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The constituent quark model with color-spin hyperfine potential is used to investigate the property of a
compact pentaquark configuration with Jp ¼ 3=2− and isospin ¼ 1=2, which is the most likely quantum
number of one of the recently observed exotic baryon states at LHCb. Starting from the characterization of
the isospin, color, and spin states for the pentaquark configuration, we construct the total wave function
composed of the spatial wave function, which we take to be symmetric and in S wave, and the four
orthogonal isospin ⊗ color ⊗ spin states that satisfy the Pauli principle. We then use the variational
method to find a compact stable configuration. While there are compact configurations where the hyperfine
potential is more attractive than the sum of p and J=ψ hyperfine potentials, we find that the ground state is
the isolated p and J=ψ state. Furthermore, the mass of the excited state lies far above the observed
pentaquark state leading us to conclude that the observed states cannot be a compact configuration with
Jp ¼ 3=2−, generated by the conventional two-body quark interactions.
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I. INTRODUCTION

After the introduction of the quark model for the baryon
and meson [1] and the color quantum number for quarks
[2], model calculations for hadrons naturally led to the
possible existence of mutiquark hadrons beyond the ordi-
nary hadrons [3,4]. Indeed, recent experimental findings
point to the possible existence of such configurations; these
are the XYZ states with the Xð3872Þ being the first of these
states observed by the Belle collaboration [5]. The XYZ
states could be either compact tetraquark states composed
of two quarks and two antiquarks or molecular states with
their masses close to the relevant two meson thresholds.
Molecular configurations involving heavy mesons were

first discussed in Ref. [6] where deuteronlike meson-meson
bound states were found to exist when a long range pion
exchange potential was included with additional short
range attraction depending on the mass of the meson.
The possible bound states included a DD̄� state in the
isopin 0 and JPC ¼ 1þþ channel, which is the quantum
number of the Xð3872Þ. Since the experimental observation
of Xð3872Þ, attempts to explain the state in terms of
molecular configuration with important contribution com-
ing from the pion exchange potentials have continued to
this date [7–11].
Numerous efforts have been made to explain the mass of

the charmoniumlike state using various other approaches.
In a nonrelativistic quark model that includes a confining

interaction and a short range spin-dependent interaction
through the one gluon exchange as well as an effective pion-
induced interaction, it was argued that the Xð3872Þ can be a
DD̄� hadronic resonance with important admixtures of
ρJ=ψ and ωJ=ψ states [12]. In Ref. [13], the Xð3872Þ
was considered as a weakly bound molecular state found in
the combination of fD;D�g with fD̄; D̄�g states based on a
quark-based nonrelativistic four-body Hamiltonian with a
pairwise interaction.
There are alsomodels that findXð3872Þ to be a tetraquark

system. These include methods based on a diquark-
antidiquark model [14,15], the QCD sum rule [16], and a
simple quark model with chromomagnetic interactions
[17–19]. In a lattice QCD calculation [20], it was shown
that a candidate forXð3872Þwith I ¼ 0 could only be found
if both the c̄c and D̄D̄� interpolators are included, while no
signal was found if the diquark-antidiquark and D̄D̄� are
used without a c̄c component.
Recently, the observation of hidden-charm pentaquark

states by the LHCb collaboration [21] has triggered another
wave of works among many researchers. The J=ψp invari-
ant mass spectrum of Λb → J=ψK−p revealed hidden-
charm pentaquark states, for which the preferred quantum
numbers are Jp ¼ 3=2− for Pcð4380Þ and Jp ¼ 5=2þ for
Pcð4450Þ. In fact, even before the discovery was made,
possible hidden-charm molecular baryons composed of
anticharmed meson and charmed baryon, such as the of
ΣcD̄� states with IðJpÞ ¼ 1

2
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ΣcD̄ states with 3
2
ð1
2
−Þ, were proposed to exist within the

one-boson-exchange model [22]. The two hidden-charm
pentaquark states were also found to be loosely bound
ΣcD̄� and Σ�

cD̄� molecular states, respectively, within a
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boson-exchange interaction model [23]. Furthermore, in a
meson exchangemodel [25],Pcð4380Þwith Jp ¼ 3=2− was
produced from Σ�

cD̄, while Pcð4450Þ with Jp ¼ 5=2þ was
produced from ΣcD̄�. More recently, the pentaquarks were

identified with structures around the Σð�Þ
c D̄ð�Þ threshold in a

quark cluster model [24].
While molecular pictures for the two pentaquark states

are quite likely, one can not rule out the possibility that
these states are compact multiquark configurations based
on a strong diquark-antidiquark pair [26] or quark inter-
actions in general [27]. To distinguish these two configu-
rations, it is important to fully explore these two possible
scenarios. In this work, we explore the possibility that one
of the pentaquarks is a compact multiquark configuration
within a constituent quark model based on the color and
spin hyperfine potential [28], which is known to reproduce
the masses of the ordinary meson and baryon states. In
particular, in order to asses the possibility that the Pcð4380Þ
is a compact multiquark state, we classify the isospin, color,
and spin states for the pentaquark system containing a
heavy quark and an antiquark with Jp ¼ 3=2− and
isospin ¼ 1=2 from the view point of the permutation
group, which is used in characterizing a certain symmetry
so that the isospin, color, and spin states can be represented
in terms of the Young-Yamanouchi bases. We then sys-
tematically construct the isospin ⊗ color ⊗ spin states
satisfying the Pauli principle from the coupling scheme
appearing in the combination of any two states. We then use
the variational method to calculate the ground state mass of
the pentaquark with Jp ¼ 3=2− and isospin ¼ 1=2.
This paper is organized as follows. In Sec. II, we first

introduce the Hamiltonian describing the constituent quark
model, and determine the fitting parameters of the model so
as to reproduce the mass of the baryons and mesons
associated with the thresholds. Then, by using the varia-
tional method, we construct the spatial wave function
suitable for a baryon and a meson. In Sec. III, we represent
the isospin, color, and spin states and then construct the
isospin ⊗ color ⊗ spin states with respect to I ¼ 3=2 and
I ¼ 1=2 in two independent bases, which can be trans-
formed into each other through an orthonormal matrix. We
analyze the numerical results obtained from the variational
method in Sec. IV. We finally give a summary of the paper
in Sec. V.

II. HAMILTONIAN

To investigate the stability of the pentaquark in the
nonrelativistic framework, the Hamiltonian is chosen to

take the confinement and hyperfine potential for the color
and spin interaction;

H ¼
X5
i¼1

�
mi þ

p2
i

2mi

�
−

3

16

X4
i<j

λci λ
c
jðVC

ij þ VSS
ij Þ; ð1Þ

where mi’s are the quark masses, λci =2 the color operator
of the ith quark for the color SU(3), and VC

ij and VSS
ij the

confinement and hyperfine potential, respectively. The
confinement potential is usually composed of the linear-
izing term as suggested by the lattice gauge theory, and
the Coulomb-type potential as derived from the perturba-
tive QCD,

VC
ij ¼ −

κ

rij
þ ðrijÞ1=2

a0
−D: ð2Þ

The hyperfine potential is given to take the following form,
including the spin interaction:

VSS
ij ¼ 1

mimjc4
ℏ2c2κ0

ðr0ijÞ
e−ðrijÞ2=ðr0ijÞ2

rij
σi · σj: ð3Þ

Here, rij is the distance between quarks, jri − rjj, and both
r0ij and κ0 are chosen to depend on the masses of quarks,
given by

r0ij ¼ 1=

�
αþ β

mimj

mi þmj

�
;

κ0 ¼ κ0

�
1þ γ

mimj

mi þmj

�
: ð4Þ

The hyperfine potential in Eq. (3), which becomes
1=ðmimjÞ δðrÞ in the heavy quark mass limit mi → ∞,
is chosen to fit the meson and baryon mass splitting with
both light and heavy quarks. The parameters in the
Hamiltonian are fitted to the baryon and meson masses
by using the variational method [29]. The fitting parameters
are given in Table I, and the calculated masses in Table II.
Since we deal with the pentaquark composed of

qð1Þqð2Þqð3Þcð4Þc̄ð5Þ with I ¼ 1=2, where the number
indicates the position of the constituent quark, the sym-
metry of the three light quarks should be taken into account
to satisfy the Pauli principle because the total wave function
must be antisymmetric among the three light quarks. As we
are interested in the ground state, a natural choice would be
to take the spatial function to be symmetric, which requires

TABLE I. Parameters of the Hamiltonian fitted to the baryon and meson masses occurring in the decay channels of the q3cc̄.

γ κ a0 D κ0 α β mu mc

1.667 ðGeVÞ−1 0.107 1.042 ðGeVÞ−2 0.955 GeV 0.168 GeV 1.224 GeV 1.467 0.302 GeV 1.889 GeV
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the remaining part of the total wave function to be
antisymmetric among the three light quarks. We denote
the symmetry (antisymmetry) property by ½123� (f123g). In
the center of mass frame, the pentaquark system is reduced
to a four-body problem, represented by the four Jacobian
coordinates suitable for describing the decay into a baryon
and a meson.
We take the spatial function to be a Gaussian that was

extensively used with the variational method to handle
calculations in the many-body problem. The four Jacobian
coordinates suitable for describing the decay into a baryon
and a meson are given by

x11 ¼
1ffiffiffi
2

p ðr1 − r2Þ; x12 ¼
ffiffiffi
2

3

r �
r3 −

1

2
r1 −

1

2
r2

�
;

x13 ¼
1ffiffiffi
2

p ðr4 − r5Þ;

x14 ¼
ffiffiffi
6

5

r �
1

3
ðr1 þ r2 þ r3Þ −

1

2
ðr4 þ r5Þ

�
; ð5Þ

where the first and second terms represent a baryon
configuration, the third a meson configuration, and the
last the relative position vector between the center of mass
of a baryon and a meson. The boldface letters stand for the
vectors.
We then construct a spatial wave function given by

Rs1 ¼ exp½−a1ðx11Þ2 − a2ðx12Þ2 − a3ðx13Þ2 − a4ðx14Þ2�; ð6Þ

where a1, a2, a3, and a4 are variational parameters. Since
the spatial wave function in Eq. (6) is symmetric only
between particles 1 and 2, we need two additional spatial
wave functions so as to satisfy ½123� symmetry; one is
symmetric between particles 1 and 3, and the other is
symmetric between particles 2 and 3. The two sets of four
Jacobian coordinates are given by

x21 ¼
1ffiffiffi
2

p ðr1 − r3Þ; x22 ¼
ffiffiffi
2

3

r �
r2 −

1

2
r1 −

1

2
r3

�
;

x23 ¼
1ffiffiffi
2

p ðr4 − r5Þ;

x24 ¼
ffiffiffi
6

5

r �
1

3
ðr1 þ r2 þ r3Þ −

1

2
ðr4 þ r5Þ

�
; ð7Þ

x31 ¼
1ffiffiffi
2

p ðr2 − r3Þ; x32 ¼
ffiffiffi
2

3

r �
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2
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2
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�
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x33 ¼
1ffiffiffi
2

p ðr4 − r5Þ;

x34 ¼
ffiffiffi
6
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r �
1

3
ðr1 þ r2 þ r3Þ −

1

2
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�
: ð8Þ

By using the two sets of four Jacobian coordinates, we
construct the spatial wave function with either [13] sym-
metry or [23] symmetry, respectively. Combining these
spatial functions with a certain symmetry into a linear form,
we obtain the spatial function with four variational param-
eters a1, a2, a3, and a4, which is fully symmetric among
particles 1–3 as follows:

R ¼ exp½−a1ðx11Þ2 − a2ðx12Þ2 − a3ðx13Þ2 − a4ðx14Þ2�
þ exp½−a1ðx21Þ2 − a2ðx22Þ2 − a3ðx23Þ2 − a4ðx24Þ2�
þ exp½−a1ðx31Þ2 − a2ðx32Þ2 − a3ðx33Þ2 − a4ðx34Þ2�: ð9Þ

The spatial wave function of the pentaquark in Eq. (9) is
in a state with total angular moment L ¼ 0, where both the
baryon and meson configurations as well as their relative
motion is in the S-wave state. The kinetic energy part
coming from Eq. (9) is given as

K:E: ¼ p2
1 þ p2

2

2m1

þ p2
3

2m2

þ p2
4

2μ
: ð10Þ

Here p2
1þp2

2¼3ℏ2fða1;a2Þ, p2
3 ¼ 3ℏ2a3, and p2

4 ¼ 3ℏ2a4,
where m1, m2 are the light and heavy quark masses
respectively, and μ ¼ 5m1m2=ð3m1 þ 2m2Þ. We present
fða1; a2Þ appearing in the kinetic terms of the baryon,

fða1;a2Þ¼ða1þa2Þ

×
�

1

ða1a2Þð3=2Þ
þ 2048a1a2
ð3a12þ10a1a2þ3a22Þð3=2Þ

�.

×

�
2

ða1a2Þð3=2Þ
þ 256a1a2
ð3a12þ10a1a2þ3a22Þð3=2Þ

�
:

ð11Þ

Hence, for the compact multiquark state to be stable
compared to the separated baryon and meson state, the

TABLE II. Masses of baryons and mesons obtained from the variational method. The third row shows the variational parameter in
fm−2. The fourth row shows the experimental data in GeV.

(I,S) (1
2
;1
2
) P (3

2
;3
2
) Δ (0;1

2
) Λc (1;1

2
) Σc (1;3

2
) Σ�

c (0,0) ηc (0,1) J=ψ (1
2
;0) D (1

2
;1) D�

Mass 0.972 1.266 2.286 2.459 2.536 2.984 3.115 1.872 2.012
Variational
parameters a¼3.4, b¼1.4 a¼2.1, b¼1.2 a¼2.7, b¼3.4 a¼1.9, b¼3.5 a¼1.8, b¼3.1 a¼15.1 a¼11 a¼4.4 a¼3.4
Exp 0.938 1.232 2.286 2.453 2.518 2.983 3.96 1.869 2.01
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extra attraction coming from bringing the baryon and
meson should be large enough to overcome the extra
kinetic energy given by the last term in Eq. (10).

III. ISOSPIN ⊗ COLOR ⊗ SPIN STATE
OF THE PENTAQUARK

In this section, we construct the isospin ⊗ color ⊗ spin
state appropriate for the qð1Þqð2Þqð3ÞQð4ÞQ̄ð5Þ system
with I ¼ 1=2 and spin ¼ 3=2, where the number in the
bracket indicates the position of the constituent quark. The
component of three identical light quarks of the pentaquark
restricts the total wave function to be antisymmetric with
respect to the exchange of any pair among the three light
quarks due to the Pauli principle. When the spatial function
of the pentaquark is chosen to be fully symmetric for the
three light quarks, the remaining part of the total wave
function should be fully antisymmetric. Therefore, as we
are interested in the ground state, the symmetry property of
the isospin ⊗ color ⊗ spin state should be taken to be
antisymmetric for particles 1–3. We use f123g notation for
the antisymmetry property. The Young tableau, which
represents the irreducible bases of the permutation group,
enables us to easily identify the multiquark configuration
with a certain symmetry property. In this paper, we use the
Young tableau and the Young-Yamanouchi basis, which
corresponds to the Young tableau in describing the states
necessary for the pentaquark. In the following subsections,
we first start by separately discussing the isospin, color, and
spin states consisting of five quarks, and then discuss the
total wave function.

A. Isospin states

In the SU(2) flavor symmetry, it is easy to find that the
possible isospin (I) states for the three light quarks are 1=2
and 3=2. The Young-Yamanouchi basis corresponding to
the I ¼ 1=2 state is as follows:

ð12Þ

B. Color states

For the possible color states, we only consider the
color singlets that are assumed to be observables in the
hadron state. There are several ways of obtaining the color
singlets for the pentaquark, coming from the direct product,
given by

½3�C ⊗ ½3�C ⊗ ½3�C ⊗ ½3�C ⊗ ½3̄�C:
We introduce the two methods that are equivalent to each
other, but different in the way of combining the irreducible

representation of SU(3). First, since the antiquark corre-
sponds to the antitriplet, we can construct the triplet in the
direct product, ½3�C ⊗ ½3�C ⊗ ½3�C ⊗ ½3�C, which corre-
sponds to the Young tableau [211],

ð13Þ

Here, the subscript indicates the irreducible representation
of SU(3). Then, we can obtain the three color singlets,
combining the triplet in Eq. (13) with the antitriplet of the
antiquark. We denote the color singlets by

ð14Þ

Secondly, we can decompose the direct product, ½3�C ⊗
½3�C ⊗ ½3�C and ⊗ ½3�C ⊗ ½3̄�C, into the direct sum of the
irreducible representations, respectively, as follows:

ð15Þ

½3�C ⊗ ½3̄�C ¼ ½8�C ⊕ ½1�C: ð16Þ

Then, the coupling of either the octet with the octet or the
singlet with the singlet in Eqs. (15) and (16) gives the three
color singlets of the pentaquark, denoted by

ð17Þ

It should be noted that the color singlets represented in
terms of different Young tableau in Eqs. (14) and (17) are
the same in a tensor form. We define the color singlets
derived from the above methods, as follows:
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jC1i ¼ ½fð12Þ6ð34Þ3̄g353̄�1 ¼ ½fð12Þ63g8ð45Þ8�1;
jC2i ¼ ½fð12Þ3̄34g353̄�1 ¼ ½fð12Þ3̄3g8ð45Þ8�1;
jC3i ¼ ½fð123Þ14g353̄�1 ¼ ½fð123Þ1ð45Þ1�1: ð18Þ

C. Spin states

For the spin ¼ 3=2 pentaquark case, the spin states are
represented in terms of Young tableau [41] with four
dimensions, as follows:

ð19Þ

When we investigate the stability of the pentaquark against
the strong decay into a baryon and a meson, it is very
convenient to use the spin states related with the decay
mode. We denote the four spin states by

jϕ1i ¼ ½fð12Þ131=2g3=2ð45Þ0�3=2;
jϕ2i ¼ ½fð12Þ131=2g3=2ð45Þ1�3=2;
jϕ3i ¼ ½fð12Þ131=2g1=2ð45Þ1�3=2;
jϕ4i ¼ ½fð12Þ031=2g1=2ð45Þ1�3=2; ð20Þ

where the subscript indicates the spin state. Because of the
orthonormality of the two sets of spin sates, Eqs. (19) and
(20) are related by the following orthogonal transformation:

0
BBBBBBB@

ffiffi
5
8

q ffiffi
3
8

q
0 0

−
ffiffi
3
8

q ffiffi
5
8

q
0 0

0 0 1 0

0 0 0 1

1
CCCCCCCA
: ð21Þ

D. Isospin ⊗ color ⊗ spin state for I = 1=2

Since the isospin, color, and spin states represented in
terms of the Young tableau have a certain symmetry
property, we can construct the isospin ⊗ color ⊗ spin state
of the pentaquark that is fully antisymmetric under the
exchange of any pair among particles 1–3. For this purpose,
depending on how the coupling scheme is implemented, we
consider two methods. In the first method, we start from the
notation of the color singlets in Eq. (14), and combine
the color singlets with spin states by the out-product of the
permutation group, S4, resulting in the color ⊗ spin states
for particles 1–4. Then, we can easily obtain the isospin ⊗
color ⊗ spin state with f123g symmetry by coupling the

isospin state with the color ⊗ spin states. In the second
method, we start the notation of the color singlets in
Eq. (17), and use the S3 permutation group applied on
the coupling scheme.
According to the permutation group theory [30], the

irreducible basis of S5 becomes the irreducible basis of S4
as well, irrespective of particle 5. When we consider the
symmetry property for particles 1–4 in coupling scheme,
we can identify the spin states in Eq. (19) with the Young-
Yamanouchi bases for the Young tableau [4] and Young
tableau [31] without particle 5,

ð22Þ

It is necessary to show the inner product between the Young
tableau [211] of the color singlets in Eq. (14) and Young
tableau [31] of the spin states in Eq. (22) so that we obtain
the color ⊗ spin states,

ð23Þ

In addition to this, we should consider the inner product
between the Young tableau [211] of the color singlets in
Eq. (14) and Young tableau [4] of the spin states in Eq. (22),

ð24Þ

The coupling scheme designed to construct the
isospin ⊗ color ⊗ spin states with the f123g symmetry
is completed by using the Clebsch-Gordan (CG) coefficient
of the permutation group, Sn, which is factorized into the
CG coefficient of Sn−1 and K matrix [31], given by

Sð½f0�p0q0y0½f00�p00q00y00j½f�pqyÞ
¼ Kð½f0�p0½f00�p00j½f�pÞSð½f0p0 �q0y0½f00p00 �q00y00j½fp�qyÞ;

ð25Þ
where S in the left-hand (right-hand) side is a CG
coefficient of Sn (Sn−1). In this work, we take a similar
process as described in Refs. [29,32].
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Below, we show the Young-Yamanouchi bases corre-
sponding to the Young tableau [211] that is obtained from
the color ⊗ spin coupling in Eq. (23),

ð26Þ

ð27Þ
For the case of the Young tableau [22], which is obtained
from the color ⊗ spin coupling in Eq. (23), the Young-
Yamanouchi bases are as follows:

ð28Þ

ð29Þ

For the case of the Young tableau [31], which is obtained
from the color ⊗ spin coupling in Eq. (23), the Young-
Yamanouchi bases are as follows:

ð30Þ

ð31Þ

For the case of the Young tableau [211], which is
obtained from the color ⊗ spin coupling in Eq. (24),
the Young-Yamanouchi bases are as follows:

ð32Þ

ð33Þ

To find the isospin ⊗ color ⊗ spin state with f123g
symmetry, we finally combine the isospin states in Eq. (12)
with color ⊗ spin states for the Young tableau [211] in
Eq. (24) as well as the Young tableau [211], [22], and [31]
in Eq. (23). Therefore, we have four isospin ⊗ color ⊗
spin states with f123g symmetry for I ¼ 1=2,

ð34Þ

Here and in the next two equations, we have neglected the
explicit notation of particle 4 (and 5) as we are only
interested in the symmetry properties of particles 1–3.
From the notation of the color singlets in Eq. (17), which
represents the symmetry of the permutation group, S3, we
easily see that the jC3i state has the symmetry property with
f123g. For that reason, the isospin⊗ spin state in combining
with the jC3i state should be fully symmetric in the exchange
of any pair among particles 1–3, and the coupling of the jC3i
state with the isospin ⊗ spin states gives the isospin ⊗
color ⊗ spin state with f123g symmetry. We denote the
isospin ⊗ spin states satisfying fully symmetry by

ð35Þ

On the contrary, since both jS3=21 i and jS3=22 i sates in Eq. (19)
are fully symmetric in the exchange of any pair among
particles 1–3, the isospin ⊗ color state in combining with
either the jS3=21 i or jS3=22 i state should have the opposite
symmetry for the same reason. We denote the isospin ⊗
color state satisfying full antisymmetry by
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ð36Þ
Lastly, we can consider the color ⊗ spin states correspond-
ing to the Young tableau that are conjugate to that of the
isospin states, for the reason that any fully antisymmetric
state can be obtained by the coupling of any Young tableau
with the conjugate. We denote the color ⊗ spin states
corresponding to the Young tableau [21] for particles 1–3 by

ð37Þ

We denote another set of the isospin ⊗ color ⊗ spin states
satisfying full symmetry by

ð38Þ

We note that both the states in Eq. (34) and the states in
Eq. (38) are orthonormal to each other in four-dimensional
vector space, respectively.
It isworthwhile tomention that froma hadron state point of

view jψ1i accounts for the ðpÞ1 ⊗ ðJ=ψÞ1 state, where the
subscript indicates the color state; in fact the color part
consists of the color singlet of a baryonmultiplied by the color

singlet of a meson, and the spin part contains a baryon with
spin ¼ 1=2multiplied by a meson with spin ¼ 1 in Eq. (21).
On the other hand, jψ2i represents the ðpÞ8 ⊗ ðJ=ψÞ8 state,
namely coming from the color octet of a baryonmultiplied by
the color octet of ameson. By rearranging the quarks, one can
also represent this state as a linear combination of a charmed
baryon and meson state as we show in Appendix C.
In a vector space with four dimensions where the

isospin ⊗ color ⊗ spin states have the symmetry property
with f123g, there exists an orthogonal matrix that trans-
forms the set of Eq. (38) into the set of Eq. (34), given by

0
BBBBB@

1ffiffi
6

p 1ffiffi
3

p − 1ffiffi
2

p 0

− 1ffiffi
6

p − 1ffiffi
3

p − 1ffiffi
2

p 0

−
ffiffi
2

pffiffi
3

p − 1ffiffi
3

p 0 0

0 0 0 1

1
CCCCCA
: ð39Þ

IV. NUMERICAL RESULTS

In this section, we analyze the numerical results per-
formed using the variational method for the Hamiltonian
given in Eq. (1). For that purpose, we adopt the trial wave
function that consists of the spatial function in Eq. (9) and
the isospin ⊗ color ⊗ spin states obtained from Sec. III.
The trial wave function can thus be expanded as follows:

jΨαi ¼
X
i

Cα
i jRij½ICS�ii: ð40Þ

Before discussing the numerical analysis, it is useful to
examine the expectation value of the color spin part of the
hyperfine potential, with the spatial dependence factored
out, in the matrix form generated by the four independent
isospin ⊗ color ⊗ spin states. This hyperfine matrix is
essential in identifying possible attraction in the four
configurations. A stable or resonant pentaquark state can
only exist if the hyperfine potential of the pentaquark
configuration is sufficiently attractive compared to that
from the sum of a baryon and a meson. The 4 by 4 matrix
form of the expectation value of the hyperfine factor of the
pentaquark configuration generated by the isospin ⊗
color ⊗ spin states in Eq. (34) is given as follows:

−
�X5

i<j

1

mimj
λci λ

c
jσi ·σj

�
¼

0
BBBBBBB@

− 7
3m1

2þ 1
2m2

2 þ 19
6m1m2

−
ffiffi
2

p
3m1

2 þ 7

3
ffiffi
2

p
m2

2 − 5
ffiffi
2

p
6m1m2

5ffiffi
3

p
m1

2− 5

2
ffiffi
3

p
m2

2 − 5

2
ffiffi
3

p
m1m2

ffiffi
5

p
3
ffiffi
2

p
m2

2þ 23
ffiffi
5

p
3
ffiffi
2

p
m1m2

−
ffiffi
2

p
3m1

2þ 7

3
ffiffi
2

p
m2

2 − 5
ffiffi
2

p
6m1m2

− 8
3m1

2 þ 5
3m2

2þ 7
3m1m2

5
ffiffi
2

pffiffi
3

p
m1

2 − 5ffiffi
6

p
m2

2 − 5ffiffi
6

p
m1m2

ffiffi
5

p
3m2

2 −
ffiffi
5

p
3m1m2

5ffiffi
3

p
m1

2 − 5

2
ffiffi
3

p
m2

2− 5

2
ffiffi
3

p
m1m2

5
ffiffi
2

pffiffi
3

p
m1

2− 5ffiffi
6

p
m2

2 − 5ffiffi
6

p
m1m2

− 3
m1

2 þ 17
6m2

2− 13
2m1m2

ffiffi
5

pffiffi
6

p
m2

2 −
ffiffi
5

pffiffi
6

p
m1m2ffiffi

5
p

3
ffiffi
2

p
m2

2 þ 23
ffiffi
5

p
3
ffiffi
2

p
m1m2

ffiffi
5

p
3m2

2 −
ffiffi
5

p
3m1m2

ffiffi
5

pffiffi
6

p
m2

2 −
ffiffi
5

pffiffi
6

p
m1m2

2
m1

2 þ 1
m2

2 − 3
m1m2

1
CCCCCCCA
:

ð41Þ
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To compare the expectation values of the hyperfine
factor of the pentaquark with the corresponding sum of
a baryon and a meson, we need to diagonalize
−hP5

i<j
1

mimj
λci λ

c
jσi · σji in Eq. (41) and compare it to

the possible decay channels. The diagonalized form of
the matrix −hP5

i<j
1

mimj
λci λ

c
jσi · σji in Eq. (41) can be

represented as combinations of terms proportional to
1=m1

2, 1=m2
2, and 1=ðm1m2Þ, respectively. When the

fitting mass mu and mc in Table I is used, the ground
state is given as

−
7.88
m1

2
þ 5.29

m2
2
−

1.41
m1m2

¼ −87.3 ðGeVÞ−2: ð42Þ

As can be seen in Table III, the ground state of the
diagonalized hyperfine factor of the pentaquark in Eq. (42)
is slightly more attractive than the most attractive pþ J=ψ
decay channel. This attraction is coming from the term
proportional to 1=m1m2, which originates from the addi-
tional attraction coming from bringing the color octet
component of p and J=ψ together, as noted recently in
Ref. [24]. However, as we show below, the attraction is very
small and does not compensate for the additional kinetic
energy term that arises from making the pentaquark state
compact compared to the isolated meson baryon states.
To investigate themass and the property of the pentaquark

with the variational method, we calculate the Schrödinger
equationHjΨαi ¼ EαjΨαi and diagonalize the 4 × 4matrix.
We find the ground state to be 4087.6MeV, which is the sum
of the mass of the p and J=ψ in our model. The wave
function is given as

jΨgi ¼ −0.4082jRij½I12CS�1i − 0.5773jRij½I12CS�2i
þ 0.7071jRij½I12CS�3i; ð43Þ

where the variational parameters are given as a1¼ 3.4 fm−2,
a2 ¼ 1.4 fm−2, a3 ¼ 11 fm−2, and a4 ∼ 0. The first two
parameters and the third parameter correspond to those of
the baryon andmeson, respectively, while the last shows that
the distance between the center ofmass of the baryon and the
meson approaches infinity. In fact, as we can see from the

transformation matrix in Eq. (39), the ground state, jΨgi, for
I ¼ 1=2 is exactly equal to −ðpÞ1 ⊗ ðJ=ψÞ1 corresponding
to jψ1i in Eq. (38), which means that the ground state
corresponds to the isolated p and J=ψ state in the relative
S wave.
It is useful to inspect the expectation value of the

Hamiltonian for the state jψ1i to understand why the
separated p and J=ψ configuration becomes the ground
state. First, the hyperfine potential −hP5

i<j
1

mimj
λci λ

c
jσi · σji

is − 8
m1

2 þ 16
3m2

2, which is exactly equal to the sum of the

expectation value of the p and J=ψ with the first term (the
second) coming from the p (J=ψ). Moreover, as discussed
before, the lowest eigenvalue of the hyperfine matrix is not
so different from this value, suggesting that the attraction in
the color octet p and J=ψ is not so strong. As for the
confinement potential, as can be seen from Eqs. (A1) and
(A2) in the appendix, the first diagonal components consist
of the terms corresponding to the p and J=ψ only.
Therefore, the only mass difference between the pentaquark
and the pþ J=ψ channel comes from the additional kinetic
term, which vanishes for the separated pþ J=ψ state.
Using the last term in Eq. (10), one can estimate the
additional kinetic energy to bring the p and J=ψ together.
Taking a4 ∼ 2 fm−2, which corresponds to a separation of
about 0.7 fm, one obtains an extra kinetic energy of
200 MeV, making the energy of the compact pentaquark
state around 4290 MeV. Even if we allow the other three
states to mix, which could bring in small additional
hyperfine attraction, the additional confining potential will
conspire to keep the ðpÞ1 ⊗ ðJ=ψÞ1 state the dominant
compact configuration. Obviously, such a compact state
would just fall apart into the pþ J=ψ state and thus not be
stable unless the spatial wave function has a small overlap
with the final state pþ J=ψ [33].
As any configuration generated with jψ1i is dominated

by the fall apart pþ J=ψ state, we need to investigate
whether the excited state can be compact and quasistable.
To accomplish this, we consider the jψ2i, jψ3i, and jψ4i in
Eq. (38) without jψ1i. The detailed property of the excited
state of this state is given in Table IV. Because of the
quantum numbers, except for the pþ J=ψ configuration,
the excited states cannot be written as a sum of a single
baryon and meson state. Hence, we find a compact state.
However, it can decay into several baryon and meson decay
channels and is not stable. As for the color spin part of the
potential −hP5

i<j
1

mimj
λci λ

c
jσi · σji, we find that this state

has the following form:

−
1.27
m1

2
−
0.45
m2

2
−

5.38
m1m2

¼ −23.4 ðGeVÞ−2: ð44Þ

While the diagonalized hyperfine factor is less attractive
than that of the pþ J=ψ and Λc þD� decay channels, it is
still more attractive than other decay channels. Nevertheless,

TABLE III. The sum of the expectation value of the hyperfine
factor of both a baryon and a meson for the possible decay
channel with respect to I ¼ 1=2. The third column shows the
value for the fitting mass mu and mc [in units ðGeVÞ−2].
Decay channel −hPN

i<j
1

mimj
λci λ

c
jσi · σji Value

pJ=ψ − 8
m1

2 þ 16
3m2

2 −86.2
ΛcD� − 8

m1
2 þ 16

3m1m2
−78.3

Σ�
cD 8

3m1
2 − 32

3m1m2
10.5

ΣcD� 8
3m1

2 − 16
3m1m2

19.8

Σ�
cD� 8

3m1
2 þ 32

3m1m2
47.9
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the reason why the excited state has energy larger than any
decay channel is due to the large contribution from the
confining potential. As discussed in the appendix, the sumof
the color matrix is all equal for the four orthonormal states.
However, due to the interplay with the kinetic term, the
confining part of the potential is most attractive in the pþ
J=ψ channel. The contributions from the kinetic, confine-
ment, and hyperfine interaction terms for the excited
pentaquark state as well as separated baryon meson states
are summarized in Table V. The large confinement con-
tribution for the pentaquark state can be seen in Table V. The
obtained mass is too large for it to be one of the recently
observed pentaquark states. Moreover, it will decay to all
possible baryon meson states and not be stable.

V. SUMMARY

To understand the possible quark configuration of the
recently observed hidden charm pentaquark state, we sys-
tematically construct the isospin ⊗ color ⊗ spin pentaquark
states containing two heavy quarks and antiquarks with

I ¼ 1=2 and S ¼ 3=2 that satisfy the Pauli principle. We
systematically derive the isospin ⊗ color ⊗ spin states from
the color and spin coupling scheme, which is based on the
permutation group property. We found that there are four
orthonormal states, one ofwhich is the color, spin, and isospin
corresponding to the proton and J=ψ . Then, by using a spatial
trial wave function that is suitable for describing
the decay into a baryon and meson state, we perform the
variational method to obtain the lowest mass state of the
pentaquark with I ¼ 1=2 and S ¼ 3=2. We found that
the ground state is the isolated pþ J=ψ state and that the
compact configuration with the lowest energy is also domi-
nated by the same baryon and meson state, which will thus
fall apart or decay to the ground state.We further calculate the
mass with an excited state, involving the other isospin ⊗
color ⊗ spin states that are orthonormal to the ground state.
The mass of the compact excited state is found to be well
above all baryonmesondecay channels andnot stable.We are
therefore led to conclude that the recently observed penta-
quark state cannot be a compact multiquark state within the
conventional constituent quark model with only confining
and color spin interaction. There could still be intrinsic three-
or four-body quark interaction that might change the sit-
uation. A flux-tube inspired configuration leading to a
confinement different from those used in the additive rule
in Eq. (1) may increase the stability of pentaquarks.
As we discuss in Appendix C, it should be noted that all

the discussion based on the color basis can be recast into a
basis composed of color singlet baryon-meson basis. In fact,
if there were any additional strong attraction due to color
interaction from bringing all the quarks together, such an
effect should also be present in the baryon-meson basis. In
thiswork,we chose to probe such a possibility in terms of the
conventional quark interaction that should be valid typically
only up to distances of normal hadrons. If the state is a
resonance of larger size or a hadronic bound state, such as the
deuteron, our approach will certainly not be able to probe. A
minimal extension of our approach to probe such a con-
figuration has to include interactions involving pions and/or
other mesons, which could be a topic for future works.
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APPENDIX A: THE MATRIX ELEMENT OF λci λ
c
j

In Appendix A, we present the matrix element of
λci λ

c
j (i < j ¼ 1 ∼ 5) of the pentaquark in terms of a

TABLE IV. The mass of the excited state of the pentaquark with
I ¼ 1=2 obtained from the variational method, by diagonalizing
the matrix element of the Hamiltonian in terms of jRijψ2i,
jRijψ3i, and jRijψ4i. ΔB indicate the binding energy. The units
for the energy and variational parameter are GeV and fm−2,
respectively.

I ¼ 1=2 q3cc̄

Mass 4.626

Variational
parameters a1 ¼ 2.3, a2 ¼ 1.4, a3 ¼ 4, a2 ¼ 3.4

Decay channel pJ=ψ ΛcD� Σ�
cD ΣcD� Σ�

cD�
Threshold 4.088 4.298 4.408 4.471 4.548
ΔB 0.538 0.328 0.218 0.155 0.078

TABLE V. The values of each energy term of the excited state
of the pentaquark and the sum of a baryon and a meson in the
decay channel. ΔE is the difference between the pentaquark and
its decay channel in each term (units in MeV).

Pentaquark Kinetic Comfinement Hyperfine

The excited state 1144.3 1238 −52.1

Decay channel Kinetic Comfinement Hyperfine

pJ=ψ 1190.5 745.8 −145.1
ΔE −46.2 492.2 93
ΛcD� 1192.7 982.2 −173.1
ΔE −48.4 255.8 121
Σ�
cD 1105.3 1055.1 −48.6

ΔE 39 182.9 −3.5
ΣcD� 1046.5 1102.9 25.8
ΔE 97.8 135.1 −77.9
Σ�
cD� 993.1 1157 101.4

ΔE 151.2 81 −153.5
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four-dimensional matrix generated by the states jψ1i, jψ2i,
jψ3i, and jψ4i in Eq. (38).
(a) ði; jÞ ¼ ð1; 2Þ, (1,3), or (2,3),

hλci λcji ¼

0
BBBBB@

− 8
3

0 0 0

0 − 2
3

0 0

0 0 − 2
3

0

0 0 0 − 2
3

1
CCCCCA
; ðA1Þ

(b) ði; jÞ ¼ ð1; 4Þ, (1,5), (2,4), (2,5), (3,4), or (3,5),

hλci λcji ¼

0
BBBB@

0 0 0 0

0 −2 0 0

0 0 −2 0

0 0 0 −2

1
CCCCA; ðA2Þ

(c) ði; jÞ ¼ ð4; 5Þ,

hλci λcji ¼

0
BBBB@

− 16
3

0 0 0

0 2
3

0 0

0 0 2
3

0

0 0 0 2
3

1
CCCCA: ðA3Þ

It is easily seen that hP5
i<j λ

c
i λ

c
ji ¼ −40=3I, where the

I is the identity matrix.
In the case of a baryon, hP3

i<j λ
c
i λ

c
ji ¼ −8 coming from

the color singlet state 1ffiffi
6

p ϵijkqið1Þqjð2Þqkð3ÞÞ. For a meson

state, hλc4λc5i ¼ −16=3with the color state q̄ið4Þqið5Þ. These
values are the first diagonal components in the above matrix
elements. Hence, as pointed out before, we find that the first
diagonal term of hP5

i<j λ
c
i λ

c
ji of the pentaquark is just the

sum of those of the baryon and meson. In fact, as far as this
color matrix is concerned, all the four sums of the diagonal
matrix elements have the same value. However, depending
on the spatial wave function, the matrices for the confining
potential have different weighting factors coming from
spatial wave functions and their sum is no longer propor-
tional to the identity matrix. If the kinetic terms are
considered, it is energetically more favorable to maximize
the attraction in the p and J=ψ channel, which makes it the
most attractive state even for compact configurations.

APPENDIX B: THE COLOR SINGLETS
OF THE PENTAQUARK

In Appendix B, we present the tensor form for the color
singlet states of the pentaquark, and prove Eq. (18). We can

first represent the Young-Yamanuchi bases of the Young
tableau [211] in Eq. (13) as a rank (1,0) tensor. First, one
notes that

fð123Þ14g3 ¼
1ffiffiffi
6

p ϵlmnqlð1Þqmð2Þqnð3Þqið4Þ: ðB1Þ

Then, using the well-known relation between Young-
Yamanuchi bases, we can obtain the other Young-
Yamanuchi basis for the Young tableau [211],

fð12Þ3̄34g3 ¼
3ffiffiffi
8

p
	
ð34Þfð123Þ14g3 −

1

3
fð123Þ14g3



;

fð12Þ6ð34Þ3̄g3 ¼
2ffiffiffi
3

p
	
ð23Þfð12Þ3̄34g3 −

1

2
fð12Þ3̄34g3



;

ðB2Þ

where (34) and (23) are the permutation operators.
We represent the fð12Þ3̄34g3 and fð12Þ6ð34Þ3̄g3 as
follows:

fð12Þ3̄34g3 ¼
ffiffiffi
3

p

4

	
ϵlmnqlð1Þqmð2Þqnð4Þqið3Þ

−
1

3
ϵlmnqlð1Þqmð2Þqnð3Þqið4Þ



;

fð12Þ6ð34Þ3̄g3 ¼
1

4
½ϵlmnqlð1Þqmð3Þqnð4Þqið2Þ

þ ϵlmnqlð2Þqmð2Þqnð4Þqið1Þ�: ðB3Þ

In calculating the fð12Þ6ð34Þ3̄g3 we utilize the useful
formula, given by

ϵlmnqlð1Þqmð2Þqnð3Þqið4Þ − ϵlmnqlð1Þqmð2Þqnð4Þqið3Þ
¼ −ϵlmnqlð1Þqmð3Þqnð4Þqið2Þ
þ ϵlmnqlð2Þqmð3Þqnð4Þqið1Þ: ðB4Þ

It is easily seen that fð12Þ3̄34g3 is antisymmetric under
the exchange of particles 1 and 2, while fð12Þ6ð34Þ3̄g3 is
symmetric (antisymmetric) under the exchange of par-
ticles 1 and 2 (particles 3 and 4).
Finally, we can obtain the three color singlets of the

pentaquark, which are orthogonal to each other, by com-
bining fð123Þ14g3, fð12Þ3̄34g3, and fð12Þ6ð34Þ3̄g3 with
q̄ið5Þ, a rank (0,1) tensor, through contraction and nor-
malization. These are given as
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½fð12Þ6ð34Þ3̄g353̄�1 ¼
1

4
ffiffiffi
3

p ½ϵlmnqlð1Þqmð3Þqnð4Þqið2Þq̄ið5Þ

þ ϵlmnqlð2Þqmð3Þqnð4Þqið1Þq̄ið5Þ�
¼ jC1i;

½fð12Þ3̄34g353̄�1 ¼
1

4
½ϵlmnqlð1Þqmð2Þqnð4Þqið3Þq̄ið5Þ

−
1

3
ϵlmnqlð1Þqmð2Þqnð3Þqið4Þq̄ið5Þ�

¼ jC2i;

½fð123Þ14g353̄�1 ¼
1

3
ffiffiffi
2

p ϵlmnqlð1Þqmð2Þqnð3Þqið4Þq̄ið5Þ

¼ jC3i: ðB5Þ

Now we prove that the three color singlets in Eq. (17) are
the same as Eq. (B5). To begin with, we can represent the
fð12Þ3̄3g8 corresponding to a Young-Yamanuchi basis of
the Young tableau [21] in Eq. (15) as a traceless rank (1,1)
form, as follows:

fð12Þ3̄3g8 ¼ ϵiklqkð1Þqlð2Þqjð3Þ

−
1

3
δijϵ

lmnqlð1Þqmð2Þqnð3Þ: ðB6Þ

As for the other fð12Þ63g8 state, corresponding to the other
Young-Yamanuchi basis of the Young tableau [21], we use
the following formula,

fð12Þ63g8 ¼
2ffiffiffi
3

p
	
ð23Þfð12Þ3̄3g8 −

1

2
fð12Þ3̄3g8



; ðB7Þ

where (23) is the permutation operator. Furthermore, using
the following useful formula,

δijϵ
lmnqlð1Þqmð2Þqnð3Þ
¼ ϵiklqkð2Þqlð3Þqjð1Þ − ϵiklqkð1Þqlð3Þqjð2Þ
þ ϵiklqkð1Þqlð2Þqjð3Þ; ðB8Þ

we can represent fð12Þ63g8 as follows:

fð12Þ63g8 ¼
1ffiffiffi
3

p ½ϵiklqkð2Þqlð3Þqjð1Þ

þ ϵiklqkð1Þqlð3Þqjð2Þ�: ðB9Þ

It is easily seen that fð12Þ63g8 is symmetric under the
exchange of particles 1 and 2. The remaining part of the
Young-Yamanuchi basis of the Young tableau [21] in
Eq. (16) can be represented as the traceless rank (1,1) tensor

ð45Þ8 ¼ qið4Þq̄jð5Þ −
1

3
δjiqlð4Þq̄lð5Þ: ðB10Þ

We can now show that ½fð12Þ6ð34Þ3̄g353̄�1 and
½fð12Þ3̄34g353̄�1 in Eq. (B5) are obtained by combining
fð12Þ63g8 and fð12Þ3̄3g8 with Eq. (B10), respectively,
through contraction and normalization.
In addition, it is easy to see that the Young-Yamanouchi

bases of the Young tableau [211] in Eq. (13) can be obtained
from combining ð123Þ1, fð12Þ63g8, and fð12Þ3̄3g8 with
qið4Þ through contraction and normalization, resulting in a
rank (1,0) tensor.

APPENDIX C: INDEPENDENT COLOR BASIS

The three color singlet states in Eq. (B5) form a
complete set of color basis for the color singlet penta-
quark. We can construct another complete set of color
bases for the color singlet pentaquark, by exchanging any
two particles among particles 1–4. A complete set of
color basis obtained by exchanging particles 3 and 4 is
given by

jC0
1i ¼

1

4
ffiffiffi
3

p ½ϵlmnqlð1Þqmð4Þqnð3Þqið2Þq̄ið5Þ

þ ϵlmnqlð2Þqmð4Þqnð3Þqið1Þq̄ið5Þ�;

jC0
2i ¼

1

4
½ϵlmnqlð1Þqmð2Þqnð3Þqið4Þq̄ið5Þ

−
1

3
ϵlmnqlð1Þqmð2Þqnð4Þqið3Þq̄ið5Þ�;

jC0
3i ¼

1

3
ffiffiffi
2

p ϵlmnqlð1Þqmð2Þqnð4Þqið3Þq̄ið5Þ: ðC1Þ

Furthermore, the complete set in Eq. (C1) is related to
that in Eq. (B5) through an orthogonal transformation as
follows:

jC0
1i ¼ −jC1i;

jC0
2i ¼ −

1

3
jC2i þ

2
ffiffiffi
2

p

3
jC3i;

jC0
3i ¼

2
ffiffiffi
2

p

3
jC2i þ

1

3
jC3i: ðC2Þ

It should be noted that the set in Eq. (C1) takes the form
of linear sums of the product of a color singlet baryon
and a color singlet meson, but with different quarks
forming the baryon and meson states.
When we combine Eq. (B4) with q̄ið5Þ through

contraction, we can obtain a useful formula that con-
strains the four color singlet baryon meson states appear-
ing in the right-hand side of Eq. (C1) through the
following equation:
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1

3
ffiffiffi
2

p ϵlmnqlð1Þqmð2Þqnð3Þqið4Þq̄ið5Þ
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Therefore, the independent color set can also be
expressed in terms of three independent states that are
expressed as products of a color singlet baryon and a
color singlet meson configuration. One possible choice
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