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We study three possible ways to circumvent the sign problem in the O(3) nonlinear sigma model in 1þ 1

dimensions. We compare the results of the worm algorithm to complex Langevin and multiparameter
reweighting. Using the worm algorithm, the thermodynamics of the model is investigated, and continuum
results are shown for the pressure at different μ=T values in the range 0–4. By performing T ¼ 0

simulations using the worm algorithm, the Silver Blaze phenomenon is reproduced. Regarding the complex
Langevin, we test various implementations of discretizing the complex Langevin equation. We found that
the exponentialized Euler discretization of the Langevin equation gives wrong results for the action and the
density at low T=m. By performing a continuum extrapolation, we found that this discrepancy does not
disappear and depends slightly on temperature. The discretization with spherical coordinates performs
similarly at low μ=T but breaks down also at some higher temperatures at high μ=T. However, a third
discretization that uses a constraining force to achieve the ϕ2 ¼ 1 condition gives correct results for the
action but wrong results for the density at low μ=T.
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I. INTRODUCTION

Monte Carlo simulations of quantum field theories based
on the path integral formalism play an important role in
investigating the physics of various models nonperturba-
tively. However, standard numerical methods fail when the
action becomes complex, and thus the probability interpre-
tation of the weight e−S and importance sampling cannot be
applied. The problem is present in QCD at finite density or
with a theta term and also arises in condensedmatter physics,
e.g. in the simulations of strongly correlated electronic
systems [1]. To solve these complex action problems, several
methods have been devised; for a review of different
approaches and further references, see Refs. [2–5].
In the present paper, we compare and test three different

methods, namely reweighting, the worm algorithm, and the
complex Langevin in the case of the 1þ 1-dimensional
O(3) model. Our focus is primarily on the applicability of
the complex Langevin algorithm, since today it may seem
that it is a promising approach to simulate even QCD [6,7],
although several problems have not been solved yet. The
idea behind the complex Langevin is stochastic quantiza-
tion and originates from the work of Parisi, Wu, and
Klauder from the 1980s [8–10]. But soon after its proposal,
the first simulations revealed certain problems: the insta-
bility of the simulations with the absence of convergence
(runaway trajectories) [11] and that even stable simulations
may converge to a wrong limit [12]. These problems

hindered reliable calculations, but in the last decade,
important improvements have been achieved. Runaway
trajectories can now be eliminated e.g. using adaptive step
size [13], and a formal justification of the algorithm as well
as necessary and sufficient conditions for convergence to
correct results have been established [14–16]. Roughly
speaking, these suggest that if the probability distributions
of the complexified variables fall sufficiently fast, then the
results are correct. In order to reach this for gauge theories,
the gauge cooling procedure was developed [17], which
works perfectly in some models or at a certain parameter
range but may fail in other models and parameter ranges
[17–20]. In Ref. [20], where heavy dense QCD (HDQCD)
was studied, it was argued that failure happens below a
specific β value and, by increasing the temporal lattice size,
one can get correct results at lower temperatures; in other
words, continuum extrapolation may be feasible. The
validity of this statement, however, is not entirely clear
and may be model dependent. On the one hand, the above
observation in HDQCD helped in exploring the phase
diagram of the model [21], but on the other hand, in the
case of full QCD, recent results [7] show that, using
Nt ¼ 4, 6, 8 lattices, the breakdown of the complex
Langevin prevents the exploration of the confined region.
We note that e.g. for the 3D XY model, the breakdown of
the complex Langevin also occurred around the phase
boundary [22], but in that model, the question of continuum
limit behavior cannot be addressed.
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In the present paper, we investigate the 1þ 1-
dimensional O(3) model for this purpose, which is not a
gauge theory but asymptotically free; thus, the continuum
behavior can be analyzed. We compare the results of
different discretizations of the complex Langevin equation
to the results of reweighting and the worm algorithm.
From the viewpoint of the sign problem, these two

approaches are also interesting and can give insight into the
properties of the O(3) model.
In this sense, reweighting is a well-defined approach, but

with limited efficiency and reliability as the sign problem
becomes more severe (and also an overlap problem
appears). The worm algorithm, also called the dual vari-
ables approach [23], however, completely eliminates the
sign problem of the model by introducing new, dual
variables. The difficulty in this case is the rewriting of
the model to these dual variables, but after it has been
accomplished, effective simulations using the worm algo-
rithm can be performed, and in fact many interesting
models have been studied throughout the years [24–33].
Here, using the worm algorithm, we study the thermody-
namic properties of the O(3) model.
Although the dual formalism of this model was intro-

duced and studied [34,35] during the finalization of our
work on the comparison of the different methods, we also
introduce this formalism in this paper in order to give a
consistent introduction to our notations.
In the following sections, after some introductory

remarks about the O(3) model in Sec. II and the description
of scale setting in Sec. III, we discuss these approaches
in more detail: in Sec. IV the reweighting, in Sec. V the
worm algorithm, and in Sec. VI the complex Langevin. In
Sec. VII, we compare the results of the simulations. In the
Appendix, we discuss in detail the updating steps of the
worm algorithm.

II. FORMULATION

The O(3) model in 1þ 1 dimensions has been widely
studied in the past for several reasons, among others,
because it has interesting features in common with four-
dimensional non-Abelian gauge theories. Over the years,
many important results have been achieved also numeri-
cally and—since the model is more or less tractable—
analytically. Nonetheless, we do not give an overview here
of the overall history of these results but mention only some
facts that made this model attractive for us.
First of all, the coupling constant of the theory is

dimensionless; thus, the theory is perturbatively renorma-
lizable. It is asymptotically free in 1þ 1 dimensions
[36,37], which enables us to study the continuum limit
of the results obtained at finite lattice spacings. The O(3)
model also has a nonperturbative mass gap generated
dynamically. Moreover, similarly to QCD, the O(3) model
also possesses instanton solutions [38,39].

The Lagrangian of the nonlinear O(3) model is

L ¼ 1

2g2
ð∂μϕÞ2; ð1Þ

where the fields obey the
P

3
i¼1 ϕ

2
i ¼ 1 condition in every

space-time point.
The discretized action in 1þ 1 dimensions with periodic

boundary condition is

S ¼ 1

g2

�
2
X
x

ϕ2
x −

X
x;μ¼0;1

ϕxþμ̂ϕx

�

¼ 2βV − β
X

x;μ¼0;1

ϕxþμ̂ϕx; ð2Þ

where we introduced β ¼ 1=g2 and the lattice volume
V ¼ Nx × Nt. After introducing the chemical potential to
the rotations in the (12)-plane of O(3), the action becomes

S ¼ 2βV − β
X
x

ðϕxþ0̂e
iμat12ϕx þ ϕxþ1̂ϕxÞ; ð3Þ

where t12 is the generator of the rotation in the (12)-plane
of O(3).

III. SCALE SETTING

Since in the later part of the paper we are interested in
continuum extrapolations and physical quantities computed
from the dimensionless quantities measured on the lattice,
we need to determine the lattice spacing as a function of β,
which we discuss in this section. In order to achieve this,
μ ¼ 0 simulations have been performed, for which we used
the cluster algorithm [40–42] and measured the second
moment correlation length ξ2 at zero temperature. ξ2 is
defined through

1

ξ2
¼ sinðπ=NtÞ

π=Nt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2M0a2

M2

−
4π2

N2
t

�s
; ð4Þ

where M0 denotes the zeroth moment and M2 denotes the
second moment [43,44]:

M2n ¼
�
Nta
2π

�
2nX

t

�
2 sin

�
πt
Nta

��
2n
CðtÞ: ð5Þ

CðtÞ is the two-point correlation function, CðtÞ ¼P
xh
P

aϕaðx; tÞϕað0; 0Þi. ξ2 does not equal ξ ¼ 1=ma
but scales as ξ in the β → ∞ limit [43,45,46], and in
infinite volume, the ratio ξ=ξ2 is very close to 1; it is
1.000826(1) [47]. The advantage of using ξ2 is that one
does not need to fit any correlators this way. We can thus
estimate the mass gap ma ¼ 1=ξ with the help of ξ2 by
running large volume, zero temperature simulations.
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Actually, we used 80 × 80 and 100 × 100 lattices for
0.9 ≤ β ≤ 1.57, 120 × 120 and 140 × 140 lattices for
1.58 ≤ β ≤ 1.62, 250 × 250 lattices for 1.63 ≤ β ≤ 1.72,
and 400 × 400 lattices for 1.73 ≤ β ≤ 1.85. The simulation
points were chosen uniformly in the above β ranges with a
Δβ ¼ 0.01 distance from each other with 106 or 2 × 106

cluster updates after thermalization, using every tenth for
measurement. We studied the overlapping β regions as well
and used larger lattices if deviations larger than errors
between the smaller and larger volumes had occurred. The
results are shown in Fig. 1.

IV. REWEIGHTING

Reweighting uses the idea of rewriting the partition
function (and the expectation value of observables) in such
a way that one needs to do simulations only at zero μ and
determine the configurations that can be relevant at finite μ.
This is done by measuring the weights of the configura-
tions, which enables one to distinguish between them.
In the multiparameter reweighting approach [48], one

reweights both in β and μ, as we show it for the partition
function of the O(3) model,

Z ¼
Z Y

x

dϕxδðϕ2
x − 1Þe−Sðβ;μÞ

¼
Z Y

x

dϕxδðϕ2
x − 1Þe−Sðβ0;μ0¼0Þwðβ; μ; β0; μ0 ¼ 0Þ

¼ Z0hwiβ0;μ0¼0; ð6Þ

where wðβ; μ; β0; μ0 ¼ 0Þ ¼ eSðβ0;μ0¼0Þ−Sðβ;μÞ is the weight
and Z0 is the partition function for β0 and μ0 ¼ 0. As
one can see, this rewritten partition function can be
simulated directly using standard methods since the action
Sðβ0; μ0 ¼ 0Þ is real. Using reweighting, the expectation
value of an O observable is the following:

hOðβ; μÞiβ;μ ¼
hOðβ; μÞwðβ; μ; β0; μ0 ¼ 0Þiβ0;μ0¼0

hwðβ; μ; β0; μ0 ¼ 0Þiβ0;μ0¼0

: ð7Þ

Although reweighting can reduce the sign problem, an
overlap problem occurs in this case. That is, we have
different important configurations at our “source”
(β0; μ ¼ 0) ensemble and at the “target” (β, μ) ensemble.
If the two sets just slightly overlap or do not overlap at all,
then one rarely reaches the important configurations at β, μ
by simulating at β0, μ0 ¼ 0. In these cases, it can happen
that one has many relatively small weights at the same order
of magnitude, and only some with many magnitudes larger,
and as a consequence collects only a tiny fraction of useful
statistics during even long simulations. It was observed that
multiparameter reweighting helps to reduce the overlap
problem in the case of QCD and also can help to reduce the
sign problem by doing reweighting on the so-called best
reweighting lines [49,50]. These are defined as those curves
that have the smallest standard deviations of ReðlnwÞ on
them. In the case of the O(3) model, we illustrate these lines
in Fig. 2, and we show the overlap problem and the
advantages of multiparameter reweighting in Fig. 3’s top
and bottom panels, respectively. We also illustrate the
severeness of the sign problem in Fig. 4, which is based
on measurements on 56 × 14 lattices. We used the cluster
algorithm to simulate at μ0 ¼ 0. Further results obtained by
the multiparameter reweighting method can be found in
Sec. VII, where we compare them to the worm and complex
Langevin results.

V. WORM ALGORITHM

Another approach we employed in this study is the worm
algorithm. In order to maintain generality, we will review
the algorithm and the dual formulation in the O(N) case
at dþ 1 dimensions. In the O(N) case, the fields obey theP

N
i¼1 ϕ

2
i ¼ 1 condition in every space-time point. The

discretized action in dþ 1 dimensions is

FIG. 1. ThemaðβÞ scale for the 1þ 1-dimensional O(3) model.
(Errors are smaller than or compatible with the width of the line.)
The parameters and details of the simulations are summarized in
the text.
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FIG. 2. The standard deviation of ReðlnwÞ for reweighting
from β0 ¼ 1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8 to different β, μ values on
56 × 14 lattices. We define the best reweighting lines (with
dashed) as those that have the smallest standard deviations
on them.
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S¼ βðdþ 1ÞVdþ1 − β
X
x

�
ϕxþ0̂e

iμat12ϕx þ
X

i¼1;::;d

ϕxþîϕx

�
;

ð8Þ

where now β ¼ ad−1=g2 and the dþ 1-dimensional lattice
volume is Vdþ1 ¼ Nd

s × Nt.
Our goal in lattice simulations is to calculate expectation

values. The worm algorithm performs this as counting
different types of configurations, as we are going to explain
later. The algorithm itself is based on the dual formulation
of a model, which means in our case the characterization of
configurations not with the ϕðxÞ continuous variables at
every lattice point but with a set of discrete variables
fmaga¼ðl;i¼1;…;NÞ, which “live” on links (l). One fmag
configuration matches to a certain, finite partial sum of an
infinite sum (e.g. the expansion of the partition sum), and
the algorithm jumps between these partial sums.

In the following, we first review some conventional
notations and integrals over the O(N) sphere, which is
helpful for the derivation of weights. Then, at first, we
restrict ourselves for the dual formulation of the casewithout
the chemical potential and introduce the worm algorithm;
then, we repeat the same procedure for the case with the
chemical potential. Finally, we present continuum results in
Secs. V D 2 and VD 4, and comparisons to reweighting and
the complex Langevin can be found in Sec. VII.

A. Integrals over O(N) sphere

Consider an OðNÞ vector ϕ of unit length, ϕ2 ¼ 1.
Averaging over the OðNÞ sphere, with the normalization
condition h1i ¼ 1, one has hϕiϕji ¼ δij=N, hϕiϕjϕkϕli ¼
ðδijδkl þ δikδjl þ δilδjkÞ=ðNðN þ 2ÞÞ. For the general case,
when one has k even number of vectors, one has

hϕi1ϕi2…ϕiki ¼ CðNÞ
k ðδi1i2δi3i4…δik−1ik þ permÞ; ð9Þ

where

CðNÞ
k ¼ 1

NðN þ 2Þ…ðN þ k − 2Þ

¼ ΓðN=2Þ
2k=2ΓðN=2þ k=2Þ : ð10Þ
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FIG. 3. Top: The histogram of normalized weights along the
best reweighting line starting from β0 ¼ 1.4, μ0 ¼ 0 shows the
severeness of the overlap problem. At the horizontal axis, one
finds jwij=jwN j sorted as jw1j < jw2j… < jwN j, while at the
vertical axis, we show #=N=Δw, where # is the number of
configurations that have normalized weights between jwij=jwN j
and jwij=jwN j þ Δw. N is the total number of configurations, and
Δw ¼ 0.005. Bottom: The figure illustrates how reweighting in β
can help to enhance overlapping: the green curve shows that one
has more configurations with greater weights when reweighting
from β0 ¼ 1.4; μ0a ¼ 0 to β ¼ 1.38; μa ¼ 0.255 than in the case
of e.g. standard reweighting.
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FIG. 4. Top: The figure shows the expectation value of the real
part of the normalized weight at 56 × 14 lattice when reweighting
from β0 ¼ 1.5, μ0 ¼ 0 to β ¼ 1.5 and μa values along the
horizontal axis. Bottom: hReðwÞ=jwji shows how hard the sign
problem is in different β, μ regions.
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In the brackets in (9), there are altogether

Mk ¼ ðk − 1Þ!!≡ 1 · 3 ·…ðk − 3Þðk − 1Þ

¼ 2−
k
2
þ1

ΓðkÞ
Γðk=2Þ ð11Þ

terms for all possible pairings of the indices. This can
be obtained e.g. from the recursion relation Mkþ2 ¼
Mk þ kðk − 1ÞMk−2, with M2 ¼ 1, M4 ¼ 3. To check this,
one can contract in the last two indices ik−1; ik. The
corresponding recursion relation reads

CðNÞ
k−2 ¼ CðNÞ

k

�
N þ Mk

Mk−2
− 1

�
¼ CðNÞ

k ðN þ k − 2Þ: ð12Þ

It is interesting to note that for a free system, i.e. when
the constraint δðϕ2 − 1Þ is replaced by the Gaussian

expð−ϕ2=2Þ, one gets CðNÞ
k ¼ 1 for the weights in (9).

This is in agreement with the relation

lim
N→∞

Nk=2CðNÞ
k ¼ lim

N→∞

Nk=2

NðNþ 2Þ…ðN þ k− 2Þ ¼ 1: ð13Þ

Collecting the powers of different components, one has

wðk1;…; kNÞ≡ hϕk1
1 ϕ

k2
2 …ϕkN

N i

¼ ΓðN=2Þ
Γððkþ NÞ=2Þ

YN
i¼1

Γððki þ 1Þ=2Þ
Γð1=2Þ

¼ 1

NðN þ 2Þ…ðN þ k − 2Þ

×
YN
i¼1

ð1 · 3 ·… · ðki − 1ÞÞ; ð14Þ

where all ki are even and k ¼ k1 þ � � � þ kN . In the last
expression, the product is taken only for i’s for which
ki > 0. Also, obviously, wð0; 0;…; 0Þ ¼ 1. Some useful
relations obtaining the coefficients are (assuming that all
powers k are even)

Z
∞

−∞
dxe−x

2

xk ¼ Γ
�
kþ 1

2

�
; ð15Þ

and

Z
dNxe−x

2

xk11 …xkNN ¼
YN
i¼1

Γ
�
ki þ 1

2

�

¼
Z

∞

0

dre−r
2

rNþk−1SNhϕk1
1 …ϕkN

N i

¼ 1

2
Γ
�
N þ k
2

�
SNhϕk1

1 …ϕkN
N i; ð16Þ

where SN is the surface of the N-dimensional
sphere: SN ¼ 2πN=2=ΓðN

2
Þ.

B. Strong coupling expansion without
chemical potential

In the case without the chemical potential, for one link
between neighbor lattice points x and y, one can write

eβϕðxÞϕðyÞ ¼
X

m1;…;mN

βm

m1!…mN!
ðϕ1ðxÞϕ1ðyÞÞm1…

× ðϕNðxÞϕNðyÞÞmN ; ð17Þ

where m ¼ m1 þ � � � þmN . Then, one can consider the
sum

XN
i¼1

X
u;v∈Λ

Z
ϕ
ϕiðuÞϕiðvÞe−S

¼
X
conf

Wðu; v; i;mÞ

¼ e−βðdþ1ÞVdþ1

X
conf

�Y
l

βm
ðlÞ

mðlÞ
1 !…mðlÞ

N !

�

×

�Y
x

wðk1ðxÞ;…; kNðxÞÞ
�
; ð18Þ

where conf ¼ fu; v; i; fmðlÞ
j gall l linksj¼1;…;Ng is the configuration:

two distinguished points (u and v), a component i, and the

set fmðlÞ
j gall l linksj¼1;…;N . During the simulations, the configuration

can change in different ways, which we discuss in the
Appendix. One way is to change u to a neighboring site,

meanwhile increasing/decreasing mðlÞ
i along the l link that

connects these two. We start from u ¼ v, and the continu-
ous path connecting u and v that appears this way is called
the worm. The weights wð…Þ of Eq. (18) are given by
Eq. (14). The value of kjðxÞ depends on the position of x:

kjðxÞ ¼ k̂jðxÞ þ ðδxu þ δxvÞδij, where k̂jðxÞ ¼
P

x∈∂lm
ðlÞ
j .

Then, all kjðxÞ values must be even. The ratios of the
weights when one of the ki’s is changed by �2 are

wðk1 þ 2; k2;…; kNÞ
wðk1; k2;…; kNÞ

¼ k1 þ 1

kþ N
; ð19Þ

wðk1 − 2; k2;…; kNÞ
wðk1; k2;…; kNÞ

¼ kþ N − 2

k1 − 1
: ð20Þ

With the help of the sum (18) defined above, one can see
that the partition sum is related to those configurations
where the two ends of the worm coincide (u ¼ v); this
gives explicitly Vdþ1Z. The configurations with one dis-
tance between the two ends (c1) divided by the number of
configurations where the two ends of the worm coincide
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(c2) give
c1
c2
¼ − 2

β ð hSi
Vdþ1

− βðdþ 1ÞÞ, from which one can

determine hSi, the expectation value of the action.

C. Strong coupling expansion with chemical potential

The action with the chemical potential coupled to t12 is
obtained from the standard one by replacing the interaction
terms which couple the fields in the time direction
according to ϕðxþ0̂ÞϕðxÞ→ϕðxþ0̂Þeiμat12ϕðxÞ. Therefore,
the corresponding action is complex. For the O(2) non-
linear sigma model, this problem was avoided in Ref. [27]
using the worm algorithm: the terms in the strong-coupling
expansion are real even in the presence of the chemical
potential. We describe here the extension to the OðNÞ
case for general N. Let us introduce ϕ� ¼ 1ffiffi

2
p ðϕ1 � iϕ2Þ.

Expressed through these variables, the scalar product is

ϕðxþ 0̂ÞϕðxÞ ¼ ϕ−ðxþ 0̂ÞϕþðxÞþϕþðxþ 0̂Þϕ−ðxÞ
þϕ3ðxþ 0̂Þϕ3ðxÞþ � � �þϕNðxþ 0̂ÞϕNðxÞ;

ð21Þ

and the action is

S ¼ βðdþ 1ÞVdþ1 − β
X
x

Xd
ν¼0

�
e−μνaϕ−ðxþ ν̂ÞϕþðxÞ

þ eμνaϕþðxþ ν̂Þϕ−ðxÞ þ
XN
j¼3

ϕjðxþ ν̂ÞϕjðxÞ
�
; ð22Þ

where μν ¼ μδν;0, ν ¼ 0; 1;…; d. When one integrates over
ϕ at a given site, the nonvanishing contributions are all real
and positive,

wðk1; k2;…; kNÞ
¼ hðϕþϕ−Þk12ϕk3

3 …ϕkN
N i

¼ 1

2k12

Xk12
m¼0

�
k12
m

�
hϕ2m

1 ϕ2k12−2m
2 ϕk3

3 …ϕkN
N i

¼ ΓðN=2Þ
Γððkþ NÞ=2Þ 2

−k12Γðk12 þ 1Þ
YN
i¼3

Γððki þ 1Þ=2Þ
Γð1=2Þ ;

ð23Þ

where k ¼ 2k12 þ k3 þ � � � þ kN and k3;…; kN are even.
The strong-coupling expansion for spatial neighbor sites

is the same as in (17), and for temporal neighbor sites, it is

eβS
Teiμat12S0 ¼

X
mþ;m−;m3;…;mN

βm

mþ!m−!m3!…mN!

× ðeμaS−S0þÞmþðe−μaSþS0−Þm−

× ðS3S03Þm3…ðSNS0NÞmN ; ð24Þ

where m¼mþþm−þm3þ���þmN and S≡ ϕðxÞ;S0≡
ϕðxþ 0̂Þ. Consider then
X
i

X
u;v∈Λ

Z
ϕ
ϕiðuÞϕiðvÞe−S

¼
X
conf

Wðfu; v; i;mg; μÞ

¼ e−βðdþ1ÞVdþ1

X
conf

�Y
l

βm
ðlÞ
eðμaÞðlÞm

ðlÞ
þ e−ðμaÞðlÞm

ðlÞ
−

mðlÞ
þ !mðlÞ

− !…mðlÞ
N !

�

×

�Y
x

wðk12ðxÞ; k3ðxÞ;…; kNðxÞÞ
�
; ð25Þ

where i ¼ þ;−; 3;…; N and ðaμÞðlÞ ¼ aμ for timelike
links and 0 for spatial links. In these expressions,

kjðxÞ ¼ k̂jðxÞ þ δxuδjiu þ δxvδjiv

j ¼ þ;−; 3;…; N; ð26Þ
where ðiu; ivÞ ¼ ð−;þÞ; ð3; 3Þ;…; ðN;NÞ, and different
k̂’s are defined as

k̂þðxÞ ¼
Xd
ν¼0

ðmðx−ν̂;xÞ
þ þmðx;xþν̂Þ

− Þ ð27Þ

k̂−ðxÞ ¼
Xd
ν¼0

ðmðx−ν̂;xÞ
− þmðx;xþν̂Þ

þ Þ ð28Þ

k̂jðxÞ ¼
X
x∈∂l

mðlÞ
j ¼

Xd
ν¼0

ðmðx−ν̂;xÞ
j þmðx;xþν̂Þ

j Þ

j ¼ 3;…; N: ð29Þ
The nonzero terms in (25) are those in which the same
number of ϕþðxÞ and ϕ−ðxÞ factors are present; i.e.
kþðxÞ ¼ k−ðxÞ ¼ k12, and the number of ϕjðxÞ factors,
kjðxÞ (for j ¼ 3;…; N), is even at all sites x. The detailed
steps of the worm algorithm based on these prescriptions
are discussed in the Appendix. In the following subsec-
tions, we leave the general formalism and consider the O(3)
model in 1þ 1 dimensions.

D. Numerical results obtained with the worm algorithm

1. Check of the algorithm

In order to check the reliability of our algorithm, we have
studied the spectrum of the O(3) model. The energy levels
are characterized by the isospin quantum numbers I; I3 and
the momentum p0. Let us consider the p0 ¼ 0 case. Then,
the smallest energy at zero μ in a given sector is denoted
by EðIÞ. The chemical potential splits the 2I þ 1-fold
degeneracy, and the energy levels become EðI; I3; μÞ ¼
EðIÞ − μI3, which has a minimum at I ¼ I3 ¼ qðμÞ. By
increasing μ, larger q values are expected. Using the worm
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algorithm and counting the number of þ and − link
variables connecting two time slices, one can determine
q for that interval.
The two ends of the worm divide the periodic time

direction into two parts: an interval with length τ
(where 0 ≤ τ < Nt) and charge I3 ¼ q and an interval
with length Nt − τ and charge I3 ¼ q − 1. Then, these give
the leading contribution to the correlator Cðτ;q;q−1Þ≈
Aq;q−1expf−Eðq;μÞτ−Eðq−1;μÞðNt−τÞg∝expf−ðEðqÞ−
Eðq−1Þ−μÞτg, and thus by fitting the correlator, the
energy differences can be determined. Choosing μ ≈ EðqÞ−
Eðq − 1Þ, one obtains a long plateau in the effective mass
plot. This way, one can follow the signal over a large
interval in τ to measure energies of higher excitations.
These energy differences provide a strong consistency
check, since we measure the same difference with different
μ values. In particular, we have measured the energy
differences on 16 × 200 lattices at β ¼ 1.779 using several
values of μ and obtained Eð1Þ−Eð0Þ¼0.0662ð1Þ;Eð2Þ−
Eð1Þ¼0.1284ð3Þ;Eð3Þ−Eð2Þ¼0.1867ð3Þ. Note that these
agree roughly with the (approximate) rotator picture which
is expected to hold for small spatial volumes [51–53]. The
mass gap Eð1Þ − Eð0Þ agrees within the statistical error
with the value cited in Ref. [54].

2. Pressure

Similar to what was mentioned at the end of Sec. V B,
the Eq. (25) sum is related to the partition function if u ¼ v,
when it gives V2Z. For the action, one needs to calculate the
ratio of two terms. In the denominator, there is Z, while in
the numerator, there is −β

2
ðeμa×#1þe−μa×#2þ#3þ#4Þ,

where #1 is the number of configurations with v¼uþ 0̂
and iu ¼ −; iv ¼ þ; #2 is the number of configurations
with u − 0̂ ¼ v and iu ¼ −; iv ¼ þ; #3 is the number of
configurations with u� 1̂ ¼ v and iu ¼ −; iv ¼ þ; and #4
is the number of configurations with u� ν̂ ¼ v with
ν ¼ 0, 1 and iu; iv ¼ 3. The value of the numerator is
constructed in the way that is suitable for the action (22).
[The first term of (22), which is independent of the dual
variables, was added to the averages at the end.]
For calculating thermodynamic quantities, we used

lattices with Nx > Nt and measured the action after each
worm movement. Since it is divergent as a → 0, we
renormalized it by subtracting hSðβ; T ¼ 0; μ ¼ 0Þi. For
the latter, we used large symmetric lattices, in particular
those that were used for determining the scale (see Sec. III).
In order to eliminate the finite-size effects, we chose box
sizes ofmaðβpcÞNx ≥ 5, where βpc is the inflection point of
the pressure. Since no phase transition is expected in this
model, this βpc is only a pseudocritical quantity. The chosen
box sizes correspond to the aspect ratio Nx=Nt ¼ 4, so we
have used 32 × 8; 40 × 10; 56 × 14; 64 × 16; 72 × 18; 80 ×
20; 120 × 30 lattices for finite-temperature simulations. We
used around 4 × 1010…1.2 × 1011 local worm updates on

these lattices, after ð3…5Þ × 105 thermalization steps. Note
that these numbers refer to the local change of the
configuration. In order to compare the amount of updates
to those of the Langevin simulations, one should divide
them with the two-dimensional lattice volume. After
calculating the action, we used the integral method [55]
to obtain the pressure pðTÞ:

p
T2

¼ Nt

Nx
logZ ¼ Nt

Nx

Z
β

β0

dβ0
∂ logZ
∂β0

¼ Nt

Nx

Z
β

β0

dβ0
�
−
∂S
∂β0

�
: ð30Þ

Since we defined S with β included, ∂S=∂β is simply S=β.
The pressure is also divergent, so we need to renormalize it
using the expectation value of the renormalized action
hSrenðβ; T; μÞi ¼ hSðβ; T; μÞi − hSðβ; T ¼ 0; μ ¼ 0Þi in the
integrand of formula (30). In the following, we denote the
renormalized pressure with p. Figure 5 shows the renor-
malized action density at μ=T ¼ 1, while Figs. 6 and 7
show the results for the renormalized pressure.

FIG. 5. The renormalized action divided by the lattice volume
(V ¼ Nx × Nt), measured by the worm algorithm.

FIG. 6. Comparison of our lattice results and the two-loop
calculation of Ref. [56] for p=T2 at μ ¼ 0 in the continuum.
The dashed line at π=3 shows the asymptotic limit at high
temperature.
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3. Trace anomaly

Another quantity of interest is the trace anomaly (also
called the interaction measure):

θ

T2
¼ ϵ − p

T2
¼ −

Nt

Nx
a
∂ logZ
∂a ¼ Nt

Nx

ðamÞ
∂ðamÞ
∂β

�
S
β

�
: ð31Þ

This quantity is also divergent; thus, renormalization is
needed to obtain a finite value in the continuum, which is
achieved simply by using the renormalized action Sren
instead of S in the above formula. Below, we show the
continuum results for different μ=T values as a function of
temperature (Fig. 8).
We note that, similarly to the inflection point of the

pressure, the peak position of the trace anomaly can also
serve as a definition of a pseudocritical temperature (Tpc)
characterizing the transition in the O(3) model.1

4. Density

Another quantity we measured during the simulations
was the isospin charge density, which is defined through

n ¼ T
Vsp

∂ logZ
∂μ ¼ T

Vsp

1

Z
∂Z
∂μ ¼ T

Vsp

�
−
∂S
∂μ

�

¼ m
1

NtNx

1

am

�
−

∂S
∂ðμaÞ

�
; ð32Þ

where Vsp is the spatial volume which is simply Nxa in our
case. The density does not need to be renormalized,
because the divergent part of the action is independent
of μ. In the figures, we show the dimensionless ratio n=m.
With the worm algorithm, the density can be calculated
again as a ratio, which has Z in its denominator, and in the
numerator, there is β

2
ðeμa × #1 − e−μa × #2Þ, where #1 is

the number of configurations with v ¼ uþ 0̂ and
iu ¼ −; iv ¼ þ and #2 is the number of configurations
with u − 0̂ ¼ v and iu ¼ −; iv ¼ þ. The value of the
numerator is constructed in the way that is suitable for
∂S=∂ðμaÞ [see the derivative of (22) with respect to μa].
As one can observe in Fig. 9, n=m depends almost

linearly on T=m. Although we did not perform continuum
extrapolation above T=m ≈ 3.5, the numerical data from
56 × 14 lattices show that this linear behavior also holds at
higher temperature, at least up to T=m ≈ 4.6. The configu-
rations used for the finite density calculation were the same
as for the pressure. We have also analyzed the low
temperature behavior of the density as a function of
μ=m, where we observed the well-known Silver Blaze
phenomenon (Fig. 10). We approached the T ¼ 0 con-
tinuum physics by running simulations at fixed β values,
increasing the volume of the symmetric lattice; then, we
extrapolated these T ¼ 0 results to the continuum (Fig. 11
and 12). Another way of obtaining the continuum results
would be to run simulations at fixed low temperatures and
take the continuum limit first, then extrapolate these finite

FIG. 7. Continuum results for p=T2 as a function of T=m for
different μ=T values.

FIG. 8. Continuum results for θ=T2 as a function of T=m for
different μ=T values. The two-loop result for μ ¼ 0 is
from Ref. [56].

1Together with the Tpc calculated from the inflection point of
the pressure, we show how the pseudocritical temperatures
depend on μ=T in Fig. 25.
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temperature continuum results to T ¼ 0. We did not
analyze in full detail this latter case but only performed
simulations to obtain the density at two low temperatures:
T=m ¼ 0.01 and T=m ¼ 0.005. We compared these to the
T ¼ 0 results in Fig. 13.
The parameters for these low temperature simulations

can be found in Table I. We note that the thermalization
took significantly more steps at low temperature as one
increased the lattice size and β. For example, in the case of
Nt ¼ 500; β ¼ 1.3234 for Nxma ¼ 10, thermalization took
3 × 109 steps, but forNxma ¼ 40, it was∼4.4 times longer,
and for Nxma ¼ 100 (symmetric lattice), it was ∼19 times
longer than for Nxma ¼ 10. Thermalization was analyzed
using the values of density during the simulations.

FIG. 9. The isospin charge density divided by m at finite
temperature in the continuum limit.

FIG. 10. The isospin charge density overm at low temperatures
at β ¼ 1 and at β ¼ 1.5 for different lattice sizes. We used the
T → 0 limit extrapolation based on these results to obtain the
continuum limit. Although the analytical behavior of n=m is
known at T ¼ 0 and infinite volume near μ ∼m [57], our lattice
results do not show this directly, because we are either far from
the continuum (upper panel) or the temperature is not too small to
reproduce this precisely (lower panel).

FIG. 11. Continuum extrapolation at some μ=m at T=m ¼ 0.

FIG. 12. Continuum limit for n=m at T=m ¼ 0 using lattices
with fixed β values.

FIG. 13. Comparison of n=m continuum results at T=m ¼ 0.01,
0.005 and T=m ¼ 0.
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VI. COMPLEX LANGEVIN ALGORITHM

We proceed with the realization of the complex Langevin
algorithm for the O(3) model. The continuum complex
Langevin equation for each component i ¼ 1, 2, 3 of a
three-component scalar field variable is

∂ϕx;iðτÞ
∂τ ¼ −

δS½ϕ; τÞ
δϕx;iðτÞ

þ ηx;iðτÞ; ð33Þ

where τ is the simulation time and ηx;iðτÞ is a Gaussian
noise obeying the following relations:

hηx;iðτÞηx0;jðτ0Þi ¼ 2δijδxx0δðτ − τ0Þ;
hηx;iðτÞi ¼ 0: ð34Þ

The simplest discretization for Eq. (33) is the so-called
Euler (or Euler-Maruyama) discretization,

ϕðnþ1Þ
x;i ¼ ϕðnÞ

x;i − ε
δS
δϕx;i

ðnÞ þ ffiffiffi
ε

p
ηðnÞx;i ; ð35Þ

where we denote the simulation steps with n and ε is a finite
step size. However, Eq. (35) does not preserve the length of
the ϕx vector, so in order to simulate the O(3) model, we
must somehow include the constraint

P
iϕ

2
x;i ¼ 1, because

the partition function for the O(3) model is

Z ¼
Z Y

x

dϕxδðϕ2
x − 1Þe−S½ϕ�

¼
Z Y

x

dϕxe
−ðS½ϕ�−

P
x
ln δðϕ2

x−1ÞÞ: ð36Þ

Usually the integration measure is not considered explicitly
during the integration; one does not use the force arising
from the constraint but uses other (general) coordinates or
specific integration. For example, suitable general coor-
dinates in our case are spherical coordinates, and an
example for a specific integration scheme in Cartesian
coordinates is the so-called Euler discretization in group
space, which is used for example in complex Langevin
(CL) simulations of SU(N) gauge groups [17]. In the
following, we will study these approaches to integrating
CL equations.

A. Use of spherical coordinates

Using spherical coordinates ϕx ¼ ðsinϑx cosφx;
sinϑx sinφx; cosϑxÞ, Z becomes

Z ¼
Z Y

x1

dφx1

Y
x2

dϑx2e
−ðS½φ;ϑ�−

P
x
ln sinϑxÞ

¼
Z Y

x1

dφx1

Y
x2

dϑx2e
−Seff ½φ;ϑ�; ð37Þ

where

Seff ½φ;ϑ� ¼ 2βV − β
X
x;ν

ðsin ϑxþν̂ sinϑx cosðφxþν̂ − φx

− iμaδν;0Þ þ cos ϑxþν̂ cosϑxÞ −
X
x

ln sin ϑx:

ð38Þ
From this expression, one can deduce the drifts:

−
δSeff
δφx

¼ β
X
ν

ðsin ϑx½sinϑxþν̂ sinðφxþν̂ − φx

− iμaδν;0Þ − sin ϑx−ν̂ sinðφx − φx−ν̂ − iμaδν;0Þ�Þ;
ð39Þ

and

−
δSeff
δϑx

¼ β
X
ν

ðcosϑx½sinϑxþν̂ cosðφxþν̂ − φx

− iμaδν;0Þ þ sin ϑx−ν̂ cosðφx − φx−ν̂ − iμaδν;0Þ�

− sin ϑxðcosϑxþν̂ þ cosϑx−ν̂ÞÞ −
1

tan ϑx
: ð40Þ

Then, the discretized complex Langevin steps are

φxðnþ 1Þ ¼ φxðnÞ þ εnK
ðφÞ
x ðnÞ þ ffiffiffiffiffi

εn
p

ηðφÞx ðnÞ; ð41Þ
ϑxðnþ 1Þ ¼ ϑxðnÞ þ εnK

ðϑÞ
x ðnÞ þ ffiffiffiffiffi

εn
p

ηðϑÞx ðnÞ; ð42Þ

where KðφÞ
x ¼ −δSeff=δφx and KðϑÞ

x ¼ −δSeff=δϑx. In these

equations, ηðφÞx and ηðϑÞx are real, Gaussian noises, and the
finite step size εn is determined adaptively, so it also
depends on n. As one can observe, the force

TABLE I. The set of parameters for low and zero temperature
runs with the worm algorithm. We have run simulations at several
μa using the above parameters. The number of used worm
configurations for these runs was around ð3…9Þ × 1010 after
thermalization.

T=m β ma Nt ¼ Nx

0 1 0.551 30, 60, 120, 180, 240, 300, 360
1.1 0.422 30, 60, 120, 180, 240, 300, 360
1.2 0.312 30, 60, 120, 180, 240, 300, 360, 500
1.3 0.219 30, 60, 120, 180, 240, 300, 360, 500
1.5 0.091 30, 60, 120, 180, 240, 300, 360

T=m β ma Nt Nxma

0.01 1.1789 0.333 300 approx. 10, 20, 40, 60,
1.2644 0.25 400 100 (symmetric lattices)
1.3234 0.2 500
1.3682 0.167 600

0.005 1.2644 0.25 800 approx. 10, 20, 30, 40,
1.2963 0.222 900 50, 60, 70
1.3234 0.2 1000
1.3473 0.182 1100
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−δSeff ½φ; ϑ�=δϑx is singular because of the 1= tanϑx term.
In order to avoid overflow during the simulations due to the
singular forces, one can do a constrained simulation and
truncate the configuration space to avoid the values of ϑx

near zero and π. If the step size is not small enough, this is
needed in order to get stable simulation runs.
We achieved this by reflecting the trajectories in the

following way:

ϑxðnþ 1Þ ≔

8><
>:

2ϑLIM − ϑxðnþ 1Þ; if ϑxðnþ 1Þ < ϑLIM;

ϑxðnþ 1Þ; if ϑLIM < ϑxðnþ 1Þ < π − ϑLIM;

2ðπ − ϑLIMÞ − ϑxðnþ 1Þ; if π − ϑLIM < ϑxðnþ 1Þ:
ð43Þ

The threshold value for ϑ was defined with a parameter
ϑLIM. Results shown later support the expectation that if ε
and ϑLIM are small enough, then the results are independent
of their values.

B. Integration in group space

Using ideas from the CL equation on SU(N) gauge
groups [17], one can write a specific integration scheme
that uses Cartesian coordinates but takes the constraint into
account: the Euler discretization (which we call below the
exponentialized Euler-Maruyama discretization). For the
Oð3Þ group elements Ox, this is the following:

Oxðnþ 1Þ ¼ RxðεÞOxðnÞ: ð44Þ

Since all ϕx can be written with some ϕ0 constant unit
vector and with an Ox rotation matrix as ϕx ¼ Oxϕ0, the
above time evolution can turn into the time evolution of the
original ϕx variables.
The RxðεÞ in Eq. (44) can be written in different ways.

It can be e.g.

Rð1Þ
x ðεÞ ¼ exp

�X
a

taðεKax þ
ffiffiffi
ε

p
ηaxÞ

�
ð45Þ

or

Rð2Þ
x ðεÞ ¼

Y
a∈ð1;2;3Þ

exp ðtaðεKax þ
ffiffiffi
ε

p
ηaxÞÞ ð46Þ

or

Rð3Þ
x ðεÞ ¼

Y
a∈ð1;2;3Þ

exp ðtaεKaxÞ exp ðta
ffiffiffi
ε

p
ηaxÞ: ð47Þ

Since eAþB ≠ eAeB, when ½A;B� ≠ 0, these are not equiv-
alent to each other at finite ε, but the difference in the
simulation results is not detectable at the numerical
precision and parameter set we used. Due to this, during
our simulations, we used Rð2Þ

x , which is not the computa-
tionally cheapest version [it is Rð1Þ

x ðεÞ] but the cheapest
version that evolves the system in each direction in the
tangent space individually one after another. In the

expressions above, the tas are the three generators of
O(3) in the three-dimensional representation. The drift
Kax is

Kax ¼ −DaxS½O� ¼ −∂αS½eαtaOx�jα¼0

¼ βðϕT
0O

T
xþ0̂

eiμat3taOxϕ0 − ϕT
0O

T
x taeiμat3Ox−0̂ϕ0

þ ϕT
0O

T
xþ1̂

taOxϕ0 − ϕT
0O

T
x taOx−1̂ϕ0Þ

¼ βðϕT
xþ0̂

eiμat3taϕx − ϕT
x taeiμat3ϕx−0̂

þ ϕT
xþ1̂

taϕx − ϕT
x taϕx−1̂Þ: ð48Þ

Here, ϕT and OT denote the transpose of ϕ and O, and ηax
is the usual Gaussian noise. The time evolution determined
by Eq. (44) then can be written with ϕx as

ϕðnþ1Þ
x ¼

Y
a∈ð1;2;3Þ

exp ½ðεnKax þ
ffiffiffiffiffi
εn

p
ηaxÞta�ϕðnÞ

x : ð49Þ

In particular, we performed the updates by varying the
order of the three matrix multiplications randomly. Higher
order integrations, like Runge-Kutta [58], are also possible,

ϕ0
x ¼ exp ½ðεnKax½ϕðnÞ� þ ffiffiffiffiffi

εn
p

ηaxÞta�ϕðnÞ
x

ϕðnþ1Þ
x ¼ exp

�
εn
2

�
1þ CAεn

6

�
ðKax½ϕðnÞ� þ Kax½ϕ0�Þta

þ ffiffiffiffiffi
εn

p
ηaxta

�
ϕðnÞ
x ; ð50Þ

where CA ¼ 2 is the Casimir invariant for the three-
dimensional representation of O(3).

C. Direct method to include the constraint
in Cartesian coordinates

Using Cartesian coordinates, the constraining force
can be considered by using a term arising from
−
P

x ln δðϕ2
x − 1Þ; see Eq. (36). This is also singular, so

one can attempt to approximate the Dirac δ with a sharp
Gaussian, ð ffiffiffiffiffiffi

2π
p

bÞ−1e−x2=ð2b2Þ → δðxÞ, as b → 0. The force
is then
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Kx ¼ −
δ

δϕx

�
S½ϕ� −

X
y

ln δðϕ2
y − 1Þ

�

¼ βðϕxþ0̂e
iμat3 þ eiμat3ϕx−0̂ þ ϕxþ1̂ þ ϕx−1̂Þ

−
2

b2
ðϕ2

x − 1Þϕx; ð51Þ

where the last term helps to keep the length of ϕx near 1.
Then, the fields evolve according to

ϕðnþ1Þ
x;i ¼ ϕðnÞ

x;i þ εnK
ðnÞ
x;i þ

ffiffiffiffiffi
εn

p
ηðnÞx;i ; ð52Þ

where again εn is the finite step size determined adaptively
and the noise is Gaussian with

ffiffiffi
2

p
width. Note that using

this time evolution, the
P

iϕx;i ¼ 1 condition is no longer
true during the simulations, but the force can push the field
into this direction. We refer to this time evolution as
standard Euler-Maruyama discretization with Dirac δ in
the following.
In the next section, we discuss the results obtained using

the various algorithms.

VII. COMPARISON OF RESULTS

As was discussed in the Introduction, the complex
Langevin algorithm may provide a feasible way to study
sign problems in different models but may converge to
wrong results, which would lower the reliability of the
simulation when there are no alternative results in the
problematic parameter range. The conventional reasoning
of explaining the wrong results is that the justification of the
complex Langevin [14–16] is not correct in that parameter
range, because some observables develop long tailed dis-
tributions. (For details, we refer to Ref. [15].) However, in
somemodels (e.g. in a random-matrixmodel [59,60]), it was
observed that using different variables in describing the
model can help to eliminate this problem. This can imply
that the failure of the algorithm is not because physics has
changed but because of some unknown technical details.
One can think of systematic errors originating from e.g. the
step size to zero limit, floating point roundoff errors, not
taking the continuum limit, or wrong sampling of the
configuration space, etc. In the following, we analyze some
of these aspects in the case of the 1þ 1-dimensional O(3)
model. The results are compared to the worm results, which
are referred to as the correct ones in the text.

Although we used the adaptive step size in all our
simulations, this cannot replace the completion of the
ε → 0 extrapolation of the results. (Of course, its effect
depends on the used numerical precision and the algorithm
under study as well as other subtle circumstances. For
example, as we will see, the simulations with spherical
coordinates do not depend in a detectable way on ε at
the simulations with the used set of parameters for e.g. the
action variable.) In the following, first, we discuss the
results for the action S and the trace anomaly θ and then for
the density n=m.

A. Action and trace anomaly

Using spherical coordinates to parametrize the model,
we ran simulations at 56 × 14 lattices, at several chemical
potentials (see Table II). We analyzed the step size and ϑLIM

TABLE II. The set of parameters for the simulations with the complex Langevin algorithm using spherical coordinates. In the table, ε
refers to the largest step size in the runs, and θLIM is the minimum distance between any ϑx and 0 (π). (See the text for the definition of
θLIM.) The θLIM dependence of the results was analyzed on 56 × 14 lattices at μ=T ¼ 1 by using θLIM ¼ 10−3; 10−5, 10−7; 10−8; 10−11.
These are not listed in the table.

Method Nx × Nt μ=T β ε θLIM No. of trajectories

CL with spherical coordinates 56 × 14 0, 0.25, 0.5, 1, 2, 3, 4 0.9…1.8 5; 2; 1 × 10−4; 10−5 10−5 1000…1600
72 × 18 1 0.9…1.8 5; 1 × 10−4 10−5

FIG. 14. CL results for RehSi=V with spherical coordinates.
Top: μa ¼ 0.071 (μ=T ¼ 1), bottom: μa ¼ 0.143 (μ=T ¼ 2).
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dependence of the results. Although we found that there
was no detectable step size dependence of the results, we
extrapolated to zero step size at μa ¼ 0.071 and 0.143
using four step sizes. We also found that the results do not
depend on ϑLIM if it was chosen quite small. To test this at
μa ¼ 0.071, we used ϑLIM ¼ 10−3; 10−5; 10−7; 10−8; 10−11

and ε ¼ 0.0005. We found that at μa ¼ 0, spherical CL
results agree completely with the correct results. At
56 × 14; μa ¼ 0.018 they deviate below β ∼ 1.3. This
clearly shows that the wrong convergence property was

not the consequence of the severeness of the sign problem,
because it was very mild at μa ¼ 0.018 (see Fig. 2, right
panel). We note that CL results obtained with spherical
coordinates seem to slightly deviate from the correct ones
in the high β region as well, but these differences are not
significant statistically (they are within 2 sigma). At high
μ=T, however, the deviations are significant, so at e.g.
μa ¼ 0.286, 56 × 14, results for the action are wrong at all
β values. Since this discretization was a bit problematic due
to the singularity in the force and deviations at high μ=T
seemed discouraging, we did not test so carefully its
continuum behavior or possible improvements. However,
we mention that using 72 × 18 lattices did not show any
improvement at μ=T ¼ 1. We show some results in Fig. 14.
We have investigated the group integration approach

(Sec. VI B) more carefully. First, we compared simulation
results of using Rð1Þ, Rð2Þ, or Rð3Þ at 56 × 14 lattices at
μa ¼ 0.071; ε ¼ 0.0005 using 2000 Langevin trajectories
at several β in the range 0.9…1.8. We found complete
agreement using these parameters. Then, we used Rð2Þ
during our further simulations with the exponentialized
Euler-Maruyama (E-M) discretizaton (abbreviated in the
following and in the figures as exp. E-M). We carried
out simulations on several lattice sizes and chemical
potentials in the β range 0.9…1.8. The parameters for

TABLE III. The set of parameters for the simulations with the complex Langevin algorithm using the group integration approach
(exponentialized Euler-Maruyama method). In the table, ε refers to the largest step size during the trajectories.

Method Nx × Nt μ=T β ε No. of trajectories

32 × 8 0.25 0.9…1.8 ð5; 2; 1Þ × 10−4 4500…5500
40 × 10 0.25, 0.5, 1 0.9…1.8 ð10; 5; 2; 1; 0.5Þ × 10−4 3000…5000
56 × 14 0, 0.25, 0.5, 1, 2, 3, 4 0.9…1.8 ð10; 5; 2; 1Þ × 10−4 3000…5500

CL with group integration
(exp. E-M method)

64 × 16 0.25, 0.5, 1, 2, 3, 4 1.1…1.8 ð10; 5; 2; 1; 0.5Þ × 10−4 2000…3500
72 × 18 0.25, 0.5, 1, 2, 3, 4 1.1…1.8 ð10; 5; 2; 1Þ × 10−4 2500…5500
80 × 20 0.25, 0.5, 1, 2, 3, 4 1.1…1.8 ð10; 5; 2; 1Þ × 10−4 3000…5500
120 × 30 0.5, 3 1.1…1.8 ð1; 0.5; 0.2; 0.1Þ × 10−4 1000…2000
200 × 50 0.5, 3 1.2…1.8 ð1; 0.8; 0.5; 0.2; 0.1Þ × 10−4 800…1200

FIG. 15. The comparison of RehSi=V results for different
algorithms: worm, CL with exponentialized E-M, and CL with
standard E-M discretization with Dirac δ. Top: μa ¼ 0.018
(μ=T ¼ 0.25), bottom: μa ¼ 0.071 (μ=T ¼ 1). Note that the
exp. E-M method is wrong at low β even when the sign problem
is still very mild.

FIG. 16. ðhSwi − RehScliÞ=V=σ at μa ¼ 0.143 (μ=T ¼ 2) (top)
and at μa ¼ 0.2143 (μ=T ¼ 3) (bottom). The gray band shows
the 1 sigma interval, and the black lines show the 2 sigma
interval. The orange lines show the beta threshold range, below
which the exp. E-M complex Langevin fails.
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these simulations can be found in Table III. Several initial
step sizes were used during these simulations, and we
extrapolated these to zero step size. (However, we did not
find significant step size dependence of the results obtained
with step sizes 10−4 and smaller.)
We came to similar conclusions as with spherical

coordinates: at μ=T ¼ 0 complete agreement was found,
then at nonzero μ=T—even at μ=T ¼ 0.25–, a discrepancy
in the low β region. We note, however, that the exp. E-M
results do not deviate from the correct results at higher β
values. In order to quantify the deviations and investigate
their continuum behavior, we first calculated ðhSwi−
RehScliÞ=V=σ, where hSwi is the worm result, hScli is
the exp. E-M result in the ε → 0 limit, V ¼ Nx × Nt is the
lattice volume, and σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

w þ Δ2
cl

p
, where Δw, Δcl are the

full errors of the worm and CL simulations, respectively.
(Δw is just the statistical error, but Δcl contains systematic
errors because of the step size extrapolation.) After that, we
determined a β region at each lattice size and μa parameter,
when ðhSwi − RehScliÞ=V=σ started to be above 2. This

definition of the β range (the latest point under 2 sigma and
two successive points above 2 sigma) is a bit ambiguous in
the sense that it depends on the statistics, but we did not
find significant differences between the results of some
smaller statistics runs and the long runs. Figure 16 shows an
example of the determination of this β range.
Then, the middle of this range with errors to cover the

whole range was used to calculate TðSðβÞÞ
threshold=m, the temper-

ature below which CL converges to wrong results at the
lattice under study. We show how these temperatures
depend on the temporal lattice size at μ=T ¼ 3 in
Fig. 17. In that figure, one can see that these threshold
temperatures become lower as Nt increases, but we do not
know the scaling of this quantity as a function of the lattice
spacing or Nt; thus, we cannot extrapolate to the continuum
without assumptions. In order to avoid these assumptions,
we have calculated the continuum limit of ðhSwðT; μ=TÞi −
RehSclðT; μ=TÞiÞ=V and then determined the continuum

threshold temperature TðSÞ
threshold=m below which the con-

tinuum results deviate from zero. The results for these

FIG. 18. The trace anomaly determined with the complex
Langevin algorithm using the exp. E-M discretization and the
worm algorithm. Although we do not plot the continuum limit of
the complex Langevin results here, the results suggest that there is
no improvement toward the continuum.

FIG. 17. The temperature TðSðβÞÞ
threshold=m as a function of 1=N2

t at

μ=T ¼ 3. Below TðSðβÞÞ
threshold=m, the action densities obtained by the

exp. E-M discretization start to become wrong. Using larger
lattices, this temperature becomes lower, but the continuum
extrapolation of this quantity cannot be made without assuming
some functional dependence of it as a function of 1=Nt, which
would hinder drawing the conclusion.
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FIG. 19. The histogram of RehSi=V (top) and ImhSi=V
(bottom) at β ¼ 1.2 and β ¼ 1.6. These β values correspond to
T=m ¼ 0.32 and T=m ¼ 1.9; the former is such a temperature
where the complex Langevin exp. E-M discretization develops
wrong results for the action, and the latter is a temperature where
it is correct. One can see that the histograms indeed show the
usual concomitant sign of wrong results, that is, the longer tail of
the distribution of the observables.
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temperatures (with further relevant temperature ranges
discussed in the text) are shown in Fig. 25.
Of course, one can discuss the deviations of the correct

and the CL action densities in terms of a more standard
physical quantity which has a continuum limit: the trace
anomaly. So, we have also used the trace anomaly and
investigated what happens with the continuum limit of the
“wrong” complex Langevin results (Fig. 18) and obtained
similar threshold temperature values.
We also made some runs to test this approach against a

change in computer numerical precision and the order of
integration; that is, we used float (32-bit) and long double

(80-bit) precision and found that, although float and double
differ from each other (float is wrong at all β), double and
long double are almost the same at the parameters used
to clarify this (56 × 14, μ=T ¼ 0.071, 0.143, ε ¼ 0.0005,
∼1800 Langevin trajectories). We also tested exponential-
ized Runge-Kutta integration at double precision, but
results did not improve.
We have also checked the shape of the distributions, and

these are shown in Fig. 19. One can see that the distribu-
tions are narrower in the high temperature range.

TABLE IV. The set of parameters for the simulations with the complex Langevin algorithm using the standard Euler-Maruyama
discretization with directly including the constraint by approximating the Dirac δ: ε refers to the largest step size during the trajectories,
and b is the width of the Gaussian approximating the Dirac δ (see Sec. VI C).

Method Nx × Nt μ=T β ε b No. of trajectories

CL with direct constraint
(standard E-M method
with Dirac δ)

40 × 10 0.25, 0.5, 1 0.9…1.8 ð5; 2; 1; 0.5; 0.2Þ × 10−4 0.01…0.06 2000…3000
56 × 14 0, 0.25, 0.5, 1, 2, 3, 4 0.9…1.8 ð5; 2; 1; 0.5Þ × 10−4 0.015…0.05 1800…3000
64 × 16 0.25, 1, 2, 3 1.0…1.8 ð1; 0.8; 0.5Þ × 10−4 0.02…0.05 2000…3500
72 × 18 1, 2, 3 1.0…1.8 ð1; 0.8; 0.5Þ × 10−4 0.018…0.038 1600…2500
80 × 20 1, 2 1.1…1.8 ð2; 1; 0.8; 0.5Þ × 10−4 0.02…0.04 1600…2500

FIG. 20. Top: The figure shows how taking the b → 0 limit can
help to obtain the correct results for the action with the standard
E-M implementation (the starting ε step size was 5 × 10−5 during
the simulations to obtain the data points of the figure). Bottom:
The effect of the reduction of the b parameter on the average
length of ϕ vectors. The lines show the one sigma interval.
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FIG. 21. Histograms of RehSi=V (top) and ImðSÞ=V (bottom)
at β ¼ 1.2 obtained with the exp. E-M implementation and with
the standard. E-M implementation with Dirac δ. The std. E-M
implementation develops quite similar distributions for the real
part of the action, while narrower for the imaginary part. The
shapes of the histograms do not change so much as one decreases
b (the width of the Gaussian that approximates the Dirac δ),
although results get closer to the correct ones.
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Finally, let us discuss the results obtained using the
standard Euler-Maruyama discretization with a Dirac δ
approximated with a Gaussian. We simulated with this
algorithm at the parameters of Table IV. We used several
initial step sizes and at each step size several b values
(0.01 < b < 0.06). Using double precision, we found that
at a given step size, below a low b value, simulations
became unstable, so there we used long double precision to
set lower b values. At each step size, we extrapolated to
b → 0, then used these results to extrapolate in ε. As
mentioned in Sec. VI C, this algorithm did not keep theP

iϕ
2
i ¼ 1 constraint rigorously during the simulation. To

characterize it quantitatively, we measured the length of the

ϕ vectors over the lattice and found it is typically a bit
larger than 1, but with smaller b and ε values, it can be
reduced (see the lower panel of Fig. 20).
We found that after taking both the b to zero

(Fig. 20, top) and ε to the zero limit, the results obtained
by this method agree well with the correct results (Figs. 15
and 16). These results are interesting because when we
accomplish the b to zero and ε to zero limits the used data
may have distributions also with some nonexponential
decay;, see Fig. 21. The obtained histograms were com-
pared to those of the exp. E-M discretization, and one can
see that the decay of the standard E-M discretization with
Dirac δ seems to be sharper (Fig. 21). For completeness, we
mention here that the errors coming from the two extrap-
olations became significantly larger, especially at small βs
as the chemical potential increased.

B. Density

In the present subsection, we review the results for the
density [Eq. (32)] obtained by the different algorithms. For
the worm results, we used the configurations, that were
listed in Sec. V D2, and for the CL results we used the data
of Tables II, III, and IV. For reweighting results, we used
the cluster algorithm to simulate at μ ¼ 0 and used 3 × 106

updating steps.
We found that reweighting results agree well with the

worm results below μa ∼ 0.16 on 56 × 14 lattices, that is
below μ=T ∼ 2.2 (see Fig. 22). At higher μa values, the
results have large error bars, and (apparent) deviations from
correct results occur. This coincides with the fact that
the sign problem became severe at these lattices around
μa ∼ 0.15 (Fig. 4).
Regarding the different CL implementations, we found

that both the exp. E-M integration and the standard E-M
with Dirac δ produced wrong results at low temper-
ature (Fig. 22).

A threshold temperature (Tðn=mÞ
threshold=m) can be defined

similarly as we did in the case of the action: this is the

FIG. 22. The density at low temperature measured on 56 × 14
lattices, at μ=T ¼ 1 (top), at μ=T ¼ 2 (middle), and at μ=T ¼ 4
(bottom). At μ=T ¼ 4, the reweighting results become unreliable,
while CL remains correct if the temperature is greater than
0.37…0.5.

FIG. 23. Comparison of the continuum results for the density
obtained by the worm and the CL, exp. E-M discretization at
μ=T ¼ 1. The figure shows that the continuum extrapolation from
the complex Langevin results differs from the worm continuum
result.
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temperature below which continuum CL density results
deviate from the continuum worm density results with 2
sigma significance. A comparison of the continuum results
from the exp. E-M. CL and the worm algorithm can be seen

in Fig. 23. We note that in the low temperature region, the
continuum extrapolation takes the CL results even further
from the worm continuum results. By increasing the

chemical potential, one can observe that Tðn=mÞ
threshold=m is

approximately constant, then gets smaller (see Figs. 24

and 25). We note that the Tðn=mÞ
threshold=m values are approx-

imately the same for the exp. E-M. discretization and for
the standard E-M. discretization with Dirac δ.
The spherical CL implementation also developed wrong

results, but its threshold temperature seemed to be larger
than that of the others. However, we note that in the case of
the spherical formulation, we did not determine so carefully
the threshold temperature.
The distributions of the real and imaginary parts of

∂S=∂ðμaÞ are again narrower, when different complex
Langevin algorithms produce correct results. Comparing
the distributions for this quantity of the exp. E-M and std.
E-M with Dirac-δ implementations, we see that, although
the latter is narrower, the results do not converge to the
correct results, as they did in the case of the action.

VIII. CONCLUSION

In the present paper, we studied the sign problem in the
O(3) model. We used reweighting in order to investigate the
severeness of the sign and overlap problems.We described a
dual formalism and based on that a worm algorithm, which
completely solves the sign problem. Using this, we have
calculated the pressure, the trace anomaly, and the density
at finite temperature. At zero and low temperatures, we
reproduced the Silver Blaze phenomenon.We then analyzed
the correctness of the complex Langevin as approaching the
continuum limit. The failure of the complex Langevin in
certain parameter ranges is argued to be the consequence of
the developing long tailed distributions. However, it is an
interesting question whether the wrong convergence prop-
erty happens at a specific β value—as was found in HDQCD
[20]—or at a given temperature. In the former case,
continuum extrapolation could enable one to study the full
phase diagram of the given model. According to recent
results [7], the breakdown seems to prevent the exploration
of the confined region in QCD. However, those simulations
used onlyNt ¼ 4, 6, 8 lattices. In the present paper, ourmain
goalwas to investigatewhether taking the continuum limit in
the 1þ 1-dimensional O(3) model can help to overcome the
wrong convergence property of the complex Langevin.
For this purpose, we have used three different appro-

aches: describing the model with spherical coordinates,
using the generators and integrating the CL equations in the
group space (exp. E-M), and considering the

P
iϕ

2
i ¼ 1

constraint with a term containing the logarithm of a Dirac δ
in the action (standard Euler-Maruyama discretization with
Dirac δ). We approximated the Dirac δ by a Gaussian
having a width ∼1=b. We analyzed three observables: the
action, the trace anomaly, and the density. Regarding the

FIG. 24. The density differences of different complex Langevin
results (ncl=m) and the worm (nw=m) divided by σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

cl þ Δ2
w

p
at μ=T ¼ 1 (top) and at μ=T ¼ 4 (bottom). The figure shows that
the threshold temperature does not reduce toward the continuum.
The black triangles are calculated from the continuum CL density
and the continuum worm density.

FIG. 25. The figure shows the temperatures T threshold=m deter-
mined from the action differences and the density differences

discussed in the text. Below TðSÞ
threshold=m, the exp. E-M discre-

tization develops wrong results for the action. The std. E-M
discretization with Dirac δ produces correct results for the action
at all temperatures. However, both implementations give wrong

results for the density below Tðn=mÞ
threshold=m. The blue and red solid

bands show the pseudocritical temperatures determined from the
inflection point of the pressure and from the maximum of the

trace anomaly, TðpÞ
pc =m and TðθÞ

pc =m, respectively.
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action, we found that both the spherical coordinates and the
exp. E-M discretization gave wrong results at the low β
(low temperature) range. For the exp. E-M discretization,
we analyzed whether taking the continuum limit can help to
improve the results and found that, although the accessible
temperature range became larger, one cannot explore the
full low temperature region. However, we established that
the so-called standard Euler-Maruyama discretization with
the Dirac-δ method can give correct results for the action
density after taking both the b to zero and ε to zero limits.
We found that for the density observable, the situation is
different: in this case, the latter way of integrating the CL
equations gave wrong results also at low T=m, and the
results did not seem to improve by taking larger and finer
lattices.
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APPENDIX: WORM ALGORITHM
UPDATING STEPS

In this Appendix, we describe our updating steps of the
worm algorithm in detail. As in the beginning of Sec. V
(before Sec. V D), we consider the general case OðNÞ in
dþ 1 dimensions.

1. Updating steps of the worm algorithm

When μ is zero, we consider three simple updat-
ing steps:
(1) Move the head of the worm from the position u

along a link l to the new position u0. To keep the
constraints, by this, we increase or decrease the

corresponding link variable m ¼ mðlÞ
i by 1. (Here,

i is the index of the worm.) The corresponding 2D
possibilities are chosen with equal probabilities.
(a) Propose increasing the link variable, m0¼mþ1.

The corresponding acceptance probability is
pacc ¼ minfq; 1g, where

q ¼ β

m0
kiðu0Þ þ 1

kðu0Þ þ N
: ðA1Þ

(b) Propose decreasing the link variable, m0¼m−1.
When m ¼ 0, the move is rejected; otherwise,
the corresponding acceptance probability is
given by

q ¼ m
β

ðk0ðuÞ þ NÞ
ðk0iðuÞ þ 1Þ : ðA2Þ

(2) When the two heads of the worm coincide,
the worm can jump to a new position and
change its index ðu ¼ v → u0 ¼ v0; i → jÞ. In this
case,

q ¼ ðkðuÞ þ N − 2Þðkjðu0Þ þ 1Þ
ðkiðuÞ − 1Þðkðu0Þ þ NÞ

¼ ðk̂ðuÞ þ NÞðk̂jðu0Þ þ 1Þ
ðk̂iðuÞ þ 1Þðk̂ðu0Þ þ NÞ : ðA3Þ

(3) Propose increasing or decreasing a link variable

m≡mðlÞ
j by 2, without changing the worm variables

u, v, i.
(a) Propose increasing m → m0 ¼ mþ 2. The

acceptance probability is given by

q ¼ β2

m0ðm0 − 1Þ
Y
x∈∂l

kjðxÞ þ 1

kðxÞ þ N
: ðA4Þ

(b) Propose decreasing m → m0 ¼ m − 2. When
m < 2, the proposal is rejected; otherwise, the
acceptance probability is given by

q ¼ mðm − 1Þ
β2

Y
x∈∂l

k0ðxÞ þ N
k0jðxÞ þ 1

: ðA5Þ

2. Worm update with chemical potential

According to the representation, Eq. (21) of the
scalar product, the index of the head and tail of
the worm could be ðiu; ivÞ ¼ ð−;þÞ; ð3; 3Þ;…; ðN;NÞ;
hence, we have to distinguish two types of the
worm. For the type ðiu; ivÞ ¼ ðj; jÞ, the updating steps
described in Appendix A. 1 remain unchanged. The

same is true for updating a link variable mðlÞ
j

for j ¼ 3;…; N. Below, we consider the case
ðiu; ivÞ ¼ ð−;þÞ:
(1) Moving the ð−Þ end of the worm in direction þν̂

form u to u0 ¼ uþ ν̂:
(a) Propose increasing the variable mþ → m0þ ¼

mþ þ 1 on the corresponding link:

q ¼ eμν
β

m0þ

k12ðu0Þ þ 1

kðu0Þ þ N
: ðA6Þ

(b) Propose decreasing the link variable m− →
m0

− ¼ m− − 1. If m− ¼ 0, then the proposal is
rejected; otherwise,

q ¼ eμν
m−

β

k0ðuÞ þ N
k012ðuÞ þ 1

: ðA7Þ
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(2) Moving the ð−Þ end of the worm in direction −ν̂
from u to u0 ¼ u − ν̂:
(a) Propose increasing the link variable m− →

m0
− ¼ m− þ 1:

q ¼ e−μν
β

m0
−

k12ðu0Þ þ 1

kðu0Þ þ N
: ðA8Þ

(b) Propose decreasing the link variable mþ →
m0þ ¼ mþ − 1. If mþ ¼ 0, then the proposal is
rejected; otherwise,

q ¼ e−μν
mþ
β

k0ðuÞ þ N
k012ðuÞ þ 1

: ðA9Þ

The acceptance probabilities for moving the ðþÞ end
of the worm are described by the same expressions;
the case ðþÞ, �ν̂ is equivalent to ð−Þ;∓ ν̂ (both
decrease/increase the Q12 ¼ þ1 line by 1). How-
ever, because of the next updating step, one does
not need to move the ðþÞ head to satisfy ergodicity.
Due to these facts, in our simulations, we did not
update the ðþÞ end but only the ð−Þ end with 2=3
probability.

(3) When the two ends of the worm coincide (u ¼ v), it
can jump to a new position (u0 ¼ v0) and change
its index.
(a) ði; iÞ → ðj; jÞ:

q ¼ ðk̂ðuÞ þ NÞðk̂jðu0Þ þ 1Þ
ðk̂iðuÞ þ 1Þðk̂ðu0Þ þ NÞ : ðA10Þ

(b) ð−;þÞ → ð−;þÞ:

q ¼ ðk̂ðuÞ þ NÞðk̂12ðu0Þ þ 1Þ
ðk̂12ðuÞ þ 1Þðk̂ðu0Þ þ NÞ : ðA11Þ

(c) ð−;þÞ → ðj; jÞ:

q ¼ ðk̂ðuÞ þ NÞðk̂jðu0Þ þ 1Þ
ðk̂12ðuÞ þ 1Þðk̂ðu0Þ þ NÞ : ðA12Þ

(d) ði; iÞ → ð−;þÞ:

q ¼ ðk̂ðuÞ þ NÞðk̂12ðu0Þ þ 1Þ
ðk̂iðuÞ þ 1Þðk̂ðu0Þ þ NÞ : ðA13Þ

(4) Changing the link variables � on a given link
simultaneously:
(a) mþ → m0þ ¼ mþ þ 1; m− → m0

− ¼ m− þ 1:

q ¼ β2

m0þm0
−

Y
x∈∂l

k12ðxÞ þ 1

kðxÞ þ N
: ðA14Þ

(b) mþ → m0þ ¼ mþ − 1; m− → m0
− ¼ m− − 1 (if

mþ ¼ 0 or m− ¼ 0, then the proposal is
rejected):

q ¼ mþm−

β2
Y
x∈∂l

k0ðxÞ þ N
k012ðxÞ þ 1

: ðA15Þ

Note that these expressions with the chemical potential
using themodified basisϕþ;ϕ−;ϕ3;…;ϕN lookvery similar
to those discussed in the casewithout the chemical potential.
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