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Peng Guo

Department of Physics and Engineering, California State University, Bakersfield, California 93311, USA
(Received 23 July 2016; published 22 March 2017)

In this work, we use McGuire’s model to describe scattering of three spinless identical particles in one
spatial dimension; we first present analytic solutions of Faddeev’s equation for scattering of three spinless
particles in free space. The three particles interaction in finite volume is derived subsequently, and the
quantization conditions by matching wave functions in free space and finite volume are presented in terms
of two-body scattering phase shifts. The quantization conditions obtained in this work for the short-range
interaction are Liischer’s formula-like and consistent with Yang’s results [Phys. Rev. Lett. 19, 1312 (1967)].
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I. INTRODUCTION

Three-particle interaction plays an important role in
modern physics. In certain hadronic reaction processes,
three-particle dynamics may be a crucial component of
reaction. For example, the discrepancy of decay width of
n — 37 between experimental measurement [1] and yPT
calculations [2-5] can only be well understood when three-
body dynamics are properly considered [6—12]. Three-
particle or many-particle dynamics have also been proven
essential to illustrate or understand some important effects
in nuclear and atomic physics, such as precise knowledge
of nucleon interaction [13—-16] and Efimov effect [17-22].
In the past, many different approaches have been developed
to describe three-body dynamics, for instance, quantum
field theory based relativistic Bethe-Salpeter equations
[23-25], nonrelativistic Faddeev’s equation [26-31],
and dispersion relation oriented Khuri-Treiman equation
[32-42]. Unfortunately, either approach provides a non-
expert friendly framework due to sophistication of three-
body dynamics. In recent years, three-body dynamics
started regaining some popularities in the hadron physics
community for many reasons. For examples, precision
theoretical hadron-interaction framework is urgently
needed for data analysis when high statistic data become
available, and a sensible finite volume theory of three-body
interaction is also currently demanded by the lattice QCD
community.

In the lattice QCD calculation, because computation is
performed in Euclidean space, we do not have direct access
to scattering amplitudes [43]. Fortunately, taking advantage
of the periodic boundary condition, a relation between the
energy spectrum extracted from lattice QCD computation
and two-body scattering amplitudes in the elastic region is
established [44], which is usually referred to as Liischer’s
formula. The extension of the framework to moving frames
and to inelastic channels has also been developed by many
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authors [45-56]. The finite volume scattering formalism
has been proven valid and effective in the lattice commu-
nity for extracting hadron-hadron two-body scattering
information [57-68].

There have been some attempts on finite volume three-
body interactions in recent years [69-76]. These recent
developments for the finite volume three-body scattering
problem [69-76] are typically momentum representation
of quantum field theory approaches, diagrammatic
approaches or the Faddeev equation based method. Most
of these developments are mathematics and physics
friendly to the majority of people in the physics commu-
nity. Hence, it is fair and reasonable to raise the question of
how one would check all these over sophisticated quanti-
zation conditions of the finite volume three-body problem
presented in these works? In the present work, we aim to
find a simple and exactly solvable three-body problem, so
that the analytic results of quantization conditions in this
simple case can be found. The result may serve as a
calibration to more realistic treatments of the three-body
problem in different approaches [69-76]. Moreover, an
exactly solvable three-body problem in finite volume could
be a very useful tool for understanding three-body dynam-
ics in finite volume and it may also be very helpful for
further development of the approximate method in more
realistic three-body problems. In order to make the three-
body scattering problem as simple as possible and exactly
solvable, we will ignore the relativistic effect and also
constrain ourself to one spatial dimension, so that analytic
solutions can be found and an infinite sum in finite volume
is easily carried out. We will further consider three non-
relativistic particles with equal masses, and the pairwise
and short-range interactions among three particles. Under
the above-mentioned assumptions, a simplified Faddeev’s
equation in free space (space with infinite volume) is
established and solved analytically. Instead of attacking
the finite volume problem in momentum representation, we
employ the approach developed in [56,77], and work our
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way out with the wave function of three-body in the
configuration representation. In our approach of solving
the three-body problem in finite volume, there are three
basic steps: first of all, the solutions of Faddeev’s equation
are used to construct the free space three-body wave
function. Next, for the problem of three particles in a finite
box, we show that the finite volume wave function of three-
body interaction can be constructed through the free space
three-body wave function. At last, the matching of the finite
volume wave function and the free space wave function
yields the Lusher’s formula-like quantization conditions of
the three-body interaction, which are sets of relations
between the two-body phase shift and three-particle
momenta in a finite box:

P
cot (5 + %)L + cot (8(=g31) = 6(=¢g23)) =0,

P
cot (5 + %)L + cot (=8(—g31) — 6(q12)) = 0,

cot <§ + q;) L + cot (6(—gx3) +6(gq12)) =0,
where 6 denotes the two-body scattering phase shift and L
refers to the size of the box. The total momentum, P,
relative momentum ¢;; between ith and jth particles, and
relative momenta ¢, between kth particle and pair (ij) will
be explained in Sec. II.

The advantage of using wave function in configuration
representation is that first of all, the wave function approach
is close to the way of solving traditional quantum mechanics
problems in a periodic potential. A short review of our
formalism for the two-body interaction in finite volume and
its applications to exactly solvable quantum mechanical
models are listed in Appendix D. Second, also the most
important fact is that the asymptotic form of wave function
displays physical on-shell transition amplitudes. As a well-
known fact, the solutions of Faddeev’s equation are not
equivalent to physical transition amplitudes [27,78-80].
Three-body scattering amplitudes possess singularities of
poles and o-functions, the physical transition amplitudes are
in fact associated to the residue functions of these singu-
larities. These singularities are the consequence of existence
of different distinct physical processes in the three-body
system. For examples, unlike in the two-body system, the
formation of a bound pair is not precluded by energy
conservation, a pole is thus introduced by the presence of
a two-body bound state. The singularity of d-functions is
associated with disconnected diagrams with an unscattered
third particle. Because of these singularities in three-body
amplitude, the three-body wave function in configuration
representation may have several different pieces that
decrease at a different rate and describe different physical
processes. The physical transition amplitudes for different
physical processes are thus also defined by asymptotic forms
of the three-body wave function [79-83].
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In this work, to describe the scattering of the three-body
system, we adopt a one-dimensional model with the
interaction of equal strength, pair-wise -function potential
that was developed by McGuire in [84]. A brief review of
McGuire’s model is provided in Appendix C. McGuire’s
model is physically simple, but can still provide us a
qualitative description of the three-body scattering process
in finite volume. McGuire’s model was originally solved by
ray tracing and geometric optics consideration method [84],
McGuire found that diffraction effects in this particular
model are all canceled out, thus no new momenta are
created over the scattering process, though momenta are
allowed to be rearranged among three particles in the final
state. In consequence, any dissociation or recombination of
particles out of or into bound states is forbidden, bound
states sectors are decoupled from the three free particles
sector. The breakup process never happens when a particle
is incident on a bound state [85-87]. Nevertheless,
McGuire’s model still encompasses rearrangement effects
among three particles, it may even represent more realistic
physical models of the short-range interaction. Although,
the quantization conditions for the three-body problem in
finite volume are obtained by considering a particular
model, the final results are presented in terms of two-body
phase shifts. The quantization conditions may be tested
numerically in the future by one-dimensional lattice
models, such as ones developed in [77,88].

The paper is organized as follows. In Sec. II we discuss
the free space three-particle system. The finite volume
three-particle system is presented in Sec. III. The summary
and outlook are given in Sec. IV.

II. THREE-BODY SCATTERING FOR SHORT-
RANGE INTERACTION IN FREE SPACE

Considering three spinless identical particles scattering,
the short-range interactions among three-particle are pair-
wise and equal strength for all pairs, V(r) = Vy8(r). In
general, the kernel for Faddeev’s integral equation is off-
shell two-body scattering amplitudes; the off-shell kernel
usually complicates three-body integral equations even in
one dimension and causes difficulties of solving Faddeev’s
equation. Fortunately, for the short-range §-function poten-
tial, two-body scattering amplitude appears completely on
energy shell, see Eq. (D24). This feature dramatically
simplifies Faddeev’s integral equation, so that finding an
analytic solution is possible. For completeness, a brief
review of formal scattering theory and the general frame-
work of Faddeev’s equation is presented in Appendix A.

The wave function of the scattering three-particle
satisfies Schrodinger equation,

1 <~ &
{_%;d_x% + Vod(r12) + Vod(ras) + Vod(rsi) — E
X ¥ (x1, %2, %35 p1, P2, p3) = 0, (1)
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where the mass of particle is m, the total energy of the

three-particle systemis E = > 3_, 2m’ where p; (i = 1,2, 3)
stands for the particle’s momenta in the initial state. The
center of mass position is given by R = x'*"%

. ij =
x; —x; refers to relative position between ith and jth
Xi+Xx;

particles, and ry = =5~ — x; denotes the relative position
between the kth particle and pair (ij). The conjugate total

and relative momenta are given by P = p; + p, + p3,

2 .
qij = p L and g = W, respectively. A change

of the palr of relative coordinates and corresponding
conjugate momenta from (ij)k configuration to other
configurations, e.g. (jk)i configuration in which relative
coordinates and conjugate momenta are expressed in terms
of (rj r;) and (g, q;), is accomplished by

3 1
rjk:—irij—l—rk, ri:—Zrij—Erk,
1 3 1

e = =5 4ij +ZQI<’ 9 = ~4ij = 5 9% (2)

where (ij)k or (jk)i always follows cyclic permutation
of (1,2,3).

The total wave function of three particles can be expressed
by the product of a plane wave, "R, which describes
center of mass motion, and the relative wave function,
1//(r,-j, i qijs qx ), which describes relatjve motions of three
particles, W(xy, Xy, X35 p1, P2, P3) = elPRW(rij’ T Gijs Gx)-
For scattering with a free three-particle incoming wave,
the wave function has the following form [26,27],
Y=Y +>,_; ¥y, where ¥(g) refers to the incoming
free wave and ¥, satlsﬁes the equation

d2
{ ZmZ - 2Jrvocs(ra,j) E|¥,

==Vod(rgp)[¥o) + o) +¥Yp),  rv#a#p (3)

The integral representation of Eq. (3) for relative wave function,

l//(y)(raﬂv Ty qij Q) = e‘iPR‘P(y)(xl,xz,x3;pl,pz,p3) is
given by

Wi (Taps T3 i Gr)

:/ dr), er (aﬂ—r;ﬁ,r},—r;;zg)

XmVod(rip) W) (rap 17 4 4i) ¥ (@) (7 T3 412 )

Y (p) (r;/a’r;j;qZ'ﬁQIc)]’ (4)
where z, = 6% + i€ and o> —mE——*qlJ+4qk (k=1,
2, 3), and the Green’s function G, satisfies the equation

& 3 d
Ze + ﬁ + Zd_r% —mVo6(ryp) G(y)(raﬂ - i"a,p 1y 2,)
= 5(raﬁ - r/aﬁ)é(r;')7 (5)
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and the solution of Eq. (5) is given by

Gy (rap = oo T3 26)
_ /°° d%ﬁ@ZPzilﬂP(raﬁ?%ﬂ)W%( Lﬂ?q;ﬂ)eiq;r’
o 2T 27 zﬂ—q’gﬂ 3q’}%

(6)

The v (rys.qqp) are parity two-body wave functions of
pair (af3), and the solution of . for the 5-function potential
reads

eikr + fpe—ikr

wp(rk) = 2 it (VRY (RN, (7)

where the on-shell two-body scattering amplitudes, 7., are

given in Eq. (D24): t. (k) = —% and r_(k) = 0.z are

normalized by relation 2 57 Y = tptp. Using the unitarity relation

of two-body amplitude, it can be shown that

/_ dryG ) (Tap = Vg Ty = 13 zﬂ)Voé(r;ﬂ)ei‘/’;
i\/OTéqz|ra/;| igr, 3
_er e [1 +it, (\ [o? - Z(fﬂ Vod(ry)-
2iy/o* =34
(8)
Therefore, Eq. (4) can be written as

Wi (Taps Ty Qi Gk)

i, (f7=37)]

o . .
_ / 4G i JZS3E ) piar,
0 2T 2i /62 32

) .,
X / drigdr,e™rmVo6(r, ;)
—0o0

X [y 0y (Tops 73 Gijs Gi) + V(o) (T, 7o Gij Q1)
v ) (Fyas 35 Qi Gi)]- )

Next, let us introduce amplitudes, T, by

T(y)(k;ql‘j"hc):_/_ dragdr,e™"rmVo5(ryp)

XW(raps 13 qiqx)s  a#p#y.  (10)

Using Eq. (9) and the property of two-body scattering
amplitude, we find
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, 3
T (k:gij qi) == [1 +it, <\/02—Zk2>]

X/ dr ydrye=*rmV,5(r,)

X [W(O)(’Jaﬁ’r;;Qij’qk) +ll/(a)("/ﬂy7”§z§%j561k)

+1//(/)’)(”;/(1,’Jﬂ§%j’q}<)]’ a#ﬁ#}’, (11)

therefore the wave function y,) is related to T,
amplitude by

l//(;/)(r()l/}’ Ty3dijs Qk)

. oodq ei V 02_%q2|raﬁ|eiqry
=1 2——
_oo & 2 /62 _%q2

Let us also define functions (

To) (@9 q1)- (12)

7)

U(7)<k;Qij’Qk):/ dropdr,e ik,

X mVoS(rap)w o) (Fap- 12 @i qr)-— (13)

Equations (11)—(13) all together thus yield coupled sets of
integral equation of T',)’s, which is exactly just Faddeev’s
equation for §-function potential,

T(y)<k§ qij> k)

k; ij»
_ (2 ]2 _ 302 it, NN M
4 4 imV
. [>dg T(a)(‘]§ qij> Qk) + T(ﬂ)(q; qij» C]k)
+1 2 23— (k92
_ 197 — (k+1)> +ie
atp#y. (14)

0 27

At last, the total three-body scattering amplitude is
defined by

oo . .
d ra/;d rye_’k“/f Tap @~ ky Ty

T(ka/hky;qij’CIk) = —/

—0o0

x mV[6(rap) + 0(rp,) + 6(ryq)]
XW(Taps Ty Qijs k) (15)

As suggested in [26,27], T is thus represented as the sum of
three T(y) amplitudes,

3
T(kaﬁ’ky;Qijvqk) = ZT((S)(ké;CIij»CIk)’ (16)

o=1

where k, = —k,s —% and k; = kg — %
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As already mentioned in the Introduction, unlike two-
body scattering, the solution of Faddeev’s equation defined
in Eq. (15) is not equivalent to the physical transition
amplitudes [27,78-80]. The physical transition amplitudes
for different physical processes are associated to the residue
functions of singularities of 7T-amplitude given in Eq. (15).
In general, the T-amplitude has two distinct type singu-
larities [27,79,80]. One type is called primary singularities,
e.g. (6 + x}, —343)7", where yy, is bound state energy of
pair (12). The pole of the (6* + 3, — 3 ¢3)~" type presents
in driving terms of Faddeev’s equation and persists in all
terms of an iterative series of amplitudes. It arises when
relative momentum of the (12) pair hits the bound state pole
position of two-body scattering amplitude, #(q;,) ~
(g3, + x3,)7", and it describes the possibility of existence
of the two-body bound state in both initial and final states.
The other types of singularity, called secondary singular-
ities [27,79,80], only present in driving terms and first a few
iterations, and singularities are getting weaker and even-
tually disappear after a couple of iterations. A typical
example is the §-functions that are related to disconnected
diagrams with the third particle remaining intact. The
existence of singularities in 7-amplitude is the consequence
of the presence of multiple possible physical distinct
processes in a three-body system. Hence, these singularities
are directly associated with the different physically realiz-
able asymptotic states of the system. The explicit decom-
position of primary singularities of 7T-amplitude is given in
[27,79,80] by

3
T(kig ka3 g2, 93) = »_(27)8(ky = ai) (2a3;)1(kijs )
P

3
+ Z |:-7:(y,k)(kaﬂ’kyQQiijk)
y.k=1

¢(7) (kaﬂ)g(*y,k) (kya qij> qk)
o’ + xop —1ky
Gy (ks ks @)Dy (447)
+ 2. .2 3.2
0"+ Xij — 14k
¢(7) (kaﬂ)lc(yk) (ky; Qk)gb?k) (qij)
(0® +xap =38 + 25— 3a0))
(17)

where the ¢ function in Eq. (17) stands for two-body off-
shell scattering amplitude, the ¢, function represents the

vertex function of the two-body bound state wave function,
by (kap) = (kg + x2p)w (kop). The residue functions that
are associated to physical transition amplitudes, F, ),
Gyay and K, g in Eq. (17), do not have any primary
singularities, though they may still have secondary singu-
larities. It has been shown in [27,79,80] that the first term
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on the right-hand side of Eq. (17) is from a disconnected
contribution and it describes the process that one of the
incident free particles is unscattered. The K, ;) function in
the last term is the physical amplitude that describes the
processes of either direct or rearrangement scattering on a

bound state: (i) +k = (af) +7.>20_ [Gu) + zygiékz]

o +)(‘

is the physical transition amplitude for breakup or capture
processes. The true 1 +2 + 3 — 1 + 2 + 3 physical scat-
tering amplitude is given by on-shell T-amplitude in the
physical kinematic domain of three-particle momenta. The
singularities in momentum space generate a more compli-
cated asymptotic form of the three-body wave function than
that of the two-body wave function in configuration space.
The physical transition amplitudes can thus also be defined
by asymptotic forms of the wave function in the configu-
ration representation [80-83]. The asymptotic form of the
three-body wave function depends on the type of initial
state, and may behave quite differently and describe distinct
physical processes at different domains in the (r;;, r) plane
[79-83]. For example, scattering of the third particle on a
bound state of (12) pair, the physical amplitudes of different
processes are given by the asymptotic wave function in
different domains: (i) direct channel scattering,
(12) +3 — (12) + 3, is described in the domain of finite
rio and large r3, the scattering part of the asymptotic
wave function is of the order of e#2I"2lO(|r;|71); (ii) rear-
rangement scattering processes, (12) +3 — (23)+1 or
(12) +3 — (31) + 2, are given in domains of finite r,3 and
large r; or finite r3; and large r, respectively, and the wave
function behaves as e #2/"510(|r,|") or e 311110 (|r,| ")
respectively; (iii) breakup process, (12) +3 - 1 +2+ 3,
appears as both rj, and r3 are large, but r,/r; remains
constant [79,80], the wave function for breakup is of the
order of O((r}, +%73)7%). In the case of three free incident
particles [81-83], the asymptotic form of the wave function
consists of several different pieces that decrease at different
rates and describes different distinct physical processes,
and its falloff also depends on the direction in configuration
space: (1) incident plane wave that does not decrease in any
direction; (2) terms describe the scattering of a pair by itself
without participation of the third particle, the wave function
is of the order of O(|r;;|~") (kth particle as spectator). The
disconnected terms and incident free wave must be sub-
tracted out before other contributions become visible;
(3) the terms that describe capture of pair (ij) as a bound
state is of the order of e#il"s|O(|r;|™"). (4) The terms
generated by on-shell double scattering is of the order of
O((r}, +%r3)7"). (5) The true three-body scattering terms
are of the order of O((r}, +%r3)7). Nevertheless, it is
clear that understanding of either singularities structure of
T-amplitude in momentum space or asymptotic form of
wave function in configuration space is a crucial step in
order to extract physical transition amplitudes.
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As mentioned early in the Introduction, McGuire’s
model permits no diffraction and no breakup or capture
processes, only forward scattering (no new momenta are
created after collision). Therefore, the physical processes in
McGuire’s model are split into two decoupled sectors:
scattering on a bound state and three-to-three particles
scattering. The analytic solution of Faddeev’s equation for a
particle scattering on a bound state has been discussed in
[85-87]. In this work, we solve Faddeev’s equation,
Eq. (14), analytically for the 1 +2 +3 — 1 + 2 4 3 three
particles scattering process. As will be shown in following
sections, the T-amplitude for three-to-three scattering of
identical bosons in McGuire’s model has the form of
T(kiz.k33912,93)

° ° [, 3, > 3,
_; (27)8 );(2 G_ZQk>t+< 5‘1%)

3 k)

+
«(k,—q1)(k, —q2) (k, — q3)’

14

where the first term again represents the disconnected
contribution and the second term represents the sum of
all the rescattering effects, and the R(k,) function is a
polynomial function of relative momenta of three-particle
and free of poles, the explicit expression of the R(k,)
function will be made clear later on in Sec. II B. The pole
structure in Eq. (18) yields the forward scattering of three
particles in the end. Notice that the exact solution of
Faddeev’s equation in Eq. (18) has only singularities of
poles and o-function. This means that first of all, the branch
cut contribution during the iteration of Faddeev’s equation
has to be all canceled out, it turns out to be true, see Sec. B 1.
Second, higher order iterations of Faddeev’s equation in
one dimension do not completely eliminate the three-particle
propagator singularities, this is a distinct feature from three-
dimensional three-body physics. In both dimensions, off-
shell double scattering displays the similar singularity
structure of the three-particle propagator, e.g. [g3,—
(ks +%)? +ie]™", see Figs. 1(b) and 1(c). However, for
triple scattering, see Fig. 1(d), the singularity structure starts
diverging. A triple scattering in three dimensions has the
typical singularities of type

/dS 1 1
q ; - .
ki, - (Q‘i‘%)z +ieqi, — (q+ L)% + ie

. Ks
SN el ki (19)

k
551 ah+ Ky - 5 %P

=

In one dimension, triple scattering appears as a one-
dimensional integral over the product of two three-particle
propagators,
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o] (a) d3
Ao a, A1 a
9 23 931
(b) (c)
12 A1z
a; a3
(d)
FIG. 1. (a) The disconnected diagram for the third particle as a

spectator. (b) and (c) Double scattering contributions from pair
(23) and (31) into (12) pair. (d) A triple scattering contribution.

0 1 1
dq ; 7 —., (20)
/_oo I3, = (q+%)? +ieq, — (g + %) +ie

it is easy to see that after picking up the poles in the
integrand, the result of the one-dimensional integral has only
poles and branch cuts. As shown in [27], in three dimensions,
the three-particle propagator singularities are smoothed out in
higher iterations and are thus considered as secondary
singularities. On the contrary, in one dimension, some poles
survived higher iterations and all the branch cuts are canceled
out after a sum over all the diagrams in McGuire’s model. In
the end, the exact solution of Faddeev’s equation displays
only singularities of poles and d-function, as in Eq. (18).

On the other hand, it will also be shown in Sec. II B that
the principal part of the pole term in Eq. (18) is proportional
to a factor, (6> —k}, —3k3). As the consequence, the
solutions of Faddeev’s equation suffer no branch cut
singularities, all the branch cut singularities in Faddeev’s
equation are canceled out. The three-body wave function
consists of only six plane waves: e/4i"2¢e/%"s (k = 1, 2, 3),
no diffraction effect is generated after scattering. When
three-particle 7-amplitude is put on the energy shell,
6? = k%, +3k3, the principal part of the pole term van-
ishes, thus, the on-shell physical three-body amplitude
consists of only the terms that are proportional to the -
function from both disconnected diagrams and on-shell
three-body rescattering effect. Therefore, it allows us to
define the on-shell scattering physical amplitude as a
residue of T-amplitude at pole positions,

<- yi: 2(27)8(k — q7)> <2, 6% — %k2> T (k)
= T(\/O’z —%kz,k;qlzJ]s), k=gqip3.  (21)

PHYSICAL REVIEW D 95, 054508 (2017)

In general, there are six possible independent incoming
plane waves in terms of permutation of incoming momenta,
see [84]. In Appendix B, we show details of how Faddeev’s
equation is solved for an incoming plane wave y/() =
e'd2"2e'3's a5 an example. In the end of Appendix B 1, the
analytic solutions of Faddeev equation for scattering
amplitudes 7',)’s and physical on-shell S-matrix are pre-
sented for all six possible incoming plane waves. The three-
body wave function is constructed by using the solution of
Faddeev’s equation, 7',)’s, we also present the result of the
constructed three-body wave function for incoming plane
wave y(g) = e'92"12¢'%3 as an example in Appendix B 2.
Although, there are six independent sets of solutions of
Faddeev’s equation corresponding to six independent
incoming plane waves, for three spinless identical particles,
only solutions for totally symmetric and totally antisym-
metric wave functions have meaningful physical corre-
spondences: scattering of three spinless bosons and three
spinless fermions, respectively. Hence, in the following
sections, the attention is focused on three spinless bosons
and three spinless fermions scattering only.

A. Solutions of Faddeev’s equation
for three spinless fermions

For three spinless identical fermions, the wave function
has to be totally antisymmetric under exchange of any two
particles coordinates; the free incoming wave for totally
antisymmetric three fermions is

3
l/,?(l(r)l;i = Z (ei%'jrlz — e—ifIfjrlz)eiqkrs_ (22)
k=1

Given the solutions of scattering amplitudes for each
individual wave in Sec. B 1, it is easy to see that the
solutions of Faddeev’s equation for three spinless identical
fermions all vanish, T, = 0,y =1, 2, 3. Therefore, the
totally antisymmetric wave function for three identical

fermions is given by the free incoming wave solution,
— ,,anti

Wanli(rl% r3; qZJ7 qk) — W(O) .

B. Solutions of Faddeev’s equation
for three spinless bosons

For three spinless identical bosons, the three-body wave
function has to be totally symmetric under exchange of
arbitrary two particles coordinates, the free incoming wave
for totally symmetric three bosons is given by

3
W%r)n = Z (eiq,'jrlz + e_iqijrlz)eiqkr}’ (23)
k=1

therefore

3
v(123)(k; 12, 93) = mV, z 2(27)0(k — qi).  (24)
=1
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Again using the solutions of scattering amplitudes for each
individual wave in Sec. B 1, we found that the solution of
Faddeev’s equation for three identical bosons are

. imV
T(123)(k:qij.qr) =2(2mi)(k—qy) im(\)/
1 — 0
2453
imV,
+2(2mi)8(k—g5) o0
1= 2g3
imV(1+2%0)
+2(27i)8(k - q3) =
(1+ 2‘7‘]/20)(1 - 2;;())
6(imVy)k
L, CEeEhED
(k—q3—ie)(k—q,—ie)(k—q; +ie)

(25)

All three T ,)’s are identical due to Bose symmetry. By
picking up the contribution of poles, k = ¢, + i€, g3 + i€,
and ¢, —ie in Eq. (25), we introduce three on-shell
scattering amplitudes for later convenience of presentation,

(=) (1 =

imVqy lan(]>
2qy; 2g3:

T5= v v Voy
(155 (1 =5 (1 =50
imV __imVyimVy
T — (26123)( 2q3, 2412)
iy = lmVO 1— imVy __imVyy?
( 2q12 )( 2qx3 )( 2q3 )
imV __imVyimVy
T, — (2431 )( 24,3 24112) (26)
iy = ( + lmVO)<1 ”"Vo)( M) ’
2q1, 2qx3 2q3
and
Ty =iT, =it (—qx), Ty=iT,—it (—q3),

T3 =iT3—it, (q,)(1+2it, (=g))=iT, —iT,, (27)

where 7, again is two-body scattering amplitude given in
Eq. (D24). The on-shell scattering contribution of 7', is
thus given by

h;
(P) }’S)(k q’]’ qk)

2(27i)6(k—q,)(2g23)iT
+2(271)6(k - g2)(2431)iT,
—2(27i)5(k—q3)(2412)iT 3. (28)

The on-shell amplitudes 7, in Eq. (26) satisfy unitarity
relations,

Im7,=T7T,(T;+7,+7,), r=123 (29

The three-body off-shell scattering amplitude thus reads
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3

(ph
T (k2. k33 g5, i) = ZTP ys (ky3 qij» k)

y=1
6(imVy)%k,
( +12mV )( 12mV0 lzmvo)
_ 2 P 912 23 431
Z (ky = a3)(ky = 42) (ky — q1)”

(30)

where P stands for the principal part of poles, and k; =
—kiy — ks and ky = kjp — L ks. It is easy to show that

ip k7’ 2 k2 3k2
(k= aq5)(ky —an)(k, —qy) © \7 ~ 2745 )

(31)

therefore, the principal part on the right-hand side of
Eq. (30) vanishes for on-shell scattering amplitude. The
Bose symmetry warrants that all six on-shell S-matrices are
identical and given by S, = 1 + 2i7, where as defined
in Eq. (21), 7 is physical scattering amplitude, and
T =353_,7;, thus, we find

(1= 200 (1 + 21 4 2)

291, 2qx3 2q3
Ssym = v v e (32)
(1 + ’2";]20)(] - 12:]230)(1 - l;;}lo)

The on-shell physical scattering amplitudes and S-matrix
can be expressed in tezrms of a single two-body scattering
phase shift, 7, (q) = & ( L, thus, we obtain

e2id(q12) _ 1 2i5(~q23) 2i5(~q31)
e e

( £2i8(=q23) 1) <1 + e2i0(=a31) 2i5(1112)>
215 —q31) _ 1 1 2i6(—q23) 2i5<‘112)
e
e

(8(q12)+6(=q23)+6(~q31)) (33)

S sym

It can be easily checked that the phase shift expressions of
on-shell amplitudes 7, in Eq. (33) are the consequence of
unitarity relations in Eq. (29), therefore Eq. (33) may be
more general for pairwise and short-range interactions of
three identical particles scattering.

The totally symmetric wave function can be constructed
by using Eq. (12) and solutions of Faddeev’s equation
given in Eq. (25). An example of construction of the wave
function from solutions of Faddeev’s equation is given in
Appendix B2, the construction is rather lengthy and
tedious, so we do not present all the details in the text.
The totally symmetric wave function is expressed in terms
of a single independent coefficient,
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Weym(T12: 733 4ijs Q) — ll/?(y);n

= (Agym(rip. r3)e" 122 + Ay (=rpp, ry) e 2012 ) @l437s
+ (Agym(r31, r2) €72 + Ay (—rpz, 1) e™'4nM2) el
+ (Agm(ra3, 1) e B2 + Ay (—r3y, rp)e 431712 ) gi027s |

(34)

where ry; = =2+ ry and r3; = =" —r3, and

Agym(ri2,73) = 1+0(r12)2it (q12)[1 + 2it (=q23)]
+0(—r3)2it, (—qa3) +0(—r31)2it (—q3;)
= 0(r12)0(r23)4 T + 0(r12)0(—131)4iT,.

(35)

III. THREE-BODY SCATTERING
IN FINITE VOLUME

For three particles interaction in a one-dimensional
periodic box with the size of L, the wave function of the
three-particle in finite volume, ‘P(L)(xl,xz, X35 P1s P2y P3)s
must satisfy the periodic boundary condition,

PO (x; + n L,x, +ny,L,x3+n,L;py, ps, p3)

= ‘I‘(L)(xl,xz,x3;p1,p2,p3), Ny xyy € Z. (36)

The finite volume three-body wave function, plL) g
constructed from the three-body free space wave function,
Y, by

‘I‘(L)(xl,xz,x3;p1,p2, p3)

1
=V Z W(x; +ny L,xy +ny, L, x3

Ty p oMy oMy (VA
+n,,L; py. pas p3). (37)

in this way, the periodic boundary condition in Eq. (36) is
warranted. Factorizing the center of mass wave function and
relative wave function, and also defining new variables,
n=ny,n;=n,—n,andn; = (n, +n,)—2n,, where

(n,n;;,ny) € Z, thus, we find

W) (xp, X0, X33 P12 P2s P3)

1 . .
_ ‘_/ (ZeanL> €lPRl//(L)(rij’ T3 qijs qk),
nez
O (i rsgi. ai)
_ 1
— Z elgnkLl//(rij—‘r—nijL,rk +_nkL;qij’qk>7 (38)

n;j,n€Z 2

where y(L) represents the relative finite volume wave func-
tion, and the normalization factor of infinite summation V is
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givenby V=13, el =25 §(P + 2% d). The inte-
ger variables (n;;,n;) are related to relative coordinates
(7jk» i) in (ij)k configuration. The relative variables in other
configurations can be expressed in terms of variables (1;;, ny.),
e.g. integer variables (n,n;) in (jk)i configuration are
given by

1 1 3

Mje = =5+ oM, = =0 =Sy,

> > i#j#k

(39)

After removal of center of mass motion, the periodic boundary
condition for the relative finite volume wave function now
reads

(w) LoL
7 rij"'nijL’rk‘FEnkL’Qiijk

P 2r
=e 5y (rirsqi.q).  P= fd’ dez. (40)

With the solution of wave functions, for instance, the totally
symmetric wave function given in Egs. (34) and (35), the finite
volume three-body wave function is constructed by using
Eq. (38). The infinite summation in one dimension can be
performed by using the property of geometric series

(n,a) € Z. (41)

Hence the analytic solutions in one dimension for the
o-function potential can be obtained. As have been mentioned
in previous sections, not all six independent wave functions
correspond to physical systems, except totally antisymmetric
and symmetric wave functions given in Secs. [l A and 11 B,
which represent three identical fermions and bosons scatter-
ing respectively. The other four wave functions are not related
to any physical processes, and indeed, we found no physical
solutions in finite volume except three spinless bosons and
fermion systems. In the case of three spinless identical
fermions, because two-body interaction by the §-function
potential vanishes for identical spinless fermions, three
identical fermions experience zero scattering effect, and
behave as free particles. Therefore, the three-body wave
function has a trivial solution in free space, as shown in
Sec. I A. In finite volume, the periodic boundary condition
leads to the quantization of the momenta of three fermions as a
free particle in a finite box, p; :ZL—”nx,_ ,n, €Z.Nevertheless, in
what follows, we will only work out all the details of the finite
volume wave function for three the identical bosons system.

In the case of three spinless identical bosons, the
expression of the three-body wave function is dramatically
simplified by symmetry consideration, the three-body wave
function in free space is expressed by a single independent
coefficient only, see Egs. (34) and (35). Therefore we only
need to perform the infinite sum for a single plane wave, the
rest of the components of the finite volume wave function
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are easily obtained by symmetry consideration. For in-
stance, we can pick the plane wave e'912"12¢/%"3 component,
the corresponding coefficient of the plane wave in finite
volume is then given by

. p
Agéf)ﬂ(rlb I"3) = E elqlznlzLel(§+73)n3L

ny ,n3€Z
1
XAsym <r12 +n12L,r3 +§n3L> (42)

For nontrivial solutions, only the last two terms in Eq. (35)
survive in the finite box.

First of all, for the term proportional to 0(r;)0(ry3) in
Eq. (35), the infinite sum reads

_m-npp
Ny3=—"—>

Z ei‘ilznlzLei(ngqT})”BL@("lz + n1aL)0(ra + nysL)

[e] [ee]
— E e—i(_%P“rlh)”lzL E ei(%P+lI3)"23L
np=0(=r,) ny3=0(=r23)

e—iGP+a))L eiGPa3)L
= otria) + 7 ] o) + |
(43)

Next, for the term proportional to 0(r;,)0(—r3;) in
Eq. (35), we have

__minpp
nzp=-— 2

Z el gl EHILO (1 5 + nyyL)O(—r3) — ny L)

ny ,n3€Z

oo =0(r31)

— E ei(%PJr%)”lzL E e—i(%PJr%)"mL

na=0(=r13) nyy==co
elGP+a)L eiGP+as)L

= {Q(Vu) +W] [9(—r31) T |

(44)

Putting everything together, we obtain the finite volume
coefficient of plane wave e'?12"12¢'43"3

Ag%(”na r3) = —=0(r12)0(r3)4T 4 60(r1,)0(=r3,)4iT,

e~ iGP+a1)L

0024 T

elGP+a)L

+ 9(—1'31 )4lT2 W
ei(%P+q3)L

+0(r1)4iT5 [ PaL

elGP+a)L elGP+a3)L
1 — ¢iGP+a)L | _ ,i(3P+a3)L

e_i(%PJ"ql )L

+4iT,

ei(%P+43)L

—-4iT, (45)

1 — e~iGP+a)L | _ iGP+a3)L”
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The coefficients for other waves in finite volume are
obtained by symmetry consideration, e.g. for plane wave
e~'4nreitsns | the coefficient is given by Ag;r)n(—rn, r3), etc.
Therefore, the three-body wave function for spinless
bosons system in finite volume yields

L
Wgyr)n(rlb r354ij» k)
L
m

— (Ag}ljr)n(rlz, r3)eilhzrlz _|_A£y) (—Flz, r3)e—i(112’12)ei43’3

+ (Ag)L/r)n(r:%h rz)eifhﬂlz +A§§I)n(_r23’ rl)e—i423r12)ei41”3
L)
m

+ (Ag}ll‘r)n(rZ:}’, rl)eiqSIVIZ +Agy (_r31, rz)e_i(ISlrIZ)ei(IZr.%‘

(46)

Asdemonstrated in the two-body scattering case in [56,77],
the secular equations or quantization conditions for three-
body interaction in the finite box are obtained by the matching
condition, Wgé%(rlzv 35 4ijs qr) = l//sym(rlZ’ 35 4ijs qr)- All
six plane waves are independent in Egs. (34) and (46),
therefore, secular equations are equivalently obtained by
matching coefficients of six independent plane waves. To
obtain secular equations, we first consider the coefficient
for a combination of (e12"12 — ¢=id1r2)eids7s which is
antisymmetric under exchange of rj, <> —ry, and is obvi-
ously forbidden for the bosons system. The matching con-
dition for this particular wave reads

Asym(rl2’ ’”3) _Asym<_r12’ r3)

:Agér;(ﬁz,k) —Aﬁ%(—ru,rﬁ. (47)

Using Egs. (35) and (45), the matching condition leads to

4iT5[0(ryp) — 0(—ryp)]

ei<%P+q3)L
X

£2i(8(=423)—6(=q31))
|1 — ¢iGP+as)L T 1Z €2i(5(—q23)—5(—q3|)):|
— 4T, [0(ry) = 0(=r3)]

[ o—i3P+a))L
X

e~ 2i(6(=q31)+8(q12))
11— e—i(%PJrq,)L - 1= e—2i(5(—LI31)+5(q12)):|
—4iT,[0(rp3) — O0(=r31)]

eI GP+a)L e~ 2i(6(=g23)+6(q12))

) 11— eI GP+a)L B 1- e—zi(5(—qzs)+5(q12)):| =0. (48)

The matching condition has to be satisfied in all regions in the
(r12, r3) plane, see Fig. 2, choosing region for an example (1):
r12 < 0,753 > 0and r3; < 0, thus, we obtain our first secular
equation,

eiGPHa)L — 2i(5(=q23)=8(=q31)) (49)
The other two secular equations are obtained similarly by
considering the combination of (e'»"12 — e~'42712)¢!91"s and
(eld31m2 — =id1712) pld273 regpectively,
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r =l
= 2
r;;=0

r r,=0 M31 P
FIG. 2. Diagram show six segments from (1) — (V1) in (r5, r3)
plane, the o-function potentials are nonzero only at lines, r, = 0,

r3 = 0 and r3; = 0. The arrows show the positive direction of
each variable.

elGP+a)L — £2i(6(=431)+8(q12)) | (50)
elGPHa)L — ,=2i(6(=23)+6(q12)) (51)

Although the above three secular equations for three-boson
interaction are obtained by choosing a particular region, it is
easy to check that Egs. (49)—(51) are indeed the solutions of all
six matching conditions in all regions on the (r;,, r3) plane.
As a matter of fact, the secular equations displayed in
Egs. (49)-(51) have been obtained long ago by Yang
in [89] as a specific case of the N-particle system as
N = 3. In [89], based on Bethe’s hypothesis [90-92], i.e.
“no diffraction” hypothesis, Yang considered a more general
situation of N identical particles problem in one dimension for
o-interaction. Nevertheless, all three secular equations for the
three-boson system appear as Liischer’s formula-like quan-
tization conditions,

P
cot <§ + %)L + cot (8(—g31) — 6(—¢qn3)) =0,

P
cot <§ + %)L + cot (=6(=q31) — 8(¢12)) =0,

cot (g + %)L + cot (8(—g»3) + 6(q12)) = 0. (52)
As can be easily see from Egs. (49)-(51), only two
conditions in Eq. (52) are in fact independent that are both
given by a single two-body phase shift and relative
momenta of three particles. All the relative momenta of
three particles are determined by two independent particle
momenta as well. Therefore, the quantization conditions
are finally given by two coupled equations that depend on
two independent particle momenta and a two-body phase
shift. Three-body energy spectrum in finite volume thus can
be obtained by solving two independent particle momenta
given that a two-body phase shift is known or can be
modeled.
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IV. DISCUSSION AND CONCLUSION

Using quantization conditions in Egs. (49)-(51), we
also obtain relations for relative momenta ¢g;;, for an
example,

gL

cot

+ cot (5(q12) + 5(_q23) + 5(_Q31)> —=0. (53)

2

The 5(g,) comes from the disconnected scattering con-
tribution in the (12) pair, see Fig. 1(a), w is the
net result of the sum over all rescattering contributions from
other channels into the (12) pair. The physical picture is
somehow quite similar to the three-body rescattering effect
in three-body decay processes [32-42]. Based on the
Khuri-Trieman equation approach, the decay process of
a particle (0) into three final particles is described by a sum
of all possible decay chains: 0 — (12)3 + 1(23) + (31)2 -
123. For each individual decay chain, the amplitude is the
product of two-body amplitude and a scalar function that
describes the net effect of three-body rescattering corrections
to the disconnected two-body contribution. The analogue to
rescattering in three-body decay processes, w
may be interpreted as the three-body rescattering corrections
to the disconnected two-body contribution, 5(g,).

Assuming that we can treat Faddeev’s equation, Eq. (14),
as a perturbation theory, and the leading order solution of
Eq. (14) is a disconnected contribution,

0
T (ki gy i)

= (2n)8(k—q,) <2, /o2 —iq§> r <, /o2 —iq§> . (54)

Therefore, the total scattering amplitude T (k5. k3 q;;. 1) =

321 ngg(ky;qij,qk) only has the contribution of three

disconnected scattering amplitudes, 1 +2 — 1+ 2 with
particle-3 as a spectator, 2 + 3 — 2 4 3 with particle-1 as a
spectator and 3 +1 — 3 4 1 as particle-2 as a spectator.
Iterating Eq. (14) once, thus, the next-leading order contri-
bution of 7', is given by

Ty (ks i.41) = <2\/o-2—7§k2> it (@)
2 2y -ig)in- (Yo -ia)
X .

0* —3qz— (k+%)* +ie

aty
(55)

The diagrammatic representation of 7 Ei; isshowninFigs. 1(b)

and I(c), which are double scattering contributions from
pair (23) and (31) into the (12) pair. Now both leading and
next-leading order contributions to the on-shell scattering
amplitude 7 5 are
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0 1 . )
Tg '+ Tg )= t(g)[l + ity (=qo3) + ity (=g31)].  (56)

InEq. (56), the perturbation result of scattering amplitude, 7 5,
on right-hand side of the equation now indeed appears as the
product of disconnected two-body scattering amplitude
t,(q1») and the rescattering corrections to leading order
contribution, 7, (g,).

On the other hand, the asymptotic behavior of the two-
body phase shift is given by &(q) — —mz—‘;” as g — oo,
where V, > 0 for repulsive interaction and V, <0 for
attractive interaction. For large g5 [the momentum of the
third particle is well separated from relative momentum of

pair (12)], thus, g3 — 3¢5 and g3; —» —3¢3, and
8(=q23) +6(=q31) a:-0 MV ( 1 )
2 R

8(=4q23) —6(=431) ‘13_—>§°_2mV0N5 3
2 3Q3 ’

. . G300 2imV 1 1
it (=qy) +it (—q3) — 0 <_—_) =0. (57)
93 43

Therefore, at large g5, the rescattering between an energetic
third particle and particles in pair (12) is less likely to
happen. The quantization condition in Eq. (53) and the first
condition in Eq. (52) are thus reduced to isobar model type
conditions, cot?2 + cotd(q;,) =0 and cot(5 + %)L+
cot§(2 g3) = 0, in which the rescattering effect from third
particle is weak and neglected. The reduction of quantiza-
tion conditions can be understood in the following argu-
ments. Diagrammatically, rescattering amplitudes, such
as Figs. 1(b) and 1(c), are proportional to propagators
m and m respectively. When off-shell
momentum ¢ is taken close to g3, the amplitude at the
pole k = g5 position leads to on-shell scattering amplitude
T 5 given in Eq. (33), meanwhile, the contributions from

Figs. 1(b) and I(c) are proportional to 5-— and 5—

2g3 2qx3

respectively. Hence, for large g3, the rescattering contri-
bution from channel (23) and (31) into pair (12) are both
highly suppressed by q—13, so that quantization conditions for

both g, in Eq. (§3) and g5 in the first condition in Eq. (52)
are reduced to isobar model like quantization conditions,
and the dominant contribution is from the disconnected
diagram.

Although, McGuire’s model displays no diffraction
effect, our results given in Eq. (52) may still hold for a
general short-range potential. This may be demonstrated by
asymptotic behavior of the three-body wave function. The
asymptotic form of the wave function in one dimension is
quite different from that in three dimensions, e.g. the two-
body scattering wave function in one dimension does not
fall off in any direction, see Eq. (D5). For incoming three
free particles, as in three dimensions, the one-dimensional
three-body wave function also consists of several pieces
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that display the different asymptotic behavior and describe
different physical processes: (1) the contribution from
incoming free waves, disconnected diagrams and non-
diffracted on-shell rescattering effects all have the form
of nondiffraction waves, e.g. e?i"2¢%’s; (2) the bound
state capture process has the form of, e.g. e *lr2leits”s
with a bound state of (12) pair in the final state, which
decays exponentially as (r;;,ry) — oco; (3) diffraction
waves are of the order of

/dk12 dk3 eik12rlzeik3’3
27 271 o> —k%z —%k% + ie

1
(r12,13)—00 4 I 2 142
(R 43R eV,

(58)

which describe the spherical wave of the three-body effect
and are suppressed at a large distance [93]. Hence, at large
separations of all three particles, the dominant contribution
is from nondiffraction waves.

In summary, McGuire’s model is adopted to describe
three spinless identical particles scattering in one spatial
dimension; we present the detailed solutions of Faddeev’s
equation for scattering of three free spinless particles. The
three particles interaction in finite volume is derived in
Sec. III. Our approach of solving three-body interaction in
finite volume is a generalization of the approach developed
in [56,77] by considering wave function in the configura-
tion representation; the advantage is that the wave function
contains only on-shell scattering amplitudes. The quanti-
zation conditions by matching wave function in free space
and finite volume are given in terms of two-body scattering
phase shifts in Eq. (52). The quantization conditions in
McGuire’s model is dramatically simplified due to Bethe’s
hypothesis, and the quantization conditions presented in
Eq. (52) are Liischer’s formula-like and are consistent with
results obtained in [89]. The results in Eq. (52) are
presented in terms of two-body scattering phase shift.
The quantization conditions may be tested in the near
future by one-dimensional lattice models, such as ones
studied in [77,88].
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APPENDIX A: FORMAL THEORY OF
SCATTERING AND FADDEEV’S EQUATION

1. Formal theory of scattering

In the formal theory of scattering [94], assuming the
Hamiltonian of the scattering system is given by the sum of
a kinematic term and an interaction term, H=H ©0) T V,
the S-matrix is given in terms of the solution of the
Schrodinger equation,
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(F181i) = (f10(c0,0)T(0, —00) i) = (¥ (0)¥17) (0)).

(A1)

where the unitary operator U is given by U(t,1)) =
T{exp| 'f‘ dr'eMo’ Ve~ iHo1}, it has the properties of
(1)) = U(t.1,)|¥(10)). |¥(z)) is the solution of the time-
dependent Schrddinger equation, which describes the wave
vector of the scattering system. |i) and |f) are initial and
final state vectors in the absence of interaction at distant
past and future respectively. The incoming and outgoing
0(0,—c0)i) and (¥} (0)] =
(f|U(c0,0) are also given by the Lippmann- Schwmger
equation [94,95],

wave vectors \‘PEH(O)) =

1 .
) (0)) = [1 TR v} i)
E,—H(0>—V+l€
: 1 e
= |1 —|— = V‘I’ O N A2
i) - H()+l€|,(>> (A2)
v (0) = [1+\7 _ . }
(P, (0)] = (f] E —flg — Vi
1
+ Ve (A3
= (f| + (¥} (0)] E — g tie (A3)

where E; and E, denote initial and final state energies
respectively.
Using Eq. (A3), we first rewrite the S-matrix to

1

—(fIT]i),

(1310 = (19 (0)) - (A4)
where (f|T]i) = —<f|\7|‘I’l(.+) (0)) is scattering 7-matrix.
With the help of Eq. (A2), we obtain the relations for the 7'-

matrix,
1 1

E;,— H +ie E; - I:I<)—|-ze
(AS)

T=-V+V T.

In terms of 7T-matrix, the incoming wave reads |‘Pl(-+) 0)) =

_+A . ~ ~ .
[ Tt T)|i), therefore, the S- and T-matrix are

related by
(£181i) =

(£li) +2zi8(E; — E()(f|T]i).  (A6)

2. Faddeev’s equation

For three-particle scattering, the wave vector \‘Pg))
satisfies Schrodinger equation,
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(E-H) - V¥ =0. (A7)
Assuming pairwise interactions among each pair of par-
ticles, V= 23:1 ‘7(7)’ where \A/m stands for the pairwise
interaction between ath and fth particles. As shown in
[26,27], the self-consistent equations for the three-body
wave function depend on the free incoming waves, and are
split into four classes according to four types of asymptotic
free incoming waves: |i) and |®(,)) (y = 1, 2, 3), where i)
is solutions of (E — H))|i) = O and represents incoming
wave of three free partlcles and |®,) is the solution of
(E— H() Viy)l®q)) =0 and represents the free yth
particle plus a bound state in (af) pair.

a. Scattering of three free particles

For three-body scattering with initial state of free
incoming wave |i), the three-body scattering wave vector

has the form of [¥}) = [i) + 323, [¥(,) [26.27], where
['¥(,)) satisfies the equation

W) =G Vi (i) + ¥ ) + [¥s). atp#y.

(A8)

The Green’s function G, = (E — H g —

the solution of the equation (E —ﬁ(()) -

‘A/A(},) +Ai€)_1 is
V)G = 1.
is related to two-body scattering
amplitude by G, = G(O)(l - ?(y)G(o)), where G(O) =
(E - I:I(Q) + ie)‘l and ?(J/) = —‘A/(y) + ‘A/(J,)G(O)io,) are free
Green’s function and two-body scattering 7-matrix in the
(af) pair channel respectively. Therefore, we found rela-

tions V(},)G(y) = _;(y)G(O) and

Green’s function Gm

Vipl¥i) = =1 Gy Vi (1) + W) + [¥p)).  (A9)

The total three-body scattering amplitude is given by

Tliy = —V|®y) = Y23, T,li) [26,27], where

A

Tipli) = =V 257, (A10)

Using Eq. (A9), we thus have

—1)Go) Vi (i) + W) + W), (ALL)

(A12)

Equations (A11) and (A12) together lead to the well-known
Faddeev’s equation for three particles scattering [26,27],

Ty =10 —1)G0) (T +Tip).  a#Fp#y. (Al3)

054508-12



ONE SPATIAL DIMENSIONAL FINITE VOLUME THREE- ...

b. Scattering by a bound state

For the case of the i-th particle incident on a bound state
of other two particles pair, the initial state of the free

incoming wave is given by |®). The three-body wave
vector has the form of [¥"”) = o1 [¥()) [26,27], where

|¥(,)) satisfies the equation

() = 8,ilPg) + G Vi ([P

aFpFy.

)+ %)
(Al4)

The total scattering amplitude for a particle scattering
with a bound state is given by T|d)) = —V|‘Pg)) =

3 T()|® ;) [26,27], where

o )
T @) ==V)|¥e ). (A15)

Thus, we find

T )| @) = =6,V )| @) +10) (%) +[¥p)).  (AL6)
W) = =G T @) (A17)

The Faddeev’s equation for the i-th particle incident on a
bound state of other two particles pair yields

Vi) =Gy (Tw +Tp)  a#p#r.

(A18)

APPENDIX B: SOLUTIONS OF FADDEEV’S
EQUATION FOR SHORT-RANGE
INTERACTION IN FREE SPACE

In this section, we first show the details of the solution of
Faddeev’s equation, Eq. (14),

T, (ks qij. qr)

e

+/ dq T (q’q,,,qk)+T<>(q;qij,qk)
21 o2 - —(k+9)?>+ie
aFpFy,

where

v (K 4o 1) = / drogdrye™r
X mVOS(raﬁ)l//(())(raﬁ, ry54ij qr)-

Then, using the solutions obtained by solving Faddeev’s
equation, we demonstrate how the three-body scattering
wave function is constructed.
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1. Solution of 7' amplitudes

Let us first consider a free incoming wave,

W) = el912T2010373 = pl95373 eI 1 = 1931731 1G22 (Bl)
therefore
v (kiqia, q3) =mVo(2m)o(k—gq,). y=123. (B2)
First of all, let us introduce three new functions,
= Z T k qij> qk
y=1
X(k) = Ty (ks g1 qi) — Ty (k: g1 i)
Y(k) = Tay(k i q) = Ty (ks gijoqi),  (B3)

thus Faddeev’s equation, Eq. (14), can be reexpressed as
three decoupled integral equations for (X, Y, Z) functions,

1

=) (7

Z(k)

+2[:£&—3ffgl)me (B4)
! X(k)
(=1 ()
= —i(2n)6(k — q3) + i(27)5(k — q1)
and
! Y(k)
(7= =5¥)
= —i(2n)8(k — q3) + i(27)3(k — q»)
‘i/_w;l_zgz—%qu((z)+%>2+ie' 1)

Next, let us solve Eq. (B4) first. According to [84], the
three-body problem with equal-strength J-function poten-
tials is exactly solvable, diffraction effects are canceled out,
the solution of wave function is expressed as the sum of six
possible plane waves, see Eq. (C1). Therefore, the three-
body scattering amplitudes can only be given by the sum of
pole terms, see Eq. (C10). The strategy of solving
Egs. (B4)—-(B6) is thus to make an ansatz of the solution
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as the sum of six possible pole terms, the pole positions are
given in terms of the momenta of the incoming wave. Each
pole term is then assigned with a constant coefficient.
While the ansatz of the solution is plugged into integral
equations, Eq. (B4)-(B6), by carefully defining the inte-
gration of the contour and also requiring that the branch cut
contributions on both sides have to be canceled out as the
consequence of Bethe’s hypothesis, then the coefficients of
pole terms can be fixed by matching both sides of the
equations.

In what follows, we show how Eq. (B4) is satisfied by
the ansatz,

3
Z(k) = (2mi) > K, 8(k - q,)
y=1

Ak

k— g3 —ie)(k—q, —ie)(k — q, + ie)’ (B7)

T

Instead of deforming the contour of integration in Eq. (B4),
equivalently, we will adopt the ie prescription in this work,
and assign the small imaginary parts to relative momenta to
avoid poles on the real axis. The left-hand side of Eq. (B4)
is thus given by

3 K
LHS:Z r

(V)

1 1
(k= q3 —ie)(k — g, — ie)(k — q, + ie)’

(27i)6(k — q,)

where a # f # y. The integration on the right-hand side of
Eq. (B4) is carried out by closing the contour in the upper

half plane and picking up poles, ¢ = =%+, /o —3k* + ie,
q; + ie and g, + ie, thus we find

+2 § il
= (k+%+ q§ﬁ+ie) <k+q—;—,/q§,j—ie)
z(1-¢>
2,/ 22

+ : ; -
(k—g3—i€)(k—qr—ie)(k—q; +i€)
a3
_ 2423931
(k—f—%—i— q%z—i-ie) <k+q2—3—\/q%2—ie)
q
_ /1211122423 . (B9)

<k+%+ q§1+ie)<k+q2—2—\/q§1—ie)

PHYSICAL REVIEW D 95, 054508 (2017)

We can clearly see that the branch cut contribution, the
terms proportional to —~1 on both sides of Eq. (B4)

2_3;2°
Vo =3k

cancel out completely. Next, the square root terms, /‘1{21/3’

are handled by assigning a small imaginary part to g, —
q1» + 107, the imaginary part for g,3 — g,3 —i0" and
g3, — q3; — i0" are determined completely by relations,
g3 = —%412 + ?‘;% and g3, = —%%2 —%613 respectively.
In addition, our convention for the complex square root is

given by /q?> +i0" = 4++/¢? therefore /(q£i0")*=
\Vq*+2qi0* =4q. Thus, with our assignment of the
imaginary part to q,,, we obtain relations /(q, + i07)? =

q12» (g23 — i0+)2 = —qy and v/ (g31 — i0+)2 = —q31-

Hence, the right-hand side of Eq. (B4) now can be
reexpressed by

3
RHS == "(27i)3(k — q,) — (27i)3(k — q3) ;—213
J?/’:l K}’(k - ('Iy)
(k= g3 —ie)(k — g, — i€)(k — q, + i)

_ 93(k=q3) _ 22(k=47)
2423431 2q12923

+2

&k
A (l 2\/0'2—%2

T =g ie) k= ga—ie)(k—q1 T ie)

(B10)

Comparing Eq. (B8) to Eq. (B10), the branch cut is
canceled out, and the coefficients are given by

imVO lmVO
Ky = _ w s Ky = _ Ma
2q2; 2q3
. imV,
o imVy(1 + lqu”)
gm0
291, 2q2;
6(imV,)?
/1:_<1+imV0>(1_imV0)(1_imVO)' (Bll)
291, 2q23 2q3

The solutions of Egs. (BS) and (B6) are found in a
similar way,

imVO
imV, _imVy
(1#_2‘]12)(1 2423)
imV
_imV,
2qx3
(2¢3) (imV,)?

imVg imVq
(1+2‘112)(1_2‘123)

k—qs—ie)(k—q, —ie)(k—q, +ie)’

X(k) = (2#0)5(k - ¢3)

— (27i)8(k = q1)

+7 (B12)

and
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Y(K) = (2mi)3(k — g5) 00

imV,
+ 2q12

. imV

= (271)5(k = q5) —mr
Lk e
(2453)(imV)*

TV imVos
(1+2f112>(1_2q31)

(k—qs—ie)(k—q, —ie)(k—q, +i€)’

(B13)

In the end, the solutions of 7'(;;3) for free incoming
wave y o) = eldi2"2 049373 gre

T (ki g, qx)

. imV,
= (27”)5(k - Q3) imVy - _imVy
( + 241> )( 2q23 )

(imVy)* 2h+q3)
(432 (1= (1-52)

2912 2973 2431
~ ) Bl4
(=g -k g - k=g Ti0) O
T (k; qij. qx)
imV,
= (2ﬂl)6(k - C]l) lmim(:/o
- 2g23
(imV)® 2hk+qy=imVo)
B (5 (150 (=51 (B15)
(k= g3 —ie)(k — g, — ie)(k — g, +i€)’
T2)(k; qij» i)
imV,
= (27i)8(k — q») Lmov(,
=5
imV (2o
+ (27[1)5(k - 613) im = im
(1+ T‘;”)(l - T‘;O)
(imVo)* (2k+g +imVe)
1oy (Vo Y
( 2q,2>< Ztm)( 2431) (B16)

(k= g5 —ie)(k—q, —ie)(k— g, + i€)”

The total three-body scattering amplitude, T'(ky4, &, G;1, i)
is determined by Eq. (16). As the consequence of Bethe’s
hypothesis, the physical scattering process for equal-
strength o-function potential and equal mass particles does
not create any new momenta, see [84]. The final relative
momenta in any pair configuration, for instance (ky,, k3),
can only be (£¢;;.q;) where k =1, 2, 3 and i # j # k.
Therefore, we may define the on-shell S-matrix by

PHYSICAL REVIEW D 95, 054508 (2017)
(2m)d(k1p — qi;)(2m)0 (k3 — qi) S (k12 k3)
= (27)6(k1> — q12) (27)6(k3 — g3)
3
+ (27ti)5<02 — k3, — 4k§>
x T(ki2, k33 q;j5 qx)- (B17)
For free incoming wave v gy = e/412"2¢/4"s, six possible
on-shell S-matrix elements are
(8(q12-93)- (=412, 93), S (923, 41)
S(=423-41):5(q31, 42), S(= 431, 42))

= (51,52, 53,54, 55, 56). (B18)
where
. 1
R O )
e T 7L TU
(1 + 55 (=520 (1 =50
53 = imV, (IZ;O)E%/‘;O) imVoy °
(1 2250) (1 — 2%y (7 — %)
S4 = mv, (Z‘;;)V imVay *
(1 +2q20)( _2429( _Wﬂo)
S5 = S3,
(5322)
“urEm-gmng O

The solutions of 7" amplitudes of the Faddeev equation
and S-matrix for the rest of the five independent free
incoming waves can be obtained from solutions given in
Egs. (B14)—(B16) by relabeling subindices.

(1) For y ) = e~l4nrei®sns solutions of T amplitudes

are given by Ty <> T(5), T(3) remains the same.
The S-matrix elements are (s5, 51, S4, 53, S, 55)-
(2) For y ) = el eidi’s | golutions of T amplitudes
are given by T(3) d T(z), T(l) d T(3), and T(2> g T(l)
The S-matrix elements are (ss, S4, 51, Sg, 53, 52)-
(3) For y () = e™"n"2¢'17, solutions of 7" amplitudes
are given by Ty <> T(3), T7) remains the same.
The S-matrix elements are (sg4, S5, S, 51, 52, 53)-
(4) For y ) = et1Mei®2"3 | golutions of 7' amplitudes
are given by T(3) d T(l)v T(l) d T(z), and T(2> d T(3)
The S-matrix elements are (s3, Sq, S5, 52, 51, 54)-
(5) For yg) = e~"n"2¢'"3, solutions of 7' amplitudes
are given by T3y <> T(5), T(;) remains the same.
The S-matrix elements are (sg, §3, 52, 55, 54, 51 )-

In the end of this subsection, we also like to point out that
the choice of imaginary part assignment for the complex
square root is not unique, for instance, we could assign a
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small imaginary part to ¢,3 instead of g,. If so, the
solutions obtained by assigning ie to ¢,3 are equivalent
to relabel particle numbers by 1 -2, 2 >3 and 3 — 1
from the solutions obtained by assigning i¢ to g,.

2. Construction of wave function from
solution of 7’s

With the solutions of scattering amplitudes in
Egs. (B14)-(B16), we are now at the position of construct-
ing the wave function of three-body scattering. We show
some details of wave function construction in this section
for the incoming wave y ) = e'92"12¢/%"s as an example.
Using Eq. (12), we thus obtain

w(ri, 133 4ijs i) = €'10"2e' B0
ikiary etk3r;

+/°°dk12dk3 6" kst
o 27 27 k3, +3K3 — 0% — i€

x [T 3)(k3s i qi) + Ty (k15 gij» qi)
+T 2y (k15 93> )]s (B20)

. — Liq12T12 pig3T
w(ria. 133 4ij» qx) = €'72"12e' B
(%)e—iqzﬂrmeiql"]
2453
+

931

PHYSICAL REVIEW D 95, 054508 (2017)

where k; = —ky, —1‘2—3 and ky, =k, —%. For each indi-
vidual w(;53), see in Eq. (12), the integration over
T (23 amplitudes has both a branch cut contribution
from the free three-body Green’s function, see Eq. (12),
and poles contribution from scattering amplitudes
themselves. Only the branch cut contribution is respon-
sible for the diffraction effect, in another word, only the
branch cut integration creates new final momenta over
scattering, pole terms do not create any new momenta.
Branch cut integration is usually troublesome, fortu-
nately, as we already know from [84], diffraction in the
total wave function has to be canceled out. By some
simple algebra in Eq. (B20), it is easy to see that

370 (k
S, Toy (k) & (I, + 23 = 0?), thus 2o Tl e

k2, +3k3—c*
only pole terms. We first complete the integration of
k1>, and pick up the poles in the upper half ki, plane
for rj, > 0, and the poles in the lower half k|, plane for
rip <0, so we get

(i;ni)e_iqﬂ 31l pigara (M) [(M)eiqlzmﬂei‘hh + eilI12|"12|giqsf3]

_N2q1 71\ 28

_ imV, _imVy
2g3 2g3,

(imVo)

+ (1 +thO)(l _thO)(] _thO)l/_oo_

2912 2qx; 2q3;

(= 520)(1 = 30)0(ry)e <+%Vnahm-+<%V%<1—“”ﬂe< ria)e

2¢p3 2¢3,

imV, V
T ED0-5)

+f13)rlzelkﬂ3

293, 2¢p3

(ks —

(55,2 = (G ) (1 = 579))0(r12)e

—i€) (ks —

—i(k73+‘h)rlzeik3r3 + (_imVO)( + ””VO) ( rlz)ei(%‘FQI)rlZeikSrS

1+l€)

291, 2g3;

+

(ks — q» —i€) (k3 — g5 — i€)
imV, imV, imV, ik i imV, imV, _ils ik
+ [(552) = (G5 ) (1 = 5 0)]0(r1p) e GHareiors 4 (=20 (1 4 50— 1y e~ 3 Hanz ethars

(ks — q1 + ie)(ks — g5 — ie)

(B21)

Next, we can perform k3 integration and pick up all the poles in both the upper and the lower half k3 plane in a
similar manner as we did in k;, integration, thus, we finally get

l//(rIZ’ 3 qijs qk) — (AeiKIlzflz + Be—imzrlz)eiﬂlﬂz + (Ceiﬂlzsflz + De—i(hsrn)eﬂhrs + (Eei(h]rlz + Fe_iqSIrlz)eiQZr3’ (B22)
where the coefficients are given by
OB o)) o))
=1+ —_imV, —imVy (1 +imV0)(1 _imVy
2qx3 2q3, 291, 2q3
+ gy O BB = (20 — 2]+ (o (2 (220 — (521 - 52 -
" (1 301 = 52 (1= 70) |
2q1, 2923 2q3,
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0D 8(er) (5200) [B(=r31) (32) (1 + 5270) — O(ry3) (o) (1 + 20) (B24)
imV imV imV, imV, imV, ’
( + 2q, 0)( 2‘]230> <1 + 2q120>(1 - 2‘1230)<1 - 211310)
s ) () (V) (V) )0y ) () (1 — Vo) — ()0 (V) (1 - V) 25
imV, imV, imV, imV imV ’
(1 + 2q120)(1 _Tzso) (1+ 2410)(1 2(1230)( - 24310)
b )G | GE{=0(ra)0(—ra) (52 (1~ 55 + 0(ri2)ors) (352 — (5 (1 52} (B26)
imV, imV, imV imV ’
_7310 (1 + 0)(1 - 2‘1230)(1 - 2‘]310)
L Olra) () () (T (1 = 505+ 0(—ria)o(—ran) () (42) (1 + 522 B2
imV, imV, imV, ’
(1 + 21]10>< - 24230)(1 26]310)

and

_ 0(rx3) (52) ~ O(=r31) (52 (52)  O(ri2) (e {0(=ran) (552 (1 = 5222) + 0(ro3) [(52r2) — (5a2) (1 = 52)]}

imV, imV, imV, imV imV imV :
- 2‘]230 (1 + 2‘]120)<1 - 2[1230) (1 + 211120)(1 - 2‘]230)(1 - 24310)
(B28)
|

It can be shown that the coefficients given in Eq. (B28)  y, (|, r3) = (Ape'2712 + Bje™'40712) i7"

are the solutions of McGuire’s model, the coefficients 4T 1 _ ;
1go3r D 1423712 ) plq173

obtained in six individual regions in the (r,, r3) plane, + (CAe' tae _ )e.
see Fig. 2, satisfy matrix transformation conditions + (Epe' @12 + Fpemiaume)eldars, (C1)
in Eq. (C3).

The three-body wave functions for other free incoming
waves are obtained in a similar way; because of length
expression of these wave functions, we do not show them
all in this work except the wave function for three fermions
and three bosons system; the expression of three fermions
and three bosons systems are listed in Secs. I A and II B
respectively.

APPENDIX C: MCGUIRE’S MODEL

The one-dimensional three identical particles system
interacting through the equal-strength §-function potential
has been solved by the ray-tracing method in [84]. After
removal of the center-of-mass coordinate, the one-
dimensional three-body problem resembles the motion of
a single particle in a two-dimensional configuration space,
e.g. (r12, r3) plane. The plane is divided symmetrically into
six segments by interaction lines at r;;=0 (ij=12,23,31),
see Fig. 2. According to ray-tracing arguments, the author
in [84] shows that three-particle only exchange momenta
during scattering, no new momenta are generated by
collision, hence no diffraction. Therefore a general solution
of the wave function is a linear combination of six possible
plane waves,

where A stands for six segments from (/) up to (VI). The
coefficients in six segments are related by boundary
conditions of wave function, e.g. the boundary conditions
at rj, = 0 between segment (/) and (/1) are given by

W”(rl2v r?l)|r]2:0+ - l//[(l"u, r3)|r12:0_’
Oy i(riz. r3) _ Oy (rip. r3)
8”12 8"12

r=0" rin=0"

= mVoy (12, ”3)|r12:0+v (C2)
the rest of the boundary conditions are given in a similar
way. If we define the vector of coefficients by y! =
(Ap, Bps -y
vectors are connected by matrix transformation,

F,) in segment A, the two neighboring y,

xn =Taaxns (C3)

where I'y 5/ is determined by Eq. (C2).
For completeness, we give the expressions of six I'
matrices,
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l—‘11,1 =

1—‘IV,II =

l—‘VI.IV =

1—‘V,VI =

IﬂIII,V =

r imV,
+ 2qx3

o o O

_ lmV()
L 2qp3

_imVy
2q3

imV,
2g3;

_ imv
1 4 imVo
+ 2q12
__imV,
2q15

0

imV,

2q23

__imV,
2q1,

imV,
1 myg
+ 291,

0
0
0
0

imV,

1 __mvy

2q3
imVy
2q3,

imV
+ 2qp3

_imVy
2qp3

imVy

2q1,

__imV,
2q15

S o o O

0
0

_imVy
2qx3
2gx3

0
0

0

_imV,
2q3

imV,
1 4 imYo
+ 243,

0
0
0

imV,

+ 2qx3
_imV,
2g23

imV,

2g3

_imVy
243
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0
0

_imV,

2qx3
imVy
2¢p3

0
0

imVy

2qx3

_ imVq
2gx3

imVy
| + 2q12

_imVy
291,
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0
0
0
0

__imV,

23,
imV,
2q3

_imVy

2q1,

1+

imV,
2q1,

imV,

2qx3

1 —

1+

o o o O

imV,
2¢p3

imV,

2q3

imV

- 2q3

imVy
2q12
__imVy

2q1,

1+ 2%

0
0
0
0

_imV,
2q3,

2931 |

imV,
2qx3

0

_imVy
2q12

+ imV,

2412 |

imV,
+ 2923 |

(C4)
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_ imV,
2q3 0 0
imV,
1 imV
0 + 2qp3 0
0 0
FI’III = imVO O 0
2g3
0 _ l;nVO 0
423
imVy
L 0 0 2q15
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imV, T
- 2‘1310 0 0
imV,
0 Tﬁ“ 0
_imVy 0 0 _ i;;\lfzo .
imVqy : ( )
I+5% 0 0
imV,
0 1- ’;’(’]230
imV,
0 0 1+ leo_

The scattering amplitudes 7 ,)’s can be constructed by using Eq. (10), therefore we obtain

T()(q qu’qk) imV . T T T — |

q—q3—ic q—q—ie qg—qy—i€e q—q3+ie q—q,+ie q—q,+ie
) . Eii+Dyr  Aup+Fur B+ Ciyr - Ep+Dy Ay +Fy B+ Cyy

T1)(q5 qij» qx) = imV —+ —+ —— —— —— —|,
q—q3—1€ q—qy—1l€ q—qy—1€ q—q3+i€e qg—q,+1i€ qg—q,+Ie
C F B E A D C/+F B E A D

T(z)(q;qij,qk):imVo[ it tvey Bt by Au*Dvi i h Bt R At ’,]. (C10)
q—qz3—1ie qg—q —l€ g—qr—l€ qg—qz3+ie q—q;+ie g—q;+Ie

As we can see, the scattering amplitudes bear no branch
cuts, but only pole terms as the consequence of Bethe’s
hypothesis.

APPENDIX D: TWO-BODY SCATTERING

For completeness, we also give the brief review of two-
body interaction in finite volume in this section.

1. Two-body scattering in free space

We consider two spinless identical particles scattering,
the positions and momenta of two particles are denoted by
(x1,x,) and (py, py) respectively. The wave function of
scattering two particles satisfies Schrodinger equation,

1 d*

1 &2
T om de +Va

_ —E|®(x,.x,) =0,
2m dx’ (x1,x2)

—xz)
(D1)

where the mass of the particle is m, the total energy of the

two-particle system is E = % + % Let us denote the
center of mass and relative positions by R = @ and
r = x; — x, respectively, and conjugate momenta by P =
p1+ pr and k= % respectively. Due to translational
invariance of center of mass motion, the total wave function
of two particles is described by the product of a plane wave,

e'PR, that describes center of mass motion and the wave
functlon, w(r; k), that only describes relative motion of two
particles, ¥(x;, x,) = "Ry (r; k). It may be more conven-
ient to use the Lippmann-Schwinger equation representa-
tion of solutions,

w(rik) = e + /°o

—0o0

dr'G ) (r =75 z)mV (r)y(r'; k),
(D2)

where z; = k? + ie and k* = mE -2

1> the free-particle
Green’s function is given by

‘ °°dq eiqr iei\/p\d
G(o)(’",Zk) = —ooﬂZk_qzz_ 2\/](_2 .

r| > ||, the Green’s function can be

(D3)

At large separation,
approximated by

0 VIR
rI>|r e rr
G(O)(I"—I"/;Zk)‘ ‘Zl ‘—lz\/k_z e sz (D4)

Therefore, asymptotically,
w(r k) “E e 4 ir(k k)R, (DS)

where k' = Vk? "l and the scattering amplitudes are
given by

1(k, k)

\/_/ dr'e " mv (¥ (r;k). (D6)

In this work, we only consider particles scattering in
a symmetric potential, V(r) = V(-r), therefore the
Schrodinger equation exhibits a solution of even parity
(two spinless bosons), w, (—r) =y (r), and a solution of
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odd parity (two spinless fermions), w_(—r) = —w_(r),
where v, = % The parity amplitudes are given by
1k k) = 1. (VI2) + ’;(—’ft_(\/ﬁ), therefore

large|r|

wi(rik) = Yi(k)
i\/—zri —ivVk*r

x| ¢ ity (\/kiz) ei‘/"_eri(r)] ,

(D7)

where Y, =1 and Y_(k) :\/—%,Y_(r)

wave function thus is the linear superposition of both parity
wave functions: y = c, y, +c_y_.

= ﬁ The general

2. Two-body scattering in finite volume

When the particles are placed in a one-dimensional
periodic box with the size of L, the two-particle wave
function in a finite box, W) (x,x,), has to satisfy the
periodic boundary condition,
= lP(L)(xl’xZ)’

W@ (x, +n, L,xy +n, L) ne ., €Z.

(D8)

The finite volume wave function, ¥(X), can be constructed

from free space wave function ¥ by

YL (x),x,) = Z W(x; +ny L.xy +n,L)

ny nEZ

1 . .
_ <V Z €an"1L) ezPRW(L)(r; k)’
nXIGZ

w B (r k) = Ze"g”Lw(r +nL; k),

nez

(D9)

where n=n, —n, , and the volume of infinite summation,
V,isgivenby V =3 et =225 5(P + 22d). The
quantization of total momentum, P ZL” d,is warranted by
translational invariance of center of mass motion in a
periodic box. By our construction, the general relative
wave function in the finite box is given by () =
cg,uﬁf) +c_yM), the periodic boundary condition for
w'D) reads

B (r+ nL; k) = ey D (r k). (D10)
Applying Eq. (D7), the relative wave functions in the finite

box, y/gf)(r; k), are given by

Y. (k) Ze—ignL

nez

large|r| .

v (k) = i (Vi)

X [£60(—r —nL)e =iViZ(r+nL)

+0(r + nL)eVE(+nL)]. (D11)
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The summations can be carried out,

‘ _ i(E+VER)L
S0 — nte B = ooy 4 <5V
nez 1 — e’(ff k)L

pi(—5HVIAL

—ifnL ivVienL _
Ze O(r+nL)e o(r) + oL

nez
(D12)
therefore we find
lar; e|r|
Y k) " E i (VIR)Y 4 (k)
i(—5+VIP)L
V2 r] e’ V2
e Yi(r)+ PRI ) e
iEHVIEL _
TR h——e (D13)

1 — eil6+ViA)L

The secular equation is obtained by matching y()(r) to
w(r) at an arbitrary r, larger than the range of the
interaction. The matching procedure is equivalent to
applying the periodic condition to both wave functions
and the derivative of wave functions at nearest neighbor
when solving periodic potential quantum mechanics prob-
lems. In addition, the matching condition y(X)(r) = y(r)
also guarantees that y(") (r) constructed by using Eq. (D9)
is indeed the solution of the finite volume system for a
short-range potential. Because wave functions are the linear

superposition of two independent basis, ei"/_r by choos-
ing r > 0 e.g., we obtain two matching equations,

1 i( +\/_
|:2it+ 1 — el(=5+V0) }

1 ei —7+\/_ 0
+ 2it. | _ pi(-5ViPL =5

1 P GHVRIL
[ZitJr 1 — ei5+Vi) }
1 eiEHVE)
- [2”_ - 1—e<f+¢k—2>J e =0. (D14)

The above equations have nontrivial solutions when

PiE+HVIL pi(-5+VIP)L
ei(§+x/k—2)L T 1 — pi(-5+Vi62)L
PiG+VRRIL ei(-5HVIAL

2it,2i e
+ 2ty lt—l_ei(§+\/k—2)L1 Pl 5+VE)L 0

1
1= ity +2it) 5 {
1

(D15)

Due to Pt = 1, it is clear to see that the solutions of the
secular equation, Eq. (D15), can be divided into classes of

positive parity state solutions and negative parity state
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solutions, the definite parity state solutions are given by the
equation

e IEHVRIL — 1 4 2jtn (VEP),

When scattering amplitudes are parametrized by phase
shifts, 1. = W the secular equations, Eqs. (D15) and

(D16), are reduced respectively to nonrelativistic versions
of Liischer’s formula in one dimension [77],

P=+. (DI6)

PL  cos(8, +6_ 4+ VKL)

= D17
€05 cos(6, —4_) ' (b17)
PL
+ VKL
cotdp + cot-———— 2 5 =0. (D18)

In the following subsections, we show the recovery of
analytic solutions for two well-known one-dimensional
models by applying the quantization condition obtained
in Eq. (D16).

3. Solvable examples of two-body scattering
in finite volume

a. Kronig Penney model

Let us consider the square well potential V(r) = V, for
lr| <% and V(r)=0 otherwise The symmetric wave
functlons in short range, |r| <2, are given by

eV L emiVr b
l//i(r;k):Ai 2 s |r|<§9

(D19)

where 6%, = k* — mV,, continuity of wave functions at the
boundary of the potential leads to relations,

2e~ VK3

A:t = N

2 . b 2 : b

j:(l — ﬁ)e’\/”_% + (1 +\/—§)e"\/g}7

. cos\/av2 ( k2V> isin 5V2

|+ 2ir, = e VFD - :
cos \/o} 5 — <\§—§> isin\/o} 2

(D20)
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Easy to check, the scattering amplitudes ¢, are also the
solutions of

1
ty =—
NN

In the finite box with the periodic boundary condition,
plugging the analytic expression of ¢, in Eq. (D20) into the
secular equation Eq. (D15), we thus obtain the well-known
energy quantization condition for the Kronig Penney
model,

(ST

Fe Ve mVow. (Fk).  (D21)

k? + [
cos V k2acosy/o>b — V s1n k*asin \/o%b
V 1 ( /
PL
= cos—-, a=L-b. (D22)

b. é-function potential model

Now, let us consider a short-range interaction model with
a delta potential, V(r) = V(5(r); the amplitudes for the 5-
function potential thus are given by

(Vie) = -

1
iR mVoy.(0), (D23)

where y, (0) =1+ir, and y_(0) =0. Therefore, we
obtain

imV,
it, (V) = —#@ it_=0. (D24)
2Vi2

Plugging the solution of iz, into the secular equation,
Eq. (D15), thus we obtain the well-known quantization
condition for two-particle interaction in a finite box with a
periodic boundary condition,

imV
1 = imY
piEHVEL _ _ aVE

imVy *
1 e

(D25)

The results of the delta potential can also be obtained from
the Kronig Penny model by taking the limit of b — 0,
Vo — o0 and bV, = const.
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