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We employ a mathematical framework based on rational approximants in order to calculate the
pseudoscalar-pole piece of the hadronic light-by-light contribution to the anomalous magnetic moment of

the muon, aHLbL;Pμ . The method is systematic and data based, profiting from over 13 different collaborations,
and able to ascribe, for the first time, a systematic uncertainty which provides for the model independence.

As a result,we obtainaHLbL;Pμ ¼ 94.3ð5.3Þ × 10−11, whose uncertainty iswell below the one foreseen at future
experiments measuring the ðgμ − 2Þ.
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I. INTRODUCTION

The anomalous magnetic moment of the muon,
aμ ≡ ðgμ − 2Þ=2, represents one of our finest tests of the
Standard Model (SM) of particle physics, and its most
recent measurement, aexpμ ¼ 116592091ð63Þ × 10−11 [1,2],
has reached the astonishing precision of 0.54 ppm. At such
precision, aμ does not only provide a beautiful test of our
understanding of elementary interactions, but represents an
interesting probe of physics beyond the SM. Indeed, there
is at present a discrepancy among experiment and theory of
around 3σ [3].1 For this reason, two new experiments have
been projected both at Fermilab [7] and J-PARC [8], which
expect to measure aμ at a precision of around 0.14 ppm
and would shed light on the nature of the present discrep-
ancy. However, such a tremendous effort on reducing the
experimental uncertainty would be in vain unless the
current theoretical calculations would reach a similar
accuracy. At present, the theoretical error is dominated
by two different hadronic contributions: the hadronic
vacuum polarization (HVP), which amounts to 58 ppm
to aμ and with an uncertainty of around 0.36 ppm [3],
and the hadronic light-by-light (HLbL), which amounts to
0.87 ppm to aμ and with an uncertainty of around 0.33 ppm
[3], leading to a total theoretical error reading 0.49 ppm.
These calculations, involving complicated loop integrals,
are hindered via the nonperturbative hadronic physics
dominating the loop integrals. Fortunately, such compli-
cations can be overcome for the dominant contribution, the

HVP, since it is related through the optical theorem to
the σðeþe− → hadronsÞ cross section. It is expected that,
in the near future, the ongoing experimental program
will allow us to reduce the HVP errors according to what
future experiments require. Still, such effort would be
fruitless unless a similar reduction in the precision of the
HLbL is achieved, which would otherwise dominate the
theoretical SM uncertainty and make the experimental
efforts pointless.
By contrast to the HVP, the HLbL entails a much richer

structure that avoids an easy connection to data. As a
consequence, the existing calculations have required cer-
tain modeling and approximation procedures. Ascribing
them a systematic error is a difficult task, but the variety of
the present results [3] already suggests an error which is
potentially larger than the future experiments’ precision,
which demands a new, more accurate and less model-
dependent evaluation. Among the different contributions
to the hadronic-light-by-light, the pseudoscalar pole seems
to dominate the full quantity, requiring therefore the best
precision. Fortunately, such quantity can be rigorously
defined in a quantum field theory and related to the
pseudoscalar transition form factors (TFFs), which are
observable quantities. This offers an opportunity to perform
a data-driven approach for this contribution provided that a
reliable method is established. In this work, we discuss a
novel method based on Canterbury approximants (bivariate
Padé approximants) which provides a mathematically and
data-based description for the involved TFFs in the space-
like (SL) region, allowing then for a model-independent
calculation for the pseudoscalar-pole contribution to the
hadronic-light-by-light which includes, for the first time,
the sought systematic error which has been missing in
previous calculations. Special attention on the reasons
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which justify the use of Canterbury approximants in
contrast to previous resonance approaches is given.
The paper is structured as follows: first, we briefly

introduce the most general HLbL contribution to aμ and its
general features in Sec. II. Its main piece, the pseudoscalar
pole, is presented in Sec. III; this includes also a brief
overview of current theoretical approaches and motivates
the reasons for our new study based on Canterbury
approximants. These are subsequently presented in
Sec. IV. Finally, we give our results in Sec. V and discuss
the role of future data in Sec. VI. Much information is
relegated to the Appendixes, including, among others, the
impact of P → l̄l decays, a discussion concerning the
light-quark TFF, comments concerning the pseudoscalar-
exchange approach, a discussion on dispersion relations,
and our most-updated data input profiting from over 13
different collaborations.

II. HADRONIC LIGHT-BY-LIGHT
CONTRIBUTION

The HLbL contribution to aμ (cf. Refs. [3,9]) is depicted
in Fig. 1, where the gray blob represents the HLbL tensor
defined as

Πμνλρðq1; q2; q3Þ ¼
Z

d4x
Z

d4y
Z

d4zeiðq1·xþq2·yþq3·zÞ

× hΩjTfjμðxÞjνðyÞjλðzÞjρð0ÞgjΩi;
ð1Þ

with all the momenta, qi, outgoing. The resulting contri-
bution to aμ can be expressed in terms of this hadronic
quantity using projection techniques that allow us to
specialize to the kinematical limit relevant to aμ ðk → 0Þ
in advance, obtaining [10]

aHLbLμ ¼ −ie6

48mμ

Z
d4q1
ð2πÞ4

Z
d4q2
ð2πÞ4

1

q21q
2
2ðq1 þ q2Þ2

×
1

ðp − q1 − q2Þ2 −m2
μ

1

ðp − q1Þ2 −m2
μ

× trððpþmμÞ½γρ; γσ�ðpþmμÞγμðp − q1 þmμÞγν
× ðp − q1 − q2 þmμÞγλÞ

×

� ∂
∂kρΠμνλσðq1; q2; k − q1 − q2Þ

�
k→0

: ð2Þ

Such quantity requires, as input, the HLbL tensor at all
energy scales, including the (nonperturbative) low energies,
which turn out to play the major role in numerical
calculations as we will illustrate for the particular case
of the π0-pole contribution. Qualitatively, this can be

understood, after Wick rotation, from the propagators
in Eq. (2).
A full description of the HLbL tensor is far from a trivial

task. As an illustration, while the dominant HVP requires a
scalar function depending on a single energy scale, the
HLbL tensor involves 138 scalar functions2 and six scalar
variables (the four photon virtualities, fq2i gi¼1�4, and two
Mandelstam variables). In order to deal with such object,
E. de Rafael proposed more than twenty years ago [13]
(see also Ref. [14]), to work out this tensor in the context of
low-energy QCD, as the relevant photon energies are of the
order of the muon mass. In this respect, he proposed to split
the most relevant contributions to this tensor following the
intuition provided by a combined expansion in terms of the
chiral and the large-number-of-colors (Nc) limits of QCD,
whereas large-Nc represents the only known perturbative
approach to QCD, the chiral expansion, in powers of
momentum (q2i ), which helps to identify those contribu-
tions which play the main role at low energies—the most
important in the calculation. According to this proposal,
the leading contributions to the HLbL tensor are the
pseudoscalar loop contributions, at order OðN0

c; q4Þ, and
the pseudoscalar-pole terms, at order OðNc; q6Þ. Following
these ideas, subleading contributions will account for
heavier resonances and the continuum quark-loop contri-
butions, all of them of order OðNc; q8Þ. It remains then the
task to calculate all the relevant contributions as accurate
and precise as possible.
Actually, most of the results in the literature follow de

Rafael’s proposal (see Refs. [3,9,15–29], including full
and partial contributions to aHLbLμ ), finding values for aHLbLμ

between basically 6 × 10−10 and up to almost 14 × 10−10.
Among them, the Jegerlehner and Nyffeler review [3],
quoting ð11.4� 4.0Þ × 10−10, and the Glasgow consensus
[9], written byPrades et al., and quoting ð10.5�2.6Þ×10−10,
represent in our opinion the standard reference values for
the HLbL. They agree well since they only differ by few
subtleties: theyboth used themodel fromKnecht andNyffeler
[10] to account for the dominant contribution, but differ on

FIG. 1. HLbL contribution to aμ. The grey blob represents the
HLbL tensor. q1−3 are outgoing momenta, whereas k is the
incoming external photon momentum.

2That number is however reduced after considering the Ward
identities and the kinematic configuration relevant to aμ [11,12].
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how to implement the high-energy QCD constraints and the
error propagation. Neither of both approaches contain how-
ever systematic errors from the chiral and large-Nc limits
[25,30–32], which are difficult to estimate (cf. also the
discussion in Ref. [33]). All in all, even though the QCD
features for the HLbL arewell understood [3,9], the details of
the particular calculations are important to get the numerical
result to the final required precision.
Nonetheless, alternative approaches to calculate the

HLbL contribution have appeared. As an example, a
ballpark estimate can be obtained using the analytical
result for the heavy quark loop contribution to the HLbL
in the lines of Refs. [30,34–37], finding somewhat higher
values around ð12–17Þ × 10−10. Alternatively, this can be
calculated within chiral perturbation theory, in which the
whole contribution depends on an unknown low-energy
constant [38]. Likewise, Dyson-Schwinger equations can
be used for this purpose [39–41]—find the most recent
advances in Refs. [40,42]. More recently, a proposal of
using a dispersive approach for reconstructing the HLbL
tensor has been considered in Refs. [12,43–45]. Such
approach relies on the splitting of the former tensor into
several pieces according to low-energy QCD, which most
relevant intermediates states are selected according to
their masses [13,14]; see Refs. [46,47] for recent advances.
Finally, for the first time, there have been different
proposals to perform a first principles evaluation by using
lattice QCD [48–51]. Whereas yet incomplete and with
some progress still required, promising advances have been
reported already [48–50].
Despite the combined chiral and large-Nc counting

yields the pseudoscalar loop contributions and the pseu-
doscalar-pole terms as the leading contributions to the
HLbL tensor, suggesting a similar size, the situation is
more subtle. The more careful discussion in Ref. [19]
observed that the typical size of the momentum running in
the pion loop turns out to be of order 4mπ [19], which
implies a slow convergence of the chiral expansion with
nonleading terms logarithmically enhanced. This reduces
the pion loop contribution with respect to the pion pole.
Phenomenologically, the former is found to be around 4
times smaller than the latter [3], which becomes thereby
the most relevant contribution to be calculated among the
different HLbL contributions. Since such contribution is
typically found to be of order 10−9, in order to meet the
0.14 ppm precision of future experiments, a precision
below 10% is a priori desired, which is beyond traditional
approaches’ performance.3

In the following section, we outline concisely what this
contribution refers to and its relation to the pseudoscalar
TFFs. In addition, the relevant kinematical regions of
interest are identified, whereby the requirements that a

TFF parametrization necessitates are obtained, which will
naturally motivate our approach employing Canterbury
approximants.

III. PSEUDOSCALAR-POLE CONTRIBUTION

The pseudoscalar-pole contribution to the HLbL tensor
can be easily obtained within the language of Green’s
functions along the lines in Chap. 10.2 from Ref. [52].
Inserting the identity as a sum over the QCD spectrum
(1 ¼ P

X

R
dΠXjXihXj, with jXi on shell intermediate

hadronic states) within the HLbL tensor Eq. (1), it is
obtained that such function exhibits well-isolated poles for
the lightest pseudoscalar states P ¼ fπ0; η; η0g ∈ X, whose
contribution to aHLbLμ is depicted in Fig. 2. This is, the
HLbL tensor can be expressed as (sum over P assumed)

Πμνλρðq1; q2; q3Þ ¼
Z

d4x
Z

d4zeiq1·xeiq3·z
i

q2 −m2
P þ iϵ

× h0jTfjμðxÞjνð0ÞgjPi
× hPjTfjλðzÞjρð0Þgj0i þ OT; ð3Þ

where q ¼ q1 þ q2 ¼ k − q3 and with OT referring both, to
different time orderings (crossed t and u channels) and to
additional contributions from the QCD spectrum (X ≠ P
and not necessarily of pseudoscalar nature) which do not
become singular as q2 → m2

P. Besides, for the on shell
pseudoscalar states, the matrix elements defined above are
related to the pseudoscalar TFFs (gray blobs in Fig. 2),
defined as4

iMμν
P→γ�γ� ≡

Z
d4xeiq1·xhΩjTfjμðxÞjνð0ÞgjPi

≡ −iϵμνρσq1ρq2σFPγ�γ� ðq21; q22Þ; ð4Þ

with ϵ0123 ¼ þ1. As a consequence, the contribution from
the pseudoscalar poles can be calculated as model indepen-
dent as the employed TFF description is, without incurring
in any ambiguity as pointed out in Refs. [12,43]. OT in
Eq. (3) defines heavier states—which could be hardly
included in this way given their widths [2]—and continuum
contributions. These processes cannot however induce a
nonanalytic behavior at energies close to the lightest
pseudoscalar masses, which allow us to disentangle

FIG. 2. The pseudoscalar-pole contribution to aHLbLμ .

3As we illustrate in the following sections, the current values
[3,9] entail potential large systematic errors above 10%. 4Note that the ðieÞ2 coupling is already implicit in Eq. (2).
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the pseudoscalar-pole contribution, as previously said,
unambiguously.
At this point, it is worth to make a brief digression and

comment on what is referred as the pseudoscalar-exchange
contribution, an analytically similar but theoretically differ-
ent contribution to the pseudoscalar-pole one. The authors
from Ref. [19] realized that the pseudoscalar-pole contri-
bution could not reproduce the high-energy QCD con-
straints imposed by the OPE for the full HLbL tensor.
However, by setting the TFF involving the external photon
to a constant one, such constraint can be satisfied. Their
approach, as they mention [19], was meant as a model to
interpolate the full HLbL tensor from the low to the high
energies, which includes, effectively, excited pseudoscalar
resonances. Later on, Ref. [3] criticized such an approach
and introduced what is known as the off shell TFF. This
approach intends to consider all the pseudoscalar contri-
butions (i.e., heavier resonances and continuum) into an off
shell pseudoscalar TFF by connecting with the hVVPi
Green’s function and imposing its well-known high-energy
behavior [19]. We note that such a procedure cannot be
rigorously derived as a pole contribution, and could be
thought as a model interpolating the low- and high-energy
behavior for the exchange of pseudoscalarlike resonances
in Eq. (3).
It is not our intention to discuss how the high

energies of the HLbL tensor should be implemented
in terms of the pseudoscalar-pole contribution; our more
modest concern is to discuss a model-independent
data-based description for the pseudoscalar-pole contri-
bution to the aHLbLμ , inspired by new and forthcoming
experimental results, lattice simulations, and dispersive
representations.
The pseudoscalar-pole contribution to the HLbL tensor

[Eq. (3)] is given explicitly in Eq. (A1) and involves the s, t,
and u channels as illustrated in Fig. 2. Inserting this into
Eq. (2), performing the Wick rotation and using the
Gegenbauer technique to perform angular integrations
[10], the pseudoscalar-pole contribution to aHLbLμ can be
expressed as an integral over one angular variable and two
spacelike momenta [3],

aHLbL;Pμ ¼ −2π
3

�
α

π

�
3
Z

∞

0

dQ1dQ2

Z þ1

−1
dt

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p
Q3

1Q
3
2

×

�
F1I1ðQ1; Q2; tÞ

Q2
2 þm2

P
þ F2I2ðQ1; Q2; tÞ

Q2
3 þm2

P

�

≡
�
α

π

�
3
Z

∞

0

dQ1dQ2

Z þ1

−1
dt½w1F1 þ w2F2�;

ð5Þ

where F1 and F2 are defined as

F1 ¼ FPγ�γ� ðQ2
1; Q

2
3ÞFPγ�γðQ2

2; 0Þ;
F2 ¼ FPγ�γ� ðQ2

1; Q
2
2ÞFPγ�γðQ2

3; 0Þ; ð6Þ

with Q2
3 ¼ Q2

1 þQ2
2 þ 2Q1Q2t. The I1;2ðQ1; Q2; tÞ func-

tions are defined in Appendix A andw1;2 ≡ w1;2ðQ1; Q2; tÞ.
F1;2 are products of the relevant TFFs appearing in the
blobs in Fig. 2 and are to be evaluated in the SL region.
Notice the product of a single- and a double-virtual TFF.
The two integrands in Eq. (5) for the π0 case are shown in
Fig. 3 for a constant TFF (FPγ�γ�ðQ2

1; Q
2
2Þ≡ 1) and t ¼ 0

along with the η0 case for the first integrand alone—similar
results hold for different t values.5

In general, for a given pseudoscalar, the integrand
involving w2 is an order of magnitude smaller than that
involving w1 (cf. left vs center panels in Fig. 3) and is
peaked at low energies. Particularly, in such a regime, it can
be described as

w2ðQ1; Q2; tÞ ∼
Q2

1ð2Þ
m2

P

�
aðtÞ þ bðtÞQ2ð1Þ

mμ
þ � � �

�
þ � � � ;

ð7Þ

which hints the large rising close to Q2
i ∼m2

P;μ (a similar
behavior holds for w1), whereas the high-energy behavior
reads [53]

FIG. 3. The w1;2ðQ1; Q2; tÞ integrands in Eq. (5) for t ¼ 0 and a constant TFF. The first two stand for w1ðQ1; Q2; tÞ and w2ðQ1; Q2; tÞ
functions for the π0 case; the third one stands for w1ðQ1; Q2; tÞ for the η0 case. Note the difference in scales.

5For a thorough description of these integrands, the interested
reader is referred to Ref. [53].
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lim
Q2

1ð2Þ→∞
w2ðQ1; Q2; tÞ ∼Q−3

1ð2Þ þOðQ−4
1ð2ÞÞ;

lim
Q2→∞

w2ðQ;Q; tÞ ∼Q−4 þOðQ−6Þ: ð8Þ

The integral involving w2 remains therefore finite even for a
constant TFF. As a consequence, only a precise description
for the TFFs at very low SL energies is required. By
contrast, the dominant integrand, which involves w1,
behaves as [53]

lim
Q2

1
→∞

w1ðQ1; Q2; tÞ ∼Q−1
1 ; ð9Þ

lim
Q2

2
→∞

w1ðQ1; Q2; tÞ ∼Q−2
2 ; ð10Þ

lim
Q2→∞

w1ðQ;Q; tÞ ∼Q−2 ð11Þ

and constitutes therefore a divergent integral for a constant
TFF. Moreover, as it can be observed from Fig. 3 (left and
right panels), despite its peak at low energies, this integrand
is sensitive to the region above 1 GeV. This is specially
important for heavier pseudoscalars such as the η0 as it can
be observed in Fig. 3 right. In these cases, the low-energy
peak is less pronounced and the tail is relevant up to
energies beyond 2 GeV.6

Actually, for the TFFs we employ in Sec. V, the integral
on Q1 and Q2 for π0, η, and η0 performed up to Q1 ¼
Q2 ¼ 1 GeV yields only around 90%, 80%, and 70% of the
total result, with relative contributions above 95% not
reached up toQ1 ¼ Q2 ¼ 1.8, 2.5, and 3 GeV, respectively.
The discussion above implies the following requirements
for a precise calculation (e.g. below 10%) when describing
the TFFs:

(i) An accurate, precise and ideally model-independent
method which can be improved upon via including
new theoretical constraints and new experimental
data.

(ii) The method should implement a full-energy TFF
description for the whole SL region [the timelike
(TL) region is not involved in Eq. (5)], including
well-known low- and high-energy constraints, the
former due to integral weights at low energies, the
latter to render the loop integrals finite.

(iii) The method should provide a very precise descrip-
tion at energies as low as 1 GeV and, at least, a
precise description for higher energies up to around
2–3 GeV.

We believe that none of the current approaches for
describing the TFFs fulfill all the criteria enumerated
above, and an alternative approach is desirable if our goal
is a 10% error. The pioneering works in Refs. [11,16,54],
which were based on large-Nc or vector meson dominance
(VMD) approaches [11,16,54], consisted on a model of the
large-Nc limit of QCD. As such, a typical large-Nc error
estimate was given to be 30%, which represented an
adequate error, but it is not enough at the present requested
precision. Their systematic uncertainties and achieved
accuracy with respect to the real TFFs are difficult to
ascribe or systematically improve. A possible venue to
refine these approaches is to use them as fitting functions
using the current large amount of existing SL data for the
single-virtual TFFs (see, for instance, Refs. [10,24,28]
where such an approach was pursued), which could endow
them with certain model independency, or at least, an
accuracy beyond the conventional 30% estimate—a proof
of concept is given in Appendix B. It is uncertain however
up to which accuracy could these approaches describe the
real TFFs since the models used to fit are valid only in the
large-Nc limit of QCD and, if precision requires, how to
systematically improve them. Besides, and unfortunately,
there is at present a lack of SL data below 0.8 GeV,7 see
Figs. 4 and 5. As a result, their low-energy description does
not rely on data fitting, but on a fit extrapolation. The
precision that such extrapolation provides on the relevant
low energies—even if they may provide an excellent
description for the available SL data—is difficult to
quantify. A possible estimate of the eventual precision
reached can be obtained by comparing with the available
low-energy TL data for the η meson [56–60]; the accuracy
achieved there should provide a reasonable estimate for
their SL counterpart. The study performed in Ref. [68]
suggests the presence of a non-negligible error for such

'
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FIG. 4. The available low-energy SL data [2,55,61,62] for the
π0 (blue squares), η (orange circles), and η0 (red triangles) TFFs
together with our description from Sec. Vas blue, dashed-orange,
and dot-dashed-red lines, respectively.

6The π0 features a more pronounced peak as compared to the η
and η0 and provides the main contribution. This is related to the
chiral enhancement ∝Q−2 from the pseudoscalar propagator,
which is stronger for the π0 given its mass.

7The exception is the L3 data for the η0 [55] which, to our best
knowledge, has never been used so far in aHLbLμ calculations.
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extrapolations. The lack of ability of these approaches to
precisely reproduce the single-virtual low-energy TL data
could in addition suggest a similar or even larger uncer-
tainty in the double-virtual region, where no data is
available so far to constrain their reconstruction.
Summarizing, the present data suggest that the standard

procedures and the reference studies are not optimal at low
energies and, as we will justify in Sec. IV, they cannot be
considered model independent and cannot be systemati-
cally improved upon up to an arbitrary precision.
More recently, a dispersive reconstruction for the pseu-

doscalar TFFs has been formulated in Refs. [63–65]. Such
an approach has the advantage of relying on a data-based
framework. As a result, it could in principle be as precise
as its required inputs are, and its precision systematically
improved accordingly. This apparently solves the weakness
of previous approaches. However, its full-energy imple-
mentation is in practice involved and cannot be complete in
a model-independent way. It is for this reason that it is in
practice so far limited to the low-energy region up to
around 1 GeV [63] and does not incorporate the high-
energy constraints in its present form—the difficulty only
increases for the double-virtual description—the reasons
for which we believe them insufficient to pin down the error
on the SL integrals beyond 10%. Any improvement with
respect to traditional approaches comes consequently at the
cost of the necessary mid-, and high-energy descriptions. It
would be desirable for an alternative approach able to deal
with all experimental data and theoretical constraints in the
SL region (find discussions in Appendix G).
It was proposed in Ref. [31], that VMD approaches or

the minimal hadronic approximation could be understood,

in the large-Nc limit of QCD, within the mathematical
framework of Padé approximants (PAs) for the case of
meromorphic functions. Such a framework would provide
the desired systematic method to reconstruct the TFF up to
an arbitrary precision, improving in accuracy with respect
to former VMD approaches. Not only this, PAs guarantee
the appropriate low-energy behavior by construction, while
allowing us to implement, at the same time, the high
energies. The application of PAs is however not restricted
(as in VMD approaches) to the large-Nc limit of QCD, but
can be applied to real ðNc ¼ 3Þ QCD quantities—a text-
book example is the HVP [66,67]—provided they meet
certain analytic properties which, for instance, the disper-
sive approach in Ref. [64] fulfills. As a consequence, they
provide a complementary tool to dispersive approaches in
the SL region for improving upon standard VMD descrip-
tions at low energies, but with the advantage of retaining
the appropriate mid- and high-energy behaviors as well.
Finally, as a difference with respect to all the previous
approaches, they provide a systematic error allowing for the
desired model independency.
The PAs implementation for the single-virtual pseudo-

scalar TFFs was discussed for the first time and in a
data-driven way in Refs. [25,27,68,69]. More recently, the
excellent accuracy at low energies was proved when
compared to the recently released low-energy TL data
for the η and η0 mesons [68,69], which corroborated the
appropriate description at low energies. This implies in
addition that, being based on analytic properties (the latter
even allows us to reproduce some results in which
discontinuities are involved [70]), our description would
provide the appropriate extrapolation to the low-energy
double-virtual region. However, describing the more gen-
eral double-virtual TFF requires the extension of Padé
approximants to the multivariate case and involves the
use of Canterbury approximants (CAs), whose main con-
cepts are illustrated in the following section. This math-
ematical framework will be the basis for reconstructing the
double-virtual TFFs required to calculate the aHLbL;Pμ in a
data-driven way in Sec. V.

IV. CANTERBURY APPROXIMANTS

A. Definitions

Given an analytic function, symmetric in its variables,
fðx; yÞ ¼ fðy; xÞ, and with a known formal series
expansion,

fðx; yÞ ¼
X
i;j

ci;jxiyj ðci;j ¼ cj;iÞ: ð12Þ

Canterbury approximants (CAs) [71–73] are defined (we
use the definitions provided in Ref. [74], Chap. 7.6) as
rational functions of polynomials RNðx; yÞ and QMðx; yÞ

FIG. 5. Plot representation of the product of the functions
w1ðQ1; Q2; 0ÞF1ðQ1; Q2Þ [see Eq. (5)] for P ¼ π0. Colored
points indicate the Q values for P ¼ π0; η; η0 for which exper-
imental data exist, cf. Fig. 4. For ease of illustration, Q≡Q1ð2Þ is
slightly extrapolated up to the Q2ð1Þ ≠ 0 region. The most
important region lacks experimental data, which manifests the
relevance of the low-energy extrapolation.
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CN
Mðx; yÞ ¼

RNðx; yÞ
QMðx; yÞ

¼
P

N
i;j¼0 ai;jx

iyjP
M
k;l¼0 bk;lx

kyl
ð13Þ

(b0;0 ¼ 1 as part of the definition) with ði; jÞ ∈ N ,
ðk; lÞ ∈ D—the lattice spaces. The coefficients ai;j, bk;l
are defined as to satisfy the accuracy-through-order con-
ditions [70,75], i.e.,

Xα
i¼0

Xβ
j¼0

bi;jcα−i;β−j ¼ aα;β for ðα; βÞ ∈ N ;

Xminðα;MÞ

i¼0

Xminðβ;MÞ

j¼0

bi;jcα−i;β−j ¼ 0 for ðα; βÞ ∈ ðEnN Þ;

ð14Þ

where E, the equality lattice space, is a set with
dimðEÞ ¼ dimðN Þ þ dimðDÞ − 1; find more details in
Refs. [74,76]. This is, they are required to match certain
terms of the (low-energy) series expansion in Eq. (12),
which guarantees the correct and desired behavior at low
energies.8 Besides, the high-energy constraints can be
included by invoking a two-point CA, which is, as it is
standard [74], requiring a set of accuracy-through-order
conditions with the fðx; yÞ expansion for x; y → ∞.9 The
CAs approach guarantees, among others, the convergence
in the cut complex plane of the CN

Nþ1ðx; yÞ and CN
Nðx; yÞ

as N → ∞10 sequences to meromorphic [77] and Stieltjes
functions [78] (see Appendix F for definitions), which are
not only justified in the large-Nc limit of QCD, but also in
the light of the dispersive approach from Ref. [64],
respectively. Note however that the reconstruction outlined
above forbids us to identify the CA’s poles to the physical
ones, and rules out typical VMD constructions as a
systematic description for the pseudoscalar TFFs, even
in the SL region, as previously anticipated.11

B. Toy models

In order to show the expected performance of CAs and to
provide stronger confidence in our approach, we illustrate
its operation, prior to the real case discussion, with the aid
of two well-motivated but analytically very different

models for the π0 TFF.12 The first of them is a large-Nc
Regge model [79,80], and the second one is an extension of
the logarithmic model from Ref. [81] to the double-virtual
case (see Appendix B for a detailed description). For both
models, convergence is expected since they belong to the
class of meromorphic and Stieltjes functions, respectively;
it is equally interesting however to test on the convergence
rate, a property as relevant for us as convergence itself.
In the following, we choose the CN

Nþ1ðQ2
1; Q

2
2Þ sequence

for evaluating aHLbL;π
0

μ ; the latter is not only motivated
because of convergence properties, but also due to the loop
integral in Eq. (5), which requires a CN

MðQ2
1; Q

2
2Þ sequence

for whichM > N if integration is to be taken up to infinity.
To illustrate the different possibilities that CAs offer, we

proceed as follows. First of all, we reconstruct the TFFs
models employing only the information which is provided
from the low-energy TFF expansion, Eq. (12), alone.
This reconstruction does not incorporate however the
high-energy constraints which can be expressed as13

FReggeðLogÞ
Pγ�γ� ðQ2; Q2Þ ¼ C1Q−2 þ C2Q−4 þ � � � : ð15Þ

Indeed, the chosen sequence behaves for large energies
as CN

Nþ1ðQ2; Q2Þ ∼Q−4 rather than Q−2. Consequently, we
implement in a second step the conditions above in a
sequential manner, starting with theQ−2 high-energy behav-
ior (but not constraining the particular C1 value above) and
progressively including additional Ci coefficients.
The results for the approximants, which are shown in

Table I along with the models’ exact result, illustrate the
following features

(i) The first approach (LE row of Table I) shows a clear
convergence according to our expectations; indeed,
the second N ¼ 1 element already provides a small
systematic error, well below 10%, for both models.

(ii) Implementing the Q−2 high-energy behavior (OPE0

row) shows a clear improvement on convergence,
which is expected given the high-energy behavior of
the integrand in Eq. (5).

(iii) Further constraining the C1 and C2 coefficients
(OPE1 and OPE2 rows) does not seem to affect or
change convergence, which points to the relevance

8For the CN
Nþ1ðx; yÞ sequence used below, this implies accu-

racy trough orders xðyÞ2Lþ1 and x2Lþ2−αyα, α¼1;…;2Lþ1 [74].
9For a more detailed discussion and examples on how to

reconstruct CAs and their performance, we refer the interested
reader to the Appendix of Ref. [70]—an additional exercise on
convergence is provided in this section below.

10This means, everywhere except for the TL region above
threshold production. Fortunately, this is irrelevant for gμ − 2.
Nevertheless, find comments when the TL region is involved in
Refs. [68–70].

11For a reconstruction of this kind when the function is known
to be meromorphic, we refer the interested reader to Ref. [31].

12Our interest in these models resides in the fact that they
cannot be well described with a finite set of resonances, and the
power of PAs is highlighted. The complexity of QCD suggests as
well these models to be realistic enough to capture the main QCD
ingredients. On top, the convergence of the PA sequence is slow
enough to be appreciated in numerical examples.

13For the physical TFF, it is possible to implement the single-
virtual high-energy asymptotic or Brodsky-Lepage (BL) behavior
as well, see Sec. V. Unfortunately, this is not possible for the
present models, which have a logarithmic enhancement—see
Appendix B. In any case, we note that the CN

Nþ1ðQ2
1; Q

2
2Þ

approximant already implements the correct Q−2 BL behavior.
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of the low energies and to the fast convergence of
the method.14

(iv) Besides the particular systematic error for each
model, we observe an expected more general fea-
ture: the systematic error of a given element N can
be inferred from its difference with respect to the
N − 1 element. This provides a model-independent
estimation for the systematic uncertainty and,
thereby, the sought model-independent result.

In addition, it is worth to comment on factorization
approaches for which CN

Nþ1ðQ2
1; Q

2
2Þ ∼ CN

Nþ1ðQ2
1; 0Þ ×

CN
Nþ1ðQ2

2; 0Þ. These are very popular and seem to represent
a good approximation at low energies [65,75,82,83] [note
that nonfactorizable effects are formally of order ðQ2Þ2 in
the low-energy expansion in any case]. The results are
shown in the sixth row of Table I (Fact row) and show a
potential large systematic error. The latter is however not
only due to the wrong behavior at high-energies—our
low-energy reconstruction in the second row of Table I (LE
row) does not fulfill it either—but to the fact that not even
the series expansion factorizes.
Finally, in our discussion above, it cannot be over-

emphasized the relevance of having employed the low-
energy expansion Eq. (12) when reconstructing the
approximants—as the framework requires—rather than
fitting the rational functions to data themselves. To illus-
trate this statement, we show in the last row of Table I
(FitOPE) what would have been obtained if fitting the
CN
Nþ1ðQ2

1; Q
2
2Þ rational functions, with the OPE behavior

implemented, to a double-virtual data grid ranging from

0 ≤ Q2
1;2 ≤ 35 GeV2 with a 2.3 GeV2 spacing. The

obtained convergence is slower and illustrates the differ-
ence and the power of CAs with respect to standard fitting
approaches—whereas the latter ones represent a better
compromise for the whole fitted region, this is at the
expense of a low-energy description which is inferior to
that provided by CAs and which results in the observed
convergence pattern.
Summarizing the previous results: we find that the

CN
Nþ1ðQ2

1; Q
2
2Þ sequence of approximants provides an

excellent convergence when calculating aHLbL;π
0

μ for the
chosen TFF models—which is further accelerated if the
high-energy behavior is accounted for. More important, we
find that the systematic uncertainty can be estimated from
the difference among the elements within the sequence,
which represents the main advantage from our approach
and provides for the model independency. Having intro-
duced CAs, motivated a sequence, and illustrated its
performance, we proceed to apply this approach for the
real QCD case.

V. RESULTS

For the physical TFF, we define the formal series
expansion, Eq. (12), in terms of the low-energy parameters
(LEPs) bP; cP; aP;1;1;… as

FPγ�γ�ðQ2
1; Q

2
2Þ ¼ FPγγð0; 0Þ

�
1 −

bP
m2

P
ðQ2

1 þQ2
2Þ

þ cP
m4

P
ðQ4

1 þQ4
2Þ þ

aP;1;1
m4

P
Q2

1Q
2
2 þ � � �

�
:

ð16Þ

It turns out that, under certain approximations, the
authors of Ref. [84] proved the isovector contribution to
the TFF to be a Stieltjes function (cf. Appendix F), for
which convergence of Padé approximants is guaranteed in
advance.
Actually, Padé theory not only provides a convergence

theorem for a sequence of PAs to Stieltjes functions, i.e.,
limN;M→∞PN

MðsÞ − fðsÞ ¼ 0, but also its rate of conver-
gence [66,74,85], which is given by the difference of two
consecutive elements in the PA sequence [25,27,68,86].
Furthermore, in the large-Nc limit of QCD, the TFF

becomes a meromorphic function, for which convergence is
guaranteed as well [31,32]. The sum rule approach
employed in Ref. [87] for describing the TFF is again of
the Stieltjes kind. Moreover, our experience from analyses
of the TFF from the SL data [25,27] and the excellent
predictions achieved in the low-energy TL region [68,69]
suggests that convergence to the TFF is at work, and that its
relevant analytical properties are retained. We understand
that all these features hold for the double-virtual case too.

TABLE I. The results for aHLbL;π
0

μ × 1011 using the Regge and
logarithmic models (last row) are compared to their
CN
Nþ1ðQ2

1; Q
2
2Þ sequence of approximants’ results. The LE row

uses a pure low-energy reconstruction, whereas the OPEn rows
incorporate high-energy constraints. The Fact row serves as an
illustration of what a factorization approach would have yield.
Finally, the FitOPE row shows what a CN

Nþ1ðQ2
1; Q

2
2Þ-like fitting

function with the appropriate OPE behavior would lead. More
details in the main text.

Regge model Log model
C0
1 C1

2 C2
3 C3

4 C0
1 C1

2 C2
3 C3

4

LE 55.2 59.7 60.4 60.6 56.7 64.4 66.1 66.8
OPE0 65.7 60.8 60.7 60.7 65.7 67.3 67.5 67.6
OPE1 � � � 60.6 60.7 60.7 65.7 67.3 67.5 67.6
OPE2 � � � 60.8 60.7 60.7 65.7 67.3 67.5 67.6
Fact 54.6 57.3 57.4 57.5 54.6 60.3 61.3 61.6
FitOPE 66.3 62.7 61.1 60.8 79.6 71.9 69.3 68.4

Exact 60.7 67.6

14For the logarithmic model, Flog
Pγ�γ� ðQ2; Q2Þ ¼ FPγγ

M2

M2þQ2.
Consequently, all the OPE coefficients, Cn, are trivially satisfied
within our approach.
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The available analytical information on the TFF is
scarce though; at low energies FPγγð0; 0Þ is theoretically
related in the chiral (and large-Nc for the η and η0) limit
to the Adler [88]-Bell-Jackiw [89] anomaly and can be
expressed as15

FPγγð0; 0Þ ¼
Nc

4π2F
trðQ2λPÞ: ð17Þ

This expression is, strictly speaking, valid only at the
leading order in both the chiral and the large-Nc limits of
QCD. Corrections to it which involve, among others, the
η − η0 mixing at the given order [90] are calculated in terms
of unknown low-energy constants [91]. For this reason,
we use instead the experimental results for P → γγ decays
in order to avoid model dependencies, which relation to

FPγγð0; 0Þ follows from jFPγγð0; 0Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64π

ð4παÞ2
ΓðP→γγÞ

m3
P

q
.

At small but finite virtualities, there are no further
available theoretical predictions, and higher LEPs in
Eq. (16) are theoretically unknown. Still, some of these
LEPs were extracted for the single-virtual case in a data-
driven approach using PAs [25,27,68,69] which, as said,
have proven extremely accurate when confronting them
against the low-energy TL data. A similar procedure for
the most general double-virtual case would be possible
once double-virtual experimental data becomes available.
At high energies, the TFF behavior can be theoretically
described within pQCD. For the case of a single-virtual

photon, the TFF is known to behave according to the
Brodsky-Lepage (BL) [92] asymptotic behavior

lim
Q2→∞

FPγ�γðQ2; 0Þ ¼ P∞Q−2 þOðQ−4Þ; ð18Þ

where π∞ depends on the pion decay constant, whereas η∞
and η0∞ depend on the mixing parameters and the singlet-
axial current running effects [68,69]. For the double-virtual
case, the TFF behavior at high energies is obtained from the
operator product expansion (OPE) [3,93]

lim
Q2→∞

FPγ�γ�ðQ2; Q2Þ ¼ P∞

3

�
1

Q2
−
8

9

δ2P
Q4

�
þOðQ−6Þ;

ð19Þ

where the numerical values for the parameters introduced
in Eqs. (16), (18), (19) can be found in Table VI.
Remarkably, Eqs. (18) and (19) ensure the convergence
of the integrands in Eq. (5) and suggest the use of the
CN
Nþ1ðQ2

1; Q
2
2Þ sequence explored in the previous section.

Given the current available information on the double-
virtual TFF, only the first two elements can be recon-
structed. They are expressed as

C0
1ðQ2

1; Q
2
2Þ ¼

FPγγð0; 0Þ
1þ bP

m2
P
ðQ2

1 þQ2
2Þ
; ð20Þ

C1
2ðQ2

1; Q
2
2Þ ¼

FPγγð0; 0Þð1þ α1ðQ2
1 þQ2

2Þ þ α1;1Q2
1Q

2
2Þ

1þ β1ðQ2
1 þQ2

2Þ þ β2ðQ4
1 þQ4

2Þ þ β1;1Q2
1Q

2
2 þ β2;1Q2

1Q
2
2ðQ2

1 þQ2
2Þ
: ð21Þ

The connection to the LEPs from Eq. (16) is already
visible in Eq. (20); the relation of the αi;j and βk;l
parameters in Eq. (21) to the LEPs is involved enough
as not to fit in a single line. First, the single-virtual
parameters FPγγð0; 0Þ, α1, β1 and β2 must be reconstructed.
FPγγð0; 0Þ is related, as mentioned, to the P → γγ decays
and can be extracted from the experimental values in
Ref. [2]; α1, β1, and β2 are related to the linear, quadratic,
and cubic terms in the single-virtual low-energy expansion,
Eq. (16). These three parameters have been extracted from
a data-driven approach in Refs. [27,68,69] for the η and η0,
where they have been referred to as bPm−2

P , cPm−4
P , and

dPm−6
P , respectively. Alternatively, the cubic term can be

traded for the BL asymptotic behavior, which is extremely
convenient for the π0 given the precise theoretical

prediction (which contrasts with the η and η0 cases,
see Table VI). Consequently, for the π0, we employ the
linear and quadratic terms determined in Ref. [25]16

together with the BL prediction, which implies
limQ2→∞Q

2C1
2ðQ2;0Þ¼2Fπ ¼0.1884ð3ÞGeV. It remains

to determine the double-virtual parameters α1;1, β1;1, and
β1;2. For the π0 case, it is possible to relate two of them to
the high-energy expansion P∞ and δP parameters in
Eq. (19). For the η and η0, δP is unknown; we take δη;η0 ¼
δπ and ascribe an extra 30% systematic error from SUð3ÞF-
breaking (and large-Nc) effects.

17 Finally, one parameter

15Q stands for the charge matrix, F is the pion decay constant
in the chiral limit, and λπ;η;η0 ¼ λ3;8;0 in the chiral limit with λa the
Gell-Mann matrices and λ0 ¼ ffiffiffiffiffiffiffiffi

2=3
p

13×3.

16In the near future, the data which are being analyzed at BES
III [94] Collaboration in the low-energy SL region will allow for
an accurate extraction of dπ .

17We note that such an error covers for the observed π0, η, and
η0 differences for all the parameters which have been determined
so far: FPγγð0; 0Þ; bPm−2

P ; P∞;…. Besides, we find that, in
practice, the aHLbL;Pμ dependence on this parameter is certainly
mild.
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remains to be determined. This can and should be related to
the low-energy parameter aP;1;1 in Eq. (16), which could be
determined if double-virtual data becomes available.
Hopefully, this may be possible in the future at BES III
[94] for the π0. Additional sources of information would
be P → l̄l [70,75] and P → l̄ll̄0l0 decays [95].
Unfortunately, the available experimental precision for
these measured decays is still not enough to make an
extraction—find more comments later in Sec. VI. For this
reason, and to be as model independent as possible, we take
for aP;1;1 the most general range which is physically
accessible without spoiling the TFF’s analytic properties,
i.e., avoiding the presence of poles for the C1

2ðQ2
1; Q

2
2Þ

in the SL region. This leads in practice to a range of the
kind amin

P;1;1 ≤ aP;1;1 ≤ amax
P;1;1

18 and completes the discussion
about the CAs reconstruction.
The numerical integrals have been calculated with

Mathematica 8.0 using the AdaptiveQuasi
MonteCarlo method. The obtained results for the
C0
1ðQ2

1; Q
2
2Þ are collected, for the different pseudoscalars,

in Table II second column; the results for the C1
2ðQ2

1; Q
2
2Þ

are collected, for the aP;1;1 considered range, in the third
and fourth columns of Table II. The errors are statistical
only and arise from a MC analysis. For the C0

1 case, the first
and second errors arise from the TFF normalization
[FPγγð0; 0Þ] and the slope parameter (bP), respectively;
for the C1

2 amin
P;1;1 choice (second column in Table II),

the error is due to the single virtual parameters
FPγγð0; 0Þ; bP; cP; dP and P∞

19; for the C1
2 amax

P;1;1 choice,
an additional error related to δP arises; the last error in
brackets stands in every case for the combination in
quadrature of the individual ones.

The last line, Total, is the sum of the π0, η, and η0
contributions. To estimate the systematic uncertainty, we
take the largest difference among the amin

P;1;1 and amax
P;1;1

choices with respect to the C0
1ðQ2

1; Q
2
2Þ. Note that such

results belong formally to different sequences (named
OPE0 and OPE2 in Table I); using the same sequence
would be possible once the first double-virtual data become
available, see the section below. Still, from the numerical
results and our experience from Sec. IV, we believe that
such an error estimate is conservative enough. We note in
addition that we assume a fully correlated systematic error
among the different pseudoscalars systematic uncertainties.
Our final result is

aHLbL;Pμ ¼ ð93.5 ÷ 95.1Þð1.7Þstatð4.9Þsys × 10−11

→ 94.3ð5.3Þ × 10−11; ð22Þ

which is an overall error below 10%. In the last line, the
mean value among the third and fourth column in Table II
has been taken, and their difference is associated as an
additional source of uncertainty which has been added in
quadrature to the previous ones. In Appendix E, we
combine our final result with the Glasgow consensus in
an attempt to provide a value for the whole aHLbLμ .
Our obtained result can be compared to former deter-

minations of the pseudoscalar-pole contribution, which
appear in Refs. [10,28]. The first of them [10], which
was intended to clarify a sign discussion, reads aHLbL;Pμ ¼
½58ð10Þþ13ð1Þþ12ð1Þ¼83ð12Þ�×10−11 and has a crude
error estimation as discussed in Ref. [10]. Particularly,
the η and η0 contributions were provided as an order of
magnitude estimate, and for that reason, only a simplified
(and factorized) model was used. In addition, we note that
our approach incorporates far more data for the TFFs which
have become available since this study appeared.
The second and more recent study, Ref. [28], is based on

resonance chiral theory and obtains aHLbL;Pμ ¼ ½57.5ð6Þ þ
14.4ð2.6Þ þ 10.8ð0.9Þ ¼ 82.7ð6.6Þ� × 10−11. Their analy-
sis makes use of a similar data set to that employed in our
approach for the π0 case, but only up to 2014. The
difference for the π0 contribution could be ascribed to
their different high-energy behavior since they cannot
incorporate both BL and OPE, Eqs. (18), (19)—a known
issue when using a single resonance [31]. For the η and η0
cases, their approach description becomes more involved,
as an appropriate η − η0 mixing description requires an
analysis at the next-to-leading order within their approach,
with an error difficult to quantify. For this reason, Ref. [28]
uses instead Uð3ÞF symmetry arguments to relate both η
and η0 TFFs with the π0 one. The differences we find
illustrate the importance of a data-based approach to
describe these TFFs.
As a final remark, both approaches in Refs. [10,28],

which rely on the large-Nc limit, can be understood as a CA

TABLE II. Our aHLbL;Pμ results in units of 10−11. The second
column is our simplest C0

1ðQ2
1; Q

2
2Þ approximant; the third and

fourth columns refer to the C1
2ðQ2

1; Q
2
2Þ one and stand for the

lower and upper aP;1;1 values, respectively. See description in the
text.

aHLbL;Pμ C0
1 C1

2½amin
P;1;1� C1

2½amax
P;1;1�

π0 65.3(1.4)(2.4)[2.8] 64.1(1.3)[1.3] 63.0(1.1)(0.5)[1.2]

η 17.1(0.6)(0.2)[0.6] 16.3(0.8)[0.8] 16.2(0.8)(0.6)[1.0]
η0 16.0(0.5)(0.3)[0.6] 14.7(0.7)[0.7] 14.3(0.5)(0.5)[0.7]

Total 98.4[2.9] 95.1[1.7] 93.5[1.7]

18Particularly, we find that amin
π;1;1 ¼ 1.89b2π , amin

η;1;1 ¼ 1.65b2η,
and amin

η0;1;1 ¼ 1.32b2η0 , whereas amax
π;1;1 ¼ 2.10b2π , amax

η;1;1 ¼ 6.00b2η,

and amax
η0;1;1 ¼ 3.41b2η0 .

19In this limiting case, the α1;1 and β2;1 parameters in Eq. (21)
vanish, and the δP parameter becomes, as a consequence,
irrelevant.
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to meromorphic functions. Then, the (missing) systematic
error for their reconstruction—in which the poles are fixed
in advance—is larger than in our case, see Ref. [31] and
comments in Appendix B. Moreover, they do not employ
a low-energy reconstruction, but a fitting procedure
which, as illustrated in Sec. IV, entails an even larger
error. Overall, these considerations suggest total unac-
counted errors above 10% for these approaches. An addi-
tional calculation based on the VMDmodels from Ref. [10]
but fitted to lattice simulations for the π0 TFF obtained
aHLbL;πμ ¼ 65.0ð8.3Þ × 10−11 [96]. The latter includes stat-
istical error, but lacks the inclusion of a systematic
uncertainty inherent to the large-Nc-based fitted model.

VI. THE ROLE OF FUTURE DATA

Finally, we outline the impact that future data would
have in our TFFs reconstruction and thereby in our aHLbL;Pμ

determination. First of all, the most relevant parameters are
the values of the TFFs at zero virtualities. To see this, note
from Eq. (5) that the whole contribution is proportional to
the square of this quantity. As such, a relativeΔFPγγ

error on
the former directly translates into a 2ΔFPγγ

relative error for

aHLbL;Pμ . In this respect, and in the light of Table II, a further
reduction on this quantity will substantially improve our
total error. The PrimEx-II experiment at JLab [97] and the
experiment planned at KLOE-2 [98] on the γγ → π0 → γγ
reaction will halve the π0 contribution error. Regarding the
η and η0, the future GlueX experiment at JLab [99] would
allow us to reduce the η and η0 counterpart associated
error—only a 3% final precision for the η case has been
reported so far [100], which would again halve the
current error.
Second, from Sec. V and the results in Table II, we find

pressing to get new data on the π0 TFF. This would allow us
to improve our bπ and cπ determinations—especially the
dominant systematic error, see Ref. [25]—and to extract the
dπ parameter, providing therefore an alternative single-
virtual description in terms of LEPs alone and no high
energy coefficients, which would be a valuable cross-check
of our results—note that using the well-known BL limit for
the π0 reduces the dependence on the LEPs in our current
determination. This will be possible in the near future once
the ongoing analysis at BES III [94] Collaboration becomes
published—in addition, further data is expected at low
energies from KLOE-2 [98] and GlueX experiment [100].
In addition, in view of the discussion raised by BABAR

[101] data concerning the TFF behavior at high energies, an
interesting test could be to reconstruct the π0 TFF from the
light-quark content of the π0 meson. From our knowledge
of the η and η0 TFFs and the η − η0 mixing in the flavor
basis, it is possible to extract from experimental data a pure
light-quark TFF and use it to calculate what we denominate
the light-quark aHLbL;l:qμ ., which should be similar to the

actual π0 one. Appendix D contains the detail of such
calculation, and the results reported there support our final
result from Eq. (22).
Furthermore, there are efforts to measure the η and η0

TFFs at low SL energies at BES III [94]—a similar
study would be possible at the GlueX experiment as well
[99,100].
Finally, it remains an important task to get the first

information on the double-virtual TFF given the aP;1;1
parameter-induced error. This could be possible for the π0

at BES III [94]. Such a measurement would not only allow
us to improve on our current estimate, but to eventually
obtain further double-virtual parameters. In addition, the
latter would allow us to trade the OPE expansion param-
eters in Eq. (19) in favor of the LEPs in Eq. (16) when
reconstructing the TFF. As said, it is possible to use as
well P → l̄l decays. However, the current precision is
not sufficient to provide a competitive constraint, see
Appendix C for details. Similarly, P → l̄ll̄0l0 decays
provide an interesting potential source of information.
Unfortunately, once more, a high precision is required
for them in order to provide competitive constraints—
around a 5% precision for the yet not measured ηð0Þ →
2μþ2μ− decays, see Ref. [95]. Alternatively, there is the
possibility that, in the future, lattice simulations at the
physical π0 mass could provide valuable information in
determining the double-virtual LEPs in our method, which
is important as well for the reasons outlined above (22)—
find advances on lattice QCD in Refs. [96,102–104].
Finally, our approach could incorporate the double-

virtual low-energy parameters predicted from dispersive
theory [65]. Not only that, but our approach could allow us
to extend these frameworks [63,64] at higher energies,
providing an analytic continuation to the high-energy
region, where these approaches cannot apply (find further
comments in Appendix G).
We stress that determining additional double-virtual LEPs

would be the most challenging part for going one element
further in the CAs sequence, which requires five additional
parameters against the two which the single-virtual case
demands. Whereas it is likely that the latter could be
obtained in the near future, the former would require more
effort. In any case, we recall that having those required for
the C1

2ðQ2
1; Q

2
2Þ approximant is enough for obtaining the

desired systematic accuracy as we have found.

VII. CONCLUSIONS

In this work, we have employed the mathematical
framework of Canterbury approximants (bivariate Padé
approximants) in order to reconstruct the double-virtual
pseudoscalar TFFs and calculate the pseudoscalar-pole
contribution to aHLbLμ . The method allows us to incorporate,
at the same time, both the low- and the high-energy
information on the TFFs. Though the former play the
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most relevant role in this calculation, a precise calculation
should consider both simultaneously. This feature repre-
sents the first advantage from our method with respect to
resonance approaches or dispersive representations.
The required information for the reconstruction of CAs

has been obtained from our works in Refs. [25,27,68,69]
and employs data from over 13 different collaborations. As
a novelty of our approach, the method provides a system-
atic treatment—whose advantage with respect to resonance
approaches is especially obvious when dealing with the η
and η0—and allows for a systematic error estimation, which
provides for the model independence of the result and the
second advantage with respect to existing approaches.
As a result, we have found aHLbL;Pμ ¼ 94.3ð5.3Þ × 10−11,

which is larger than previous estimates by a quantity which
essentially corresponds to future experiments’ uncertainty.
We note that such quantity is extremely interesting, as it is
not only the dominating contribution to aHLbLμ , but it is
present in any data-driven approach for calculating aHLbLμ

so far. Furthermore, our approach will benefit in the near
future from the large amount of data which is expected to
appear, including the SL one which, so far, is not included
in dispersive approaches. Concerning the latter, our
approach can also benefit from the TFF’s dispersive
representations, as soon as the double-virtual LEPs are
reported, which shows the flexibility and complementarity
of our approach.
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APPENDIX A: FUNCTIONS INVOLVED
IN THE HLbL

The pseudoscalar-pole contribution to the HLbL tensor
is given as [10]

ΠP−pole
μνλρ ðq1; q2; q3Þ

¼ i
FPγ�γ� ðq21; q22ÞFPγ�γ� ðq23; k2Þ

ðq1 þ q2Þ2 −m2
P

ϵμναβqα1q
β
2ϵλρστq

σ
3k

τ

þ i
FPγ�γ� ðq21; k2ÞFPγ�γ� ðq23; q22Þ

ðq2 þ q3Þ2 −m2
P

ϵμραβqα1k
βϵνλστqσ2q

τ
3

þ i
FPγ�γ� ðq21; q23ÞFPγ�γ�ðk2; q22Þ

ðq1 þ q3Þ2 −m2
P

ϵμλαβqα1q
β
3ϵνρστq

σ
2k

τ;

ðA1Þ

where ϵ0123 ¼ þ1, q1, q2, q3 are outgoing from the blob
depicted in Fig. 1 and k ¼ q1 þ q2 þ q3 is incoming to it.

The I1;2ðQ1; Q2; tÞ functions involved in the aHLbL;Pμ

calculation, Eq. (5), are defined as

I1ðQ1;Q2;tÞ¼
−1

m2
μQ2

3

�
4m2

μt

Q1Q2

þð1−Rm1
Þ
�
2Q1t
Q2

−4ð1− t2Þ
�

−ð1−Rm1
Þ2Q1t

Q2

−8XðQ1;Q2;tÞðQ2
2−2m2

μÞð1− t2Þ
�
; ðA2Þ

I2ðQ1; Q2; tÞ ¼
−1

m2
μQ2

3

�
2ð1 − Rm1

Þ
�
Q1t
Q2

þ 1

�

þ 2ð1 − Rm2
Þ
�
Q2t
Q1

þ 1

�

þ 4XðQ1; Q2; tÞðQ2
3 þ 2m2

μð1 − t2ÞÞ
�
;

ðA3Þ

where the following functions have been employed

XðQ1; Q2; tÞ ¼
ð1 − t2Þ−1=2

Q1Q2

arctan

�
z

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p

1 − zt

�
; ðA4Þ

z ¼ Q1Q2

4m2
μ
ð1 − Rm1

Þð1 − Rm2
Þ; ðA5Þ

Rmi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

μ=Q2
i

q
: ðA6Þ

APPENDIX B: TFF MODELS

1. Regge model

In this appendix, we discuss in detail the Regge model
introduced in Sec. IVand compare it with an approximation
to it based on a finite set of resonances. Our goal is to show
how an approximation built from a finite set of resonances
converges to the original model, which contains on turn
an infinite set of them. Several strategies are explored.
The Regge model in question is taken from Refs. [79,80]
and reads

FRegge
π0γ�γ� ðQ2

1; Q
2
2Þ ¼

aFπ0γγ

Q2
1 −Q2

2

½ψ ð0ÞðM2þQ2
1

a Þ − ψ ð0ÞðM2þQ2
2

a Þ�
ψ ð1ÞðM2

a Þ
;

ðB1Þ

where ψ ðnÞðzÞ ¼ ∂n lnΓðzÞ is the polygamma function,
the parameter a is the string tension (which is fixed to
1.3 GeV2 based on the study from Ref. [105]), and
M ¼ 0.708 GeV is chosen to match the slope parameter
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bπ [25]. At high energies, it behaves as Q−2 lnQ2 for
the single virtual case [79], whereas it behaves as
aFπ0γγ=ðψ ð1ÞðM2=aÞÞQ−2 forQ2

1¼Q2
2≡Q2 whenQ2→∞.

The Regge model can be expressed as well as an infinite
sum over the resonances within the Regge trajectory
weighted by their correspondent residues,

FRegge
π0γ�γ� ðQ2

1; Q
2
2Þ

¼ Fπ0γ�γ�

ψ ð1ÞðM2=aÞ

×
X∞
m¼0

a2

ðQ2
1 þ ðM2 þmaÞÞðQ2

2 þ ðM2 þmaÞÞ : ðB2Þ

A resonance approach to this model will consist in
retaining a finite number of resonances, achieving an
increased precision as soon as more terms in the sum
are included, assuming of course that the model parameters
(masses and residues) are known. Such an approximation
has, however, a slow rate of convergence, which is well
understood from Padé theory [31]. To illustrate this, we
perform a numerical test and show in the first row in

Table III (called Res) what would be obtained for aHLbL;π
0

μ if
truncating the sum in Eq. (B2) for a finite number of
resonances n [e.g., up to m ¼ n − 1 in Eq. (B2)]. The slow
asymptotic convergence is attributed to the fact that not
even the TFF at the origin, Q2

1 ¼ Q2
2 ¼ 0, is precisely

reproduced. Therefore, to improve on that, we do not use
the residue of the heavier resonance in the truncation;
instead, we choose to fix such parameter to reproduce the
TFF at the origin. As shown in the third row of Table III
(called Norm), this strategy improves considerably on
convergence. Finally, we choose to match not one, but
all the residues in the summation, to fulfill the low-energy
expansion. The results are shown in the fourth row of
Table III (called Der) and yield the expected improvement
on convergence.
Besides, as customary in resonance approaches, one can

fit the residues to a set of pseudodata instead of matching
them to the low-energy expansion of the model. Performing
such a fit using the same points as for that in Table I FitOPE

row, we obtain the results of fifth row in Table III (called
Fit), which show an irregular convergence, if it converges at
all. At this point, one could blame the incorrect behavior of
the resulting approximant when bothQ2

1 ¼ Q2
2 ≡Q2 → ∞,

that behaves as Q−4 instead of Q−2. Including additional
terms to fulfill this behavior, we obtain the results in the
sixth row in Table III (called FitOPE), which show an
improved convergence, but still not such a good conver-
gence as CAs to the same model with the same pseudodata
fit (cf. Table I). This appendix illustrates the potential
systematic errors when the poles in rational approximants
are fixed in advance.

2. Logarithmic model

Besides the Regge model, we introduce the logarithmic
one employed as well in Sec. IV. The latter is inspired in flat
distribution amplitudes models as introduced in Ref. [81]
and is extended to the double-virtual case as follows:

Flog
π0γ�γ� ðQ2

1; Q
2
2Þ ¼

FPγγ

M2

Z
1

0

dx
1

xQ2
1 þ ð1 − xÞQ2

2 þM2

¼ FPγγM2

Q2
1 −Q2

2

ln

�
1þQ2

1=M
2

1þQ2
2=M

2

�
; ðB3Þ

where M ¼ 0.530 GeV is chosen again to reproduce bπ
[105]. Again, it is straightforward to see its large Q2-
behavior Q−2 lnQ2 for a single-virtual photon; for equal
virtualities, Flog

Pγ�γ� ðQ2; Q2Þ ¼ FPγγM2ðM2 þQ2Þ−1 and, as
a consequence, limQ2→∞F

log
Pγ�γ� ðQ2; Q2Þ ¼ FPγγM2Q−2.

APPENDIX C: P → l̄l DECAYS IMPACT

A further possibility to test the TFF double-virtual
behavior is given by the P → l̄l decays. Whereas these
decays could never be directly employed to extract the TFF
q2 dependence, as it happens with P → l̄ll̄0l0 decays,
they offer an indirect probe in terms of a loop integral over
the double-virtual TFF [75]. The proposal to use these
decays as a constraint for aHLbL;Pμ was considered for the
first time in Ref. [15], but, to our best knowledge, it has not
been seriously considered so far.
In Refs. [70,75], we performed a detailed and careful

study of these decays employing our method of CAs. So
far, only the π0 → eþe− [106] and η → μþμ− [107] have
been measured. For the π0, we found its experimental value
2σ away from our CAs prediction [75]. Particularly, we
found that in order to reproduce the experimental result
would require δ2π ≳ 10 GeV2 in Eq. (19) and aπ;1;1 < −4b2π
in Eq. (16). This would imply large corrections to the
leading OPE behavior, a result far from theoretical expect-
ations. In any case, taking these values for reconstructing

TABLE III. The aHLbL;π
0

μ result (10−11 units) from different
resonancelike approaches employed to approximate the Regge
model which include up to n resonances in Eq. (B2). The exact
result to compare with is represented in the last row. Find details
in the text.

n 1 2 3 4

Res 38.1 47.1 50.8 52.8
Norm 50.8 57.0 58.4 59.1
Der 50.8 57.8 59.4 59.9
Fit 55.9 67.2 58.3 65.4
FitOPE � � � 63.3 58.0 61.5

Exact 60.7
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the TFF,20 we would obtain that aHLbL;πμ would shift down
to around 36ð7Þ × 10−11 [75]. Of course, this result calls for
a new experimental determination of the π0 → eþe−
branching ratio, which could be possible at the NA62
experiment. Note that a first measurement of the double-
virtual TFF at BES III would discard the π0 TFF as the
explanation for the measured branching ratio. Looking
forward into the future, we study here the precision that
such an experiment would require in order to provide a
valuable constraint to our study; this is, to improve our
current 1.89b2π ≤ aπ;1;1 ≤ 2.10b2π range. We find that, due
to the narrow range for aπ;1;1, a precision of 0.1% on the BR
would be required. Still, even if this precision may be out
of experimental reach, a new experiment that would shed
light on the nature of the current deviation is highly
desirable.
For the η case, the sensitivity to the aη;1;1 LEP is even

lower. Even if an accurate description requires a proper
double-virtual implementation, after implementing the
parameters in Eq. (19), there is not much sensitivity to
the aη;1;1 parameter. Particularly, a precision below 0.1% in
the branching ratio measurement would be required to
discern values within our range. Unfortunately, there are
additional effects which are of further relevance at this
precision, such as the implementation within our frame-
work of the ππ cut, which would demand a more refined
theoretical study [70]. In any case, a 2% accuracy would be
interesting already in order to corroborate (or falsify) our
predictions, which may provide the only (indirect) exper-
imental test of our TFF description in the near future. At
present, the current precision is of 14%, and the central
value is 1.4σ above our prediction. Similar comments apply
for the η0 decays too, which however have never been
observed, being upper bounds the only available informa-
tion so far [108,109]. It would be therefore an interesting
possibility in the future to access ηðη0Þ → μþμ− decays at
LHCb [110], as well as the possibility to measure the
eþe− → η0 process at KLOE-II [111].

APPENDIX D: THE LIGHT-QUARK TFF

It is widely assumed that the smallness of the OZI rule
violation would allow to express the η and η0 TFFs in terms
of the light- and strange-quark TFFs [112]. In addition,
it is believed that the former would resemble the π0 one
except for a 5=3 charge factor. Under the validity of these
assumptions, the knowledge of the η − η0 mixing provides
thereby a cross-check for the π0 TFF and, consequently,

aHLbL;π
0

μ .
In our analyses from Refs. [27,68,69], we could deter-

mine the mixing parameters, obtaining small violations of
the OZI rule and confirming thereby the accuracy of such

an approximation.21 From these results and those for bηð0Þ,

cηð0Þ , dηð0Þ and ηð0Þ∞ (cf. Table VI), we obtain a light-quark ηq
TFF which resembles the π0 in the SL region and seems to
support Belle tendency [113] against the BABAR [101] one
at high energies, see Fig. 6. For completeness, we also show
in Fig. 6 the strange-quark TFF, understood as the one for a
pure ss̄ ηs state. Figure 6 also shows the experimental data
for the π0 TFF from Refs. [2,55,61,62,101,113,114] (blue
circles) and the experimental data for the η and η0 TFFs
rotated to the flavor light-strange-quark basis. The resulting
parameters from the ηq TFF read

ð3=5ÞFηqγγ ¼ 0.2579ð32Þ GeV−1;

bηqm
−2
ηq ¼ 1.66ð2Þ GeV−2;

cηqm
−4
ηq ¼ 2.87ð8Þ GeV−4;

dηqm
−6
ηq ¼ 5.05ð37Þ GeV−6;

ηq∞ ¼ 0.180ð6Þ GeV:
Indeed, every parameter is compatible with those of the π0

TFF except for the normalization.
Taking the assumption that Fπ0γ�γ� ðQ2

1; Q
2
2Þ ¼

ð3=5ÞFηqγ
�γ� ðQ2

1; Q
2
2Þ, we can provide an alternative deter-

mination for aHLbL;πμ . This is found in the second row of
Table IV, called l.q. A non-negligible shift appears with
respect to our π0 results in Table II. However, this is to be
expected given their different normalizations, which in turn
represent the most relevant parameter in the calculation.
Normalizing the light-quark TFF to match the π0 one, an
excellent agreement is found as shown in the third row of
Table IV, called l.q. norm. The errors identification is
analog to that in Table II. The values obtained in this

q

S

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Q 2 GeV2

Q
2

F
P

Q
2

G
eV

FIG. 6. Comparison of the π0 TFF (blue solid) against light-
(orange-dashed) and strange- (red-dotted) quark TFF. The ex-
perimental data from Refs. [2,55,61,62,101,113,114] is included
as well as blue circles, orange triangles, and empty-red squares
for the π0, light-quark and strange-quark TFFs, respectively
(the latter are obtained after rotating the η and η0 TFFs data).

20Here, we assume the absence of new-physics effects.

21From these studies, we obtain the mixing angles ϕq≃
ϕs ≃ 39.35°.
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exercise reassess our main results in Table II and supports
our statement that future experimental data at high SL

energies would not change much the aHLbL;π
0

μ central value,
whereas they will provide a more precise determination for
the LEPs in Eq. (16).

APPENDIX E: BEYOND POLE CONTRIBUTION

There is at present a debate on how to deal with the
HLbL tensor high-energy behavior dictated by the OPE
(cf. discussion in [3] with respect to [19] and the summary
talk by Vainshtein in [6]). Whereas we do not want to enter
this debate, in this appendix, we discuss how our approach
could be used by both approaches [3,19]. The first
approach [19] proposes to modify the π0-pole contribution
to aμ as such that a certain OPE constraint to the hVVVVi
Green’s function is satisfied. Its modification results in
setting the external TFF (the gray blob connected to the
external photon in Fig. 2) to a constant one. Following such
prescription and using our description for the pseudoscalar
TFFs, we obtain the results for aHLbL;Pμ shown in Table V.
The larger errors obtained now are proportional to the
larger central values with, essentially, the same proportion-
ality than our main result. Accounting for the systematic
error as we did in Sec. V, we would obtain

aHLbL;Pμ ¼ 135ð11Þ × 10−11; ðE1Þ

to be compared with the result from Ref. [19]
aHLbLμ ¼ ð76.5þ 18þ 18Þ × 10−11 → 114 × 10−11. This
comparison illustrates again the potential large systematic
errors—beyond 10%—typical of resonance models.
Actually, the result from [19] was used in the Glasgow
consensus to obtain the reference value 10.5(2.6). If we
would replace their pseudoscalar-pole contribution by our
Eq. (E1), the final result would be

aHLbLμ ¼ 126ð25Þ × 10−11; ðE2Þ

one sigma larger, and in better agreement with ballpark
estimates.
The second approach [3] provides instead a model

for the pseudoscalar contribution (not only the lightest
pseudoscalar poles), related to the hVVPiGreen’s function.
It would be possible within our approach to reconstruct
an analogous Green’s function. In this scenario to satisfy

all the constraints imposed by the OPE, one should start
directly with the C1

2ðQ2
1; Q

2
2; ðQ1 þQ2Þ2Þ since the N ¼ 0

is too limited. Then, we cannot provide a systematic error
and check on convergence. Besides, further constraints on
this hVVPi Green function would be desired. For these
reasons, we decide not to give a value for such scenario.
In any case, we remind that this approach, as well as the
previous one, were inspired in the π0 TFF model in
Ref. [10] which, as said, entails nonaccounted systematic
errors.

APPENDIX F: STIELTJES FUNCTIONS

A function is said to be of the Stieltjes kind if it admits an
integral representation [74]

fðq2Þ ¼
Z

1=R

0

dϕðuÞ
1 − uq2

; ðF1Þ

where ϕðuÞ is any bounded and nondecreasing function
[74]. To see that such is the case for the isovector
contribution to the TFF in Refs. [64,84,115], let

R ¼ 4m2
π , and define dϕðuÞ ¼ const × q2

π
ImFð1=uÞ

u ; making
the change of variables u ¼ 1=s, Eq. (F1) returns the once-
substracted dispersive representation of the isovector con-
tribution discussed in Ref. [84] and also exploited in
Refs. [64,115], once ImFðsÞ ¼ σ3ðsÞPðsÞjFVðsÞj2 is
identified. Since σðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=s
p

, PðsÞ is a linear
polynomial with positive slope and FVðsÞ the π� vector
FF, then ImFðsÞ is a positive function, the requirement of
ϕðuÞ to be nondecreasing is fulfilled, and the convergence
of PAs to the TFF is guaranteed.22

APPENDIX G: DISPERSION RELATIONS

In this appendix, we develop our statements concern-
ing potential drawbacks of dispersive approaches for
extending the TFF representation into the SL region
beyond energies of the order of 1 GeV. For this purpose,
we employ a simplified approach inspired from Ref. [64].
Specifically, we take the definition in Eq. (17) of that

TABLE IV. The analog results to those for aHLbL;π
0

μ (10−11

units) in Table II, but employing the light-quark TFF. See details
in the text.

aHLbL;l:qμ C0
1 C1

2½amin
P;1;1� C1

2½amax
P;1;1�

l.q. 60.4(1.5)(0.5)[1.6] 57.2(1.8)[1.8] 57.3(1.4)(1.0)[1.8]

l.q.norm 67.4(1.7)(0.5)[1.8] 63.8(2.0)[2.0] 63.9(1.6)(1.1)[1.9]

TABLE V. The results for aHLbL;Pμ in units of 10−11 according to
the procedure in Ref. [19]. The errors and labeling are identical to
those in Table II.

aHLbL;Pμ C0
1 C1

2½amin
P;1;1� C1

2½amax
P;1;1�

π0 84.9(1.8)(2.6)[3.2] 82.8(1.7)[1.7] 80.9(1.3)(0.5)[1.4]

η 29.1(1.0)(0.3)[1.0] 27.3(1.4)[1.4] 26.9(1.5)(1.0)[1.8]
η0 30.4(1.0)(0.5)[1.1] 26.8(1.1)[1.1] 25.8(0.7)(0.9)[1.1]

Total 144.4[3.5] 136.9[2.5] 133.6[2.5]

22If the function fðzÞ is a Stieltjes function, its nth subtracted
version is a Stieltjes function as well [74].
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reference for the once-subtracted dispersion relation for
the η TFF, while we adopt a simpler but reasonable
description for the π� vector form factor based on
Refs. [116,117].
The result obtained for the TL region (from q2 ¼ 0 up to

q2 ¼ m2
η), accessible in the η → γl̄l Dalitz decays, is

illustrated in the upper panel of Fig. 7 and shows a nice
agreement with existing data even though the approxima-
tions performed; this nice overlap contrasts with the
situation in the SL region at higher energies, which is
illustrated in the lower panel of Fig. 7 and shows a clear
deterioration above 1 GeV. Of course, we stress that this
is an oversimplified dispersive model and avoids, for
instance, heavier resonances or inelasticities as done in
Refs. [65,115], but we hope it is enough to illustrate the
expected features for large Q2 values from dispersive
representations, which are tightly related to the subtraction
procedure.
In this respect, it would be interesting to investigate

the use of the series expansion at Q2 ¼ 0 that dispersive
approaches can provide—given their reliability at low
energies—to supply further information for the rational
approach adopted in this work in an iterative way. Such a
procedure would provide a possibility to extend dispersive
approaches up to arbitrarily large Q2 values in the SL or, at
the very least, to implement their LEPs.

APPENDIX H: INPUT PARAMETERS

In this appendix, we quote the different inputs used
in our calculation. They are collected in Table VI together
with their original reference(s) and the data involved
in the analysis for such determination. In addition, we
quote in the last column, those experiments which
could improve the present values for the employed
parameters. These parameters together with the defini-
tions in Secs. III and IV and Appendix A should allow
the reader to reproduce all the results presented in this
work.
We note that we have taken the opportunity to incorpo-

rate the recently released data from Refs. [59,60]23 and
Refs. [118,119]24 regarding the η and π0 TFFs. For the η
case, we obtain very similar results to those in Ref. [95],
with the advantage of reaching the P3

3 approximant
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FIG. 7. Comparison of a dispersive representation for the η TFF
in the low-energy TL and SL regions (upper and lower figure,
respectively) to the available data from Refs. [56–60] and
Refs. [61,62], respectively. We also show our parametrization
using CAs as black-dotted line.

TABLE VI. The values for the different parameters employed
in calculating aHLbL;Pμ (second column) and the reference where
they were extracted from (third column). FPγγ , P∞, and δπ are
expressed in GeV−1, GeV, and GeV−2 units, respectively (addi-
tional parameters are dimensionless). The employed and ex-
pected future data are given in the fourth and fifth column,
respectively.

Input Value Refs. Data Future

Fπγγ 0.2724(29) [2] [97,98]
bπ 0.0321(19) [25] [61,62,101,113,

118,119]
[94,98,100]

cπ 0.00104(22) [25] [61,62,101,113,
118,119]

[94,98,100]

dπ [94,98,100]
aπ;1;1 [94]
π∞ 2Fπ [2]
δ2π 0.20(2) [3,93]
Fηγγ 0.2738(47) [2] [94]
bη 0.572(8) [27,95] [56–62,114] [94,100]
cη 0.333(9) [27,95] [56–62,114] [94,100]
dη 0.195(20) [27,95] [56–62,114] [94,100]
η∞ 0.180(12) [27,95] [56–62,114] [94,100]
Fη0γγ 0.3437(55) [2] [94,99]
bη0 1.31(3) [27,69] [55,61,62,114,120] [94,99]
cη0 1.74(9) [27,69] [55,61,62,114,120] [94,99]
dη0 2.30(22) [27,69] [55,61,62,114,120] [94,99]
η0∞ 0.255(4) [27,69] [55,61,62,114,120] [94,99]

23The experimental data from Ref. [60] supersedes the one
used [58] in our previous work [95], which we remove in
consequence.

24Reference [119] does not include the data points. There-
fore, to include their analysis, we used two different strategies:
the first consists in generating a single point using their fit
result, whereas the second consists in including their slope as
a fitting parameter and leads to analog results. We thank
M. Koval for discussions.
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and obtaining a reduced statistical uncertainty due to the
improvement in the experimental precision. For the π0

case, the changes in central values are due to the updated
Γðπ0 → γγÞ value from Ref. [2] with respect to that
used in Ref. [25], the inclusion of systematic uncertainties
for [61] and, mildly, the data from Refs. [118,119].
The improvement on systematics is low as a consequence
of the limited and low TL q2 range, and we adopt those
in [25]. As an example, for the slope we obtain
bπ ¼ 0.0336ð29Þ; 0.0321ð13Þ, and 0.0315(15) for the
PN
1 , PN

N , and PN
N sequence with the Brodsky-Lepage

asymptotic behavior built in (we reach up to the N ¼ 6,
2, and 3 element, respectively). As usual, we take the
average as our final result [25,27,69,95], which is quoted in
Table VI and includes the systematic error, which has been
combined in quadrature with the statistical one.

In addition, we give the Q2Fπ0γ�γðQ2Þ parametrization
obtained from our the highest element reached within the
PN
N sequence with the BL behavior built in (N ¼ 3),

P3
3ðxÞ ¼ x

t0 þ t1xþ t2x2

1þ r1xþ r2x2 þ r3x3
; ðH1Þ

which coefficients are shown in Table VII (only the central
values are given).
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