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A new renormalization scheme is defined for fermion bilinears in QCD at nonvanishing quark masses.
This new scheme, denoted RI/mSMOM, preserves the benefits of the nonexceptional momenta introduced
in the RI/SMOM scheme and allows a definition of renormalized composite fields away from the chiral
limit. Some properties of the scheme are investigated by performing explicit one-loop computation in
dimensional regularization.
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I. INTRODUCTION

Nonperturbative renormalization MOM schemes have
been introduced in Refs. [1,2] by imposing a set of
renormalization conditions, which specify the renormali-
zation of the fermion wave function, of the fermion mass,
and of composite operators like fermion bilinears. The
renormalization conditions are imposed in the chiral limit
of QCD, and therefore, by construction, these schemes are
mass independent, meaning that all the renormalization
constants are independent of the value of the fermion mass.
This is useful for instance when considering ratios of
quantities such as masses; in a mass-independent scheme
mi=mj for two different fermions i and j, does not
renormalize since the renormalization constants cancel
between the numerator and the denominator. The renorm-
alization conditions are chosen so that renormalized corre-
lators involving the vector and axial currents satisfy the
Ward identities (WIs) dictated by the symmetries of the
theory. Using massless schemes for massive quarks
involves violations of the Ward identities by terms that
scale like powers of m=μ, where μ is the typical energy
scale of the correlators that are computed.
Recent lattice studies have begun investigating the

nonperturbative dynamics of heavy quarks like charm
and bottom, including these heavy flavors as relativistic
dynamical degrees of freedom in the path integral. In
current simulations the mass of the heavy quarks is often of
the same order of magnitude as the UV cutoff, defined as
the inverse lattice spacing a−1. As a consequence, it is not
possible to reach a regime where there is a clear separation
between the fermion mass, the renormalization scale, and
the cutoff, i.e. a regime where m ≪ μ ≪ a−1. When
studying heavy quarks, it may be interesting to introduce
a massive scheme, i.e. a scheme where the renormalization
conditions are imposed at some finite value of the renor-
malized mass. It is indeed possible to choose the renorm-
alization conditions in such a way that the desirable
properties of the massless schemes are preserved, in
particular the Ward identities would hold exactly at finite

values of the quark mass, and independently of the ratio
m=μ.
In this paper, we define a massive scheme for axial and

vector currents as well as scalar and pseudoscalar densities,
which we call mSMOM. The renormalization constants
defined in mSMOM satisfy properties that are similar to the
ones found in SMOM [2]. SMOM was introduced in order
to reduce chiral symmetry breaking and other unwanted
infrared effects, by defining the renormalization conditions
for the vertex functions at a symmetric subtraction point
which involves nonexceptional momenta. The key property
of the SMOM scheme is that the renormalization conditions
are defined so that the renormalized WIs are satisfied. This
is in contrast with MOM where the WI for the axial current
are recovered only for large values of μ2 [1,2]. Starting from
SMOM, we modify some of the renormalization conditions
in order to recover the massive renormalized WIs. The
renormalization conditions for massive quarks require
the introduction of an extra scale m̄, which is the value
of the renormalized mass at which the conditions are
spelled out. As we take the limit m̄ → 0, our scheme
reduces to SMOM, so that we are able to interpolate
between massive and massless schemes.
We discuss a number of properties using nonperturbative

arguments after which we perform an explicit check at one-
loop in perturbation theory using dimensional regulariza-
tion. While the results of this calculation is exactly as
expected, it is pleasing to see explicitly a number of
nontrivial cancellations. We then focus on the case of
the lattice currents, and discuss their renormalization in
mSMOM. The massive schemes can be implemented
numerically, in order to obtain nonperturbative determi-
nations of the corresponding renormalization constants.
The massive renormalization constants will change some
lattice artifacts Oða2m2Þ, and could potentially lead to
smoother extrapolations to the continuum limit of phe-
nomenologically relevant observables. A first qualitative
understanding of the can be obtained by a perturbative
study along the lines of Ref. [3], but ultimately dedicated
numerical studies are necessary in order to settle this issue.
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II. MASSIVE RENORMALIZATION
CONDITIONS

A regularization-independent momentum subtraction
scheme for bilinears with a nonexceptional, symmetric
point has been introduced in Ref. [2], under the name of
RI/SMOM. RI/SMOM is a mass-independent renormaliza-
tion scheme, in that all the renormalization conditions are
specified in the chiral limit, and therefore the renormaliza-
tion constants cannot depend on the quark masses by
definition. Before investigating the possibility of defining a
similar scheme at finite quark mass, let us briefly recall the
renormalization conditions that define RI/SMOM, and
discuss the main properties of the renormalized bilinears
in that scheme.
Figure 1 summarizes the kinematics used in this paper:

the correlators of fermion bilinears with two external off-
shell fermions are

Ga
Γðp3; p2Þ ¼ hOa

ΓðqÞψ̄ðp3Þψðp2Þi; ð1Þ

where Oa
Γ ¼ ψ̄Γτaψ is a flavor nonsinglet fermion bilinear,

and Γ spans all the elements of the basis of the Clifford
algebra, which we denote as Γ ¼ S, P, V, A, T. Note that τa

denotes a generic generator of rotations in flavor space. The
conventions for the Dirac gamma matrices are spelled out
in detail in Appendix A. The four-dimensional vectors p2

and p3 are, respectively, the incoming and outgoing
momenta of the external fermions, and momentum con-
servation requires q ¼ p2 − p3. The kinematics adopted in
this work is the one used in Ref. [2]:

p2
2 ¼ p2

3 ¼ q2 ¼ −μ2: ð2Þ

Following the convention in the paper above, we denote
this symmetric point by the shorthand “sym”.
For the purpose of illustration, we can consider the case

of a fermion doublet,

ψ ¼
�
ψ1

ψ2

�
; ψ̄ ¼ ð ψ̄1 ψ̄2 Þ; ð3Þ

with mass matrix

M ¼
�
m1 0

0 m2

�
: ð4Þ

Note that in the mass degenerate case, we simply have
M ¼ m1. If we choose τa ¼ τþ ¼ σþ

2
¼ 1

2
ðσ1 þ iσ2Þ, then

the bilinear Oa
Γ ¼ ψ̄Γτaψ takes the form OΓ ¼ ψ̄1Γψ2.

The infinitesimal vector and axial nonsinglet SU(2)
chiral transformation are as follows

δψðxÞ ¼ i½αVðxÞτa�ψðxÞ;
δψ̄ðxÞ ¼ −iψ̄ðxÞ½αVðxÞτa�; ð5Þ

and

δψðxÞ ¼ i½αAðxÞτaγ5�ψðxÞ;
δψ̄ðxÞ ¼ iψ̄ðxÞ½αAðxÞτaγ5�: ð6Þ

In our conventions, bare quantities are written without
any suffix, while their renormalized counterparts are
identified by a suffix R. The renormalization conditions
are usually expressed in terms of amputated correlators,

Λa
Γðp2; p3Þ ¼ Sðp3Þ−1Ga

Γðp3; p2ÞSðp2Þ−1; ð7Þ

where SðpÞ is the fermion propagator:

SðpÞ ¼ i
p −m − ΣðpÞ þ iϵ

: ð8Þ

Note that for each leg being amputated, the fermion
propagator with the corresponding flavor needs to be used.
The quark mass breaks chiral symmetry explicitly.

This breaking is visible in the second equation below,
Eq. (10). If the regulator does not induce any further
breaking of chiral symmetry, then Λa

V and Λa
A are related to

the fermion propagator by the vector and axial Ward
identities, respectively,

q · Λa
V ¼ iSðp2Þ−1 − iSðp3Þ−1; ð9Þ

q · Λa
A ¼ 2miΛa

P − γ5iSðp2Þ−1 − iSðp3Þ−1γ5: ð10Þ

As specified above, the vertex functions are all taken to be
nonsinglet for the rest of the paper. In this section the mass-
degenerate cases are being considered; i.e., either both
quarks are light (massless) or both are heavy. In both cases
the two fermion propagators that enter in the Ward
identities are the same, and only differ because of the
momentum associated with the external leg. We will
suppress the flavor index a to keep the notation simple.
The renormalized quantities are defined as follows:

ψR ¼ Z1=2
q ψ ; mR ¼ Zmm;

MR ¼ ZMM OΓ;R ¼ ZΓOΓ; ð11Þ

FIG. 1. Kinematics used for the correlators of fermion bilinears.

BOYLE, DEL DEBBIO, and KHAMSEH PHYSICAL REVIEW D 95, 054505 (2017)

054505-2



where m and M denote the masses of the light and heavy
quark, respectively. The renormalized propagator and
amputated vertex functions are

SRðpÞ ¼ ZqSðpÞ;

ΛΓ;Rðp2; p3Þ ¼
ZΓ

Zq
ΛΓðp2; p3Þ; ð12Þ

where q ¼ l, H for light and heavy quarks, respectively.
Note that our conventions for defining the fermion propa-
gator are slightly different from the ones used in Ref. [2];
using our own conventions, the RI/SMOM conditions are

lim
mR→0

1

12p2
Tr½iSRðpÞ−1p �

����
p2¼−μ2

¼ 1; ð13Þ

lim
mR→0

1

12mR

�
Tr½−iSRðpÞ−1�jp2¼−μ2

−
1

2
Tr½ðq · ΛA;RÞγ5�jsym

�
¼ 1; ð14Þ

lim
mR→0

1

12q2
Tr½ðq · ΛV;RÞq �jsym ¼ 1; ð15Þ

lim
mR→0

1

12q2
Tr½ðq · ΛA;RÞγ5q �jsym ¼ 1; ð16Þ

lim
mR→0

1

12i
Tr½ΛP;Rγ5�jsym ¼ 1; ð17Þ

lim
mR→0

1

12
Tr½ΛS;R�jsym ¼ 1: ð18Þ

These renormalization conditions ensure that the renor-
malized bilinears obey vector and axial renormalized Ward
identities like the ones in Eqs. (9), and (10), and the
renormalization constants satisfy the same properties as in
the MS scheme, namely

ZV ¼ ZA ¼ 1; ZP ¼ ZS; ZmZP ¼ 1: ð19Þ

While the renormalization conditions in the RI/SMOM
scheme are imposed in the chiral limit, the RI/mSMOM
scheme is defined by imposing a similar set of conditions at
some fixed value of a reference renormalized mass that we
denote by m̄:

lim
MR→m̄

1

12p2
Tr½iSRðpÞ−1p �j

p2¼−μ2
¼ 1; ð20Þ

lim
MR→m̄

1

12MR

�
Tr½−iSRðpÞ−1�jp2¼−μ2

−
1

2
Tr½ðq · ΛA;RÞγ5�jsym

�
¼ 1; ð21Þ

lim
MR→m̄

1

12q2
Tr½ðq · ΛV;RÞq �jsym ¼ 1; ð22Þ

lim
MR→m̄

1

12q2
Tr½ðq · ΛA;R − 2MRiΛP;RÞγ5q �jsym ¼ 1; ð23Þ

lim
MR→m̄

1

12i
Tr½ΛP;Rγ5�jsym ¼ 1; ð24Þ

lim
MR→m̄

�
1

12
Tr½ΛS;R� −

1

6q2
Tr½2iMRΛP;Rγ5q �

�����
sym

¼ 1:

ð25Þ

Comparing with the SMOM prescription, only the renorm-
alization conditions for the axial and scalar vertex functions
have been modified by terms proportional to MR, which
therefore vanish in the chiral limit. We have introduced a
new scale m̄, which identifies the renormalized mass at
which the renormalization conditions are imposed. The
scale m̄ is a free parameter, which needs to be specified in
order to fully define the renormalization scheme. In the
limit where m̄ → 0, the mSMOM prescription reduces to
the SMOM one. As usual the renormalization conditions
are satisfied by the tree level values of the field correlators.
The properties of the renormalization constants defined

by the mSMOM conditions can be obtained by following
very closely their derivation in the SMOM schemes. In the
case of ZV the derivation is exactly the same. Using the
relation between renormalized and bare vertex functions,
and Eq. (22), we obtain

lim
MR→m̄

1

12q2
Tr½ðq · ΛVÞq �jsym

¼ lim
MR→m̄

Zq

ZV

1

12q2
Tr½ðq · ΛV;RÞq �jsym ð26Þ

¼ Zq

ZV
: ð27Þ

Using the vector Ward identity, Eq. (9), the lhs of the
expression above can be written as

lim
MR→m̄

1

12q2
Tr½ðiSðp2Þ−1 − iSðp3Þ−1Þq �jsym

¼ lim
MR→m̄

1

12q2
Tr½iSðqÞ−1q �jsym ð28Þ

¼ Zq lim
MR→m̄

1

12q2
Tr½iSRðqÞ−1q �jq2¼−μ2 ¼ Zq: ð29Þ

Comparing Eqs. (27) and (29) yields ZV ¼ 1.
Because of the modified renormalization condition for

the renormalization of the axial vertex function, the
computation of ZA and ZMZP are coupled in the
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mSMOM scheme. The axial Ward identity, Eq. (10), can be
rewritten in terms of renormalized quantities:

1

ZA
q · ΛA;R −

1

ZMZP
2MRiΛP;R

¼ −fγ5iSRðp2Þ−1 þ iSRðp3Þ−1γ5g: ð30Þ

Two independent equations can be obtained by multiplying
Eq. (30) by γ5q and γ5, respectively, taking the trace, and
evaluating correlators at the symmetric point. In the first
case, using Eqs. (20) and (23), we obtain

ðZA − 1Þ ¼
�
1 −

ZA

ZMZP

�
CmP; ð31Þ

where

CmP ¼ lim
MR→m̄

1

12q2
Tr½2iMRΛP;Rγ5q�jsym: ð32Þ

The second equation instead yields

ðZA − 1ÞCqA ¼ −2ZA

�
1 −

1

ZMZP

�
; ð33Þ

where we have introduced one more constant

ZPCqA ¼ lim
MR→m̄

1

12MR
Tr½q · ΛA;Rγ5�jsym: ð34Þ

It is easy to verify that ZA ¼ 1, ZMZP ¼ 1 is a solution of
the system. The renormalization constants defined through
the mSMOM prescription do satisfy the properties in
Eq. (19), as is the case for the renormalization constants
defined in massless schemes like e.g. RI/SMOM. As a
consequence, Eq. (30) reduces to the correct axial Ward
identity for the renormalized correlators. Note in particular
that ZA ¼ 1 implies that ZA does not depend on the
renormalization scale μ. The renormalization condition
for the scalar vertex function ΛS, however, has been
determined by performing a one-loop computation in
perturbation theory, as discussed in Sec. III E. To prove
ZP ¼ ZS we start from the nondegenerate vector Ward
identity, which is an extension of Eq. (9) with m1 ≠ m2,

q · ΛV ¼ ðm1 −m2ÞΛS þ iSq1ðp2; m1Þ−1
− iSq2ðp3; m2Þ−1; ð35Þ

where q1 and q2 refer to two different quark flavors with
masses m1 and m2, respectively. Note that since the field
renormalization condition is set in the limit m → m̄ and the
momenta are symmetric, Zq is the same for both quark
fields q1 and q2. Writing the above equation in terms of the
renormalized quantities, we have

q · Z−1
q ZVΛV;R ¼ Z−1

q ZMZSðm1;R −m2;RÞΛS;R

þ iZ−1
q Sq1;Rðp2; m1Þ−1

− iZ−1
q Sq2;Rðp3; m2Þ−1; ð36Þ

where we have used the property that the mass difference
ðm1 −m2Þ is renormalized by ZM, given that it is obtained
in the limit m → m̄ for both quarks, as shown in Ref. [4].
Since it is already shown that ZV ¼ 1 and the renormalized
WI is satisfied, it implies that ZMZS ¼ 1. Using ZMZP ¼ 1,
we finally obtain ZP ¼ ZS.

1 Hence we recover the equality
between the two renormalization constants. This also holds
nonperturbatively in the SMOM scheme (its validity had
been previously shown at one-loop in perturbation theory
in Ref. [2]).
In these respects, mSMOM inherits the good properties

of the SMOM scheme such as satisfying the renormalized
WIs at all scales μ, in contrast to the RI/MOM scheme
Ref. [5].

III. PERTURBATIVE COMPUTATION

It is instructive to understand the details of the RI/
mSMOM scheme by performing an explicit one-loop
computation. For simplicity, we regularize the theory using
dimensional regularization and evaluate the relevant dia-
grams including their dependence on the bare mass m.
Because we are mostly interested in flavor nonsinglet
quantities, we do not need to worry about extending the
definition of γ5 to arbitrary dimensions [6,7]. If one were
interested in flavor singlet currents, then a precise definition
of γ5 in dimensional regulation is mandatory. In this Section
we focus on the actual results, and their consequences,
while we report on the technical details of the computations
in Appendix B.

A. Fermion self-energy

Setting D ¼ 4 − 2ϵ the fermion self-energy is

ΣðpÞ ¼ α

4π
C2ðFÞ

�
p

�
−
1

ϵ
− 1þ γEþ

m2

μ2
þm4

μ4
ln

�
m2

m2þμ2

�

þ ln

�
m2þμ2

~μ2

��

þm

�
4

ϵ
þ 6− 4γEþ

4m2

μ2
ln

�
m2

m2þμ2

�

− 4 ln

�
m2þμ2

~μ2

���
; ð37Þ

where γE is the Euler-Mascheroni constant, we have
replaced p2 ¼ −μ2, and denoted ~μ the scale introduced

1We would like to thank the referee of the paper for pointing
out the above proof.
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by dimensional regularization through the rescaling of the
gauge coupling g → g ~μϵ.
Equation (20) yields the renormalization constant for the

fermion field in the mSMOM scheme:

Zq ¼ 1þ α

4π
C2ðFÞ

�
1

ϵ
þ 1 − γE −

m̄2

μ2
−
m̄4

μ4
ln

�
m̄2

m̄2 þ μ2

�

− ln

�
m̄2 þ μ2

~μ2

��
: ð38Þ

The effect of the change of scheme is a redefinition of the
finite part of the renormalization constant Zq. As expected
on dimensional grounds, the dependence on the reference
mass m̄ only enters via the dimensionless ratio m̄=μ. The
limit for m̄ → 0 is well defined and reproduces the result of
the massless scheme [2].

B. Vector vertex

Let us now start considering the vertex functions, and
discuss in detail the structure of the vector correlator ΛV.
The one-loop contribution to the vertex for the case of
massive fermions is

Λð1Þσ
V ðp2; p3Þ

¼ −ig2C2ðFÞ
Z
k

γα½p3 − kþm�γσ½p2 − kþm�γα
k2½ðp3 − kÞ2 −m2�½ðp2 − kÞ2 −m2� :

ð39Þ

It is clear from this compact expression that Λð1Þσ
V ðp2; p3Þ

transforms as a four-vector under Lorentz transformations.

A closer inspection shows that the integral can be expressed
in terms of just five form factors

Λð1Þσ
V ðp2;p3Þ¼

α

4π
C2ðFÞ

�
AV

1

μ2
ðiϵσραβγργ5p3αp2βÞþBVγ

σ

þCV
1

μ2
ðpσ

2p2þpσ
3p3Þ

þDV
1

μ2
ðpσ

2p3þpσ
3p2ÞþEV

1

μ
ðpσ

2þpσ
3Þ
�
:

ð40Þ

The form factors AV;…; EV only depend on the Lorentz
invariants, and are computed analytically. At the symmetric
point, they are given by the following expressions.

AV ¼ 4

3

2
64�1

2
−
m2

μ2

�
C0

�
m2

μ2

�
þ
�
1þm2

μ2

�
log

�
m2

m2 þ μ2

�

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

m2

μ2

s
log

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 m2

μ2

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 m2

μ2

q
þ 1

1
CA
3
75; ð41Þ

where the expression for C0ðm2

μ2
Þ can be found in

Appendix B, Eq. (B9) and Eq. (B11). Although the last
two terms in the expression are separately divergent in the
massless limit, these divergences cancel, yielding a finite
expression when m → 0, which agrees with the results in
Ref. [2]. Similarly, for the other form factors, we find

BV ¼ 1

ϵ
− γE þ 1

3

2
64−C0

�
m2

μ2

��
1 − 4

m2

μ2
− 2

m4

μ4

�
þ 2

�
3 −

m2

μ2

�
m2

μ2
log

�
m2

m2 þ μ2

�
þ
�
1 − 4

m2

μ2

�
log

�
m2

~μ2

�

− 4

�
1 −

m2

μ2

�
log

�
m2 þ μ2

~μ2

�
−
�
1 − 2

m2

μ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

m2

μ2

s
log

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 m2

μ2

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 m2

μ2

q
þ 1

1
CA
3
75; ð42Þ

CV ¼ −
2

3

2
64�1 −m2

μ2

�
m2

μ2
log

�
m2

m2 þ μ2

�
þ
�
1 − 2

m2

μ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

m2

μ2

s
log

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 m2

μ2

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 m2

μ2

q
þ 1

1
CA

þ
�
2 −

m2

μ2

�
− 2C0

�
m2

μ2

�
m2

μ2

�
1þm2

μ2

�
−
�
1 − 4

m2

μ2

�
log

�
m2

~μ2

�
þ
�
1 − 4

m2

μ2

�
log

�
m2 þ μ2

~μ2

�375; ð43Þ

DV ¼ 2

3

��
1þ C0

�
m2

μ2

���
1 − 2

m2

μ2

�
− 2

�
1þm2

μ2

�
m2

μ2
log

�
m2

m2 þ μ2

��
; ð44Þ
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EV ¼ −
4

3

m
μ

2
64C0

�
m2

μ2

��
1 − 2

m2

μ2

�

þ 2 log

�
m2

m2 þ μ2

�
þ 2

m2

μ2
log

�
m2

m2 þ μ2

�

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

m2

μ2

s
log

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 m2

μ2

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 m2

μ2

q
þ 1

1
CA
3
75; ð45Þ

which all agree with the results in Ref. [2] when the limit
m → 0 is taken.

C. Pseudoscalar vertex

For the pseudoscalar vertex function at one loop, we
have

Λð1Þ
P ðp2; p3Þ

¼ g2C2ðFÞ
Z
k

γα½p3 − kþm�γ5½p2 − kþm�γα
k2½ðp3 − kÞ2 −m2�½ðp2 − kÞ2 −m2� :

ð46Þ

The one-loop structure of this vertex is simpler

Λð1Þ
P ðp2; p3Þ ¼

iα
4π

C2ðFÞ
�
BPðγ5Þ þ EP

1

μ
ðγ5Þðp2 − p3Þ

�
:

ð47Þ

The form factors are:

BP ¼ 4

�
1

ϵ
− γE þ 3

2
−
1

2
C0

�
m2

μ2

�
þm2

μ2
log

�
m2

m2 þ μ2

�

− log

�
m2 þ μ2

~μ2

��
; ð48Þ

EP ¼ −
m
μ
2C0

�
m2

μ2

�
: ð49Þ

Using the renormalization condition Eq. (24), we
have

lim
MR→m̄

1

12i
Tr½ΛP;Rγ5�jsym ¼ lim

mR→m̄

1

12i
Tr
�
ZP

Zq
ΛPγ

5

�����
sym

¼ 1;

ð50Þ

giving

ZP ¼
�
1þ α

4π
C2ðFÞ

�
−3

�
1

ϵ
− γE

�
− 5þ 2C0

�
m2

μ2

�

−
m̄2

μ2

�
1 − 4 ln

�
1þ μ2

m̄2

�
−
m̄2

μ2
ln

�
1þ μ2

m̄2

��

þ 3 ln

�
m̄2 þ μ2

~μ2

���
: ð51Þ

The above result reduce to Ref. [2] in the massless limit.
Note that ZP is scale dependent; setting ~μ ¼ μ, we find that
the dependence on the scale only appears through the
combination μ=m̄.

D. Axial vertex

The computation of the axial vertex follows very closely
the one of the vector vertex presented above. The starting
expression

Λð1Þσ
A ðp2; p3Þ

¼ −ig2C2ðFÞ
Z
k

γα½p3 − kþm�γσγ5½p2 − kþm�γα
k2½ðp3 − kÞ2 −m2�½ðp2 − kÞ2 −m2�

ð52Þ

can again be parametrized in terms of five form factors,
which we denote AA;…; EA,

Λð1Þσ
A ðp2; p3Þ ¼

α

4π
C2ðFÞ

�
AA

1

μ2
ðiϵσραβγρp3αp2βÞ

þ BAγ
σγ5 þ CA

1

μ2
γ5ðpσ

2p2 þ pσ
3p3Þ

þDA
1

μ2
γ5ðpσ

2p3 þ pσ
3p2Þ

þ EA
1

μ
ðpσ

2 − pσ
3Þ
�
: ð53Þ

For the axial form factors, we find

AA ¼ 4

3

2
64�1

2
−
m2

μ2

�
C0

�
m2

μ2

�
þm2

μ2
log

�
m2

m2þμ2

�

− log

�
m2þμ2

~μ2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4

m2

μ2

s
log

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4m2

μ2

q
−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4m2

μ2

q
þ1

1
CA
3
75;

ð54Þ
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BA ¼ 1

ϵ
− γE þ 1

3

2
64−C0

�
m2

μ2

��
1þ 8

m2

μ2
− 2

m4

μ4

�
þ
�
3 −

m2

μ2

�
2
m2

μ2
log

�
m2

m2 þ μ2

�
þ
�
1 − 4

m2

μ2

�
log

�
m2

~μ2

�

− 4

�
1 −

m2

μ2

�
log

�
m2 þ μ2

~μ2

�
−
�
1 − 2

m2

μ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

m2

μ2

s
log

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 m2

μ2

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 m2

μ2

q
þ 1

1
CA
3
75; ð55Þ

CA ¼ −
2

3

��
4 −

m2

μ2

�
m2

μ2
log

�
m2

m2 þ μ2

�
−
�
1 − 2

m2

μ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

m2

μ2

s
log

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 m2

μ2

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 m2

μ2

q
þ 1

1
CA

−
�
2 −

m2

μ2

�
þ 2C0

�
m2

μ2

�
m2

μ2

�
1þm2

μ2

�
þ
�
1 − 4

m2

μ2

�
log

�
m2

~μ2

�
−
�
1 − 4

m2

μ2

�
log

�
m2 þ μ2

~μ2

�375; ð56Þ

DA ¼ −
2

3

��
1þ C0

�
m2

μ2

���
1 − 2

m2

μ2

�
− 2

�
1þm2

μ2

�
m2

μ2
log

�
m2

m2 þ μ2

��
; ð57Þ

EA ¼ m
μ
4C0

�
m2

μ2

�
: ð58Þ

Again, in the massless limit m → 0, the above coeffi-
cients coincide with the corresponding results in Ref. [2].

E. Scalar vertex

In this section we discuss the mSMOM renormalization
condition for the scalar vertex.

Λð1Þ
S ðp2; p3Þ

¼ −ig2C2ðFÞ
Z
k

γα½p3 − kþm�½p2 − kþm�γα
k2½ðp3 − kÞ2 −m2�½ðp2 − kÞ2 −m2� :

ð59Þ

The one-loop structure of this vertex is

Λð1Þ
S ðp2; p3Þ ¼

α

4π
C2ðFÞ

�
BS þ ES

1

μ
ðp2 þ p3Þ

�
: ð60Þ

The form factors are:

BS ¼
�
4

�
1

ϵ
− γE

�
þ 6 −

�
8
m2

μ2
þ 2

�
C0

�
m2

μ2

�

þ 4m2

μ2
ln

�
m2

m2 þ μ2

�
− 4 ln

�
m2 þ μ2

~μ2

�
; ð61Þ

ES ¼ −
4

3

m
μ

2
64C0

�
m2

μ2

��
−
1

2
þm2

μ2

�

−
�
1þm2

μ2

�
log

�
m2

m2 þ μ2

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

m2

μ2

s
log

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 m2

μ2

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4 m2

μ2

q
þ 1

1
CA
3
75: ð62Þ

Using the renormalization condition Eq. (25), and the
fact that ZmZP ¼ 1, yields

lim
mR→m̄

�
1

12
Tr

�
ZS

Zq
ΛS

�
þ 1

6q2
Tr

�
ZmZP

Zq
2imΛPγ5q

������
sym

¼ lim
mR→m̄

Z−1
q

�
ZS

�
1þ C2ðFÞ

α

4π

�
4

�
1

ϵ
− γE

�
þ 6

−
�
8
m2

μ2
þ 2

�
C0

�
m2

μ2

�
þ 4m2

μ2
ln

�
m2

m2 þ μ2

�

− 4 ln

�
m2 þ μ2

~μ2

��
þ 8m2

μ2
C0

�
m2

μ2

���
¼ 1: ð63Þ

After introducing
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P ¼
�
1þ C2ðFÞ

α

4π

�
4

�
1

ϵ
− γE

�
þ 6 − 2C0

�
m2

μ2

�

þ 4m2

μ2
ln

�
m2

m2 þ μ2

�
− 4 ln

�
m2 þ μ2

~μ2

��
; ð64Þ

we obtain

ZS

�
P −

α

4π
C2ðFÞ

8m2

μ2
C0

�
m2

μ2

��

¼ Zq

�
1 −

1

Zq
C2ðFÞ

α

4π

8m2

μ2

�

¼ Zq

�
1 − C2ðFÞ

α

4π

8m2

μ2
þOðα2Þ

�
;

and hence

ZS ¼ ZqP−1
�
1 − C2ðFÞ

α

4π

8m2

μ2
þOðα2Þ

�

×

�
1þ α

4π
C2ðFÞ

8m2

μ2
C0ðm2

μ2
Þ

P

�

¼ ZqP−1
�
1 − C2ðFÞ

α

4π

8m2

μ2
þOðα2Þ

�

×

�
1þ α

4π
C2ðFÞ

8m2

μ2
C0

�
m2

μ2

�
þOðα2Þ

�
¼ ZP: ð65Þ

We can rewrite the above expression explicitly as:

ZS ¼
�
1þ α

4π
C2ðFÞ

�
−3

�
1

ϵ
− γE

�
− 5þ 2C0

�
m2

μ2

�

−
m̄2

μ2

�
1 − 4 ln

�
1þ μ2

m̄2

�
−
m̄2

μ2
ln

�
1þ μ2

m̄2

��

þ 3 ln

�
m̄2 þ μ2

~μ2

���
¼ ZP ð66Þ

which clearly depends on the ratio m2

μ2
.

It is possible to show nonperturbatively that ZmZS ¼ 1
using the vector WI with a suitable probe. See e.g. Ref. [4]
for a detailed discussion.

F. Mass Renormalization

The mass renormalization can be computed following
the mSMOM prescription:

lim
mR→m̄

1

12mR

�
Tr½−iS−1R � − 1

2
Tr½qμΛμ

A;Rγ
5�
�����

sym
¼ 1: ð67Þ

We prove that ZmZP has to be equal to 1, i.e.

lim
mR→m̄

1

12Zmm

�
Tr½−iZ−1

q S−1� − 1

2
Tr½ZAZ−1

q qμΛ
μ
A;Rγ

5�
�����

sym

¼ lim
mR→m̄

Z−1
m

12m

�
Z−1
q ð12mÞð1þ ΣSðp2ÞÞ

−
1

2
ZAZ−1

q ð12ÞC2ðFÞ
α

4π
4mC0

�
m2

μ2

������
sym

: ð68Þ

Setting ZA ¼ 1, we have

Zm ¼ Z−1
q

�
1þ α

4π
C2ðFÞ

�
4

�
1

ϵ
− γE

�
þ 6

þ 4m2

μ2
ln

�
m2

m2þ μ2

�
− 4 ln

�
m2þμ2

~μ2

�
− 2C0

�
m2

μ2

���

¼ 1þ α

4π
C2ðFÞ

�
3

�
1

ϵ
− γE

�
þ 5− 2C0

�
m2

μ2

�

þ m̄2

μ2

�
1þ 4 ln

�
m̄2

m̄2þμ2

�
−
m̄2

μ2
ln

�
m̄2

m̄2þμ2

��

− 3 ln

�
m̄2þμ2

~μ2

��
¼ Z−1

P : ð69Þ

G. Vector Ward identity

The results in the two previous subsections need to
satisfy the vector Ward identity. This requirement provides
a stringent test of our computations. At one-loop, the Ward
identity becomes

q · Λð1Þ
V ¼ Σðp3Þ − Σðp2Þ: ð70Þ

Using the results in Sec. III B, the lhs of Eq. (70) is readily
evaluated

α

4π
C2ðFÞq

�
1

ϵ
− γE þ 1 − log

�
m2 þ μ2

~μ2

�

−
m2

μ2

�
1 −

m2

μ2

�
1 −

m2

μ2
log

�
m2

m2 þ μ2

����
: ð71Þ

Likewise, for the rhs of Eq. (70), the results in Sec. III A
yield exactly the same expression, so that the vector Ward
identity is indeed satisfied.
As discussed in the previous section, the vector Ward

identity implies that ZV ¼ 1. This can be checked explicitly
from our one-loop calculation. Using the renormalization
condition Eq. (22) yields

lim
MR→m̄

1

12q2
Tr½ðq · ΛV;RÞq �jsym

¼ lim
mR→m̄

1

12q2
Tr

�
ZV

Zq
ðq · ΛVÞq

�����
sym

¼ 1; ð72Þ
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which, using Eq. (38), implies

ZV¼Zq

�
1þ α

4π
C2ðFÞ

�
1

ϵ
þ1−γE−

m̄2

μ2

−
m̄4

μ4
ln

�
m̄2

m̄2þμ2

�
− ln

�
m̄2þμ2

~μ2

���
−1

¼1: ð73Þ

H. Axial Ward identity

The axial Ward identity also needs to be fulfilled in our
check at one loop. This constraint becomes

q · Λð1Þ
A ¼ 2miΛP þ γ5Σðp2Þ þ Σðp3Þγ5 ð74Þ

Using the results in Sec. III D, the lhs of Eq. (74) can be
evaluated

−
α

4π
C2ðFÞγ5

�
q

�
1

ϵ
− γE þ 1 −

4m2

μ2
C0

�
m2

μ2

�
−
m2

μ2

−
m4

μ4
ln

�
m2

m2 þ μ2

�
− ln

�
m2 þ μ2

~μ2

��
− 4mC0

�
m2

μ2

��
:

ð75Þ

Similarly, for the rhs of Eq. (74), the results in Sec. III A
and Sec. III C yield exactly the same expression, so that the
axial Ward identity is indeed satisfied.
As discussed in the previous section, the axial

Ward identity implies that ZA ¼ 1. This can be checked
explicitly from our one-loop calculation. Note that the
modified renormalization condition Eq. (23) is critical to
get ZA ¼ 1.

lim
MR→m̄

1

12q2
Tr½ðq · ΛA;R − 2mRiΛP;RÞγ5q �jsym

¼ lim
MR→m̄

1

12q2
Tr

��
ZA

Zq
q · ΛA −

ZPZm

Zq
2imΛP

�
γ5q

�����
sym

¼ lim
MR→m̄

1

12q2
1

Zq
Tr

�
ZA

�
q2 þ α

4π
C2ðFÞq2

�
1

ϵ
− γE þ 1

−
4m2

μ2
C0

�
m2

μ2

�
−
m2

μ2

−
m4

μ4
ln

�
m2

m2 þ μ2

�
− ln

�
m2 þ μ2

~μ2

���

þ C2ðFÞ
α

4π
q2

4m2

μ2
C0

�
m2

μ2

������
sym

¼ 1; ð76Þ

where we have used ZmZP ¼ 1. Substituting Eq. (38)
yields

ZA ¼ 1: ð77Þ

IV. MASS NONDEGENERATE SCHEME

Wewill now consider the renormalization scheme for the
case of nonsinglet, mass nondegenerate vertex functions.
Note that according to Eq. (3), we collect the two fermion
fields in a flavor doublet:

ψ ¼
�
H

l

�
; ψ̄ ¼

�
H̄ l̄

�
; ð78Þ

with the nondegenerate mass matrix

M ¼
�
M 0

0 m

�
: ð79Þ

In what follows we will be interested in fermion bilinears of
the form Oþ ¼ H̄Γl by choosing the flavor rotation matrix
to be τa ¼ τþ ¼ σþ

2
¼ 1

2
ðσ1 þ iσ2Þ. For clarity, we will

leave the flavor index “þ” explicit in the Ward identities,
but will suppress it for the rest of the section to keep the
notation simple. We have used curly letters (V, A, P, S) to
denote the heavy-light bilinears. The vector and axial Ward
identities are as follows:

q ·Λþ
V ¼ðM−mÞΛþ

S þ iSHðp2Þ−1− iSlðp3Þ−1: ð80Þ

q ·Λþ
A ¼ðMþmÞiΛþ

P − γ5iSHðp2Þ−1− iSlðp3Þ−1γ5; ð81Þ

where M and m are masses of the heavy and the light
quarks, respectively.

A. Modified renormalization conditions

The RI/mSMOM scheme for the heavy-light mixed case
is defined by imposing the following set of conditions at
some reference mass m̄:

lim
mR→0
MR→m̄

1

12q2
Tr½ðq · ΛV;R − ðMR −mRÞΛS;RÞq �jsym

¼ lim
mR→0
MR→m̄

1

12q2
Tr½ðiζ−1SH;Rðp2Þ−1 − iζSl;Rðp3Þ−1Þq �;

ð82Þ

lim
mR→0
MR→m̄

1

12q2
Tr½ðq ·ΛA;R−ðMRþmRÞiΛP;RÞγ5q �jsym

¼ lim
mR→0
MR→m̄

1

12q2
Tr½ð−iγ5ζ−1SH;Rðp2Þ−1−iζSl;Rðp3Þ−1γ5Þγ5q �;

ð83Þ
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lim
mR→0
MR→m̄

1

12i
Tr½ΛP;Rγ5�

���
sym

¼ lim
mR→0
MR→m̄

�
1

12ðMR þmRÞ
�
Tr½−iζ−1SH;RðpÞ−1�

���
p2¼−μ2

−
1

2
Tr½ðq · ΛA;RÞγ5�

���
sym

�

þ 1

12ðMR þmRÞ
�
Tr½−iζSl;RðpÞ−1�

���
p2¼−μ2

−
1

2
Tr½ðq · ΛA;RÞγ5�

���
sym

��
: ð84Þ

where ζ denotes the ratio of the light to the heavy field

renormalizations, i.e. ζ ¼
ffiffiffiffi
Zl

pffiffiffiffiffi
ZH

p . In the degenerate mass,

ζ ¼ 1 and the mixed mSMOM prescription reduces to the
mSMOM and SMOM one. Note that M refers to the heavy
quark mass while the light quark is denoted by m and curly
subscripts denote heavy-light mixed vertices. The renorm-
alization conditions for Zl, ZH and Zm remain unaltered as
they are independently determined from the corresponding
degenerate, massive and massless schemes of the previous
sections. As usual the renormalization conditions are
satisfied by the tree level values of the field correlators.

B. Renormalization constants

The properties of the renormalization constants in this
scheme are obtained once again from the Ward identities.
We multiply the vector Ward identity Eq. (80) by q, take the
trace and write the bare quantities in terms of the renor-
malized ones as follows:

Z1=2
H Z1=2

l Tr

�
1

ZV
ðq · ΛV;RÞq

�

¼ Z1=2
H Z1=2

l Tr

��
iζ−1SH;Rðp2Þ−1

− iζSl;Rðp3Þ−1 þ
MR
ZM

− mR
Zm

ZS
ΛS;R

�
q

�
: ð85Þ

Using Eq. (C16), we get

�
1

ZV
− 1

�
Tr½ðiζ−1SH;Rðp2Þ−1 − iζSl;Rðp3Þ−1Þq �

¼
�
−ðMR −mRÞ

ZV
þ

MR
ZM

− mR
Zm

ZS

�
Tr½ΛS;Rq �; ð86Þ

which has a solution when ZV ¼ 1 and

ZS ¼
MR
ZM

− mR
Zm

MR −mR
: ð87Þ

For the axial current we follow a similar procedure,
starting from the bare mixed axial Ward identity, Eq. (81).
Multiplying once by γ5q and γ5, respectively, and taking
the trace gives two independent equations. In the first case,
we use Eq. (C17) and obtain�
1−

1

ZA

�
Tr½ð−iγ5ζ−1SH;Rðp2Þ−1− iζSl;Rðp3Þ−1γ5Þγ5q �

¼
�
MRþmR

ZA
−
�

MR

ZMZP
þ mR

ZmZP

��
Tr½ðiΛPÞγ5q �: ð88Þ

The latter equation is satisfied by ZA ¼ 1 and

ZP ¼
MR

ZMZP
þ mR

ZmZP

MR þmR
: ð89Þ

Note that in the degenerate mass limit, we recover
ZmZP ¼ 1.
In the second case, where we take the trace with γ5, we

make use of Eq. (C18), giving

�
1

ZA
−
ð MR
ZMZP

þ mR
ZmZP

Þ
MR þmR

�
Tr½ðq · ΛA;RÞγ5�

¼
�
1 −

ð MR
ZMZP

þ mR
ZmZP

Þ
MR þmR

�
ðTr½−iζ−1SH;Rðp2Þ−1

− iζSl;Rðp3Þ−1�Þ; ð90Þ
which has solutions ZA ¼ 1 and ZP as in Eq. (89). One can
easily check that this solution is unique.

C. Finiteness of the ζ ratio

We need to show that the ratio ζ is finite since it appears
together with the renormalized propagators on the right-
hand sides of Eq. (C16) and Eq. (C17), while the left-hand
sides of these equations only contain renormalized vertices

and mass. For ζ ¼
ffiffiffiffi
Zl

pffiffiffiffiffi
ZH

p to be finite, the coefficient of the

divergent part ZH has to be mass independent in order to
cancel with the same term in Zl. We will argue that this has
to be the case order by order in perturbation theory.
The fermion propagator can be written as

SðpÞ ¼ i
p −mþ iϵ − ΣðpÞ ; ð91Þ

where the self-energy ΣðpÞ is decomposed into

ΣðpÞ ¼ pΣVðp2Þ þmΣSðp2Þ: ð92Þ
Assuming that the theory is regulated using dimensional
regularization, let us examine all possible coefficients
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multiplying the divergent terms that can appear in the self-
energy at any given order in perturbation theory. Note that
ΣVðp2Þ and ΣSðp2Þ are dimensionless scalars, which means
the terms appearing in the coefficient of the divergent part

can only be a function of lnðp2

m2Þ, p2

m2, m2

p2 or a number.

As argued in Ref. [8], all UV divergences can be
subtracted using local counterterms only. In other words,
the field renormalization used to remove the divergences
cannot contain terms which are functions of lnðp2

m2Þ and m2

p2 ,

since these are nonlocal. The term p2

m2 cannot occur
either since it is IR divergent in the limit m → 0 whereas
we had used off-shell conditions from the beginning and
therefore do not expect any IR divergences. The only
remaining option is a coefficient proportional to 1 which
has be the same number in both the massive and massless
cases since in the absence of IR divergences ZH to reduces
to Zl.
Another way to argue that the divergent part of the

massive self-energy has to be mass independent is the fact
that a massless renormalization scheme removes all the
divergences. Therefore ZH and Zl must have the same
coefficient for their divergent terms as argued in Ref. [9].

V. LATTICE REGULARIZATION

The case where chiral symmetry is broken by the
regulator has been discussed in detail in Ref. [10]. Here
we simply summarize the main results, and apply them to
our problem.
When the theory is regulated on a lattice, chiral sym-

metry can be broken by the regulator. In the case of Wilson
fermions the breaking is due to the presence of higher-
dimensional operators in the action, while for chiral
fermions these contributions are exponentially suppressed.
The net result is that symmetry breaking terms appear in the
bareWard identities, which in turn invalidates the proof that
Noether currents do not renormalize. Assuming that
the lattice discretization reproduces the usual continuum
Dirac operator in the classical continuum limit, the varia-
tion of the action under chiral rotations is given by higher-
dimensional operators. Using the notation introduced in
Ref. [10], we denote the operators generated from the
explicit symmetry breaking due to the regulator by
XaðxÞ ¼ aO5ðxÞ, where the suffix indicates that these
operators are at least of dimension 5:

−
δS

δαAðxÞ
¼ ∇�

μAa
μðxÞ − ψ̄ðxÞfτa;MgψðxÞ þ XaðxÞ; ð93Þ

the corresponding lattice Ward identity looks like:

∇�
μhAa

μðxÞψðyÞψ̄ðzÞi¼2mhPaðxÞψðyÞψ̄ðzÞiþcontact terms

þhXaðxÞψðyÞψ̄ðzÞi: ð94Þ

The current Aa
μ appearing in the Ward identity is the

Noether current associated with the symmetry transforma-
tion. In order to discuss the symmetries of the theory in the
continuum limit, the operators appearing in Eq. (94) need to
be renormalized. In particular the mixing with lower-
dimensional operators, leading to power-divergences,
needs to be subtracted:

Oa
5RðxÞ ¼ Z5

�
Oa

5ðxÞþ
m̄
a
PaðxÞþZA − 1

a
∇�

μAa
μðxÞ

�
: ð95Þ

Ref. [10] shows that these power divergences do not
contribute to the anomalous dimensions at all orders in
perturbation theory; i.e., they do not depend on the
renormalization scale μ. Beyond perturbation theory this
result is guaranteed by the universality of the continuum
limit and the validity of the continuumWard identities at all
scales.
In the case of chiral symmetry, the net result of the

symmetry breaking induced by the regulator is the appear-
ance of a nontrivial renormalization constant for the axial
current:

Aa
R;μ ¼ ZAðg; amÞAa

μ; ð96Þ

and the renormalized current satisfies theWard identities up
to terms that vanish when the lattice spacing goes to zero.
Note that the mass dependence in ZA can only enter via the
dimensionless ratio am.
The same result holds if the lattice regularization

preserves chiral symmetry, but the axial current is not
the Noether current associated with the lattice symmetry.
The local currents of lattice chiral fermions are typical
examples in this category. We expect the local currents to
differ from the conserved one by irrelevant operators. The
latter need to be renormalized in order to study the
continuum limit of the Ward identities. The renormalization
of the higher-dimensional operators describing the differ-
ence between the conserved and the nonconserved current
is performed along the lines of Eq. (95) and yields a scale-
independent renormalization constant ZA.

VI. NUMERICAL IMPLEMENTATION

In lattice studies involving charmed and B mesons, the
renormalization of the axial current is of particular impor-
tance since it is required to normalize correctly the matrix
element entering the computation of the decay constant.
For example, the decay constants of D mesons fD and fDs

are determined using

h0jAμ
cqjDqðpÞi ¼ fDq

pμ
Dq
;

where q ¼ d, s and the axial current Aμ
cq ¼ c̄γμγ5q has to be

renormalized. Since the quark content contains a heavy and
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a light quark, we can use the mass-nondegenerate mSMOM
scheme introduced in Sec. IV. The renormalization con-
ditions in Euclidean space are specified in Appendix C. Our
aim is to extract the axial current renormalization ZA for the
mixed heavy-light vertex function. We start by writing all
the ingredients needed before giving the final answer. The
field renormalizations Zl and ZH are computed using
SMOM and mSMOM schemes, respectively. If the local
axial current is simulated on the lattice, the corresponding
renormalization factor, ZAlocal , for the heavy-heavy and
light-light vertex functions can be extracted by taking
appropriate ratios of the respective local and conserved
hadronic expectations values. Note that the correlations
functions of the local and conserved axial currents only
differ by finite contributions which vanish in continuum
limit.
Here we will now take the assumption that both quarks

are constructed with chiral fermion actions, for which an
explicit representation of their partially conserved, point
split, axial current is available [11,12]. We will use this to
renormalize the mass degenerate local axial current bilinear
operators via the WI as a component in our numerical
strategy to determine the renormalization of the mixed axial
current. For domain wall fermions, Zlocal

A is obtained by
fitting the following to a constant [11,12],

Zlocal
A ¼ 1

2

�
Cðt−1=2ÞþCðtþ1=2Þ

2LðtÞ þ 2Cðtþ1=2Þ
Lðt−1ÞþLðtþ1Þ

�
;

ð97Þ

where

Cðtþ 1=2Þ ¼
X
x

hAcons
0 ðx; tÞPð0; 0Þi; ð98Þ

LðtÞ ¼
X
x

hAlocal
0 ðx; tÞPð0; 0Þi: ð99Þ

with P being a pseudoscalar state. To obtain ZM, we use the
mSMOM renormalization condition Eq. (11) to write

ZM ¼ Z−1
H

12M

�
Tr½SðpÞ−1�jp2¼−μ2 þ

1

2
ZATr½ðiq ·ΛAÞγ5�jsym

�
:

ð100Þ

where ZA is the renormalization constant for the heavy-
heavy local current, if that is chosen, and is computed as in
Eq. (97). The trace of the bare vertex functions and the
propagators with an appropriate projector is numerically
evaluated on the lattice. Similarly, for Zm, which is obtained
from the SMOM scheme and the corresponding value of ZA
for the light-light current. The renormalization constant for
the mass degenerate pseudoscalar density, ZP which can be
obtained using Eq. (C10) and Eq. (14) in the mSMOM
scheme:

ZP ¼
i
p2

Tr½iSðpÞ−1p �jp2¼μ2

Tr½ΛPγ5�jsym
: ð101Þ

Now, we can write down the equation which allows us to
extract ZA. Recall that curly letters refer to heavy-light
mixed vertices. From the renormalization conditions stated
in Eq. (13) and Eq. (17), we have�
CAðMmÞ þ CMmP

ΔH−L

�
mixed

¼ 1 ¼ ðCAðMMÞ þ CMPÞCAðmmÞ;

ð102Þ

where the numerator of the left-hand side contains the
heavy-light mixed vertex functions

CAðMmÞ ¼ lim
mR→0
MR→m̄

1

12q2
Tr½q · ΛA;Rγ5q�jsym; ð103Þ

CMmP ¼ lim
mR→0
MR→m̄

1

12q2
Tr½ðMR þmRÞΛP;Rγ5q �jsym; ð104Þ

and the difference between the inverse propagators

ΔH−L

¼ lim
mR→0
MR→m̄

1

12q2
Tr½ðþiγ5ζ−1SH;Rðp2Þ−1 þ iζSl;Rðp3Þ−1γ5Þγ5q �

¼ 1

2
ðζ−1 þ ζÞ: ð105Þ

On the right-hand side of Eq. (102), we have the heavy-
heavy vertex functions,

CAðMMÞ ¼ lim
MR→m̄

1

12q2
Tr½q · ΛA;Rγ5q�jsym; ð106Þ

CMP ¼ lim
MR→m̄

1

12q2
Tr½2MRΛP;Rγ5q �jsym; ð107Þ

and the light-light vertex function

CAðmmÞ ¼ lim
mR→0

1

12q2
Tr½q · ΛA;Rγ5q �jsym: ð108Þ

The quantity ζ appearing in ΔH−L is computed using the
renormalization conditions for the light and heavy fields
Eq. (C10) and taking the ratio:

ζ ¼
�
Tr½iSlðpÞ−1p �jp2¼μ2

Tr½iSHðpÞ−1p �jp2¼μ2

�1=2

: ð109Þ

We rewrite the renormalized quantities in terms of the bare
ones. Note that the aim is to extract ZA. On the left-hand
side of Eq. (102) we have
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Z−1=2
H Z−1=2

l ðTr½ðZAq ·ΛAþðZMMþZmmÞZPΛPÞγ5q �jsymÞ;
ð110Þ

with Zl and ZH are already computed using SMOM and
mSMOM schemes, respectively, together with ΔH−L which
we have computed using Eq. (109).
Let us now focus on the right-hand side of Eq. (102),

Z−1
H Z−1

l Tr½ðZAq · ΛA þ ZMZP2MΛPÞγ5q �jsymjHH
× Tr½ðZAq · ΛA;RÞγ5q �jsymjll: ð111Þ

Therefore, all the quantities appearing in Eq. (102) are
known apart from two, ZA which is the main quantity we
are looking for and ZP , which are yet to be extracted. They
can both be obtained by solving the set of simultaneous
equation using Eq. (102) and the renormalization condition
for the pseudoscalar Eq. (C18):

�
CAZA þ CPZP ¼ C;

C0
AZA þ C0

PZP ¼ C0;
ð112Þ

with

CA ¼ Z−1=2
H Z−1=2

l ðTr½ðq · ΛAÞγ5q �jsymÞ
2

ζ−1 þ ζ
; ð113Þ

CP ¼ Z−1=2
H Z−1=2

l ðTr½ððZMM þ ZmmÞZPΛPÞγ5q �jsymÞ

×
2

ζ−1 þ ζ
; ð114Þ

C ¼ ðCAðMMÞ þ CMPÞCAðmmÞ: ð115Þ

where all the ingredients in C have already been computed.
Together with,

C0
A ¼ −Tr½ðiq · ΛAÞγ5�jsym; ð116Þ

C0
P ¼ 1

12i
Tr½ΛPγ5�jsym; ð117Þ

C0 ¼ 1

12ðMR þmRÞ
× fTr½SHðpÞ−1�jp2¼−μ2 þTr½SlðpÞ−1�jp2¼−μ2g: ð118Þ

Putting then all together, Eq. (112) is solved to obtain ZP
and ZA.
The exploration of the details of the numerical imple-

mentation is deferred to forthcoming work.

VII. CONCLUSIONS

We have developed a mass-dependent renormalization
scheme, RI/mSMOM, for fermion bilinear operators in
QCD with nonexceptional momentum kinematics similar

to the standard RI/SMOM scheme. In contrast to RI/
SMOM where the renormalization conditions are imposed
at the chiral limit, this scheme allows for the renormaliza-
tion conditions to be set at some mass scale m̄, which we
are free to choose. In the limit where m̄ → 0, our scheme
reduces to SMOM. Using a mass-dependent scheme for a
theory containing massive quarks has the benefit of
preserving the continuum WI by taking into account terms
of order m=μ, which would otherwise violate the WI when
a massless scheme is used. We have shown that the WIs for
the case of both degenerate and nondegenerate masses are
satisfied nonperturbatively, giving ZV ¼ 1 and ZA ¼ 1. In
order to gain a better understanding of the properties of the
mSMOM scheme we have performed an explicit one-loop
computation in perturbation theory using dimensional
regularisation.
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APPENDIX A: CONVENTIONS

Let us summarize here the conventions used in this work.
(i) The fermion propagator in position space is

Sðx3 − x2Þ ¼ hψðx3Þψ̄ðx2Þi; ðA1Þ
and the Fourier convention we use is

SðpÞ ¼
Z

d4xeip:xSðxÞ: ðA2Þ

The fermion propagator in momentum space is
written as

SðpÞ ¼ i
p −mþ iϵ − ΣðpÞ ; ðA3Þ

and the fermion self-energy ΣðpÞ is decomposed
into

ΣðpÞ ¼ pΣVðp2Þ þmΣSðp2Þ: ðA4Þ
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(ii) The gluon propagator in Feynman gauge is

−igμν

k2 þ iϵ
: ðA5Þ

(iii) Note that the one-loop self-energy ΣðpÞ in this
convention is

−iΣðpÞ ¼ −ig2C2ðFÞ
Z

γαðp − kþmÞγα
k2½ðp − kÞ2 −m2� : ðA6Þ

(iv) The basis of the Clifford algebra is chosen to be
Γ¼ 1ðSÞ; iγ5ðPÞ; γσðVÞ; γσγ5ðAÞ;σμν ¼ i

2
½γμ; γν�ðTÞ.

(v) The vertex function in position space is

Ga
Oðx3 − x; x2 − xÞ ¼ hψðx3ÞOa

ΓðxÞψ̄ðx2Þi ðA7Þ

where we have used translational invariance and
Oa

Γ ¼ ψ̄Γτaψ is a flavor nonsinglet fermion bilinear
operator.

APPENDIX B: METHODS FOR MASSIVE
ONE-LOOP COMPUTATIONS

The one-loop diagram, Fig. 2, in the perturbative
calculation of the vertices corresponds to the following
integral:

Λð1Þ
Γ ¼ −ig2C2ðFÞ

Z
k

γμ½p3 − kþm�Γ½p2 − kþm�γμ
k2½ðp2 − kÞ2 −m2�½ðp3 − kÞ2 −m2� ;

ðB1Þ

where Γ ¼ S, P, V, A.
The scalar, vector and tensor parts of the above integral

are then extracted and all written in terms of scalar
integrals. Then, one needs to compute the master integrals

and use them to calculate each vertex Λð1Þ
Γ . The loop

integration is a standard computation, while for the
integration over the Feynman parameters we have used

certain techniques which have been developed in the past
few years, see Ref. [13–15].

1. The scalar triangle integral

It is worthwhile to discuss one integral in detail, in order
to illustrate the techniques that are used in massive
calculations; all computations of massive diagrams in
this work follow the same logic. The typical scalar
triangle is

I111 ¼ g2
Z
k

1

k2
1

ðp2 − kÞ2 −m2

1

ðp3 − kÞ2 −m2
: ðB2Þ

Introducing as usual a set of Feynman parameters x1, x2, x3,
the integral can be recast in the following form:

I111 ¼ g2Γð3Þ
Z
k

Z
1

0

�Y3
i¼1

dxi

�
δ

�
1−

X3
i¼1

xi

�

×
1

ðx1k2þ x2½ðp2− kÞ2−m2� þ x3½ðp3− kÞ2−m2�Þ3 :

ðB3Þ

Performing standard manipulations with Feynman param-
eters, and performing a Wick rotation to Euclidean space
yields:

I111 ¼ −ig2Γð3Þ
Z

1

0

�Y3
i¼1

dxi

�
δ

�
1 −

X3
i¼1

xi

�

×
1

ðx1 þ x2 þ x3Þ3
Z
l

1

ðl2 þM2Þ3 ; ðB4Þ

where we introduced the function

M2 ¼
�
x2p2 þ x3p3

x1 þ x2 þ x3

�
2

þ x2 þ x3
x1 þ x2 þ x3

ðμ2 þm2Þ; ðB5Þ

which is obtained by evaluating the square of the four-
momenta at the symmetric renormalization point.
The loop integral can now be performed in closed form

inD dimensions; in this particular case the integral is finite,
and the limit ϵ → 0 is not singular. Singularities appear as
poles in 1=ϵ, and are treated as in the massless case. Here
we want to focus on the integral over the Feynman
parameters. After the loop integral is performed, the
integral reduces to

I111 ¼ −i
α

4π

Z
1

0

�Y3
i¼1

dxi

�
δ

�
1 −

X3
i¼1

xi

�

×
1

ðx1 þ x2 þ x3Þ3
1

M2
: ðB6Þ

The denominator in the integrand can be expressed as
FIG. 2. Diagram representing the nonamputated vertex function
at one loop in perturbative QCD.
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μ2ðx1 þ x2 þ x3Þ½x2x3 þ x1x2 þ x1x3 þ uðx1x2 þ x1x3 þ x22 þ x23 þ 2x2x3Þ�; ðB7Þ

where we have introduced u ¼ m2=μ2. Using the Cheng-Wu theorem Ref. [13], applied to the case where we choose the
constraint to be δð1 − x3Þ, two integrations over the Feynman parameters can be easily done, yielding

I111 ¼ −i
α

4π

1

μ2

Z
∞

0

dx2
− log ½−uðx2 þ 1Þ2 − x2� þ log ½−ðx2 þ 1Þðuþ 1Þ� þ logðx2 þ 1Þ

x2ðx2 þ 1Þ þ 1
: ðB8Þ

Note that this integral can be readily computed numerically for the case where m ¼ 0. The result of the numerical
integration of the above integral is 2.34239 which agrees with the number quoted in Ref. [2].
For our purposes, the analytic expression for I111 as a function of the mass is actually desirable. With a change of

integration variable

x ↦ y; x ¼ y
1 − y

the problem is reduced to an integral that can be computed explicitly:

I111 ¼ i
α

4π

1

μ2

Z
1

0

dy
logð y

1−y − n1Þ þ logðn1 y
1−y − 1Þ − logðn1Þ − 2 logð y

1−y þ 1Þ þ logðuÞ − logðuþ 1Þ
ðyþ ðy − 1Þd1Þðyþ y−1

d1
Þ ; ðB9Þ

where d1 ¼ 1
2
ð−1þ i

ffiffiffi
3

p Þ, n1 ¼ 1
2
ð−2 − 1=u −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=u2 þ 4=u

p
Þ. The final result is a lengthy expression, which we report

for completeness,

I111 ¼
α

4π

1

μ2
1ffiffiffi
3

p
�
i
π

3
ð−2iπ − 2 logð1þ uÞÞ þ log

�
−
2uþ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4u

p

2

�
log

�
4þ ði ffiffiffi

3
p

− 1Þð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4uþ 1

p Þ
4 − ði ffiffiffi

3
p þ 1Þð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4uþ 1
p Þ

�

þ log

�
−
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4uþ 1
p Þ2
4

�
log

�
4þ ði ffiffiffi

3
p

− 1Þð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4uþ 1

p Þ
4 − ði ffiffiffi

3
p þ 1Þð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4uþ 1
p Þ

�

þ 2Li

�
4u

4u − ði ffiffiffi
3

p
− 1Þð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4uþ 1
p Þ

�
− Li

�
4u

4uþ ði ffiffiffi
3

p þ 1Þð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4uþ 1

p Þ

�

þ Li

�
4uþ 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4uþ 1

p

4uþ ði ffiffiffi
3

p þ 1Þð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4uþ 1

p Þ

�
− Li

�
4uþ ði ffiffiffi

3
p þ 1Þð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4uþ 1
p Þ

4ð1þ uÞ
��

: ðB10Þ

As a partial check of our massive computation, the limit
u → 0 of the expression above is numerically evaluated,
and shown to reproduce again the value 2.34391 from
Ref. [2]. In the paper we denote

I111 ¼ −
iα
4π

1

μ2
C0

�
m2

μ2

�
; ðB11Þ

so that C0jm¼0 ¼ 2.34391.

APPENDIX C: MINKOWSKI TO
EUCLIDEAN CONVENTION

The renormalization conditions stated in the paper are set
in Minkowski space. Here, we state our conventions for
going from Minkowski to Euclidean space and use these to
construct the ratio in Sec. VI for numerical implementation.
We take

x0M ¼ −ixE4 ; xiM ¼ xEi ; ðC1Þ

which means xi ¼ −xEi and we do not distinguish between
upper and lower indices in Euclidean space.
Similarly, for momentum kμ we have

k0M ¼ −ikE4 ; kiM ¼ kEi : ðC2Þ
The relation for the vector potential becomes

A0M ¼ iAE
4 ; AiM ¼ −AE

i : ðC3Þ
Therefore the covariant derivative in Minkowski space

Dμ ¼ ∂μ þ igAμ; ðC4Þ
maps to

D0M ¼ iDE
4 ; DiM ¼ −DE

i ; ðC5Þ
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and the Euclidean covariant derivative becomes

DE
μ ¼ ∂E

μ þ igAE
μ : ðC6Þ

The gamma matrices map in the following way:

γ0M ¼ γE4 ; γ1;2;3 M ¼ iγE1;2;3: ðC7Þ

For convenience, we also take

ψM ¼ ψE; ψ̄M ¼ ψ̄E: ðC8Þ
The fermionic part of the action in Euclidean space
becomes

SE½ψ̄ ;ψ � ¼
Z

d4xEψ̄E½γEμDE
μ þm�ψE; ðC9Þ

The renormalization conditions in Euclidean space are

lim
MR→m̄

1

12p2
E
Tr½iSERðpÞ−1pE�

���
p2
E¼μ2

¼ −1; ðC10Þ

lim
MR→m̄

1

12MR

�
Tr½SERðpÞ−1�

���
p2¼μ2

þ 1

2
Tr½ðiq · ΛE

A;RÞγ5�
���
sym

�
¼ 1; ðC11Þ

lim
MR→m̄

1

12q2
Tr½ðq · ΛV;RÞq �

���
sym

¼ 1; ðC12Þ

lim
MR→m̄

1

12q2
Tr½ðq · ΛA;R þ 2MRΛP;RÞγ5q �

���
sym

¼ 1; ðC13Þ

lim
MR→m̄

1

12i
Tr½ΛP;Rγ5�

���
sym

¼ 1: ðC14Þ

The conditions are now defined at the symmetric point,

p2
2 ¼ p2

3 ¼ q2 ¼ μ2: ðC15Þ

The RI/mSMOM scheme for the heavy-light mixed case in
Euclidean space now reads

lim
mR→0
MR→m̄

1

12q2
Tr½ðq · ΛV;R þ ðMR −mRÞΛS;RÞq �

���
sym

¼ lim
mR→0
MR→m̄

1

12q2
Tr½ð−iζ−1SH;Rðp2Þ−1 þ iζSl;Rðp3Þ−1Þq �;

ðC16Þ

lim
mR→0
MR→m̄

1

12q2
Tr½ðq ·ΛA;RþðMRþmRÞΛP;RÞγ5q �

���
sym

¼ lim
mR→0
MR→m̄

1

12q2
Tr½ðþiγ5ζ−1SH;Rðp2Þ−1þiζSl;Rðp3Þ−1γ5Þγ5q �;

ðC17Þ

lim
mR→0
MR→m̄

1

12i
Tr½ΛP;Rγ5�

���
sym

¼ lim
mR→0
MR→m̄

�
1

12ðMR þmRÞ
�
Tr½ζ−1SH;RðpÞ−1�

���
p2¼−μ2

þ 1

2
Tr½ðiq · ΛA;RÞγ5�

���
sym

�

þ 1

12ðMR þmRÞ
�
Tr½ζSl;RðpÞ−1�

���
p2¼−μ2

þ 1

2
Tr½ðiq · ΛA;RÞγ5�

���
sym

��
: ðC18Þ
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