s model displays no diffraction

effect, our results given in Eq. (52) may still hold for a
general short-range potential. This may be demonstrated by
asymptotic behavior of the three-body wave function. The
asymptotic form of the wave function in one dimension is
quite different from that in three dimensions, e.g. the two-
body scattering wave function in one dimension does not
fall off in any direction, see Eq. (D5). For incoming three
free particles, as in three dimensions, the one-dimensional
three-body wave function also consists of several pieces

that display the different asymptotic behavior and describe
different physical processes: (1) the contribution from
incoming free waves, disconnected diagrams and non-
diffracted on-shell rescattering effects all have the form
of nondiffraction waves, e.g. eiqijr12eiqkr3 ; (2) the bound
state capture process has the form of, e.g. e−χ12jr12jeiq3r3
with a bound state of (12) pair in the final state, which
decays exponentially as ðrij; rkÞ → ∞; (3) diffraction
waves are of the order of

Z
dk12
2π

dk3
2π

eik12r12eik3r3

σ2 − k212 − 3
4
k23 þ iϵ

∝
ðr12;r3Þ→∞

�
r212 þ

4

3
r23

�
−1
4

eiσ
ffiffiffiffiffiffiffiffiffiffiffi
r2
12
þ4

3
r2
3

p
; ð58Þ

which describe the spherical wave of the three-body effect
and are suppressed at a large distance [93]. Hence, at large
separations of all three particles, the dominant contribution
is from nondiffraction waves.
In summary, McGuire’s model is adopted to describe

three spinless identical particles scattering in one spatial
dimension; we present the detailed solutions of Faddeev’s
equation for scattering of three free spinless particles. The
three particles interaction in finite volume is derived in
Sec. III. Our approach of solving three-body interaction in
finite volume is a generalization of the approach developed
in [56,77] by considering wave function in the configura-
tion representation; the advantage is that the wave function
contains only on-shell scattering amplitudes. The quanti-
zation conditions by matching wave function in free space
and finite volume are given in terms of two-body scattering
phase shifts in Eq. (52). The quantization conditions in
McGuire’s model is dramatically simplified due to Bethe’s
hypothesis, and the quantization conditions presented in
Eq. (52) are Lüscher’s formula-like and are consistent with
results obtained in [89]. The results in Eq. (52) are
presented in terms of two-body scattering phase shift.
The quantization conditions may be tested in the near
future by one-dimensional lattice models, such as ones
studied in [77,88].

ACKNOWLEDGMENTS

We thank R. A. Briceno for useful discussions. We also
acknowledges support from Department of Physics and
Engineering, California State University, Bakersfield, CA.

APPENDIX A: FORMAL THEORY OF
SCATTERING AND FADDEEV’S EQUATION

1. Formal theory of scattering

In the formal theory of scattering [94], assuming the
Hamiltonian of the scattering system is given by the sum of
a kinematic term and an interaction term, Ĥ ¼ Ĥð0Þ þ V̂,
the S-matrix is given in terms of the solution of the
Schrödinger equation,
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hfjŜjii ¼ hfjÛð∞; 0ÞÛð0;−∞Þjii ¼ hΨð−Þ
f ð0ÞjΨðþÞ

i ð0Þi;
ðA1Þ

where the unitary operator Û is given by Ûðt; t0Þ ¼
T fexp ½−i R t

t0
dt0eiĤð0Þt0 V̂e−iĤð0Þt0 �g, it has the properties of

jΨðtÞi ¼ Ûðt; t0ÞjΨðt0Þi. jΨðtÞi is the solution of the time-
dependent Schrödinger equation, which describes the wave
vector of the scattering system. jii and jfi are initial and
final state vectors in the absence of interaction at distant
past and future respectively. The incoming and outgoing

wave vectors jΨðþÞ
i ð0Þi ¼ Ûð0;−∞Þjii and hΨð−Þ

f ð0Þj ¼
hfjÛð∞; 0Þ are also given by the Lippmann-Schwinger
equation [94,95],

jΨðþÞ
i ð0Þi ¼

�
1þ 1

Ei − Ĥð0Þ − V̂ þ iϵ
V̂

�
jii

¼ jii þ 1

Ei − Ĥð0Þ þ iϵ
V̂jΨðþÞ

i ð0Þi; ðA2Þ

hΨð−Þ
f ð0Þj ¼ hfj

�
1þ V̂

1

Ef − Ĥð0Þ − V̂ þ iϵ

�

¼ hfj þ hΨð−Þ
f ð0ÞjV̂ 1

Ef − Ĥð0Þ þ iϵ
; ðA3Þ

where Ei and Ef denote initial and final state energies
respectively.
Using Eq. (A3), we first rewrite the S-matrix to

hfjŜjii ¼ hfjΨðþÞ
i ð0Þi − 1

Ef − Ei þ iϵ
hfjT̂jii; ðA4Þ

where hfjT̂jii ¼ −hfjV̂jΨðþÞ
i ð0Þi is scattering T-matrix.

With the help of Eq. (A2), we obtain the relations for the T-
matrix,

T̂ ¼ −V̂ þ V̂
1

Ei − Ĥ þ iϵ
V̂ ¼ −V̂ þ V̂

1

Ei − Ĥð0Þ þ iϵ
T̂:

ðA5Þ

In terms of T-matrix, the incoming wave reads jΨðþÞ
i ð0Þi ¼

½1 − 1
Ei−Ĥð0Þþiϵ

T̂�jii, therefore, the S- and T-matrix are

related by

hfjŜjii ¼ hfjii þ 2πiδðEi − EfÞhfjT̂jii: ðA6Þ

2. Faddeev’s equation

For three-particle scattering, the wave vector jΨðþÞ
E i

satisfies Schrödinger equation,

ðE − Ĥð0Þ − V̂ÞjΨðþÞ
E i ¼ 0: ðA7Þ

Assuming pairwise interactions among each pair of par-
ticles, V̂ ¼ P

3
γ¼1 V̂ðγÞ, where V̂ðγÞ stands for the pairwise

interaction between αth and βth particles. As shown in
[26,27], the self-consistent equations for the three-body
wave function depend on the free incoming waves, and are
split into four classes according to four types of asymptotic
free incoming waves: jii and jΦðγÞi (γ ¼ 1, 2, 3), where jii
is solutions of ðE − Ĥð0ÞÞjii ¼ 0 and represents incoming
wave of three free particles, and jΦðγÞi is the solution of
ðE − Ĥð0Þ − V̂ðγÞÞjΦðγÞi ¼ 0 and represents the free γth
particle plus a bound state in ðαβÞ pair.

a. Scattering of three free particles

For three-body scattering with initial state of free
incoming wave jii, the three-body scattering wave vector

has the form of jΨðþÞ
E i ¼ jii þP

3
γ¼1 jΨðγÞi [26,27], where

jΨðγÞi satisfies the equation

jΨðγÞi ¼ ĜðγÞV̂ðγÞðjii þ jΨðαÞi þ jΨðβÞiÞ; α ≠ β ≠ γ:

ðA8Þ

The Green’s function ĜðγÞ ¼ ðE − Ĥð0Þ − V̂ðγÞ þ iϵÞ−1 is

the solution of the equation ðE − Ĥð0Þ − V̂ðγÞÞĜðγÞ ¼ 1.

Green’s function ĜðγÞ is related to two-body scattering

amplitude by ĜðγÞ ¼ Ĝð0Þð1 − t̂ðγÞĜð0ÞÞ, where Ĝð0Þ ¼
ðE − Ĥð0Þ þ iϵÞ−1 and t̂ðγÞ ¼ −V̂ðγÞ þ V̂ðγÞĜð0Þ t̂ðγÞ are free
Green’s function and two-body scattering T-matrix in the
ðαβÞ pair channel respectively. Therefore, we found rela-
tions V̂ðγÞĜðγÞ ¼ −t̂ðγÞĜð0Þ and

V̂ðγÞjΨðγÞi ¼ −t̂ðγÞĜð0ÞV̂ðγÞðjii þ jΨðαÞi þ jΨðβÞiÞ: ðA9Þ

The total three-body scattering amplitude is given by

T̂jii ¼ −V̂jΨðþÞ
E i ¼ P

3
γ¼1 T̂ðγÞjii [26,27], where

T̂ðγÞjii ¼ −V̂ðγÞjΨðþÞ
E i: ðA10Þ

Using Eq. (A9), we thus have

T̂ðγÞjii ¼−ð1− t̂ðγÞĜð0ÞÞV̂ðγÞðjiiþ jΨðαÞiþ jΨðβÞiÞ; ðA11Þ

jΨðγÞi ¼ −Ĝð0ÞT̂ðγÞjii: ðA12Þ

Equations (A11) and (A12) together lead to the well-known
Faddeev’s equation for three particles scattering [26,27],

T̂ðγÞ ¼ t̂ðγÞ − t̂ðγÞĜð0ÞðT̂ðαÞ þ T̂ðβÞÞ; α ≠ β ≠ γ: ðA13Þ
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b. Scattering by a bound state

For the case of the i-th particle incident on a bound state
of other two particles pair, the initial state of the free
incoming wave is given by jΦðiÞi. The three-body wave

vector has the form of jΨðþÞ
E i ¼ P

3
γ¼1 jΨðγÞi [26,27], where

jΨðγÞi satisfies the equation

jΨðγÞi ¼ δγ;ijΦðiÞi þ ĜðγÞV̂ðγÞðjΨðαÞi þ jΨðβÞiÞ;
α ≠ β ≠ γ: ðA14Þ

The total scattering amplitude for a particle scattering

with a bound state is given by T̂jΦðiÞi ¼ −V̂jΨðþÞ
E i ¼P

3
γ¼1 T̂ðγÞjΦðiÞi [26,27], where

T̂ðγÞjΦðiÞi ¼ −V̂ðγÞjΨðþÞ
E i: ðA15Þ

Thus, we find

T̂ðγÞjΦðiÞi ¼ −δγ;iV̂ðγÞjΦðiÞi þ t̂ðγÞðjΨðαÞi þ jΨðβÞiÞ; ðA16Þ

jΨðγÞi ¼ −Ĝð0ÞT̂ðγÞjΦðiÞi: ðA17Þ

The Faddeev’s equation for the i-th particle incident on a
bound state of other two particles pair yields

T̂ðγÞ ¼ −δγ;iV̂ðγÞ − t̂ðγÞĜð0ÞðT̂ðαÞ þ T̂ðβÞÞ; α ≠ β ≠ γ:

ðA18Þ

APPENDIX B: SOLUTIONS OF FADDEEV’S
EQUATION FOR SHORT-RANGE
INTERACTION IN FREE SPACE

In this section, we first show the details of the solution of
Faddeev’s equation, Eq. (14),

TðγÞðk; qij; qkÞ

¼
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 −

3

4
k2

r �
itþ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 −

3

4
k2

r ��
vðγÞðk; qij; qkÞ

imV0

þi
Z

∞

−∞

dq
2π

TðαÞðq; qij; qkÞ þ TðβÞðq; qij; qkÞ
σ2 − 3

4
q2 − ðkþ q

2
Þ2 þ iϵ

�
;

α ≠ β ≠ γ;

where

vðγÞðk; qij; qkÞ ¼
Z

∞

−∞
drαβdrγe−ikrγ

×mV0δðrαβÞψ ð0Þðrαβ; rγ; qij; qkÞ:
Then, using the solutions obtained by solving Faddeev’s
equation, we demonstrate how the three-body scattering
wave function is constructed.

1. Solution of T amplitudes

Let us first consider a free incoming wave,

ψ ð0Þ ¼ eiq12r12eiq3r3 ¼ eiq23r23eiq1r1 ¼ eiq31r31eiq2r2 ; ðB1Þ

therefore

vðγÞðk;q12; q3Þ ¼mV0ð2πÞδðk− qγÞ; γ ¼ 1;2;3: ðB2Þ

First of all, let us introduce three new functions,

ZðkÞ ¼
X3
γ¼1

TðγÞðk; qij; qkÞ;

XðkÞ ¼ Tð3Þðk; qij; qkÞ − Tð1Þðk;qij; qkÞ;
YðkÞ ¼ Tð3Þðk; qij; qkÞ − Tð2Þðk;qij; qkÞ; ðB3Þ

thus Faddeev’s equation, Eq. (14), can be reexpressed as
three decoupled integral equations for ðX; Y; ZÞ functions,

1�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 3

4
k2

q �
itþ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 3

4
k2

q �ZðkÞ

¼ −ið2πÞ
X3
γ¼1

δðk − qγÞ

þ 2i
Z

∞

−∞

dq
2π

ZðqÞ
σ2 − 3

4
q2 − ðkþ q

2
Þ2 þ iϵ

; ðB4Þ

1�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 3

4
k2

q �
itþ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 3

4
k2

q �XðkÞ

¼ −ið2πÞδðk − q3Þ þ ið2πÞδðk − q1Þ

− i
Z

∞

−∞

dq
2π

XðqÞ
σ2 − 3

4
q2 − ðkþ q

2
Þ2 þ iϵ

; ðB5Þ

and

1�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 3

4
k2

q �
itþ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 3

4
k2

q �YðkÞ

¼ −ið2πÞδðk − q3Þ þ ið2πÞδðk − q2Þ

− i
Z

∞

−∞

dq
2π

YðqÞ
σ2 − 3

4
q2 − ðkþ q

2
Þ2 þ iϵ

: ðB6Þ

Next, let us solve Eq. (B4) first. According to [84], the
three-body problem with equal-strength δ-function poten-
tials is exactly solvable, diffraction effects are canceled out,
the solution of wave function is expressed as the sum of six
possible plane waves, see Eq. (C1). Therefore, the three-
body scattering amplitudes can only be given by the sum of
pole terms, see Eq. (C10). The strategy of solving
Eqs. (B4)–(B6) is thus to make an ansatz of the solution
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as the sum of six possible pole terms, the pole positions are
given in terms of the momenta of the incoming wave. Each
pole term is then assigned with a constant coefficient.
While the ansatz of the solution is plugged into integral
equations, Eq. (B4)–(B6), by carefully defining the inte-
gration of the contour and also requiring that the branch cut
contributions on both sides have to be canceled out as the
consequence of Bethe’s hypothesis, then the coefficients of
pole terms can be fixed by matching both sides of the
equations.
In what follows, we show how Eq. (B4) is satisfied by

the ansatz,

ZðkÞ ¼ ð2πiÞ
X3
γ¼1

κγδðk − qγÞ

þ λk
ðk − q3 − iϵÞðk − q2 − iϵÞðk − q1 þ iϵÞ : ðB7Þ

Instead of deforming the contour of integration in Eq. (B4),
equivalently, we will adopt the iϵ prescription in this work,
and assign the small imaginary parts to relative momenta to
avoid poles on the real axis. The left-hand side of Eq. (B4)
is thus given by

LHS ¼
X3
γ¼1

κγ�
2

ffiffiffiffiffiffiffi
q2αβ

q �
itþ

� ffiffiffiffiffiffiffi
q2αβ

q � ð2πiÞδðk − qγÞ

−
λ
�

1
imV0

þ 1

2
ffiffiffiffiffiffiffiffiffiffi
σ2−3

4
k2

p
�
k

ðk − q3 − iϵÞðk − q2 − iϵÞðk − q1 þ iϵÞ ; ðB8Þ

where α ≠ β ≠ γ. The integration on the right-hand side of
Eq. (B4) is carried out by closing the contour in the upper

half plane and picking up poles, q¼ − k
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 3

4
k2

q
þ iϵ,

q3 þ iϵ and q2 þ iϵ, thus we find

RHS¼−i
X3
γ¼1

ð2πÞδðk−qγÞ

þ2
X3
γ¼1

κγ�
kþqγ

2
þ

ffiffiffiffiffiffiffi
q2αβ

q
þ iϵ

��
kþqγ

2
−

ffiffiffiffiffiffiffi
q2αβ

q
− iϵ

�

þ
λ
�
1− k

2
ffiffiffiffiffiffiffiffiffiffi
σ2−3

4
k2

p
�

ðk−q3− iϵÞðk−q2−iϵÞðk−q1þ iϵÞ

−
λ q3
2q23q31�

kþq3
2
þ

ffiffiffiffiffiffiffi
q212

p
þ iϵ

��
kþq3

2
−

ffiffiffiffiffiffiffi
q212

p
− iϵ

�

−
λ q2
2q12q23�

kþq2
2
þ

ffiffiffiffiffiffiffi
q231

p
þ iϵ

��
kþq2

2
−

ffiffiffiffiffiffiffi
q231

p
− iϵ

�: ðB9Þ

We can clearly see that the branch cut contribution, the
terms proportional to 1ffiffiffiffiffiffiffiffiffiffi

σ2−3
4
k2

p , on both sides of Eq. (B4)

cancel out completely. Next, the square root terms,
ffiffiffiffiffiffiffi
q2αβ

q
,

are handled by assigning a small imaginary part to q12 →
q12 þ i0þ, the imaginary part for q23 → q23 − i0þ and
q31 → q31 − i0þ are determined completely by relations,
q23 ¼ − 1

2
q12 þ 3

4
q3 and q31 ¼ − 1

2
q12 − 3

4
q3 respectively.

In addition, our convention for the complex square root is
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � i0þ

p
¼ �

ffiffiffiffiffi
q2

p
, therefore

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq�i0þÞ2

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2�2qi0þ
p

¼�q. Thus, with our assignment of the
imaginary part to q12, we obtain relations

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq12 þ i0þÞ2

p
¼

q12,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq23 − i0þÞ2

p
¼ −q23 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq31 − i0þÞ2

p
¼ −q31.

Hence, the right-hand side of Eq. (B4) now can be
reexpressed by

RHS¼ −
X3
γ¼1

ð2πiÞδðk− qγÞ− ð2πiÞδðk− q3Þ
κ1
q23

þ 2

P
3
γ¼1 κγðk− qγÞ

ðk− q3 − iϵÞðk− q2 − iϵÞðk− q1 þ iϵÞ

þ
λ
�
1− k

2
ffiffiffiffiffiffiffiffiffiffi
σ2−3

4
k2

p − q3ðk−q3Þ
2q23q31

− q2ðk−q2Þ
2q12q23

�

ðk− q3 − iϵÞðk− q2 − iϵÞðk− q1 þ iϵÞ : ðB10Þ

Comparing Eq. (B8) to Eq. (B10), the branch cut is
canceled out, and the coefficients are given by

κ1 ¼
imV0

1 − imV0

2q23

; κ2 ¼
imV0

1 − imV0

2q31

;

κ3 ¼
imV0ð1þ imV0

2q23
Þ

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þ ;

λ ¼ −
6ðimV0Þ2

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ : ðB11Þ

The solutions of Eqs. (B5) and (B6) are found in a
similar way,

XðkÞ ¼ ð2πiÞδðk− q3Þ
imV0

ð1þ imV0

2q12
Þð1− imV0

2q23
Þ

− ð2πiÞδðk− q1Þ
imV0

1− imV0

2q23

þ
ð2q31ÞðimV0Þ2

ð1þimV0
2q12

Þð1−imV0
2q23

Þ
ðk− q3 − iϵÞðk− q2 − iϵÞðk− q1 þ iϵÞ ; ðB12Þ

and
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YðkÞ ¼ ð2πiÞδðk− q3Þ
imV0

1þ imV0

2q12

− ð2πiÞδðk− q2Þ
imV0

1− imV0

2q31

−

ð2q23ÞðimV0Þ2
ð1þimV0

2q12
Þð1−imV0

2q31
Þ

ðk− q3 − iϵÞðk− q2 − iϵÞðk− q1 þ iϵÞ : ðB13Þ

In the end, the solutions of Tð1;2;3Þ for free incoming
wave ψ ð0Þ ¼ eiq12r12eiq3r3 are

Tð3Þðk; qij; qkÞ

¼ ð2πiÞδðk − q3Þ
imV0

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þ

−

ðimV0Þ2ð2kþq3Þ
ð1þimV0

2q12
Þð1−imV0

2q23
Þð1−imV0

2q31
Þ

ðk − q3 − iϵÞðk − q2 − iϵÞðk − q1 þ iϵÞ ; ðB14Þ

Tð1Þðk; qij; qkÞ

¼ ð2πiÞδðk − q1Þ
imV0

1 − imV0

2q23

−

ðimV0Þ2ð2kþq1−imV0Þ
ð1þimV0

2q12
Þð1−imV0

2q23
Þð1−imV0

2q31
Þ

ðk − q3 − iϵÞðk − q2 − iϵÞðk − q1 þ iϵÞ ; ðB15Þ

Tð2Þðk; qij; qkÞ

¼ ð2πiÞδðk − q2Þ
imV0

1 − imV0

2q31

þ ð2πiÞδðk − q3Þ
imV0ðimV0

2q23
Þ

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þ

−

ðimV0Þ2ð2kþq2þimV0Þ
ð1þimV0

2q12
Þð1−imV0

2q23
Þð1−imV0

2q31
Þ

ðk − q3 − iϵÞðk − q2 − iϵÞðk − q1 þ iϵÞ : ðB16Þ

The total three-body scattering amplitude,Tðkαβ; kγ; qij; qkÞ,
is determined by Eq. (16). As the consequence of Bethe’s
hypothesis, the physical scattering process for equal-
strength δ-function potential and equal mass particles does
not create any new momenta, see [84]. The final relative
momenta in any pair configuration, for instance ðk12; k3Þ,
can only be ð�qij; qkÞ where k ¼ 1, 2, 3 and i ≠ j ≠ k.
Therefore, we may define the on-shell S-matrix by

ð2πÞδðk12 − qijÞð2πÞδðk3 − qkÞSðk12; k3Þ
¼ ð2πÞδðk12 − q12Þð2πÞδðk3 − q3Þ

þ ð2πiÞδ
�
σ2 − k212 −

3

4
k33

�

× Tðk12; k3; qij; qkÞ: ðB17Þ
For free incoming wave ψ ð0Þ ¼ eiq12r12eiq3r3 , six possible
on-shell S-matrix elements are

ðSðq12; q3Þ; Sð−q12; q3Þ; Sðq23; q1Þ;
Sð−q23; q1Þ;Sðq31; q2Þ; Sð−q31; q2ÞÞ

¼ ðs1; s2; s3; s4; s5; s6Þ; ðB18Þ
where

s1 ¼
1

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ ;

s2 ¼
ð− imV0

2q12
Þ½1þ ðimV0

2q23
ÞðimV0

2q31
Þ�

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ ;

s3 ¼
ðimV0

2q23
ÞðimV0

2q31
Þ

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ ;

s4 ¼
ðimV0

2q31
Þ

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ ;

s5 ¼ s3;

s6 ¼
ðimV0

2q23
Þ

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ : ðB19Þ

The solutions of T amplitudes of the Faddeev equation
and S-matrix for the rest of the five independent free
incoming waves can be obtained from solutions given in
Eqs. (B14)–(B16) by relabeling subindices.
(1) For ψ ð0Þ ¼ e−iq12r12eiq3r3, solutions of T amplitudes

are given by Tð1Þ ↔ Tð2Þ, Tð3Þ remains the same.
The S-matrix elements are ðs2; s1; s4; s3; s6; s5Þ.

(2) For ψ ð0Þ ¼ eiq23r12eiq1r3, solutions of T amplitudes
are given by Tð3Þ→Tð2Þ, Tð1Þ→Tð3Þ, and Tð2Þ→Tð1Þ.
The S-matrix elements are ðs5; s4; s1; s6; s3; s2Þ.

(3) For ψ ð0Þ ¼ e−iq23r12eiq1r3, solutions of T amplitudes
are given by Tð1Þ ↔ Tð3Þ, Tð2Þ remains the same.
The S-matrix elements are ðs4; s5; s6; s1; s2; s3Þ.

(4) For ψ ð0Þ ¼ eiq31r12eiq2r3, solutions of T amplitudes
are given by Tð3Þ→Tð1Þ, Tð1Þ→Tð2Þ, and Tð2Þ→Tð3Þ.
The S-matrix elements are ðs3; s6; s5; s2; s1; s4Þ.

(5) For ψ ð0Þ ¼ e−iq31r12eiq2r3, solutions of T amplitudes
are given by Tð3Þ ↔ Tð2Þ, Tð1Þ remains the same.
The S-matrix elements are ðs6; s3; s2; s5; s4; s1Þ.

In the end of this subsection, we also like to point out that
the choice of imaginary part assignment for the complex
square root is not unique, for instance, we could assign a
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small imaginary part to q23 instead of q12. If so, the
solutions obtained by assigning iϵ to q23 are equivalent
to relabel particle numbers by 1 → 2, 2 → 3 and 3 → 1
from the solutions obtained by assigning iϵ to q12.

2. Construction of wave function from
solution of T’s

With the solutions of scattering amplitudes in
Eqs. (B14)–(B16), we are now at the position of construct-
ing the wave function of three-body scattering. We show
some details of wave function construction in this section
for the incoming wave ψ ð0Þ ¼ eiq12r12eiq3r3 as an example.
Using Eq. (12), we thus obtain

ψðr12; r3; qij; qkÞ ¼ eiq12r12eiq3r3

þ
Z

∞

−∞

dk12
2π

dk3
2π

eik12r12eik3r3

k212 þ 3
4
k23 − σ2 − iϵ

× ½Tð3Þðk3; qij; qkÞ þ Tð1Þðk1; qij; qkÞ
þTð2Þðk1; qij; qkÞ�; ðB20Þ

where k1 ¼ −k12 −
k3
2
and k2 ¼ k12 −

k3
2
. For each indi-

vidual ψ ð1;2;3Þ, see in Eq. (12), the integration over
Tð1;2;3Þ amplitudes has both a branch cut contribution
from the free three-body Green’s function, see Eq. (12),
and poles contribution from scattering amplitudes
themselves. Only the branch cut contribution is respon-
sible for the diffraction effect, in another word, only the
branch cut integration creates new final momenta over
scattering, pole terms do not create any new momenta.
Branch cut integration is usually troublesome, fortu-
nately, as we already know from [84], diffraction in the
total wave function has to be canceled out. By some
simple algebra in Eq. (B20), it is easy to see thatP

3
γ¼1 TðγÞðkγÞ ∝ ðk212 þ 3

4
k23 − σ2Þ, thus

P
3

γ¼1
TðγÞðkγÞ

k2
12
þ3

4
k2
3
−σ2 has

only pole terms. We first complete the integration of
k12, and pick up the poles in the upper half k12 plane
for r12 > 0, and the poles in the lower half k12 plane for
r12 < 0, so we get

ψðr12; r3; qij; qkÞ ¼ eiq12r12eiq3r3

þ
ðimV0

2q23
Þe−iq23jr23jeiq1r1
1 − imV0

2q23

þ
ðimV0

2q31
Þe−iq31jr31jeiq2r2
1 − imV0

2q31

−
ðimV0

2q12
Þ½ðimV0

2q23
Þeiq12jr31jeiq3r2 þ eiq12jr12jeiq3r3 �
ð1þ imV0

2q12
Þð1 − imV0

2q23
Þ

þ ðimV0Þ
ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ i

Z
∞

−∞

dk3
2π

×

�ð− imV0

2q23
Þð1 − imV0

2q31
Þθðr12Þeið

k3
2
þq3Þr12eik3r3 þ ðimV0

2q31
Þð1 − imV0

2q23
Þθð−r12Þe−ið

k3
2
þq3Þr12eik3r3

ðk3 − q2 − iϵÞðk3 − q1 þ iϵÞ

þ
½ðimV0

2q31
Þ − ðimV0

2q12
Þð1 − imV0

2q31
Þ�θðr12Þe−ið

k3
2
þq1Þr12eik3r3 þ ð− imV0

2q12
Þð1þ imV0

2q31
Þθð−r12Þeið

k3
2
þq1Þr12eik3r3

ðk3 − q2 − iϵÞðk3 − q3 − iϵÞ

þ
½ðimV0

2q23
Þ − ðimV0

2q12
Þð1 − imV0

2q23
Þ�θðr12Þeið

k3
2
þq2Þr12eik3r3 þ ð− imV0

2q12
Þð1þ imV0

2q23
Þθð−r12Þe−ið

k3
2
þq2Þr12eik3r3

ðk3 − q1 þ iϵÞðk3 − q3 − iϵÞ
�
:

ðB21Þ

Next, we can perform k3 integration and pick up all the poles in both the upper and the lower half k3 plane in a
similar manner as we did in k12 integration, thus, we finally get

ψðr12; r3;qij; qkÞ ¼ ðAeiq12r12 þ Be−iq12r12Þeiq3r3 þ ðCeiq23r12 þDe−iq23r12Þeiq1r3 þ ðEeiq31r12 þ Fe−iq31r12Þeiq2r3 ; ðB22Þ

where the coefficients are given by

A ¼ 1þ
θð−r23ÞðimV0

2q23
Þ

1 − imV0

2q23

þ
θð−r31ÞðimV0

2q31
Þ

1 − imV0

2q31

−
θðr12ÞðimV0

2q12
Þ

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þ

þ θðr12Þ
−θðr23ÞðimV0

2q23
Þ½ðimV0

2q31
Þ − ðimV0

2q12
Þð1 − imV0

2q31
Þ� þ θð−r31ÞðimV0

2q31
Þ½ðimV0

2q23
Þ − ðimV0

2q12
Þð1 − imV0

2q23
Þ�

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ ; ðB23Þ
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B ¼ −
θð−r12ÞðimV0

2q12
Þ

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þ þ θð−r12Þ

ðimV0

2q12
Þ½θð−r31ÞðimV0

2q23
Þð1þ imV0

2q31
Þ − θðr23ÞðimV0

2q31
Þð1þ imV0

2q23
Þ�

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ ; ðB24Þ

C ¼ −
θðr31ÞðimV0

2q12
ÞðimV0

2q23
Þ

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þ þ

ðimV0

2q12
Þ½θðr12Þθðr31ÞðimV0

2q23
Þð1 − imV0

2q31
Þ − θð−r12Þθð−r23ÞðimV0

2q31
Þð1þ imV0

2q23
Þ�

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ ; ðB25Þ

D ¼
θðr31ÞðimV0

2q31
Þ

1 − imV0

2q31

þ
ðimV0

2q31
Þf−θð−r12Þθð−r23ÞðimV0

2q12
Þð1 − imV0

2q23
Þ þ θðr12Þθðr31Þ½ðimV0

2q23
Þ − ðimV0

2q12
Þð1 − imV0

2q23
Þ�g

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ ; ðB26Þ

E ¼ −
θð−r12Þθðr23ÞðimV0

2q12
ÞðimV0

2q31
Þð1 − imV0

2q23
Þ þ θð−r12Þθð−r31ÞðimV0

2q23
ÞðimV0

2q12
Þð1þ imV0

2q31
Þ

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ ; ðB27Þ

and

F ¼
θðr23ÞðimV0

2q23
Þ

1 − imV0

2q23

−
θð−r31ÞðimV0

2q12
ÞðimV0

2q23
Þ

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þ þ

θðr12ÞðimV0

2q23
Þfθð−r31ÞðimV0

2q12
Þð1 − imV0

2q31
Þ þ θðr23Þ½ðimV0

2q31
Þ − ðimV0

2q12
Þð1 − imV0

2q31
Þ�g

ð1þ imV0

2q12
Þð1 − imV0

2q23
Þð1 − imV0

2q31
Þ :

ðB28Þ

It can be shown that the coefficients given in Eq. (B28)
are the solutions of McGuire’s model, the coefficients
obtained in six individual regions in the (r12, r3) plane,
see Fig. 2, satisfy matrix transformation conditions
in Eq. (C3).
The three-body wave functions for other free incoming

waves are obtained in a similar way; because of length
expression of these wave functions, we do not show them
all in this work except the wave function for three fermions
and three bosons system; the expression of three fermions
and three bosons systems are listed in Secs. II A and II B
respectively.

APPENDIX C: MCGUIRE’S MODEL

The one-dimensional three identical particles system
interacting through the equal-strength δ-function potential
has been solved by the ray-tracing method in [84]. After
removal of the center-of-mass coordinate, the one-
dimensional three-body problem resembles the motion of
a single particle in a two-dimensional configuration space,
e.g. (r12, r3) plane. The plane is divided symmetrically into
six segments by interaction lines at rij¼0 ðij¼12;23;31Þ,
see Fig. 2. According to ray-tracing arguments, the author
in [84] shows that three-particle only exchange momenta
during scattering, no new momenta are generated by
collision, hence no diffraction. Therefore a general solution
of the wave function is a linear combination of six possible
plane waves,

ψΛðr12; r3Þ ¼ ðAΛeiq12r12 þ BΛe−iq12r12Þeiq3r3
þ ðCΛeiq23r12 þDΛe−iq23r12Þeiq1r3
þ ðEΛeiq31r12 þ FΛe−iq31r12Þeiq2r3 ; ðC1Þ

where Λ stands for six segments from (I) up to ðVIÞ. The
coefficients in six segments are related by boundary

conditions of wave function, e.g. the boundary conditions

at r12 ¼ 0 between segment (I) and ðIIÞ are given by

ψ IIðr12; r3Þjr12¼0þ ¼ ψ Iðr12; r3Þjr12¼0− ;

∂ψ IIðr12; r3Þ
∂r12

				
r12¼0þ

−
∂ψ Iðr12; r3Þ

∂r12
				
r12¼0−

¼ mV0ψ IIðr12; r3Þjr12¼0þ ; ðC2Þ

the rest of the boundary conditions are given in a similar

way. If we define the vector of coefficients by χTΛ ¼
ðAΛ; BΛ;…; FΛÞ in segment Λ, the two neighboring χΛ
vectors are connected by matrix transformation,

χΛ ¼ ΓΛ;Λ0χΛ0 ; ðC3Þ

where ΓΛ;Λ0 is determined by Eq. (C2).
For completeness, we give the expressions of six Γ

matrices,
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ΓII;I ¼

2
66666666666664

1 − imV0

2q12
− imV0

2q12
0 0 0 0

imV0

2q12
1þ imV0

2q12
0 0 0 0

0 0 1 − imV0

2q23
− imV0

2q23
0 0

0 0 imV0

2q23
1þ imV0

2q23
0 0

0 0 0 0 1 − imV0

2q31
− imV0

2q31

0 0 0 0 imV0

2q31
1þ imV0

2q31

3
77777777777775

; ðC4Þ

ΓIV;II ¼

2
6666666666664

1þ imV0

2q23
0 0 0 0 imV0

2q23

0 1 − imV0

2q31
− imV0

2q31
0 0 0

0 imV0

2q31
1þ imV0

2q31
0 0 0

0 0 0 1 − imV0

2q12
− imV0

2q12
0

0 0 0 imV0

2q12
1þ imV0

2q12
0

− imV0

2q23
0 0 0 0 1 − imV0

2q23

3
7777777777775

; ðC5Þ

ΓVI;IV ¼

2
66666666664

1 − imV0

2q31
0 0 − imV0

2q31
0 0

0 1þ imV0

2q23
0 0 imV0

2q23
0

0 0 1 − imV0

2q12
0 0 − imV0

2q12
imV0

2q31
0 0 1þ imV0

2q31
0 0

0 − imV0

2q23
0 0 1 − imV0

2q23
0

0 0 imV0

2q12
0 0 1þ imV0

2q12

3
77777777775
; ðC6Þ

ΓV;VI ¼

2
6666666666664

1þ imV0

2q12
imV0

2q12
0 0 0 0

− imV0

2q12
1 − imV0

2q12
0 0 0 0

0 0 1þ imV0

2q23
imV0

2q23
0 0

0 0 − imV0

2q23
1 − imV0

2q23
0 0

0 0 0 0 1þ imV0

2q31
imV0

2q31

0 0 0 0 − imV0

2q31
1 − imV0

2q31

3
7777777777775

; ðC7Þ

ΓIII;V ¼

2
66666666666664

1 − imV0

2q23
0 0 0 0 − imV0

2q23

0 1þ imV0

2q31
imV0

2q31
0 0 0

0 − imV0

2q31
1 − imV0

2q31
0 0 0

0 0 0 1þ imV0

2q12
imV0

2q12
0

0 0 0 − imV0

2q12
1 − imV0

2q12
0

imV0

2q23
0 0 0 0 1þ imV0

2q23

3
77777777777775

; ðC8Þ
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ΓI;III ¼

2
6666666666664

1 − imV0

2q31
0 0 − imV0

2q31
0 0

0 1þ imV0

2q23
0 0 imV0

2q23
0

0 0 1 − imV0

2q12
0 0 − imV0

2q12
imV0

2q31
0 0 1þ imV0

2q31
0 0

0 − imV0

2q23
0 0 1 − imV0

2q23
0

0 0 imV0

2q12
0 0 1þ imV0

2q12

3
7777777777775

: ðC9Þ

The scattering amplitudes TðγÞ’s can be constructed by using Eq. (10), therefore we obtain

Tð3Þðq; qij; qkÞ ¼ imV0

�
AI þ BI

q − q3 − iϵ
þ CI þDI

q − q1 − iϵ
þ EI þ FI

q − q2 − iϵ
−

AVI þ BVI

q − q3 þ iϵ
−

CVI þDVI

q − q1 þ iϵ
−

EVI þ FVI

q − q2 þ iϵ

�
;

Tð1Þðq; qij; qkÞ ¼ imV0

�
EIII þDIII

q − q3 − iϵ
þ AIII þ FIII

q − q1 − iϵ
þ BIII þ CIII

q − q2 − iϵ
−

EII þDII

q − q3 þ iϵ
−

AII þ FII

q − q1 þ iϵ
−

BII þ CII

q − q2 þ iϵ

�
;

Tð2Þðq; qij; qkÞ ¼ imV0

�
CVI þ FVI

q − q3 − iϵ
þ BVI þ EVI

q − q1 − iϵ
þ AVI þDVI

q − q2 − iϵ
−

CI þ FI

q − q3 þ iϵ
−

BI þ EI

q − q1 þ iϵ
−

AI þDI

q − q2 þ iϵ

�
: ðC10Þ

As we can see, the scattering amplitudes bear no branch
cuts, but only pole terms as the consequence of Bethe’s
hypothesis.

APPENDIX D: TWO-BODY SCATTERING

For completeness, we also give the brief review of two-
body interaction in finite volume in this section.

1. Two-body scattering in free space

We consider two spinless identical particles scattering,
the positions and momenta of two particles are denoted by
ðx1; x2Þ and ðp1; p2Þ respectively. The wave function of
scattering two particles satisfies Schrödinger equation,
�
−

1

2m
d2

dx21
−

1

2m
d2

dx22
þ Vðx1 − x2Þ − E

�
Ψðx1; x2Þ ¼ 0;

ðD1Þ
where the mass of the particle is m, the total energy of the

two-particle system is E ¼ p2
1

2m þ p2
2

2m. Let us denote the
center of mass and relative positions by R ¼ x1þx2

2
and

r ¼ x1 − x2 respectively, and conjugate momenta by P ¼
p1 þ p2 and k ¼ p1−p2

2
respectively. Due to translational

invariance of center of mass motion, the total wave function
of two particles is described by the product of a plane wave,
eiPR, that describes center of mass motion and the wave
function, ψðr; kÞ, that only describes relative motion of two
particles, Ψðx1; x2Þ ¼ eiPRψðr; kÞ. It may be more conven-
ient to use the Lippmann-Schwinger equation representa-
tion of solutions,

ψðr; kÞ ¼ eikr þ
Z

∞

−∞
dr0Gð0Þðr − r0; zkÞmVðr0Þψðr0; kÞ;

ðD2Þ

where zk ¼ k2 þ iϵ and k2 ¼ mE − P2

4
, the free-particle

Green’s function is given by

Gð0Þðr; zkÞ ¼
Z

∞

−∞

dq
2π

eiqr

zk − q2
¼ −

iei
ffiffiffiffi
k2

p
jrj

2
ffiffiffiffiffi
k2

p : ðD3Þ

At large separation, jrj ≫ jr0j, the Green’s function can be
approximated by

Gð0Þðr − r0; zkÞ ≃jrj≫jr0j
−
iei

ffiffiffiffi
k2

p
jrj

2
ffiffiffiffiffi
k2

p e−i
ffiffiffiffi
k2

p
rr0
jrj : ðD4Þ

Therefore, asymptotically,

ψðr; kÞ ¼largejrj
eikr þ itðk; k0Þei

ffiffiffiffi
k2

p
jrj; ðD5Þ

where k0 ¼
ffiffiffiffiffi
k2

p
r
jrj and the scattering amplitudes are

given by

tðk; k0Þ ¼ −
1

2
ffiffiffiffiffi
k2

p
Z

∞

−∞
dr0e−ik0r0mVðr0Þψðr0; kÞ: ðD6Þ

In this work, we only consider particles scattering in
a symmetric potential, VðrÞ ¼ Vð−rÞ, therefore the
Schrödinger equation exhibits a solution of even parity
(two spinless bosons), ψþð−rÞ ¼ ψþðrÞ, and a solution of
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odd parity (two spinless fermions), ψ−ð−rÞ ¼ −ψ−ðrÞ,
where ψ� ¼ ψk�ψ−k

2
. The parity amplitudes are given by

tðk; k0Þ ¼ tþð
ffiffiffiffiffi
k2

p
Þ þ kk0

k2 t−ð
ffiffiffiffiffi
k2

p
Þ, therefore

ψ�ðr; kÞ ¼largejrj
Y�ðkÞ

×

�
ei

ffiffiffiffi
k2

p
r � e−i

ffiffiffiffi
k2

p
r

2
þ it�

� ffiffiffiffiffi
k2

p �
ei

ffiffiffiffi
k2

p
jrjY�ðrÞ

�
;

ðD7Þ
where Yþ ¼ 1 and Y−ðkÞ ¼ kffiffiffiffi

k2
p ; Y−ðrÞ ¼ r

jrj. The general

wave function thus is the linear superposition of both parity
wave functions: ψ ¼ cþψþ þ c−ψ−.

2. Two-body scattering in finite volume

When the particles are placed in a one-dimensional
periodic box with the size of L, the two-particle wave
function in a finite box, ΨðLÞðx1; x2Þ, has to satisfy the
periodic boundary condition,

ΨðLÞðx1 þ nx1L; x2 þ nx2LÞ ¼ ΨðLÞðx1; x2Þ; nx1;x2 ∈ Z:

ðD8Þ
The finite volume wave function, ΨðLÞ, can be constructed
from free space wave function Ψ by

ΨðLÞðx1; x2Þ ¼
1

V

X
nx1 ;nx2∈Z

Ψðx1 þ nx1L; x2 þ nx2LÞ

¼
�
1

V

X
nx1∈Z

eiPnx1L
�
eiPRψ ðLÞðr; kÞ;

ψ ðLÞðr; kÞ ¼
X
n∈Z

e−i
P
2
nLψðrþ nL; kÞ; ðD9Þ

where n¼ nx1 −nx2 , and the volume of infinite summation,
V, is given by V ¼ P

n∈Ze
iPnL ¼ 2π

L

P
d∈ZδðPþ 2π

L dÞ. The
quantization of total momentum, P ¼ 2π

L d, is warranted by
translational invariance of center of mass motion in a
periodic box. By our construction, the general relative
wave function in the finite box is given by ψ ðLÞ ¼
cþψ

ðLÞ
þ þ c−ψ ðLÞ

− , the periodic boundary condition for
ψ ðLÞ reads

ψ ðLÞðrþ nL; kÞ ¼ ei
P
2
nLψ ðLÞðr; kÞ: ðD10Þ

Applying Eq. (D7), the relative wave functions in the finite

box, ψ ðLÞ
� ðr; kÞ, are given by

ψ ðLÞ
� ðr; kÞ ¼largejrj

it�ð
ffiffiffiffiffi
k2

p
ÞY�ðkÞ

X
n∈Z

e−i
P
2
nL

× ½�θð−r − nLÞe−i
ffiffiffiffi
k2

p
ðrþnLÞ

þ θðrþ nLÞei
ffiffiffiffi
k2

p
ðrþnLÞ�: ðD11Þ

The summations can be carried out,

X
n∈Z

e−i
P
2
nLθð−r − nLÞe−i

ffiffiffiffi
k2

p
nL ¼ θð−rÞ þ eiðP2þ

ffiffiffiffi
k2

p
ÞL

1 − eiðP2þ
ffiffiffiffi
k2

p
ÞL ;

X
n∈Z

e−i
P
2
nLθðrþ nLÞei

ffiffiffiffi
k2

p
nL ¼ θðrÞ þ eið−P

2
þ

ffiffiffiffi
k2

p
ÞL

1 − eið−P
2
þ

ffiffiffiffi
k2

p
ÞL ;

ðD12Þ

therefore we find

ψ ðLÞ
� ðr; kÞ ¼largejrj

it�ð
ffiffiffiffiffi
k2

p
ÞY�ðkÞ

×

�
ei

ffiffiffiffi
k2

p
jrjY�ðrÞ þ

eið−P
2
þ

ffiffiffiffi
k2

p
ÞL

1 − eið−P
2
þ

ffiffiffiffi
k2

p
ÞL e

i
ffiffiffiffi
k2

p
r

� eiðP2þ
ffiffiffiffi
k2

p
ÞL

1 − eiðP2þ
ffiffiffiffi
k2

p
ÞL e

−i
ffiffiffiffi
k2

p
r

�
: ðD13Þ

The secular equation is obtained by matching ψ ðLÞðrÞ to
ψðrÞ at an arbitrary r, larger than the range of the
interaction. The matching procedure is equivalent to
applying the periodic condition to both wave functions
and the derivative of wave functions at nearest neighbor
when solving periodic potential quantum mechanics prob-
lems. In addition, the matching condition ψ ðLÞðrÞ ¼ ψðrÞ
also guarantees that ψ ðLÞðrÞ constructed by using Eq. (D9)
is indeed the solution of the finite volume system for a
short-range potential. Because wave functions are the linear

superposition of two independent basis, e�i
ffiffiffiffi
k2

p
r, by choos-

ing r > 0 e.g., we obtain two matching equations,
�

1

2itþ
−

eið−P
2
þ

ffiffiffiffi
k2

p
ÞL

1 − eið−P
2
þ

ffiffiffiffi
k2

p
ÞL

�
cþ

þ
�

1

2it−
−

eið−P
2
þ

ffiffiffiffi
k2

p
ÞL

1 − eið−P
2
þ

ffiffiffiffi
k2

p
ÞL

�
c− ¼ 0;

�
1

2itþ
−

eið
P
2
þ

ffiffiffiffi
k2

p
ÞL

1 − eiðP2þ
ffiffiffiffi
k2

p
ÞL

�
cþ

−
�

1

2it−
−

eiðP2þ
ffiffiffiffi
k2

p
ÞL

1 − eiðP2þ
ffiffiffiffi
k2

p
ÞL

�
c− ¼ 0: ðD14Þ

The above equations have nontrivial solutions when

1 − ð2itþ þ 2it−Þ
1

2

�
eiðP2þ

ffiffiffiffi
k2

p
ÞL

1 − eiðP2þ
ffiffiffiffi
k2

p
ÞL þ eið−P

2
þ

ffiffiffiffi
k2

p
ÞL

1 − eið−P
2
þ ffiffiffiffiffiffi

k62
p ÞL

�

þ 2itþ2it−
eiðP2þ

ffiffiffiffi
k2

p
ÞL

1 − eiðP2þ
ffiffiffiffi
k2

p
ÞL

eið−P
2
þ

ffiffiffiffi
k2

p
ÞL

1 − eið−P
2
þ

ffiffiffiffi
k2

p
ÞL ¼ 0: ðD15Þ

Due to eiPL ¼ 1, it is clear to see that the solutions of the
secular equation, Eq. (D15), can be divided into classes of
positive parity state solutions and negative parity state
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solutions, the definite parity state solutions are given by the
equation

e−iðP2þ
ffiffiffiffi
k2

p
ÞL ¼ 1þ 2itPð

ffiffiffiffiffi
k2

p
Þ; P ¼ �: ðD16Þ

When scattering amplitudes are parametrized by phase
shifts, t� ¼ 1

cot δ�−i
, the secular equations, Eqs. (D15) and

(D16), are reduced respectively to nonrelativistic versions
of Lüscher’s formula in one dimension [77],

cos
PL
2

¼ cosðδþ þ δ− þ
ffiffiffiffiffi
k2

p
LÞ

cosðδþ − δ−Þ
; ðD17Þ

cot δP þ cot
PL
2
þ

ffiffiffiffiffi
k2

p
L

2
¼ 0: ðD18Þ

In the following subsections, we show the recovery of
analytic solutions for two well-known one-dimensional
models by applying the quantization condition obtained
in Eq. (D16).

3. Solvable examples of two-body scattering
in finite volume

a. Kronig Penney model

Let us consider the square well potential VðrÞ ¼ V0 for
jrj < b

2
, and VðrÞ ¼ 0 otherwise. The symmetric wave

functions in short range, jrj < b
2
, are given by

ψ�ðr; kÞ ¼ A�
ei

ffiffiffiffi
σ2V

p
r � e−i

ffiffiffiffi
σ2V

p
r

2
; jrj < b

2
; ðD19Þ

where σ2V ¼ k2 −mV0, continuity of wave functions at the
boundary of the potential leads to relations,

A� ¼ 2e−i
ffiffiffiffi
k2

p
b
2

�
�
1 −

ffiffiffiffi
σ2V

pffiffiffiffi
k2

p
�
ei

ffiffiffiffi
σ2V

p
b
2 þ

�
1þ

ffiffiffiffi
σ2V

pffiffiffiffi
k2

p
�
e−i

ffiffiffiffi
σ2V

p
b
2

;

1þ 2it� ¼ e−i
ffiffiffiffi
k2

p
b
cos

ffiffiffiffiffiffi
σ2V

p
b
2
þ
� ffiffiffiffi

σ2V
pffiffiffiffi

k2
p

��1

i sin
ffiffiffiffiffiffi
σ2V

p
b
2

cos
ffiffiffiffiffiffi
σ2V

p
b
2
−
� ffiffiffiffi

σ2V
pffiffiffiffi

k2
p

��1

i sin
ffiffiffiffiffiffi
σ2V

p
b
2

:

ðD20Þ

Easy to check, the scattering amplitudes t� are also the
solutions of

t� ¼ −
1

2
ffiffiffiffiffi
k2

p
Z b

2

−b
2

dr0e−i
ffiffiffiffi
k2

p
r0mV0ψ�ðr0; kÞ: ðD21Þ

In the finite box with the periodic boundary condition,
plugging the analytic expression of t� in Eq. (D20) into the
secular equation Eq. (D15), we thus obtain the well-known
energy quantization condition for the Kronig Penney
model,

cos
ffiffiffiffiffi
k2

p
a cos

ffiffiffiffiffiffi
σ2V

q
b −

k2 þ σ2V
2

ffiffiffiffiffi
k2

p ffiffiffiffiffiffi
σ2V

p sin
ffiffiffiffiffi
k2

p
a sin

ffiffiffiffiffiffi
σ2V

q
b

¼ cos
PL
2

; a ¼ L − b: ðD22Þ

b. δ-function potential model

Now, let us consider a short-range interaction model with
a delta potential, VðrÞ ¼ V0δðrÞ; the amplitudes for the δ-
function potential thus are given by

t�ð
ffiffiffiffiffi
k2

p
Þ ¼ −

1

2
ffiffiffiffiffi
k2

p mV0ψ�ð0Þ; ðD23Þ

where ψþð0Þ ¼ 1þ itþ and ψ−ð0Þ ¼ 0. Therefore, we
obtain

itþð
ffiffiffiffiffi
k2

p
Þ ¼ −

imV0

2
ffiffiffiffi
k2

p

1þ imV0

2
ffiffiffiffi
k2

p
; it− ¼ 0: ðD24Þ

Plugging the solution of itþ into the secular equation,
Eq. (D15), thus we obtain the well-known quantization
condition for two-particle interaction in a finite box with a
periodic boundary condition,

e−iðP2þ
ffiffiffiffi
k2

p
ÞL ¼

1 − imV0

2
ffiffiffiffi
k2

p

1þ imV0

2
ffiffiffiffi
k2

p
: ðD25Þ

The results of the delta potential can also be obtained from
the Kronig Penny model by taking the limit of b → 0,
V0 → ∞ and bV0 ¼ const.
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