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Result on locations of the tricritical points of Nf ¼ 2 lattice QCD with imaginary chemical potential is
presented. Simulations are carried out with Symanzik improved gauge action and Asqtad fermion action.
With imaginary chemical potential iμI ¼ iπT, previous studies show that the Roberge-Weiss (RW)
transition endpoints are triple points at both large and small quark masses, and second order transition
points at intermediate quark masses. The triple and second order endpoints are separated by two tricritical
ones. Our simulations are carried out at 7 values of quark mass am ranging from 0.024 to 0.070 on lattice
volume 123 × 4, 163 × 4, 203 × 4. The susceptibility and Binder cumulant of the imaginary part of the
Polyakov loop are employed to determine the nature of RW transition endpoints. The simulations suggest
that the two tricritical points are within the range 0.024–0.026 and 0.040–0.050, respectively.
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I. INTRODUCTION

The phase diagram of QCD has significantly phenom-
enological implications. It is relevant to the early Universe,
compact stars, and heavy ion collision experiments.
Reviews on the study of phase diagram can be found in
Refs. [1,2] and references therein. While substantial lattice
simulation has focused on the phase of QCD at finite
density, a great amount of study centers around QCD with
imaginary chemical potential. QCD with imaginary chemi-
cal potential has a rich phase structure, and it not only
deserves detailed investigations in its own right theoreti-
cally, but also has significant relevance to physics at zero or
small real chemical potential [3–11].
The Z(3) symmetry which is present in the pure gauge

theory is explicitly broken at the presence of dynamical
quarks. However, Ref. [12] shows that the Z(3) symmetry is
restored when imaginary chemical potential is turned on
and Z(3) transformation can be compensated by a shift in
μI=T by 2π=3, so the partition function of QCD with
imaginary chemical potential has periodicity in μI=T with
period 2π=Nc as well as reflection symmetry in μ ¼ iμI .
Different Z(3) sectors are distinguished by the phase of

the Polyakov loop. At high temperature, the spontaneous
breaking of Z(3) symmetry implies transition between
adjacent Z(3) sectors in μI and this transition is of first
order, while at low temperature, unbroken Z(3) symmetry
guarantees the transition is analytic. The first order tran-
sition takes place at those critical values of imaginary
chemical potential μI=T ¼ ð2nþ 1Þπ=3 [12–14]. At high

temperature, those first order transition points form a
transition line which necessarily ends at an endpoint
TRW when the temperature is decreased sufficiently low.
Recent numerical studies [3–5,15,16] show that the RW

transition endpoints are triple points for small and heavy
quark masses, and second order points for intermediate
quark masses. So there exist two tricritical points separating
the first order transition points from the second ones.
Moreover, it is pointed out [3,10,11] that the scaling
behavior at the tricritical points may shape the critical line
which separates different transition region for real chemical
potential, and thus, the critical line for real chemical
potential is expected to be qualitatively consistent with
the scenario suggested in Refs. [17,18] which shows that
the first order transition region shrinks with increasing real
chemical potential. In addition, Ref. [19] employs the
scaling behavior at the tricritical point to determine the
nature of 2 flavor QCD transition in the chiral limit.
So far, the investigation for the Roberge-Weiss (RW)

transition endpoints is implemented through standard
gauge and fermion actions. In this paper, we aim to
investigate the endpoints of Nf ¼ 2 QCD with one-loop
Symanzik-improved gauge action [20–23] and Asqtad
Kogut-Susskind action [24,25]. These actions have discre-
tization errors of Oðα2sa2; a4Þ and Oðαsa2; a4Þ, respec-
tively. These improvements are significant on Nt ¼ 4
lattice where the lattice spacing is quite large. Standard
Kogut-Susskind fermions suffer from taste symmetry
breaking at nonzero lattice spacing a [26]. This taste
symmetry breaking can be illustrated by the smallest pion
mass taste splitting which is comparable to the pion mass
even at lattice spacing a ∼ 0.1 fm [27]. Asqtad Kogut-
Susskind action has good taste symmetry and free
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dispersion relation by introducing fattened links and the
so-called “Naik terms” [28,29].
The paper is organized as follows. In Sec. II, we define

the lattice action with imaginary chemical potential
and the physical observables we calculate. Our simulation
results are presented in Sec. III followed by discussions
in Sec. IV.

II. LATTICE FORMULATION WITH IMAGINARY
CHEMICAL POTENTIAL

After introducing pseudofermion field Φ, the partition
function of the system can be represented as:

Z ¼
Z

½dU�½dΦ��½dΦ�e−Sg−Sf ;

where Sg is the Symanzik-improved gauge action, and Sf is
the Asqtad quark action with the quark chemical potential
μ. Here μ ¼ iμI. For Sg, we use

SG ¼ β

�
CP

X
x;μ<ν

ð1 − PμνÞ þ CR

X
x;μ≠ν

ð1 − RμνÞ

þCT

X
x;μ<ν<σ

ð1 − TμνσÞ
�
;

with Pμν, Rμν and Tμνσ standing for 1=3 of the imaginary
part of the trace of 1 × 1, 1 × 2 planar Wilson loops and
1 × 1 × 1 “parallelogram” loops, respectively.

The coefficients CP, CR, CT are tadpole improved [27],

CP ¼ 1.0;

CR ¼ −1
20u20

ð1 − ð0.6264 − 1.1746nfÞ lnðu0ÞÞ;

CT ¼ 1

u20
ð0.0433 − 0.0156nfÞ lnðu0Þ:

The Asqtad action with pseudofermion field Φ is

Sf ¼ hΦj½M†½U�M½U��−nf=4jΦi;

where the form of Mx;y½U� ¼ 2mx;y þDx;yðUÞ reading

2mδx;y þ
X3
ρ¼1

ηx;ρðUF
x;ρδx;y−ρ̂ −UF†

x−ρ̂;ρδx;yþρ̂Þ

þ ηx;4ðeiaμIUF
x;4δx;y−4̂ − e−iaμIUF†

x−4̂;μδx;yþ4̂Þ

þ
X3
ρ¼1

ηx;ρðUL
x;ρδx;y−3ρ̂ −UL†

x−ρ;ρδx;yþ3ρ̂Þ

þ ηx;4ðei3aμIUL
x;4δx;y−34̂ − e−i3aμIUL†

x−4̂;μδx;yþ34̂Þ;

where UF
x;ρ stands for the fattened link which is produced

by Fat7 smearing and UL
x;ρ stands for the naik term. ρ̂, 4̂ are

the unit vector along ρ−direction, 4−direction, respec-
tively. ηx;μ is the staggered fermion phase.
We carry out simulations at θ ¼ μI=T ¼ π. As it is

pointed out that the system is invariant under the charge
conjugation at θ ¼ 0, π, when θ is fixed [9]. But the θ-odd
quantity OðθÞ is not invariant at θ ¼ π under charge
conjugation. When T < TRW, OðθÞ is a smooth function
of θ, so it is zero at θ ¼ π. Whereas when T > TRW, the
two charge violating solutions cross each other at θ ¼ π.
Thus the charge symmetry is spontaneously broken there
and the θ-odd quantity OðθÞ can be taken as order
parameter. In this paper, we take the imaginary part of
Polyakov loop as the order parameter.
The expression of Polyakov loop L is defined as the

following:

hLi ¼
�

1

3L3
sLt

X
x

Tr
�YLt

t¼1

U4ðx; tÞ
��

:

Ls, Lt are the spatial, time extent of lattice, respectively. To
simplify notation, we use X to represent the imaginary part
of Polyakov loop ImðLÞ. The susceptibility of imaginary
part of Polyakov loop ImðLÞ is defined as

χ ¼ L3
shðX − hXiÞ2i;

which is expected to scale as: [4,5]

χ ¼ Lγ=ν
s ϕðτL1=ν

s Þ; ð1Þ

where τ is the reduced temperature τ ¼ ðT − TRWÞ=TRW.
This means that the curves χ=Lγ=ν

s at different lattice
volume should collapse with the same curve when plotted
against τL1=ν

s . In the following, we employ β − βc in place
of τ ¼ ðT − TRWÞ=TRW. The critical exponents relevant to
our study are collected in Table I [5,30].
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We also consider the Binder cumulant of imaginary part
of Polyakov loop which is defined as the following:

B4 ¼ hðX − hXiÞ4i=hðX − hXiÞ2i2 ð2Þ

with hXi ¼ 0. In the vicinity of the RW transition line
endpoints, B4 with the finite size correction is a function of
x ¼ ðβ − βRWÞL1=ν

s and can be expanded as a series
[3,10,11],

B4 ¼ B4ðβc;∞Þ þ a1xþ a2x2 þ � � � : ð3Þ

In the thermodynamic limit, the critical exponent ν and
B4ðβc;∞Þ takes on the corresponding value summarized in
Table I. However, on finite spatial volumes, the steps of
B4ðβc;∞Þ are smeared out to continuous functions.

III. MC SIMULATION RESULTS

Before presenting the simulation results, we describe the
simulation details. Simulations are carried out at quark
mass am ¼ 0.024, 0.026, 0.038, 0.040, 0.050, 0.060,
0.070. Rational Monte Carlo algorithm [31–33] is used
to generate configurations. The Omelyan integration algo-
rithm [34,35] is employed for the gauge and fermion action.
For the molecular dynamics evolution we use a 9th rational
function to approximate ½MþðUÞMðUÞ�−nf=4 for the pseu-
dofermion field. For the heat bath updating and for
computing the action at the beginning and end of the
molecular dynamics trajectory 10th rational function
is used to approximate ½MþðUÞMðUÞ�nf=8 and
½MþðUÞMðUÞ�−nf=8, respectively. The step is chosen to
ensure most of the acceptance rate is around 80%–90%.
5,000 trajectories of configuration are taken as warmup
from a cold start. The simulation parameters are presented
in Tables II and III. In order to fill in observables at
additional β values, we employ the Ferrenberg-Swendsen
reweighting method [36].
The critical coupling βc’s on various spatial volume at

different quark mass am are summarized in Table IV. These
βc’s are determined from the locations of peak susceptibil-
ity of imaginary part of Polyakov loop.
We present the rescaled susceptibility of imaginary part

of Polyakov loop χ=Ls
γ=ν as a function of ðβ − βcÞL1=ν

s at
am ¼ 0.024 in Fig. 1. From Fig. 1, we can find that χ=Ls

γ=ν

according to the first order transition exponent collapses

with the same curve, while χ=Ls
γ=ν according to 3D Ising

exponent does not.
The rescaled susceptibility of imaginary part of Polyakov

loop χ=Ls
γ=ν as a function of ðβ − βcÞL1=ν

s at am ¼ 0.038 is
depicted in Fig. 2. From Fig. 2, we can find that χ=Ls

γ=ν

according to the first order transition exponent or 3D Ising
exponent does not collapse with the same curve. We cannot
determine the nature of Roberge-Weiss transition endpoint
at am ¼ 0.038 from χ=Ls

γ=ν.
The behavior of rescaled susceptibility of imaginary part

of Polyakov loop χ=Ls
γ=ν at am ¼ 0.040 and am ¼ 0.070

are presented in Fig. 3, and Fig. 4, respectively. Form Fig. 3
and Fig. 4, we can find that the rescaled susceptibility of
imaginary part of Polyakov loop χ=Ls

γ=ν at am ¼ 0.040 and
am ¼ 0.070 have similar behavior to that at am ¼ 0.038.
The rescaled susceptibility of imaginary part of Polyakov

loop χ=Ls
γ=ν as a function of ðβ − βcÞL1=ν

s at am ¼ 0.050 is
depicted in Fig. 5. From Fig. 5, we can find that χ=Ls

γ=ν as
a function of ðβ − βcÞL1=ν

s at lattice 123 × 4 and 163 × 4 are
in favour of both first order transition exponent and 3D
Ising exponent. However, considering the scale of χ=Ls

γ=ν

and ðβ − βcÞL1=ν
s in Fig. 5, the first order transition

exponent may be the better choice. χ=Ls
γ=ν as a function

of ðβ − βcÞL1=ν
s at am ¼ 0.060 has similar behavior to that

at am ¼ 0.050 which tends to be in favor of first order
transition exponent.
In order to discern the scaling behavior, we turn to

investigate Binder cumulant B4 as defined in Eq. (2) whose
scaling behavior is described in Eq. (3). B4 decreases with
the increase of β, and at one fixed quark mass am, B4 as a
function of β on various spatial volume is expected to
intersect at one point. The intersection gives an estimate of
accurate location of βRW. By fitting the values of B4 to
Eq. (3) with B4ðβc;∞Þ, a1, a2, βRW and ν as parameters
needed to be determined, we can extract critical exponent ν,
βRW and B4ðβc;∞Þ. The results are collected in Table V.
We present B4 as a function of β at am ¼ 0.024 in the

left panel of Fig. 6, and B4 as a function of ðβ − βRWÞL1=ν
s

in the right panel of Fig. 6 with ν taken to be the extracted
value through fitting procedure. From Table V, we find
that the critical exponent ν ¼ 0.2410 at am ¼ 0.024 can
explain the behavior of B4 as a function of ðβ − βRWÞL1=ν

s ,
especially, on lattice Ls ¼ 16, 20. This behavior implies
that the transition endpoint at am ¼ 0.024 belongs to first
order transition.
We also present B4 as a function of β at am ¼ 0.026 in

the left panel of Fig. 7, and B4 as a function of ðβ −
βRWÞL1=ν

s in the right panel of Fig. 7 with ν taken to be the
extracted value through fitting procedure. We find that the
critical exponent ν ¼ 0.6282 at am ¼ 0.026 can explain
the behavior of B4 as a function of ðβ − βRWÞL1=ν

s . ν ¼
0.6282 suggests that the endpoint at am ¼ 0.026 is of 3D
Ising transition nature.

TABLE I. Critical exponents relevant to our study.

B4ðβc;∞Þ ν γ γ=ν

3D Ising 1.604 0.6301(4) 1.2372(5) 1.963
tricritical 2 1=2 1 2
first order 1.5 1=3 1 3
crossover 3 � � � � � � � � �
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TABLE II. Simulation parameters. There are 10 molecular steps for every trajectory. 10 trajectories are taken between measurement.
The autocorrelation time is calculated for ImðLÞ. The columns marked with “β for B4” and “β for χ” contain the β values for calculating
B4 and χ in terms of Ferrenberg-Swendsen reweighting method [36], respectively.

am Ls β u0 Step # conf. Accept. Autocor. Time ImðLÞ jLj β for B4 β for χ

0.024 12 6.480 0.892 0.042 800 0.88 89.1 0.031(27) 0.167(7) 6.480 6.480
12 6.482 0.892 0.042 800 0.89 93.9 0.081(26) 0.176(10) 6.482 6.482
12 6.484 0.892 0.042 800 0.88 311.1 0.048(34) 0.191(9) 6.484 6.484
12 6.486 0.892 0.042 800 0.89 64.5 0.099(19) 0.167(9) � � � 6.486
12 6.488 0.892 0.042 800 0.89 105.1 −0.071ð29Þ 0.185(9) � � � 6.488
12 6.500 0.892 0.047 800 0.85 11.2 0.161(10) 0.204(9) � � � 6.500
16 6.480 0.892 0.033 800 0.90 57.5 0.124(5) 0.166(5) 6.480 6.480
16 6.482 0.892 0.033 800 0.90 60.9 0.123(11) 0.168(9) 6.482 6.482
16 6.484 0.892 0.033 800 0.90 69.7 −0.140ð7Þ 0.181(7) 6.484 6.484
16 6.486 0.892 0.033 800 0.90 100.7 0.151(6) 0.192(6) � � � 6.486
16 6.488 0.892 0.033 800 0.90 80.1 0.141(11) 0.185(9) � � � 6.488
20 6.480 0.892 0.026 800 0.92 37.3 −0.106ð16Þ 0.152(13) 6.480 � � �
20 6.482 0.892 0.028 800 0.90 95.1 −0.104ð10Þ 0.152(7) 6.482 6.482
20 6.484 0.892 0.028 800 0.90 40.5 0.143(14) 0.184(13) 6.484 6.484
20 6.488 0.892 0.028 800 0.89 32.8 0.153(6) 0.192(6) � � � 6.488

0.026 12 6.486 0.892 0.042 2000 0.89 51.1 −0.109ð21Þ 0.185(8) 6.486 � � �
12 6.488 0.892 0.042 2000 0.88 289.8 −0.047ð32Þ 0.189(8) 6.488 � � �
12 6.490 0.892 0.042 2000 0.88 93.6 0.111(19) 0.180(7) 6.490 � � �
16 6.478 0.892 0.033 2000 0.90 185.7 −0.034ð20Þ 0.138(7) 6.478 � � �
16 6.480 0.892 0.033 2000 0.90 206.1 −0.055ð21Þ 0.146(8) 6.480 � � �
16 6.486 0.892 0.033 2000 0.91 211.1 0.093(16) 0.156(8) 6.486 � � �
20 6.482 0.892 0.028 2000 0.90 150.4 0.020(23) 0.143(7) 6.482 � � �
20 6.484 0.892 0.028 2000 0.90 103.9 −0.122ð8Þ 0.165(6) 6.484 � � �
20 6.486 0.892 0.028 2000 0.90 212.3 0.008(20) 0.129(7) 6.486 � � �
20 6.488 0.892 0.028 2000 0.91 157.7 0.090(8) 0.140(6) 6.488 � � �

0.038 12 6.820 0.856 0.042 1000 0.89 20.3 −0.084ð13Þ 0.146(9) � � � 6.820
12 6.825 0.856 0.042 1000 0.89 33.9 −0.103ð26Þ 0.169(15) � � � 6.825
12 6.835 0.856 0.042 1000 0.88 33.6 0.160(23) 0.215(13) � � � 6.835
12 6.840 0.856 0.042 1000 0.88 47.5 0.090(42) 0.196(13) � � � 6.840
12 6.860 0.892 0.059 1000 0.75 3.0 0.385(2) 0.447(2) � � � 6.860
16 6.805 0.856 0.034 1000 0.89 23.8 −0.115ð8Þ 0.157(7) 6.805 6.805
16 6.810 0.856 0.034 1000 0.89 141.4 −0.123ð14Þ 0.167(12) 6.810 6.810
16 6.815 0.856 0.034 1000 0.89 55.0 −0.079ð20Þ 0.140(13) 6.815 6.815
16 6.820 0.856 0.034 1000 0.89 147.5 0.127(16) 0.172(13) 6.820 6.820
16 6.825 0.856 0.034 1000 0.89 71.2 −0.152ð9Þ 0.193(9) 6.825 6.825
16 6.830 0.856 0.034 1000 0.89 7.9 0.193(4) 0.233(4) 6.830 6.830
20 6.805 0.856 0.028 1000 0.91 47.6 0.131(8) 0.170(7) 6.805 6.805
20 6.815 0.856 0.028 1000 0.90 31.0 0.088(11) 0.137(8) 6.815 6.815
20 6.820 0.856 0.028 1000 0.90 45.3 −0.071ð16Þ 0.132(9) 6.820 6.820
20 6.830 0.856 0.028 1000 0.90 94.1 −0.143ð16Þ 0.188(12) 6.830 6.830
20 6.835 0.856 0.028 1000 0.91 47.2 −0.158ð7Þ 0.198(7) 6.835 6.835
20 6.840 0.856 0.028 1000 0.91 81.7 −0.165ð5Þ 0.205(5) 6.840 6.840

0.040 12 6.825 0.856 0.042 1000 0.89 107.2 0.093(44) 0.200(12) 6.825 6.825
12 6.830 0.856 0.042 1000 0.89 103.4 0.068(39) 0.177(13) 6.830 � � �
12 6.835 0.856 0.042 1000 0.88 55.0 −0.069ð47Þ 0.195(17) 6.835 6.835
12 6.840 0.856 0.042 1000 0.89 12.7 0.175(7) 0.216(6) � � � 6.840
12 6.845 0.856 0.042 1000 0.89 128.5 −0.093ð49Þ 0.215(11) 6.845 6.845
12 6.850 0.892 0.059 1000 0.75 2.4 −0.388ð2Þ 0.450(2) � � � 6.850
16 6.810 0.856 0.034 1000 0.89 42.1 0.135(8) 0.175(8) � � � 6.810
16 6.830 0.856 0.034 1000 0.89 107.3 0.162(11) 0.202(11) � � � 6.830
16 6.840 0.856 0.034 1000 0.90 57.4 −0.122ð19Þ 0.171(17) � � � 6.840
16 6.850 0.892 0.059 1000 0.61 2.6 0.386(1) 0.448(1) � � � 6.850
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TABLE III. Simulation parameters. There are 10 molecular steps for every trajectory. 10 trajectories are taken between measurement.
The autocorrelation time is calculated for ImðLÞ. The columns marked with “β for B4” and “β for χ” contain the β values for calculating
B4 and χ in terms of Ferrenberg-Swendsen reweighting method [36], respectively.

am Ls β u0 Step # conf. Accept. Autocor. Time ImðLÞ jLj β for B4 β for χ

0.040 20 6.810 0.856 0.028 1000 0.90 47.0 0.019(6) 0.098(2) 6.810 � � �
20 6.815 0.856 0.028 1000 0.91 35.5 −0.032ð9Þ 0.105(3) 6.815 � � �
20 6.820 0.856 0.028 1000 0.90 37.9 −0.101ð7Þ 0.146(6) 6.820 � � �
20 6.830 0.856 0.028 1000 0.91 64.4 0.144(9) 0.186(8) � � � 6.830
20 6.840 0.856 0.028 1000 0.90 80.7 −0.009ð18Þ 0.117(6) � � � 6.840
20 6.845 0.856 0.028 1000 0.91 18.3 −0.186ð6Þ 0.226(5) � � � 6.845
20 6.850 0.892 0.059 1000 0.50 6.6 0.383(2) 0.445(2) � � � 6.850

0.050 12 6.800 0.858 0.042 1000 0.88 27.9 −0.011ð29Þ 0.137(6) 6.800 6.800
12 6.820 0.858 0.042 1000 0.89 45.3 −0.064ð23Þ 0.149(8) 6.820 6.820
12 6.840 0.858 0.042 1000 0.89 81.0 −0.004ð52Þ 0.199(13) 6.840 6.840
12 6.860 0.858 0.042 1000 0.89 38.1 0.127(25) 0.189(17) 6.860 6.860
12 6.880 0.858 0.042 1000 0.89 22.4 0.192(15) 0.237(14) 6.880 6.880
16 6.810 0.858 0.034 1000 0.89 21.3 −0.104ð10Þ 0.149(9) 6.810 6.810
16 6.830 0.858 0.034 1000 0.90 149.9 0.023(39) 0.164(8) 6.830 6.830
16 6.840 0.858 0.034 1000 0.90 39.2 0.147(12) 0.191(12) � � � 6.840
16 6.850 0.858 0.034 1000 0.89 137.3 0.076(38) 0.175(15) 6.850 6.850
20 6.830 0.858 0.028 1000 0.91 63.8 0.038(25) 0.132(10) 6.830 � � �
20 6.840 0.858 0.028 1000 0.91 112.2 −0.121ð11Þ 0.167(9) 6.840 6.840
20 6.850 0.858 0.028 1000 0.91 40.2 0.167(10) 0.209(9) 6.850 6.850
20 6.860 0.858 0.028 1000 0.91 79.1 −0.163ð10Þ 0.206(10) 6.860 6.860
20 6.870 0.858 0.028 1000 0.91 27.3 −0.189ð4Þ 0.230(4) 6.870 6.870

0.060 12 6.840 0.860 0.042 1000 0.89 17.4 0.138(11) 0.187(9) 6.840 6.840
12 6.850 0.860 0.042 1000 0.89 49.1 −0.109ð21Þ 0.167(15) 6.850 6.850
12 6.860 0.860 0.042 1000 0.89 51.8 −0.130ð20Þ 0.179(18) 6.860 6.860
12 6.870 0.860 0.042 1000 0.89 59.8 −0.059ð48Þ 0.203(15) 6.870 6.870
12 6.880 0.860 0.042 1000 0.89 13.0 −0.212ð10Þ 0.255(10) 6.880 6.880
16 6.850 0.860 0.034 1000 0.90 144.0 −0.004ð32Þ 0.145(11) � � � 6.850
16 6.860 0.860 0.034 1000 0.89 61.6 0.186(9) 0.229(8) � � � 6.860
16 6.870 0.860 0.034 1000 0.90 30.3 −0.184ð8Þ 0.227(8) � � � 6.870
16 6.880 0.860 0.034 1000 0.90 77.2 −0.204ð9Þ 0.245(10) � � � 6.880
20 6.820 0.860 0.028 1000 0.91 50.9 −0.048ð14Þ 0.116(8) 6.820 6.820
20 6.830 0.860 0.028 1000 0.91 44.0 0.020(10) 0.102(3) 6.830 6.830
20 6.850 0.860 0.028 1000 0.91 30.6 0.130(6) 0.172(6) 6.850 6.850
20 6.870 0.860 0.028 1000 0.91 26.9 −0.178ð7Þ 0.221(7) 6.870 6.870
20 6.890 0.860 0.028 1000 0.91 53.2 0.225(7) 0.269(7) 6.890 6.890

0.070 12 6.820 0.861 0.042 1000 0.89 26.9 −0.049ð17Þ 0.125(8) 6.820 � � �
12 6.830 0.861 0.042 1000 0.89 75.6 0.009(26) 0.135(9) 6.830 6.830
12 6.850 0.861 0.042 1000 0.88 53.5 −0.033ð38Þ 0.161(14) 6.850 6.850
12 6.860 0.861 0.042 1000 0.89 57.8 −0.016ð26Þ 0.137(8) 6.860 6.860
12 6.870 0.861 0.042 1000 0.89 54.7 0.090(36) 0.188(12) � � � 6.870
12 6.880 0.861 0.042 1000 0.89 20.2 −0.168ð15Þ 0.215(14) � � � 6.880
16 6.860 0.861 0.034 1000 0.90 46.7 −0.092ð17Þ 0.149(13) � � � 6.860
16 6.870 0.861 0.034 1000 0.90 19.3 0.171(10) 0.214(9) � � � 6.870
16 6.880 0.861 0.034 1000 0.90 146.3 −0.129ð23Þ 0.186(16) � � � 6.880
16 6.900 0.861 0.034 1000 0.89 18.5 −0.202ð6Þ 0.246(6) � � � 6.900
20 6.810 0.861 0.029 1000 0.89 50.4 0.017(11) 0.098(3) 6.810 � � �
20 6.820 0.861 0.029 1000 0.89 107.3 0.018(9) 0.098(2) 6.820 6.820
20 6.830 0.861 0.029 1000 0.89 66.9 −0.006ð6Þ 0.096(1) 6.830 6.830
20 6.840 0.861 0.029 1000 0.89 53.0 0.040(17) 0.118(8) 6.840 6.840
20 6.850 0.861 0.029 1000 0.89 50.8 0.070(7) 0.126(5) 6.850 6.850
20 6.860 0.861 0.029 1000 0.89 54.6 −0.105ð10Þ 0.153(9) � � � 6.860
20 6.870 0.861 0.029 1000 0.89 45.7 −0.016ð12Þ 0.112(3) � � � 6.870
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At am ¼ 0.040, we only find that B4 as a function of β
on lattice Ls ¼ 12, 20 intersects at one point. B4 as a
function of β and as a function of ðβ − βRWÞL1=ν

s at am ¼
0.040 are depicted in the left, right panel of Fig. 8,
respectively. The extracted value ν ¼ 0.6173 through fit-
ting procedure also shows that the endpoint at am ¼ 0.040
is of 3D Ising transition nature. At other values of am, B4 as

a function of β and as a function of ðβ − βRWÞL1=ν
s have

similar behavior. For clarity, they are not presented.
From the behavior of χ=Ls

γ=ν andB4, we conclude that the
nature of endpoint transition at am ¼ 0.024, 0.050, 0.060,
0.070 is of first order, while atam ¼ 0.026, 0.038, 0.040, the
endpoint transition nature is of 3D Ising class. This con-
clusion suggests that the two tricritical points are between
0.024 < amtricl < 0.026 and 0.040 < amtricl < 0.050.

IV. DISCUSSIONS

We have studied the nature of critical endpoints of
Roberge-Weiss transition of two flavor lattice QCD with
improved Kogut-Susskind fermions. When iμI ¼ iπT, the
imaginary part of the Polayakov loop is the order parameter
for studying the transition from low temperature phase to
high temperature one.
Our simulations are carried out at 7 values of quark mass

am on Lt ¼ 4 lattice on different 3 spatial volumes. Our

TABLE IV. Results of critical couplings βc on different spatial
volume at different quark mass.

am 12 16 20

0.024 6.492(9) 6.491(8) 6.4834(15)
0.038 6.838(4) 6.821(4) 6.824(3)
0.040 6.839(3) 6.839(3) 6.847(2)
0.050 6.845(10) 6.831(7) 6.857(4)
0.060 6.859(9) 6.865(5) 6.860(3)
0.070 6.875(7) 6.885(6) 6.857(4)

FIG. 1. Scaling behavior of the susceptibility of imaginary part of Polyakov loop according to first order critical exponent (left panel),
and to 3D Ising critical exponent (right panel) at am ¼ 0.024.

FIG. 2. Scaling behavior of the susceptibility of imaginary part of Polyakov loop according to first order critical exponent (left panel),
and to 3D Ising critical exponent (right panel) at am ¼ 0.038.
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FIG. 3. Scaling behavior of the susceptibility of imaginary part of Polyakov loop according to first order critical exponent (left panel),
and to 3D Ising critical exponent (right panel) at am ¼ 0.040.

FIG. 4. Scaling behavior of the susceptibility of imaginary part of Polyakov loop according to first order critical exponent (left panel),
and to 3D Ising critical exponent (right panel) at am ¼ 0.070.

FIG. 5. Scaling behavior of the susceptibility of imaginary part of Polyakov loop according to first order critical exponent (left panel),
and to 3D Ising critical exponent (right panel) at am ¼ 0.050.
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central result is that the two tricritical points are between
0.024 < amtricl < 0.026 and 0.040 < amtricl < 0.050.
The interval of quark mass from 0.024 to 0.026 is narrow.
On finite spatial volume, the exponent ν is expected
to changesmoothly,whileour simulationshows that exponent
ν changes rapidly within a narrow quark mass interval.

Apart from monitoring the behavior of susceptibility
of imaginary part of Polayakov loop ImðLÞ, we also look
into the change of Binder cumulant of ImðLÞ. In order
to fill in observables at additional β values, the Ferrenberg-
Swendsen reweighting method [36] is employed. It is noted
that when applying Ferrenberg-Swendsen reweighting

TABLE V. Results of critical couplings βRW and the critical exponent ν by fitting Eq. (3) to data on different spatial volume. If errors
are very small, we take them to be zero.

am Ls βRW ν B4ðβc;∞Þ a1 a2 r-square

0.024 12, 16, 20 6.4816(0) 0.2410(8) 2.2661(11) −0.0022ð0Þ 0.000(0) 0.991
0.026 12, 16, 20 6.4825(0) 0.6282(3) 1.71958(6) −0.7061ð14Þ 0.2033(9) 0.996
0.038 16, 20 6.8503(0) 0.6473(17) 1.0300(0) −0.0363ð4Þ 0.01145(2) 0.996
0.040 12, 20 6.8185(0) 0.6173(4) 2.1039(3) −1.053ð3Þ 0.136(8) 0.998
0.050 12, 16, 20 6.831(0) 0.3691(6) 1.8924(2) −0.0295ð4Þ 0.0008(0) 0.992
0.060 12, 20 6.8416(0) 0.3458(19) 1.6937(10) −0.0125ð6Þ − 0.958
0.070 12, 20 6.8416(0) 0.3152(6) 2.1821(2) −0.005ð0Þ − 0.936

FIG. 6. Binder cumulants as a function of β on various spatial volume intersect at one point (left panel), and as a function of
ðβ − βRWÞL1=ν

s with values of βRW, ν from Table V collapse (right panel) at am ¼ 0.024.

FIG. 7. Binder cumulants as a function of β on various spatial volume intersect at one point (left panel), and as a function of
ðβ − βRWÞL1=ν

s with values of βRW, ν from Table V collapse (right panel) at am ¼ 0.026.
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method, the number of β points taken to calculate suscep-
tibility is not completely the same as the number taken to
calculate Binder cumulant.
In our simulations, the behavior of susceptibility of

imaginary part of Polayakov loop ImðLÞ at am ¼ 0.024
can give us clear signal to determine the nature of
transition, while at other quark masses, it is difficult to
determine the nature of transition.
The values of B4ðβc;∞Þ extracted through fitting pro-

cedure are inconsistent with what is expected. This is
because logarithmic scaling corrections will be present near
the tricritical point [3,37], and our simulations are carried out
on finite size volume on which large finite size corrections
are observed in simpler spin model [38]. However, the
critical exponent ν is not sensitive to finite size corrections
[3]. So exponent ν extracted through fitting procedure can
provide us information to determine the transition nature.
In our simulation, we can find that the values of B4 on

lattice with spatial volumes 123, 163, 203 intersect approx-
imately at one point at quark masses am ¼ 0.024, 0.026,

0.050, while at other quark masses, it is difficult to find
intersection point for B4’s from three spatial volumes. It is
expedient to determine the intersection point from two
spatial volumes as indicated in Table V.
Taking what is mentioned above into account, further

work along this direction which can provide crosschecks is
expected, especially simulations with larger time extent
which is under our consideration.
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