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We present a calculation of the η-η0 mixing in the framework of large-Nc chiral perturbation theory.
A general expression for the η-η0 mixing at next-to-next-to-leading order (NNLO) is derived, including
higher-derivative terms up to fourth order in the 4-momentum, kinetic terms, and mass terms. In addition,
the axial-vector decay constants of the η-η0 system are determined at NNLO. The numerical analysis of the
results is performed successively at leading order, next-to-leading order, and NNLO. We investigate
the influence of one-loop corrections, Okubo-Zweig-Iizuka rule-violating parameters, and OðNcp6Þ
contact terms.
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I. INTRODUCTION

The mixing of states is a feature of quantum mechanics
and quantum field theory, which is intimately related to the
symmetries of the underlying dynamics and the eventual
mechanisms leading to their breaking. Prominent examples
in the realmof subatomic physics include theK0-K̄0,D0-D̄0,
and B0-B̄0 mixing and oscillations, neutrino mixing, the
Cabibbo-Kobayashi-Maskawa quark-mixing matrix, and
the Weinberg angle [1]. In the low-energy regime of
QCD, we observe a fascinating interplay between the
dynamical (spontaneous) breaking of chiral symmetry, the
explicit symmetry breaking by the quark masses, and
the axial Uð1ÞA anomaly. In this context, the pseudoscalar
mesons η and η0 represent an ideal laboratory for inves-
tigating the relevant symmetry-breaking mechanisms in
QCD. For example, hadronic decays, such as ηð0Þ → πππ
and η0 → ηππ, test our knowledge of low-energy effective
field theories (EFTs) and provide information on the light-
quark masses.1 On the other hand, electromagnetic decays
such as ηð0Þ → γð�Þγð�Þ proceed through the Adler-Bell-
Jackiw anomaly [5–7]. In the case of virtual photons,
the corresponding amplitudes reveal the electromagnetic
structure in terms of the transition form factors.
For vanishing up-, down-, and strange-quark masses, the

QCD Lagrangian has a global Uð3ÞL × Uð3ÞR symmetry at
the classical level (see, e.g., Ref. [8] for a discussion). The
transition to the quantum level results in two main features:
first, the QCD vacuum is assumed to be invariant only
under the subgroup SUð3ÞV × Uð1ÞV ; i.e., the symmetry of
the Lagrangian is dynamically broken in the ground state.

Second, quantum corrections destroy the singlet axial-
vector-current conservation; i.e., the corresponding
4-divergence has an anomaly proportional to the square
of the strong coupling constant g [5–7]. As a consequence
of the Goldstone theorem [9], one expects an octet of
massless, pseudoscalar bosons ðπ; K; η8Þ. Because of the
Uð1ÞA anomaly, the singlet eta, η1, is massive even in the
chiral limit of massless quarks [10–12]. However, invoking
the large-number-of-colors (LNc) limit of QCD [13,14]
(see, e.g., Refs. [15,16] for an introduction), i.e., Nc → ∞
with g2Nc fixed, the Uð1ÞA anomaly disappears, and the
assumption of an SUð3ÞV × Uð1ÞV symmetry of the ground
state implies that the singlet state is also massless. In other
words, in the combined chiral and LNc limits, QCD at low
energies is expected to generate the nonet ðπ; K; η8; η1Þ as
the Goldstone bosons [11,17]. In the early 1980s, the chiral
dynamics of the nine pseudoscalars was extensively studied
within effective-Lagrangian approaches incorporating the
LNc limit of QCD [18–22].
Massless LNc QCD is an approximation to the real

world. In fact, chiral symmetry is explicitly broken by the
quark masses, and SU(3) flavor symmetry is broken by the
fact that the strange quark is substantially heavier than
the up and down quarks [23]. As a result (of the flavor
symmetry breaking), the physical η and η0 states are mixed
octet and singlet states. By means of an orthogonal trans-
formation with mixing angle θ, the physical η and η0 states,
i.e., the mass eigenstates, are usually expressed as linear
combinations of the octet and singlet states η8 and η1 [24].
Such a change of basis entails the diagonalization of the
general quadratic mass matrix in the basis of SU(3)-
octet and -singlet states, where the diagonal entries are
given by the squares of the octet and the singlet masses
[25,26], while the off-diagonal terms account for the
SU(3)-symmetry-breaking effects [27–31].

1For an overview of the main topics in η and η0 physics from
both the theoretical and experimental sides, see Refs. [2–4] and
references therein.
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In the chiral limit, the Uð1ÞA anomaly contributes only to
the singlet mass [10]. As a result of the mixing, the anomaly
contribution is transferred to both the η and η0 states, such
that the η0 remains heavier than the η. A discussion of the
η-η0 mixing in the framework of EFT should consider both
states as dynamical degrees of freedom, and, for a pertur-
bative treatment, the respective masses should be small in
comparison with a typical hadronic energy scale. Now, in
the chiral limit, the η0 still remains massive. For that reason,
in the low-energy expansion of conventional SUð3ÞL ×
SUð3ÞR chiral perturbation theory (ChPT), the η0 does not
play a special role as compared to other states such as the ρ
meson [27]. However, the combined chiral and LNc limits
may serve as a starting point for large-Nc chiral perturba-
tion theory (LNcChPT) as the EFT of QCD at low energies
including the singlet field [32–40], which we will also refer
to as Uð3ÞL × Uð3ÞR effective theory.2

In the framework of LNcChPT, one performs a simulta-
neous expansion of (renormalized) Feynman diagrams
in terms of momenta p, quark masses m, and 1=Nc.

3 The
three expansion variables are counted as small quantities of
order [33]

p ¼ Oð
ffiffiffi
δ

p
Þ; m ¼ OðδÞ; 1=Nc ¼ OðδÞ: ð1Þ

The organization of the effective Lagrangian as a simulta-
neous expansion in terms of p, m, and 1=Nc, in combi-
nation with the assignment of Eq. (1), ensures a coherent
effective field theory for analyzing the low-energy proper-
ties of QCD in the limit where the number of colors, Nc,
is treated as large (see Ref. [35] for details). The formu-
lation of the effective field theory within the framework
of Uð3ÞL × Uð3ÞR instead of SUð3ÞL × SUð3ÞR with the
singlet eta as an explicit dynamical degree of freedom is a
safe way to remain compatible with the large-Nc limit of
QCD [41]. The corresponding power-counting rules will be
discussed in Sec. II. The leading-order chiral Lagrangian is
not able to reproduce the experimental result for the η and η0
masses [42], and higher-order terms in the 1=Nc (and
quark-mass) expansion must be taken into account [43].
The inclusion of loop effects in the scheme of Eq. (1)
increases the order by δ2. Thus, any calculation in this
framework at the loop level needs to then be performed at
least at next-to-next-to-leading order (NNLO). This order
would demand the knowledge of the low-energy constants
(LECs) of Oðp4Þ and of those of Oðp6Þ which are leading
in 1=Nc. The proliferation of (a priori unknown) LECs
poses a challenge for any prediction within this theory, and
information from other sources, e.g., from a matching to
physical observables or lattice simulations, will be required

in order to determine the LECs. For SU(3) ChPT, the LECs
at Oðp4Þ are well known, and information on some of the
Oðp6Þ LECs is also provided [44]. With a suitable match-
ing, one can translate the SU(3) values into the correspond-
ing ones within the U(3) effective theory.
Since we take higher orders of the 1=Nc expansion into

account, terms violating the Okubo-Zweig-Iizuka (OZI)
rule appear perturbatively in our calculations. They will be
accompanied by a set of LECs which are rather poorly
known at OðδÞ and basically unknown at higher orders.
If we include higher-order corrections in our effective

Lagrangian, the connection between the physical η and η0
states and the singlet and octet states is more complicated
than a simple rotation. Furthermore, the description of the
η-η0 mixing with a single mixing angle θ is not appropriate
to describe the experimental data, and also the axial-vector
decay constants of the η-η0 system [at next-to-leading order
(NLO)] cannot be described by a simple rotation with angle
θ. This problem was solved by invoking a mixing scheme
with two different angles, the so-called two-angle mixing
scheme [45,46]. In recent years, the use of the two-angle
scheme has been very popular and resulted in well-
established phenomenological determinations of the mix-
ing [45–52], a procedure that can also be extended to
include an eventual gluonium content of these pseudosca-
lars (see, e.g., Refs. [53–55]).
This work is organized as follows. In Sec. II, we describe

the effective field theory we will consider for our calcu-
lation by specifying the Lagrangian and the power count-
ing. In Sec. III, we present the calculation of the mixing
angles at NNLO. Section IV deals with the η and η0 decay
constants. In Sec. V, we elaborate on the numerical analysis
of the mixing, decay constants, and pseudoscalar masses
with different input sets of LECs. Finally, in Sec. VI, we
conclude with a few remarks and an outlook of possible
future work.

II. LAGRANGIANS AND POWER COUNTING

The most general Lagrangian of LNcChPT is organized
as an infinite series in terms of derivatives, quark-mass
terms, and, implicitly, powers of 1=Nc, with the scaling
behavior given in Eq. (1),

Leff ¼ Lð0Þ þ Lð1Þ þ Lð2Þ þ � � � ; ð2Þ
where the superscripts (i) denote the order in δ. The rules
leading to the assignments of these orders will be explained
below. The properties of the building blocks are defined in
Appendix A.
The dynamical degrees of freedom are collected in the

unitary 3 × 3 matrix

UðxÞ ¼ exp

�
i
ϕðxÞ
F

�
; ð3Þ

where the Hermitian 3 × 3 matrix

2For the sake of notational brevity, from now on, wewill use the
terminology SU(3) and U(3) ChPT instead of SUð3ÞL × SUð3ÞR
and Uð3ÞL × Uð3ÞR ChPT, respectively.

3It is understood that dimensionful variables need to be small
in comparison with an energy scale.
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contains the pseudoscalar octet fields and the pseudoscalar
singlet field η1, the λa (a ¼ 1;…; 8) are the Gell-Mann
matrices, and λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
1. In Eq. (3), F denotes the pion-

decay constant in the three-flavor chiral limit4 and is
counted as F ¼ Oð ffiffiffiffiffiffi

Nc
p Þ ¼ Oð1= ffiffiffi

δ
p Þ.5 The pseudoscalar

fields ϕa (a ¼ 0;…; 8) count as Oð ffiffiffiffiffiffi
Nc

p Þ such that the
argument of the exponential function is Oðδ0Þ and, thus,
U ¼ Oðδ0Þ. Besides the dynamical degrees of freedom of
Eq. (4), the effective Lagrangian also contains a set of
external fields ðs; p; lμ; rμ; θÞ. The fields s, p, lμ, and rμ are
Hermitian, color-neutral 3 × 3 matrices coupling to the
corresponding quark bilinears, and θ is a real field coupling
to the winding-number density [27]. A nonvanishing
constant value for θ would give rise to parity violation
and CP violation in the strong interactions, resulting in,
e.g., an electric dipole moment of the neutron [56].
However, the present empirical information on this quantity
suggests that θ is tiny [57], and, therefore, while displaying
the θ dependence in the Lagrangians, we set θ ¼ 0 in our
calculations. The external scalar and pseudoscalar fields s
and p are combined in the definition χ ≡ 2Bðsþ ipÞ [27].
The LEC B is related to the scalar singlet quark condensate
hq̄qi0 in the three-flavor chiral limit and is of OðN0

cÞ.
In general, applying the power counting of Eq. (1) to the

construction of the effective Lagrangian in the LNc
framework involves two ingredients. On the one hand,
there is the momentum and quark-mass counting, which
proceeds as in conventional SU(3) ChPT [27]: (covariant)
derivatives count as OðpÞ, χ counts as Oðp2Þ, etc. (see
Table I). We denote the corresponding chiral order by Dp.
The discussion of the U(3) case results in essentially three
major modifications in comparison with SU(3) [33–35]:
first, the determinant ofU is no longer restricted to have the
value 1; second, additional external fields appear; and third,
the conventional structures of SU(3)ChPTwill bemultiplied
by coefficientswhich are functions of the linear combination
(ψþθ), where ψ≡ ffiffiffi

6
p

η1=F such that detðUÞ¼expðiψÞ.
According to Eqs. (A1), the sum (ψþθ) remains invariant

under chiral Uð3ÞL × Uð3ÞR transformations. For example,
denoting the SU(3) matrix of ordinary ChPT by Û, the
leading-order Lagrangian reads [27]

L2 ¼
F2

4
hDμÛDμÛ†i þ F2

4
hχÛ† þ Ûχ†i;

where the symbol hi denotes the trace over flavor indices and
the covariant derivatives are defined in Eqs. (A2). This
expression is replaced by [34]

W1hDμUDμU†i þW2hχU† þUχ†i; ð5Þ

where W1 and W2 are functions of (ψ þ θ) and are also
referred to as potentials [35]. In the limit Nc → ∞, these
functions reduce to constants [33]. However, for Nc finite,
the functionsmay be expanded in (ψ þ θ) with well-defined
assignments for the LNc scaling behavior of the expansion
coefficients.
In addition to the potentials, also new additional struc-

tures which do not exist in the SU(3) case show up. For
example, in ordinary ChPT, one finds for the trace
hDμÛÛ†i ¼ 0 [8], whereas in the U(3) case, one has

TABLE I. Power-counting rules in LNcChPT. a) The inverse of
the singlet η1 propagator is of order 1=Nc and p2. b) The
assignment i in LðiÞ receives contributions from both 1=Nc and
p2. Recall that powers ðψ þ θÞn come with expansion coeffi-
cients of OðN−n

c Þ even though we count (ψ þ θ) as Oð1Þ.
Quantity Nc p δ

Momenta/derivatives p=∂μ 1 p δ
1
2

1=Nc N−1
c 1 δ

Quark masses m 1 p2 δ
Dynamical fields ϕa (a ¼ 1;…; 8)

ffiffiffiffiffiffi
Nc

p
1 δ−

1
2

Dynamical field ψ 1 1 1
External field θ 1 1 1
External currents vμ and aμ 1 p δ

1
2

External fields s and p 1 p2 δ
Pion-decay constant F (chiral limit)

ffiffiffiffiffiffi
Nc

p
1 δ−

1
2

Topological susceptibility τ 1 1 1
M2

η0 (chiral limit) N−1
c 1 δ

Octet-meson propagator 1 p−2 δ−1

Singlet-η1 propagator (chiral limit) a) a) δ−1

Loop integration 1 p4 δ2

k-meson vertex from LðiÞ b) b) δiþk=2

4Here, we deviate from the often-used convention of indicating
the three-flavor chiral limit by a subscript 0.

5Consider a generic quark bilinear of the type q̄ΓFq, with Γ
and F standing for matrices in Dirac and flavor space, respec-
tively, and a summation over color indices implied. In the LNc
limit of QCD, the matrix element for any such quark bilinear to
create a meson from the vacuum scales like

ffiffiffiffiffiffi
Nc

p
[14].
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hDμUU†i ¼ iDμψ ; ð6Þ
giving rise to a new term of the type −W4DμψDμψ [34].
The LNc behavior can be determined by using the

following rules (see Refs. [34,35] for a detailed account).
In the LNc counting, the leading contribution to a quark
correlation function is given by a single flavor trace and is
of order Nc [13,14,16]. In general, diagrams with r quark
loops and thus r flavor traces are of order N2−r

c . Terms
without traces correspond to the purely gluonic theory and
count at leading order asN2

c. This argument is transferred to
the level of the effective Lagrangian; i.e., single-trace terms
are of order Nc, double-trace terms are of order unity, etc.6

In other words, we need to identify the numberNtr of flavor
traces. In particular, because of Eq. (6), the expressionDμψ
implicitly involves a flavor trace (see footnote 7 of
Ref. [35]). Furthermore, when expanding the potentials,
each power ðψ þ θÞn is accompanied by a coefficient
of order OðN−n

c Þ. The reason for this assignment is the
fact that, in QCD, the external field θ couples to the
winding-number density with strength 1=Nc. In a similar
fashion, Dμθ (as well as multiple derivatives) are related to
expressions withOðN−1

c Þ.7 Denoting the number of (ψ þ θ)
and Dμθ terms by Nθ, the LNc order reads [34,35]

DN−1
c
¼ −2þ Ntr þ Nθ: ð7Þ

The combined order of an operator is then given by

Dδ ¼
1

2
Dp þDN−1

c
: ð8Þ

In particular, using Eq. (8) allows us to identify the LNc
scaling behavior of the LEC multiplying the corresponding
operator.
The leading-order Lagrangian contains three LECs,

namely, F, B, and τ, and is given by [33,35]

Lð0Þ ¼ F2

4
hDμUDμU†i þ F2

4
hχU† þUχ†i − 1

2
τðψ þ θÞ2:

ð9Þ
Comparing with Eq. (5), we identify

F2

4
¼ W1ð0Þ ¼ W2ð0Þ

as the leading-order term of the expansion of the functions
W1 andW2 which, because of parity, are even functions. On
the other hand, the last term of Eq. (9) originates from the
second-order term of the expansion of W0. The constant

τ ¼ OðN0
cÞ is the topological susceptibility of the purely

gluonic theory [33]. Counting the quark mass asOðp2Þ, the
first two terms of Lð0Þ are ofOðNcp2Þ, while the third term
is of OðN0

cÞ; i.e., all terms are of Oðδ0Þ. The leading-order
Lagrangian of Eq. (9) corresponds to the effective
Lagrangians of Refs. [18–20].8 Note that Refs. [19] and
[20] explicitly display the Nc dependence of the last term in
Eq. (9), whereas we absorb it in the definition of the
parameter τ. Reference [22] also discusses a few next-to-
leading terms in 1=Nc and the quark masses. The effective
Lagrangians of Refs. [18–22] are meant to be used at the
tree level, whereas LNcChPT also contains loop correc-
tions. Applying the external-field method of Gasser and
Leutwyler [27] implies that the global chiral symmetry is
promoted to a local symmetry. As a result, Eq. (9) contains
covariant derivatives in place of ordinary derivatives in the
effective-Lagrangian approaches. Furthermore, at higher
orders, one also encounters field strength tensors as well as
derivatives thereof. Such terms are mandatory to absorb
ultraviolet divergences of loop diagrams. An illustration of
this point in terms of the pion electromagnetic form factor
can be found in Ref. [59].
To explain the power counting of the interaction

vertices, we set rμ ¼ lμ ¼ 0 and χ ¼ 2BM, where M ¼
diagðmu;md;msÞ denotes the quark-mass matrix. For this
case, the leading-order Lagrangian contains only even
powers of the pseudoscalar fields. Expanding the first
two terms of Eq. (9) in terms of the pseudoscalar fields
results in Feynman rules for the interaction vertices of the
order p2N1−k=2

c , where k ¼ 4; 6;… is the number of
interacting pseudoscalar fields [35]. The dependence on
Nc and p originates from the powers of F and the two
derivatives, respectively. When discussing QCD Green
functions of, say, pseudoscalar quark bilinears, there will
be a factor BF ¼ Oð ffiffiffiffiffiffi

Nc
p Þ at each external source (see

Sec. 4. 6. 2 of Ref. [60]), such that an n-point function is of
the order p2Nc. Taking ϕa ¼ Oð ffiffiffiffiffiffi

Nc
p Þ, the interaction

Lagrangians count as Oðp2NcÞ, which is consistent with
referring to the Lagrangian asOðδ0Þ, with the leading-order
contributions of quark loops being OðNcÞ and the leading
chiral order being Oðp2Þ. On the other hand, it is also
consistent with the expectation of the effective meson
vertices containing k external lines being of the order
N1−k=2

c [14].
The NLO Lagrangian Lð1Þ was constructed in

Refs. [33–35] and receives contributions of OðNcp4Þ,
Oðp2Þ, and OðN−1

c Þ. The terms that are of the same
structure as those in Lð0Þ may be absorbed in the coupling
constants F, B, and τ [35]. In particular, τ now has to be
distinguished from the topological susceptibility of gluo-
dynamics. We only display the terms relevant for our

6When applying these counting rules, one has to account for
the so-called trace relations connecting single-trace terms with
products of traces (see, e.g., Appendix A of Ref. [58]).

7Note that we do not directly book the quantities (ψ þ θ) or
Dμθ as OðN−1

c Þ but rather attribute this order to the coefficients
coming with the terms.

8See Eqs. (7), (10), and (2.22) of Refs. [18,19], and [20],
respectively.
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calculation; in particular, we set vμ ≡ ðrμ þ lμÞ=2 ¼ 0 and
keep only aμ ≡ ðrμ − lμÞ=2, which is needed for the
calculation of the axial-vector-current matrix elements,

Lð1Þ ¼ L5hDμUDμU†ðχU† þUχ†Þi

þ L8hχU†χU† þUχ†Uχ†i þ F2

12
Λ1DμψDμψ

− i
F2

12
Λ2ðψ þ θÞhχU† −Uχ†i þ � � � ; ð10Þ

where

Dμψ ¼ ∂μψ − 2haμi; ð11Þ

Dμθ ¼ ∂μθ þ 2haμi ð12Þ

and the ellipsis refers to the suppressed terms. The first two
terms of Lð1Þ count as OðNcp4Þ and are obtained from the
standard SU(3) ChPT Lagrangian of Oðp4Þ [27] by
retaining solely terms with a single trace and keeping only
the constant terms of the potentials. With Dp ¼ 4 and
DN−1

c
¼ −1, Eq. (8) implies that L5 and L8 are of OðNcÞ.

According to Eq. (11), the expression DμψDμψ implicitly
involves two flavor traces (see footnote 7 of Ref. [35]), with
the result that the corresponding term is OðN0

cÞ. Since
F ¼ Oð ffiffiffiffiffiffi

Nc
p Þ, the couplingΛ1 scales asOðN−1

c Þ and has to
vanish in the LNc limit. Finally, the structure proportional
to Λ2 is the leading-order term of the expansion of the
potential W3. With Dp ¼ 2 and DN−1

c
¼ 0 (Ntr ¼ Nθ ¼ 1),

the LEC Λ2 scales as OðN−1
c Þ.

The SU(3) Lagrangian of Oðp6Þ was discussed in
Refs. [58,61–63], and the generalization to the U(3) case
has recently been obtained in Ref. [64]. For the present
purposes, at NNLO, the relevant pieces of Lð2Þ can be split
into three different contributions of OðN−1

c p2Þ, Oðp4Þ, and
OðNcp6Þ, respectively,

Lð2;N−1
c p2Þ ¼ −

F2

4
vð2Þ2 ðψ þ θÞ2hχU† þ Uχ†i; ð13Þ

Lð2;p4Þ ¼ L4hDμUDμU†ihχU† þUχ†i þ L6hχU† þ Uχ†i2
þ L7hχU†−Uχ†i2þ iL18DμψhχDμU†−DμUχ†i
þ iL25ðψ þ θÞhχU†χU† −Uχ†Uχ†i
þ iL46DμθhDμUU†ðχU† þ Uχ†Þi
þ iL53∂μDμθhχU† −Uχ†i þ � � � ; ð14Þ

Lð2;Ncp6Þ ¼ C12hχþhμνhμνi þ C14huμuμχ2þi
þ C17hχþuμχþuμi þ C19hχ3þi
þ C31hχ2−χþi þ � � � ; ð15Þ

where

χ� ¼ u†χu† � uχ†u;

u ¼
ffiffiffiffi
U

p
;

uμ ¼ i½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†� ¼ iu†DμUu†;

hμν ¼ ∇μuν þ∇νuμ;

∇μX ¼ ∂μX þ ½Γμ; X�;

Γμ ¼
1

2
½u†ð∂μ − irμÞuþ uð∂μ − ilμÞu†�: ð16Þ

The coupling vð2Þ2 of Eq. (13) scales like OðN−2
c Þ and

originates from the expansion of the potentials of
Refs. [33,35] up to and including terms of order ðψþθÞ2.
The first three terms of Eq. (14) stem from the standard
SU(3) ChPT Lagrangian of Oðp4Þ with two traces and are
1=Nc suppressed compared to the single-trace terms in
Eq. (10). The remaining terms of Eq. (14) are genuinely
related to the LNc U(3) framework, since they contain
interactions involving the singlet field or the singlet axial-
vector current. Finally, the Ci terms of Eq. (15) are obtained
from single-trace terms of the SU(3) Lagrangian of Oðp6Þ
[61]. As there is, at present, no satisfactory unified nomen-
clature for the coupling constants, for easier reference, we
choose the names according to the respective references
from which the Lagrangians were taken. In our calculation,
we do not include external vector fields, i.e., vμ ¼ 0. The
L46, L53 terms in Lð1Þ are not needed for the calculation of
the mixing. They enter, however, in the calculation of the
decay constants of the axial-vector-current matrix elements.
Last but not least, we summarize the power-counting rules

for a given Feynman diagram, which has been evaluated by
using the interaction vertices derived from the effective
Lagrangians of Eq. (2). Using the δ counting introduced in
Eq. (1), we assign to any such diagram an order D which is
obtained from the following ingredients: meson propagators
for both octet and singlet fields count as Oðδ−1Þ. Since
meson fields are always divided by F ¼ Oð ffiffiffiffiffiffi

Nc
p Þ ¼

Oðδ−1
2Þ, a vertex with k meson fields derived from LðiÞ is

Oðδiþk=2Þ. The integration of a loop counts as δ2. The order
D is obtained by adding up the contributions of the
individual building blocks. Figure 1 provides two examples
of the application of the power-counting rules. Since the
tree-level diagram of Fig. 1(a) consists of a single vertex

FIG. 1. Illustration of the power counting in LNcChPT. The
number 0 in the interaction blobs refers to Lð0Þ.
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derived from Lð0Þ with four external meson lines, it has
D ¼ 2. On the other hand, the one-loop diagram of Fig. 1(b)
has two vertices from Lð0Þ with four legs, two meson
propagators, and one loop: D ¼ 2þ 2 − 1 − 1þ 2 ¼ 4.
As expected, the loop increases the order by two units.
The power-counting rules are summarized in Table I.

III. CALCULATION OF THE MIXING ANGLE

For mu ¼ md ¼ m̂ ≠ ms, the physical η and η0 mass
eigenstates are linear combinations of the mathematical
octet and singlet states η8 and η1. Our aim is to derive a
general expression for the η-η0 mixing at the one-loop level
up to and including NNLO in the δ counting. To that end,
we start from an effective Lagrangian in terms of the octet
and singlet fields and perform successive transformations,
resulting in a diagonal Lagrangian in terms of the physical
fields. Because of the effective-field-theory nature of our
approach, the starting Lagrangian will contain higher-
derivative terms up to and including fourth order in the
4-momentum. The parameters of the Lagrangian are
obtained from a one-loop calculation of the self-energies
using the Lagrangians and power counting of Sec. II. The
Lagrangian after the transformation will have a standard
“free-field” form.
Let us collect the fields η8 and η1 in the doublet

ηA ≡
�
η8

η1

�
: ð17Þ

In terms of ηA, at NNLO, the most general effective
Lagrangian quadratic in ηA is of the form

Leff ¼ LA ¼ 1

2
∂μη

T
AKA∂μηA −

1

2
ηTAM

2
AηA þ 1

2
□ηTACA□ηA:

ð18Þ

Note that the fields η8 and η1 count asOð ffiffiffiffiffiffi
Nc

p Þ and a single
derivative counts as OðpÞ. The symmetric 2 × 2 matrices
KA, M2

A, and CA can be written as

KA ¼
�
1þ k8 k81
k81 1þ k1

�
; ð19Þ

M2
A ¼

�
M2

8 M2
81

M2
81 M2

1

�
; ð20Þ

CA ¼
�

c8 c81
c81 c1

�
: ð21Þ

Later on, we will provide the one-loop expressions for
the matrices KA and M2

A. The matrix CA is given in
Eqs. (C1)–(C3) of Appendix C and is ofOðp2Þ. If we were
to work at leading order, only, we would have to replace

KA → 1; M2
A → M2

A
ð0Þ ¼

0
B@ M2

8

∘
M2

81

∘

M2
81

∘
M2

1

∘
þM2

0

1
CA;

CA → 0:

The elements of the (leading-order) mass matrix M2
A
ð0Þ

read

M2
8

∘
¼ 2

3
Bðm̂þ 2msÞ ¼

1

3
ð4M2

K

∘
−M2

π

∘
Þ; ð22Þ

M2
1

∘
¼ 2

3
Bð2m̂þmsÞ ¼

1

3
ð2M2

K

∘
þM2

π

∘
Þ; ð23Þ

M2
0 ¼ 6

τ

F2
; ð24Þ

M2
81

∘
¼ −

2
ffiffiffi
2

p

3
Bðms − m̂Þ ¼ −

2
ffiffiffi
2

p

3
ðM2

K

∘
−M2

π

∘
Þ; ð25Þ

where M2
K

∘
¼ Bðm̂þmsÞ and M2

π

∘
¼ 2Bm̂ are the leading-

order kaon and pion masses squared, respectively, and M2
0

denotes the Uð1ÞA anomaly contribution to the η1 mass
squared. The mixing already shows up at leading order,
because the mass matrix M2

A is nondiagonal at that order.
The “kinetic” matrix KA receives NLO and NNLO cor-
rections. Finally, the last term in Eq. (18), containing higher
derivatives of ηA, originates from the C12 term of theOðδ2Þ
Lagrangian in Eq. (15).
Our first step is to perform a field redefinition to get rid

of the higher-derivative structure in Eq. (18) [65,66],

ηA ¼
�
1þ 1

2
CA□

�
ηB: ð26Þ

The entries of CA are of Oðp2Þ, and the d’Alembertian
operator counts as Oðp2Þ. The field transformation is
constructed such that, after inserting Eq. (26) into
Eq. (18), the last term is canceled by a term originating
from the first term in Eq. (18). Moreover, we obtain
additional terms originating from the “mass term” of
Eq. (18) which now contribute to the new kinetic matrix.
Finally, we neglect any term generated by the field
transformation which is beyond the accuracy of a NNLO
calculation. Using the relation ϕ□ϕ ¼ ∂μðϕ∂μϕÞ −
∂μϕ∂μϕ for the components of ηB, and neglecting total-
derivative terms, the Lagrangian after the first field redefi-
nition is of the form

LB ¼ 1

2
∂μη

T
BKB∂μηB −

1

2
ηTBM

2
BηB; ð27Þ

where
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KB ¼ KA þ 1

2

0
B@ 2c8M2

8

∘
þ 2c81M2

81

∘
ðc1 þ c8ÞM2

81

∘
þ c81ðM2

1

∘
þM2

0 þM2
8

∘
Þ

ðc1 þ c8ÞM2
81

∘
þ c81ðM2

1

∘
þM2

0 þM2
8

∘
Þ 2c1ðM2

1

∘
þM2

0Þ þ 2c81M2
81

∘

1
CA

¼

0
B@ 1þ δð1Þ8 þ δð2Þ8 δð1Þ81 þ δð2Þ81

δð1Þ81 þ δð2Þ81 1þ δð1Þ1 þ δð2Þ1

1
CA; ð28Þ

where δðiÞj denotes corrections of OðδiÞ. The entries of the
mass matrix M2

B ¼ M2
A are given by

M2
8 ¼ M2

8

∘
þ ΔM2

8
ð1Þ þ ΔM2

8
ð2Þ; ð29Þ

M2
1 ¼ M2

0 þM2
1

∘
þ ΔM2

1
ð1Þ þ ΔM2

1
ð2Þ; ð30Þ

M2
81 ¼ M2

81

∘
þ ΔM2

81
ð1Þ þ ΔM2

81
ð2Þ; ð31Þ

where ΔM2
j
ðiÞ denotes corrections of OðδiÞ.

The next step consists of diagonalizing the kinetic matrix
KB in Eq. (28) up to and including Oðδ2Þ through the field
redefinition

ηB ¼
ffiffiffiffi
Z

p
ηC; ð32Þ

such that ffiffiffiffi
Z

p
TKB

ffiffiffiffi
Z

p
¼ 1: ð33Þ

Writing KB as

KB ¼ 1þ Kð1Þ þ Kð2Þ

and making an ansatz for the symmetric matrix
ffiffiffiffi
Z

p
of the

form

ffiffiffiffi
Z

p
¼ 1þ

ffiffiffiffi
Z

p ð1Þ þ
ffiffiffiffi
Z

p ð2Þ;

we obtain from Eq. (33) the conditions

2
ffiffiffiffi
Z

p ð1Þ þ Kð1Þ ¼ 0 ⇒
ffiffiffiffi
Z

p ð1Þ ¼ −
1

2
Kð1Þ;

and

2
ffiffiffiffi
Z

p ð2Þ þ Kð2Þ þ
ffiffiffiffi
Z

p ð1Þ2 þ
ffiffiffiffi
Z

p ð1ÞKð1Þ þ Kð1Þ ffiffiffiffi
Z

p ð1Þ ¼ 0

⇒
ffiffiffiffi
Z

p ð2Þ ¼ −
1

2
Kð2Þ þ 3

8
Kð1Þ2:

The matrix
ffiffiffiffi
Z

p
is, therefore, given by

ffiffiffiffi
Z

p
¼

0
B@ 1 − 1

2
δð1Þ8 þ 3

8
δð1Þ8

2 þ 3
8
δð1Þ81

2 − 1
2
δð2Þ8 − 1

2
δð1Þ81 þ 3

8
δð1Þ1 δð1Þ81 þ 3

8
δð1Þ8 δð1Þ81 − 1

2
δð2Þ81

− 1
2
δð1Þ81 þ 3

8
δð1Þ1 δð1Þ81 þ 3

8
δð1Þ8 δð1Þ81 − 1

2
δð2Þ81 1 − 1

2
δð1Þ1 þ 3

8
δð1Þ1

2 þ 3
8
δð1Þ81

2 − 1
2
δð2Þ1

1
CA: ð34Þ

In terms of ηC, the Lagrangian reads

LC ¼ 1

2
∂μη

T
C∂μηC −

1

2
ηTCM

2
CηC; ð35Þ

with the mass matrix given by

M2
C ¼

ffiffiffiffi
Z

p
TM2

B

ffiffiffiffi
Z

p ≡
�

M̂2
8 M̂2

81

M̂2
81 M̂2

1

�
: ð36Þ

Up to and including second order in the corrections δðiÞj and

ΔM2
j
ðiÞ, the entries of the matrix M2

C read

M̂2
8 ¼ M2

8

∘ �
1 − δð1Þ8 þ δð1Þ8

2 þ 3

4
δð1Þ81

2 − δð2Þ8

�
þ ΔM2

8
ð1Þð1 − δð1Þ8 Þ þ ΔM2

8
ð2Þ þM2

81

∘ �
−δð1Þ81 þ 3

4
δð1Þ1 δð1Þ81 þ 5

4
δð1Þ8 δð1Þ81 − δð2Þ81

�

þ ΔM2
81

ð1Þð−δð1Þ81 Þ þ
1

4
ðM2

0 þM2
1

∘
Þδð1Þ81

2; ð37Þ

M̂2
1 ¼ ðM2

0 þM2
1

∘
Þ
�
1 − δð1Þ1 þ δð1Þ1

2 þ 3

4
δð1Þ81

2 − δð2Þ1

�
þ ΔM2

1
ð1Þð1 − δð1Þ1 Þ þ ΔM2

1
ð2Þ

þM2
81

∘ �
−δð1Þ81 þ 3

4
δð1Þ8 δð1Þ81 þ 5

4
δð1Þ1 δð1Þ81 − δð2Þ81

�
þ ΔM2

81
ð1Þð−δð1Þ81 Þ þ

1

4
M2

8

∘
δð1Þ81

2; ð38Þ
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M̂2
81 ¼ M2

81

∘ �
1 −

1

2
δð1Þ1 −

1

2
δð1Þ8 þ 3

8
δð1Þ1

2 þ 1

4
δð1Þ1 δð1Þ8 þ 3

8
δð1Þ8

2 þ δð1Þ81

2 −
1

2
δð2Þ1 −

1

2
δð2Þ8

�

þ ΔM2
81

ð1Þ
�
1 −

1

2
δð1Þ1 −

1

2
δð1Þ8

�
þ ΔM2

81
ð2Þ þM2

8

∘ �
−
1

2
δð1Þ81 þ 3

8
δð1Þ1 δð1Þ81 þ 5

8
δð1Þ8 δð1Þ81 − δð2Þ81

�
þ ΔM2

8
ð1Þ
�
−
1

2
δð1Þ81

�

þ ðM2
0 þM2

1

∘
Þ
�
−
1

2
δð1Þ81 þ 3

8
δð1Þ8 δð1Þ81 þ 5

8
δð1Þ1 δð1Þ81 − δð2Þ81

�
þ ΔM2

1
ð1Þ
�
−
1

2
δð1Þ81

�
: ð39Þ

Finally, to obtain the physical mass eigenstates, we diag-
onalize the matrix M2

C by means of an orthogonal trans-
formation,

ηD ¼ RηC; ð40Þ

R≡
�
cos θ½2� − sin θ½2�

sin θ½2� cos θ½2�

�
; ð41Þ

such that

RM2
CR

T ¼ M2
D ¼

�M2
η 0

0 M2
η0

�
: ð42Þ

The superscript ½2� refers to corrections up to and including
second order in the δ expansion. Introducing the nomen-
clature ηP for the physical fields and M2

P for the diagonal
mass matrix,

ηP ¼ ηD ¼
�

η

η0

�
; M2

P ¼
�M2

η 0

0 M2
η0

�
;

the Lagrangian is now of the free-field type,

L ¼ LD ¼ 1

2
∂μη

T
P∂μηP −

1

2
ηTPM

2
PηP

¼ 1

2
∂μη∂μη −

1

2
M2

ηη
2 þ 1

2
∂μη

0∂μη0 −
1

2
M2

η0η
02:

Equation (42) yields three relations,

M̂2
8 ¼ M2

ηcos2θ½2� þM2
η0sin

2θ½2�; ð43Þ
M̂2

1 ¼ M2
ηsin2θ½2� þM2

η0cos
2θ½2�; ð44Þ

M̂2
81 ¼ ðM2

η0 −M2
ηÞ sin θ½2� cos θ½2�; ð45Þ

which define the mixing angle θ½2� calculated up to and
including Oðδ2Þ. First, from Eq. (45), we infer

sin 2θ½2� ¼ 2M̂2
81

M2
η0 −M2

η
: ð46Þ

Adding Eqs. (43) and (44), we obtain

M2
η0 þM2

η ¼ M̂2
8 þ M̂2

1: ð47Þ
In the end, we subtract Eq. (44) from Eq. (43), take the
square of the result, add the square of 2× Eq. (45), and take
the square root of the result to obtain

M2
η0 −M2

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM̂2

8 − M̂2
1Þ2 þ 4ðM̂2

81Þ2
q

: ð48Þ

This equation implies that Eq. (46) can also be written as

sin 2θ½2� ¼ 2M̂2
81ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM̂2
8 − M̂2

1Þ2 þ 4ðM̂2
81Þ2

q : ð49Þ

The transformation from the octet fields ηA to the
physical fields ηD can be summarized as

ηA ¼ TηD ¼
�
1þ 1

2
CA□

� ffiffiffiffi
Z

p
RTηD; ð50Þ

where the transformation matrix T is given by

T ¼
�
−A sin θ½2� þ B8 cos θ½2� A cos θ½2� þ B8 sin θ½2�

A cos θ½2� − B1 sin θ½2� A sin θ½2� þ B1 cos θ½2�

�
;

ð51Þ
with

A ¼ −δð1Þ81

�
1

2
−
3

8
δð1Þ1 −

3

8
δð1Þ8

�
−
1

2
δð2Þ81 þ c81

2
□; ð52Þ

Bi ¼ 1 −
1

2
δð1Þi þ 3

8
δð1Þi

2 þ 3

8
δð1Þ81

2 −
1

2
δð2Þi þ ci

2
□: ð53Þ

Up to this point, the procedure for defining a mixing
angle in terms of successive transformations is rather
general. We now turn to a determination of the quantities

δðjÞi aswell as theM2
i termswithin LNcChPT. To identifyKA

and M2
A at NNLO, we calculate the self-energy insertions

−iΣijðp2Þ, ði; j ¼ 1; 8Þ corresponding to the Feynman
diagrams in Fig. 2. The Feynman rules are derived from
the Lagrangians Lð0Þ, Lð1Þ, and Lð2Þ of Eqs. (9), (10), and
(13)–(15). The self-energy calculated from the Lagrangian
in Eq. (18) takes the form9

Σðp2Þ ¼
�
Σ88ðp2Þ Σ81ðp2Þ
Σ18ðp2Þ Σ11ðp2Þ

�
; ð54Þ

9Since both the singlet and the octet states are massless in the
combined chiral and Nc → ∞ limits, we consider the lowest-
order mass terms as part of the self-energy contributions.
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where the Σijðp2Þ are parametrized up to and including
Oðδ2Þ as

Σ88ðp2Þ ¼ −ðk8 þ c8p2Þp2 þM2
8; ð55Þ

Σ81ðp2Þ ¼ Σ18ðp2Þ ¼ −ðk81 þ c81p2Þp2 þM2
81; ð56Þ

Σ11ðp2Þ ¼ −ðk1 þ c1p2Þp2 þM2
1: ð57Þ

We now obtain the elements of the kinematic matrixKA, the
massmatrixM2

A, and thematrix CA by comparing the results
for the self-energies calculated by means of the Feynman
diagrams (Fig. 2) with the parametrization given in
Eqs. (55)–(57).
The NLO contributions to the kinetic matrix read

δð1Þ8 ¼ 8ð4M2
K −M2

πÞL5

3F2
π

; ð58Þ

δð1Þ1 ¼ 8ð2M2
K þM2

πÞL5

3F2
π

þ Λ1; ð59Þ

δð1Þ81 ¼ −
16

ffiffiffi
2

p ðM2
K −M2

πÞL5

3F2
π

; ð60Þ

where Mπ , MK , and Fπ denote the physical pion and kaon
masses and the physical pion-decay constant, respectively.
The difference between using physical values instead of
leading-order expressions in Eqs. (58)–(60) is of NNLO
and is compensated by an appropriate modification of the
Oðδ2Þ terms. The NNLO expressions for Mπ, MK , and Fπ

are displayed in Appendix B.
The entries of the mass matrix M2

A are defined in
Eqs. (29)–(31) in terms of leading-order, δ1, and δ2 pieces.
The leading-order masses are given in Eqs. (22)–(25). In
terms of the physical pion and kaon masses and the physical
pion-decay constant, the first-order corrections read

ΔM2
8
ð1Þ ¼ 16ð8M4

K − 8M2
πM2

K þ 3M4
πÞL8

3F2
π

; ð61Þ

ΔM2
1
ð1Þ ¼ 16ð4M4

K − 4M2
πM2

K þ 3M4
πÞL8

3F2
π

þ 2Λ2

3
ð2M2

K þM2
πÞ; ð62Þ

ΔM2
81

ð1Þ ¼ −
64

ffiffiffi
2

p ðM2
K −M2

πÞM2
KL8

3F2
π

−
2

ffiffiffi
2

p
Λ2

3
ðM2

K −M2
πÞ: ð63Þ

The corresponding NNLO expressions for the kinetic and
mass matrix elements can be found in Appendix C.

IV. DECAY CONSTANTS

The decay constants of the η-η0 system are defined via
the matrix element of the axial-vector-current operator
Aa
μ ¼ q̄γμγ5

λa

2
q,

h0jAa
μð0ÞjPðpÞi ¼ iFa

Ppμ; ð64Þ
where a ¼ 8, 0 and P ¼ η; η0. Since both mesons have octet
and singlet components, Eq. (64) defines four independent
decay constants, Fa

P. We parametrize them according to the
convention in [36]

fFa
Pg ¼

� F8
η F0

η

F8
η0 F0

η0

�
¼

�
F8 cos θ8 −F0 sin θ0
F8 sin θ8 F0 cos θ0

�
: ð65Þ

This parametrization is a popular way to define the η-η0
mixing within the so-called two-angle scheme [45–52]. The
angles θ8 and θ0 and the constants F8 and F0 are given by

tan θ8 ¼
F8
η0

F8
η
; tan θ0 ¼ −

F0
η

F0
η0
; ð66Þ

F8 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF8

ηÞ2þðF8
η0 Þ2

q
; F0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF0

ηÞ2þðF0
η0 Þ2

q
: ð67Þ

To determine the decay constants Fa
P, we calculate the

Feynman diagrams in Fig. 3. First, we calculate the
coupling of the axial-vector current to the octet and singlet
fields ϕb, collected in the doublet ηA, at the one-loop level
up to NNLO in the δ counting. The result, which should be
interpreted as a Feynman rule, is represented by the “matrix
elements” F ab ¼ h0jAa

μð0Þjbi. In a next step, we transform
the bare fields ηA to the physical states using the trans-
formation T in Eq. (51). The decay constants Fa

P are then
given by

fFa
PgT ¼

� F8
η F0

η

F8
η0 F0

η0

�T

¼ ðF · TÞ: ð68Þ

At leading order, the decay constants read

F8
η ¼ F0

η0 ¼ F cos θ½0�; ð69Þ

FIG. 2. Self-energy diagrams up to and including Oðδ2Þ:
dashed lines refer to pseudoscalar mesons, and the numbers k
in the interaction blobs refer to vertices derived from the
corresponding Lagrangians LðkÞ.
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−F0
η ¼ F8

η0 ¼ F sin θ½0�; ð70Þ

in terms of the leading-order mixing angle θ½0� given in
Eq. (46). Equation (66) then yields θ0 ¼ θ8 ¼ θ½0�. The
NLO decay constants are given by

F8
η=F ¼

�
1þ 1

2
δð1Þ8

�
cos θ½1� −

1

2
δð1Þ81 sin θ½1�; ð71Þ

F0
η=F ¼ −

�
1þ 1

2
δð1Þ1

�
sin θ½1� þ 1

2
δð1Þ81 cos θ½1�; ð72Þ

F8
η0=F ¼

�
1þ 1

2
δð1Þ8

�
sin θ½1� þ 1

2
δð1Þ81 cos θ½1�; ð73Þ

F0
η0=F ¼

�
1þ 1

2
δð1Þ1

�
cos θ½1� þ 1

2
δð1Þ81 sin θ½1�; ð74Þ

now in terms of the NLO mixing angle θ½1�. Using Eqs. (66)
and (67), one obtains

F8 ¼ F

�
1þ δð1Þ8

2

�
;

F0 ¼ F

�
1þ δð1Þ1

2

�
; ð75Þ

and

θ8 ¼ θ½1� þ arctan

�
δð1Þ81

2

�
;

θ0 ¼ θ½1� − arctan

�
δð1Þ81

2

�
: ð76Þ

The results for the decay constants at NNLO are lengthy
and are given in Appendix B.

V. NUMERICAL ANALYSIS

In the following, we perform the numerical evaluation of
the mixing angle, the masses of the pseudoscalar mesons,
and their decay constants. We present the results in a
systematic way, order by order.

A. Leading order

At leading order (LO), the mixing angle is given by
Eq. (49), which reduces to

sin 2θ½0� ¼ −4
ffiffiffi
2

p ðM2
K −M2

πÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12M2

0ðM2
π −M2

KÞ þ 36ðM2
K −M2

πÞ2 þ 9M4
0

p :

ð77Þ
This equation is well suited to study the two limits, the
flavor-symmetric case, i.e., M2

π ¼ M2
K , and the limit

Nc → ∞. In the flavor-symmetric limit, the mixing angle
vanishes, θ½0� ¼ 0. On the other hand, in the LNc limit, the
Uð1ÞA contribution to the η0mass vanishes, i.e.,M2

0 ¼ 0, and
the mixing angle becomes independent of the pseudoscalar
masses

sin 2θ½0� ¼ −
2

ffiffiffi
2

p

3
; ð78Þ

which yields θ½0� ¼ −35.3°. We then turn to the physical
case. Employing Eqs. (47) and (48), we fix M2

0 to the
physical M2

η0 mass

M2
0 ¼

3ðM2
η0 −M2

πÞð2M2
K −M2

η0 −M2
πÞ

4M2
K − 3M2

η0 −M2
π

ð79Þ

and obtain

sin2θ½0�

¼−
4

ffiffiffi
2

p ðM2
K−M2

πÞð−4M2
Kþ3M2

η0 þM2
πÞ

3½−8M2
KðM2

η0 þM2
πÞþ8M4

Kþ3M4
η0 þ2M2

πM2
η0 þ3M4

π�
:

ð80Þ
Evaluating these results for physical masses M2

π , M2
K, and

M2
η0 yields

θ½0� ¼ −19.6° and M0 ¼ 0.820 GeV: ð81Þ

B. NLO

At NLO, still only tree diagrams contribute, since loop
contributions are relegated to NNLO. Beyond F, Bm̂, Bms,
and τ, the four NLO LECs L5, L8, Λ1, and Λ2 appear and
need to be fixed. Since there are, at present, no values for all
of theNLOLECs inU(3)ChPTavailable in the literature, we
follow two different strategies to fix the coupling constants:
(1) We design a compact system of observables calcu-

lated within our framework of LNcChPT and deter-
mine the LECs by fixing them to the physical values
of the observables. Our set of observables consists of
M2

π ,M2
K, FK=Fπ ,M2

η, andM2
η0 . In addition, we need

the quark-mass ratio ms=m̂, which we take from
Ref. [67]. The experimental values for themasses and
decay constants are taken from Ref. [1], reading

FIG. 3. Feynman diagrams contributing to the calculation of the
decay constants up to and including Oðδ2Þ. Dashed lines refer to
pseudoscalar mesons, crossed dots refer to axial-vector sources,
and the numbers k in the interaction blobs refer to vertices derived
from the Lagrangians LðkÞ in Sec. II.
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Mπ ¼ 0.135 GeV; MK ¼ 0.494 GeV;

Mη ¼ 0.548 GeV;

Mη0 ¼ 0.958 GeV; Fπ ¼ 0.0922ð1Þ GeV;
FK=Fπ ¼ 1.198ð6Þ: ð82Þ

(2) We use phenomenological determinations of some
constants obtained in SU(3) ChPT, for example,
Table 1 from Ref. [44].

We start with the first strategy and begin by fixingM2
0 to the

physical M2
η0 using the relation

ð2M2
η0 − M̂2

8 − M̂2
1Þ2 ¼ ðM̂2

8 − M̂2
1Þ2 þ 4ðM̂2

81Þ2; ð83Þ

which follows from Eqs. (47) and (48). After expressing
M2

0 in terms of M2
η0 , the parameters Λ1 and Λ2 appear

only in the QCD-scale-invariant combination ~Λ ¼ Λ1 −
2Λ2 [35] in the expressions for our observables and the
mixing angle. Using the ratio ms=m̂ ¼ 27.5 from
Ref. [67], the parameters Bm̂, L5, L8, and ~Λ can be
unambiguously obtained from the NLO relations for the
physical values of M2

π , M2
K , FK=Fπ , and M2

η, given in
Appendix B. The results for the LECs are shown in
Table II, labeled NLO I. Notice that at this order no EFT-
scale dependence is introduced yet, so these LECs are
scale independent. We also display errors for all calcu-
lated quantities. These errors are only due to the input
errors. We do not give estimates for the errors due to
neglecting higher orders or particular assumptions of our

models. As input errors, we consider the errors of
FK=Fπ , Fπ , and ms=m̂, and, later, when we make use
of LECs determined in SU(3) ChPT [44], we also take
their errors into account.
Once the set of LECs is determined, we can evaluate

the LO pseudoscalar masses, the η-η0 mixing angle, and the
pseudoscalar decay constants. For the calculation of the
parameters θ8, θ0, F8, and F0, we use the simplified
formula at NLO given in Eqs. (75) and (76). The quantities
M2

0 and F0 depend on the QCD-renormalization scale [35].
Therefore, we can only provide the QCD-scale-invariant
quantities M2

0=ð1þ Λ1Þ and F0=ð1þ Λ1=2Þ. We are not
able to extract a value for Λ1 from our observables,
since physical observables do not depend on the QCD
scale and we can only determine the invariant combination
~Λ ¼ Λ1 − 2Λ2. The expressions for M2

0=ð1þ Λ1Þ and
F0=ð1þ Λ1=2Þ are expanded up to NLO, yielding results
which depend on Λ1 only through ~Λ. Table III shows the

leading-order masses M2
π

∘
, M2

K

∘
, M2

0=ð1þ Λ1Þ, and M2
η for

~Λ ¼ 0. The mixing angle θ½1�, the angles θ8 and θ0, and the
constants F8 and F0=ð1þ Λ1=2Þ are shown in Table IV,
again under the label NLO I.
The second scenario uses values for the LECs

determined phenomenologically in the framework of
SU(3) ChPT. Since our calculations are performed in
U(3) ChPT, we apply the appropriate matching between
the two EFTs [35,38] when we make use of SU(3)
determinations. We set the matching scale of the two
theories to be μ0 ¼ M0 ¼ 0.85 GeV, which is basically
the value ofMη0 in the chiral limit:M2

0 ¼ 6τ=ðF2ð1þ Λ1ÞÞ.
Since SU(3) ChPT contains one-loop corrections already
at NLO, the LECs depend on the scale of the effective
theory μ. The SU(3) LECs are typically provided at
μ1 ¼ 0.77 GeV. To study the scale dependence of our
results, we evaluate them at μ ¼ 0.77 GeV and at
μ ¼ 1 GeV, which is the scale of Mη0 . Combining the
matching at μ0 and the running from μ1 to μ results in
[35,38]

TABLE IV. Mixing angles and decay constants at NLO.

μ (GeV) θ ð°Þ θ8 ð°Þ θ0 ð°Þ F8=Fπ
F0

1þΛ1=2
=Fπ

NLO I � � � −11.1� 0.6 −21.7� 0.7 −0.5� 0.7 1.26� 0.01 1.13� 0.00
NLO II 0.77 −12.6� 3.0 −19.5� 3.0 −5.7� 3.2 1.17� 0.01 1.09� 0.01
NLO II 1 −12.6� 3.0 −15.9� 3.0 −9.3� 3.2 1.08� 0.01 1.04� 0.01

TABLE III. Pseudoscalar masses at NLO in GeV2.

μ (GeV)
M2

π

∘
M2

K

∘ M2
0

ð1þΛ1Þ
M2

ηð ~Λ ¼ 0Þ

NLO I � � � 0.018� 0.000 0.261� 0.005 0.902� 0.013 0.326� 0.003
NLO II 0.77 0.018� 0.000 0.249� 0.023 0.871� 0.061 0.299� 0.010
NLO II 1 0.018� 0.000 0.249� 0.023 0.871� 0.061 0.269� 0.010

TABLE II. LECs at NLO.

μ (GeV) L5 ½10−3� L8 ½10−3� ~Λ

NLO I � � � 1.86� 0.06 0.78� 0.05 −0.34� 0.05
NLO II 0.77 1.20� 0.10 0.55� 0.20 0.02� 0.13
NLO II 1 0.58� 0.10 0.24� 0.20 0.41� 0.13
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Lr
5ðμÞ ¼ LSU3;r

5 ðμ1Þ þ
3

8

1

16π2
ln

�
μ1
μ

�
;

Lr
8ðμÞ ¼ LSU3;r

8 ðμ1Þ þ
5

48

1

16π2
ln

�
μ1
μ

�
þ 1

12

1

16π2
ln

�
μ0
μ

�
;

Lr
4ðμÞ ¼ LSU3;r

4 ðμ1Þ þ
1

8

1

16π2
ln

�
μ1
μ

�
;

Lr
6ðμÞ ¼ LSU3;r

6 ðμ1Þ þ
11

144

1

16π2
ln

�
μ1
μ

�

þ 1

72

1

16π2

�
1

2
− ln

�
μ0
μ

��
;

Lr
7ðμÞ ¼ LSU3;r

7 þ F4ð1þ Λ2Þ2
288τ

;

Lr
18ðμÞ ¼ Lr

18ðμ2Þ −
1

4

1

16π2
ln
�
μ2
μ

�
: ð84Þ

The constant L18 does not appear in SU(3) ChPT, but we
include its running for completeness, since the running
from the scale μ2 ¼ 1 GeV will be needed later.

The LO quantitiesM2
π

∘
,M2

K

∘
, and F are expressed in terms

of the physical quantities M2
π , M2

K , and Fπ , and, again, M2
0

is determined from the relation to M2
η0 at this order. The

parameters θ8, θ0, F8, and F0 are calculated using Eqs. (75)
and (76). For the LECs L5 and L8, we use the values
determined at Oðp4Þ in SU(3) ChPT, i.e., column “p4 fit”
in Table 1 in Ref. [44]. The OZI rule-violating parameter ~Λ
is fixed toM2

η. The results are given in Tables II–IV, labeled
NLO II. The dependence of M2

η on ~Λ is shown in Fig. 4.

C. NLOþ loops

Before considering the full NNLO corrections, we first
discuss the case where we just add the loop contributions to
the NLO expressions. Since the loop corrections do not
contain any unknown parameters, we can use exactly the
same system of equations from the NLO I scenario in the
previous section to obtain the desired LECs. We augment
the system of linear equations with the one-loop corrections
and extract the values of Bm̂, L5, L8, and ~Λ. The results
depend now on the scale of the effective theory, and we
choose to extract the LECs at μ ¼ 1 GeV. The parameters
θ8, θ0, F8, and F0 are obtained from Eqs. (B10)–(B13)
in Appendix B, now also including the one-loop correc-
tions. The results are given in Tables V–VII, labeled
NLOþ loops I.
We compare the results with the values obtained in

SU(3) ChPT. For L5 and L8, we use the same values as in
the NLO II case. To compensate the scale dependence of
the loop contributions, we include the scale-dependent
parts of the LECs L4, L6, L7, and L18 [see Eqs. (84)], which
would appear only at NNLO. These constants are included

1.0 0.5 0.0 0.5 1.0

1 2 2

M
2

G
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0.25

0.30

0.35

FIG. 4. M2
η as a function of ~Λ ¼ Λ1 − 2Λ2. Solid (blue) line:

NLO II at 0.77 GeV; dashed (blue) line: NLO II at 1 GeV. Dotted-
dashed (red) line: NLOþ loops II at 0.77 GeV; dotted (red) line:
NLOþ loops II at 1 GeV. The dotted-dashed and dotted lines
coincide. Horizontal line: physical value.

TABLE V. LECs at NLO with loops added.

μ (GeV) L5 ½10−3� L8 ½10−3� ~Λ

NLOþ loops I 0.77 1.37� 0.06 0.85� 0.05 0.52� 0.05
NLOþ loops I 1 0.75� 0.06 0.55� 0.05 1.09� 0.04
NLOþ loops II 0.77 1.20� 0.10 0.55� 0.20 1.34� 0.13
NLOþ loops II 1 0.58� 0.10 0.24� 0.20 1.34� 0.13

TABLE VI. Pseudoscalar masses at NLO with loops added in GeV2.

μ (GeV)
M2

π

∘
M2

K

∘ M2
0

ð1þΛ1Þ
M2

ηð ~Λ ¼ 0Þ

NLOþ loops I 0.77 0.018� 0.000 0.263� 0.005 0.927� 0.013 0.261� 0.003
NLOþ loops I 1 0.017� 0.000 0.240� 0.005 0.867� 0.012 0.218� 0.003
NLOþ loops II 0.77 0.019� 0.000 0.287� 0.023 0.933� 0.061 0.199� 0.010
NLOþ loops II 1 0.017� 0.000 0.265� 0.023 0.933� 0.061 0.199� 0.010

P. BICKERT, P. MASJUAN, and S. SCHERER PHYSICAL REVIEW D 95, 054023 (2017)

054023-12



without the SU(3)-U(3) matching, and we choose Lr
4 ¼

Lr
6 ¼ Lr

7 ¼ Lr
18 ¼ 0 at μ1 ¼ 1 GeV. Eventually, we again

useM2
η to extract ~Λ. Equations (B10)–(B13) in Appendix B

provide then our values for θ8, θ0, F8, and F0. The results
can be found in Tables V–VII, denoted by NLOþ loops II.
Figure 4 shows the dependence ofM2

η on ~Λ for the different
scenarios discussed so far. We notice that the dependence
is quite strong. After the inclusion of the loops and the
scale-dependent parts of the 1=Nc-suppressed Li, M2

η is
independent of the renormalization scale μ (dotted and
dotted-dashed red lines).

D. NNLO

At NNLO, there are too many unknown LECs, which
cannot be determined from our chosen set of observables.
This means that it is not possible to consistently determine
all LECs appearing at NNLO within our framework of
LNcChPT. So, we can only employ the second strategy and
make use of phenomenological determinations of the LECs
Li and Ci in SU(3) ChPT. We are then left with five

completely unknown LECs, Λ1, Λ2, L18, L25, and v
ð2Þ
2 , and

the combination L46 þ L53, which are related to the singlet
field. First, we investigate the case with Ci ¼ 0. We match
the Li from SU(3) to U(3), according to Eq. (84), and take
their values from the column p4 fit in Table 1 in Ref. [44].
Since a NNLO calculation in the δ counting includes
contributions of the type NLO × NLO, e.g., products of
Li, the results depend on the EFT scale μ. We display
results for two different scales, μ ¼ 0.77 GeV and

μ ¼ 1 GeV. We choose Λ1 ¼ Λ2 ¼ Lr
18 ¼ vð2Þ2 ¼ L46 ¼

L53 ¼ 0 at μ2 ¼ 1 GeV, which, together with the U(3)-
SU(3) matching, results in Lr

7 ≈ 0 (at μ ¼ 1 GeV). We can
then fix one OZI rule-violating LEC, which we choose to
be L25, to the physical value of M2

η. In this way, L25

accounts for the contributions to M2
η of all other OZI rule-

violating LECs, which are put to zero. At NNLO including
C12 terms, the simplified expressions for θ8, θ0, F8, and F0

in Eqs. (75) and (76) no longer hold. We therefore use the
general formulas in Eqs. (66) and (67) to calculate the
parameters of the two-angle scheme in the NNLO scenar-
ios. The results are given in Tables VIII–X, labeled NNLO
w/o Ci. Figure 5 shows M2

η as a function of L25.
Finally, we include the contributions of the Ci. The Li

are treated as before in terms of running and matching, but

now we use the Oðp6Þ values from Ref. [44], i.e., column
“BE14” in Table 3. For the Ci, we employ the values from
Table 4 in Ref. [44]. In order to obtain values for the Ci in
U(3) ChPT, we employ the tree-level matching relations
between SU(3) and U(3) ChPT, given by [68]

C19 ¼ CSU3

19 þ 1

3

F2

48M4
0

;

C31 ¼ CSU3

31 þ F2

48M4
0

; ð85Þ

where we take F ¼ Fπ and the LO value M2
0 ¼

0.673 GeV2. We do not consider the matching at the loop
level, because this is a correction beyond the accuracy of
our calculation. We also do not include the dependence of
the Ci on the EFT-renormalization scale, since this would
be introduced only by two-loop effects, which are again
higher-order contributions beyond our accuracy. The SU(3)
values of the Ci are provided without errors. They are also
not very well constrained in Ref. [44] and might be
only suited for the SU(3) observables studied in this
reference. Therefore, we assume an error of 50% on the
SU(3) values and propagate it to our results. The depend-
ence ofM2

η on L25 is shown in Fig. 5, and eventually L25 is
fixed to the physical value of M2

η. The results are given in
Tables VIII–X, labeled NNLO w/ Ci.
Another source for the Li and Ci is provided in Ref. [69],

where the LECs are computed in a chiral quark model.

TABLE VII. Mixing angles and decay constants at NLO with loops added.

μ (GeV) θ ð°Þ θ8 ð°Þ θ0 ð°Þ F8=Fπ
F0

1þΛ1=2
=Fπ

NLOþ loops I 0.77 −10.2� 0.6 −18.0� 0.7 −2.4� 0.7 1.31� 0.01 0.97� 0.00
NLOþ loops I 1 −13.4� 0.6 −17.7� 0.7 −9.1� 0.7 1.31� 0.01 0.87� 0.00
NLOþ loops II 0.77 −10.2� 2.9 −13.5� 2.9 −6.8� 3.1 1.28� 0.01 0.86� 0.01
NLOþ loops II 1 −10.2� 2.9 −13.5� 2.9 −6.8� 3.1 1.28� 0.01 0.86� 0.01
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FIG. 5. M2
η as a function of L25. Solid (blue) line: NNLO

without Ci at 0.77 GeV; dashed (blue) line: NNLO without Ci at
1 GeV. Dotted-dashed (red) line: NNLO with Ci at 0.77 GeV;
dotted (red) line: NNLO with Ci at 1 GeV. Horizontal line:
physical value.
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Since the LECs are calculated in the LNc limit, loop effects
are not included, and the LECs do not depend on the EFT-
renormalization scale. Thus, to obtain values for the LECs
in U(3) ChPT, we consider only the tree-level SU(3)-U(3)
matching relations (for L7, C19, and C31). Further, we do
not take the running of the LECs with the EFT scale into
account. The one-loop contributions are evaluated at
μ ¼ 0.77 GeV and μ ¼ 1 GeV. The OZI rule-violating
couplings are treated as in the other NNLO scenarios
described above. The results are provided in Tables VIII–X,
labeled NNLO w/ Ci J, where the errors are obtained from
the errors of the Li and Ci given in Ref. [69].
Figure 5 shows a strong dependence of M2

η on L25. The
renormalization-scale dependence is now much smaller
than in the NLO cases. The small residual scale dependence
stems from products of L5 and L8, the scale dependence of
which would be compensated by products of one-loop
terms in the full two-loop calculation. The inclusion of the
one-loop corrections decreases the value of M2

ηðL25 ¼ 0Þ
by about 30%. This would rather match the expected order
of magnitude of a NLO correction. Taking the Ci into
account further decreasesM2

ηðL25 ¼ 0Þ. According to the δ
counting, we would expect the value for L25 to be of the

same order of magnitude as L5 and L8, since the operator
structure is similar, with an additional 1=Nc suppression
leading to jL25j ∼ 1

3
× 10−3. The fit to the physical M2

η

results in values for L25 which match this expectation
pretty well.

E. Discussion of the results

In the following, we discuss the summaries of our results
in Tables XI–XIII. A summary of the LECs used in the
different scenarios is provided in Tables XIV–XVI in
Appendix D. We start with the results for the masses
summarized in Table XI. The values for the squared pion
mass at LO are very close to the physical squared pion mass
with deviations of 10%. The LO squared kaon masses are
larger than the physical value, up to about 25%, except for
the NNLO w/ Ci J scenario. The positive NLO and NNLO
corrections are in accordance with the findings in Ref. [44].
The LO squared pion and kaon masses, 2m̂B and
ðm̂þmsÞB, respectively, show a renormalization-scale
dependence, which is caused by the renormalization of
the parameter B in U(3) ChPT. The squared singlet mass in
the chiral limit, M2

0=ð1þ Λ1Þ, increases by about 30% in
most of the higher-order scenarios compared to the LO

TABLE VIII. LECs at NNLO.

μ (GeV) L5 ½10−3� L8 ½10−3� L25 ½10−3�
NNLO w/o Ci 0.77 1.20� 0.10 0.55� 0.20 0.55� 0.08
NNLO w/o Ci 1 0.58� 0.10 0.24� 0.20 0.50� 0.08
NNLO w/ Ci 0.77 1.01� 0.06 0.52� 0.10 0.67� 0.13
NNLO w/ Ci 1 0.39� 0.06 0.21� 0.10 0.63� 0.13
NNLO w/ Ci J 0.77 1.26� 0.06 0.84� 0.05 0.70� 0.07
NNLO w/ Ci J 1 1.26� 0.06 0.84� 0.05 0.77� 0.07

TABLE IX. Pseudoscalar masses at NNLO in GeV2.

μ (GeV) M2
π

∘
M2

K

∘ M2
0

ð1þΛ1Þ M2
ηðL25 ¼ 0Þ

NNLO w/o Ci 0.77 0.018� 0.007 0.277� 0.101 0.840� 0.154 0.186� 0.016
NNLO w/o Ci 1 0.016� 0.007 0.257� 0.102 0.841� 0.158 0.197� 0.017
NNLO w/ Ci 0.77 0.018� 0.001 0.267� 0.040 0.521� 0.170 0.160� 0.028
NNLO w/ Ci 1 0.017� 0.001 0.246� 0.041 0.518� 0.171 0.169� 0.028
NNLO w/ Ci J 0.77 0.018� 0.000 0.232� 0.024 0.729� 0.088 0.153� 0.014
NNLO w/ Ci J 1 0.017� 0.000 0.210� 0.024 0.670� 0.088 0.140� 0.014

TABLE X. Mixing angles and decay constants at NNLO.

μ (GeV) θ ð°Þ θ8 ð°Þ θ0 ð°Þ F8=Fπ
F0

1þΛ1=2
=Fπ

NNLO w/o Ci 0.77 −9.6� 6.0 −11.7� 5.8 −6.6� 6.4 1.27� 0.02 0.85� 0.01
NNLO w/o Ci 1 −10.1� 6.3 −12.6� 6.1 −6.3� 6.5 1.28� 0.02 0.86� 0.01
NNLO w/ Ci 0.77 −33.8� 18.8 −31.8� 18.5 −32.4� 21.1 1.17� 0.07 0.82� 0.01
NNLO w/ Ci 1 −35.2� 21.5 −33.7� 21.5 −33.3� 24.2 1.18� 0.08 0.83� 0.01
NNLO w/ Ci J 0.77 −16.8� 4.9 −16.0� 4.4 −11.7� 6.1 1.16� 0.04 0.90� 0.02
NNLO w/ Ci J 1 −20.2� 5.4 −19.4� 4.9 −15.3� 6.7 1.24� 0.04 0.84� 0.02
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TABLE XII. Summary of the results for the mixing angles.

μ (GeV) θ ð°Þ θ8 ð°Þ θ0 ð°Þ
LO � � � −19.6� 0 −19.6� 0 −19.6� 0
NLO I � � � −11.1� 0.6 −21.7� 0.7 −0.5� 0.7
NLOþ loops I 0.77 −10.2� 0.6 −18.0� 0.7 −2.4� 0.7
NLOþ loops I 1 −13.4� 0.6 −17.7� 0.7 −9.1� 0.7
NLO II 0.77 −12.6� 3.0 −19.5� 3.0 −5.7� 3.2
NLO II 1 −12.6� 3.0 −15.9� 3.0 −9.3� 3.2
NLOþ loops II 0.77 −10.2� 2.9 −13.5� 2.9 −6.8� 3.1
NLOþ loops II 1 −10.2� 2.9 −13.5� 2.9 −6.8� 3.1
NNLO w/o Ci 0.77 −9.6� 6.0 −11.7� 5.8 −6.6� 6.4
NNLO w/o Ci 1 −10.1� 6.3 −12.6� 6.1 −6.3� 6.5
NNLO w/ Ci 0.77 −33.8� 18.8 −31.8� 18.5 −32.4� 21.1
NNLO w/ Ci 1 −35.2� 21.5 −33.7� 21.5 −33.3� 24.2
NNLO w/ Ci J 0.77 −16.8� 4.9 −16.0� 4.4 −11.7� 6.1
NNLO w/ Ci J 1 −20.2� 5.4 −19.4� 4.9 15.3� 6.7

TABLE XIII. Summary of the results for the decay constants.

μ (GeV) F8=Fπ
F0

1þΛ1=2
=Fπ F (MeV)

LO � � � 1� 0 1� 0 92.2� 0.1
NLO I � � � 1.26� 0.01 1.13� 0.00 90.73� 0.11
NLOþ loops I 0.77 1.31� 0.01 0.97� 0.00 79.31� 0.12
NLOþ loops I 1 1.31� 0.01 0.87� 0.00 74.77� 0.12
NLO II 0.77 1.17� 0.01 1.09� 0.01 91.25� 0.13
NLO II 1 1.08� 0.01 1.04� 0.01 91.74� 0.13
NLOþ loops II 0.77 1.28� 0.01 0.86� 0.01 74.91� 0.14
NLOþ loops II 1 1.28� 0.01 0.86� 0.01 74.91� 0.14
NNLO w/o Ci 0.77 1.27� 0.02 0.85� 0.01 79.46� 6.59
NNLO w/o Ci 1 1.28� 0.02 0.86� 0.01 79.45� 6.59
NNLO w/ Ci 0.77 1.17� 0.07 0.82� 0.01 73.02� 0.13
NNLO w/ Ci 1 1.18� 0.08 0.83� 0.01 73.02� 0.13
NNLO w/ Ci J 0.77 1.16� 0.04 0.90� 0.02 79.44� 0.12
NNLO w/ Ci J 1 1.24� 0.04 0.84� 0.02 74.40� 0.13

TABLE XI. Summary of the results for the pseudoscalar masses in GeV2. The parameter x denotes ~Λ or L25.

μ (GeV) M2
π

∘
M2

K

∘ M2
0

ð1þΛ1Þ M2
ηðx ¼ 0Þ

LO � � � 0.018� 0 0.244� 0 0.673� 0 0.244� 0
NLO I � � � 0.018� 0.000 0.261� 0.005 0.902� 0.013 0.326� 0.003
NLOþ loops I 0.77 0.018� 0.000 0.263� 0.005 0.927� 0.013 0.261� 0.003
NLOþ loops I 1 0.017� 0.000 0.240� 0.005 0.867� 0.012 0.218� 0.003
NLO II 0.77 0.018� 0.000 0.249� 0.023 0.871� 0.061 0.299� 0.010
NLO II 1 0.018� 0.000 0.249� 0.023 0.871� 0.061 0.269� 0.010
NLOþ loops II 0.77 0.019� 0.000 0.287� 0.023 0.933� 0.061 0.199� 0.010
NLOþ loops II 1 0.017� 0.000 0.265� 0.023 0.933� 0.061 0.199� 0.010
NNLO w/o Ci 0.77 0.018� 0.007 0.277� 0.101 0.840� 0.154 0.186� 0.016
NNLO w/o Ci 1 0.016� 0.007 0.257� 0.102 0.841� 0.158 0.197� 0.017
NNLO w/ Ci 0.77 0.018� 0.001 0.267� 0.040 0.521� 0.170 0.160� 0.028
NNLO w/ Ci 1 0.017� 0.001 0.246� 0.041 0.518� 0.171 0.169� 0.028
NNLO w/ Ci J 0.77 0.018� 0.000 0.232� 0.024 0.729� 0.088 0.153� 0.014
NNLO w/ Ci J 1 0.017� 0.000 0.210� 0.024 0.670� 0.088 0.140� 0.014
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value, except for the NNLO w/ Ci case, where we can see a
strong influence of the Ci contributions. However, a direct
comparison to the LO value,M2

0, remains difficult, since we
do not know the value ofΛ1. The columnM2

ηðx ¼ 0Þ shows
the value of M2

η if the OZI rule-violating parameter ~Λ or
L25, which is fixed to the physical M2

η, is switched off.
Especially in the NNLO scenarios, the resulting values are
only 50% of the physical M2

η. Therefore, we conclude that
employing the LECs determined in SU(3) ChPT is not
sufficient in a LNcChPT calculation and OZI rule-violating
couplings need to be included to adequately describe M2

η.
The same conclusion applies to the NNLO w/ Ci J case.

The contributions of the OZI rule-violating parameters ~Λ
and L25 are very important. One should also keep in mind
that we only retained L25 and omitted all other OZI rule-
violating LECs in the NNLO cases.
A summary of the results for the mixing angle θ is shown

in Fig. 6. In comparison to the LO value θ ¼ −19.6°, in the
cases without Ci, θ gets shifted to values between −9° and
−14°. The results of the NNLO w/ Ci J scenario are close to
the LO value. Including the Ci obtained in SU(3) ChPT
(NNLO w/ Ci) leads to a drastic change of θ, where the
large errors are mainly caused by the assumed 50% errors
of the inputCi. The mixing angle seems to be very sensitive
to the values of the Ci, although they are supposed to give
only small contributions since they are NNLO corrections.
We display the results for the angles θ8 and θ0 and the
constants F8 and F0 in Figs. 7 and 8, respectively. They are
compared to other phenomenological determinations.
Reference [36] determined the mixing parameters at
NLO in LNcChPT using additional input from the two-
photon decays of η and η0. References [45,47,48,51,52]
employed the two-angle scheme to extract the mixing
parameters phenomenologically from decays involving η
and η0, mostly the two-photon decays, but other processes,
e.g., ηð0ÞVγ with vector mesons V, were used as well [47].
Note, however, these other determinations were performed
only in a NLO framework and under certain assumptions,
e.g., neglecting OZI rule-violating couplings [45]. A study
of the η-η0 mixing at NNLO in LNcChPT was performed in
Ref. [40], and the mixing parameters were obtained from a
fit to data from lattice QCD and input from the two-photon
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FIG. 6. Results for the mixing angle θ obtained within the
different scenarios in this work.
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FIG. 7. Results for θ8 and θ0 obtained within the different scenarios in this work and compared to phenomenological determinations
from Leutwyler (Leu 98) [36], Feldmann et al. (FKS 98) [45], Benayoun et al. (BDC 00) [47], Escribano and Frere (EF 05) [48],
Escribano et al. (EMS 15) [51], Guo et al. (Guoþ 15) [40], and Escribano et al. (Escþ 16) [52].
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decays. However, the authors of Ref. [40] were also not
able to determine all LECs at NNLO, and, therefore, they
put some of the LECs to zero. For θ0, in the cases without
Ci, we find values between −10° and 0°, which agree
approximately with the other calculations. For θ8, the
values in these cases range from −22° to −11°, and their
absolute values are slightly smaller than those obtained
from phenomenology at NLO. Also, the NNLO w/ Ci J
values for θ8 and θ0 tend to agree with the other scenarios
and determinations. Again, the NNLO w/ Ci scenario is an
exception, with values for θ8 and θ0 around −33°. These
large negative values are related to the similar values for θ
in this case and strongly depend on the Ci. Our values for
F8 agree with most of the other calculations. Note that F8

depends only on LECs which appear in SU(3) ChPTas well
and F8 is not affected by neglecting unknown OZI rule-
violating LECs. The errors of F8 and F0=ð1þ Λ1=2Þ due to
the errors of the input parameters are very small, and the
variation of our values in the different scenarios could serve
as a better estimate of our systematic errors. For
F0=ð1þ Λ1=2Þ, we find smaller values than the otherworks.
The constant F0 depends on the OZI rule-violating cou-
plings Λ1, L18, and L46 þ L53. In our NNLO scenarios,
however, all of them are set to zero, since they cannot be
determined independently from the observables we study.
Allowing values for Λ1 and L18 which are different from
zero, e.g.,Λ1 ≈ 0.3 andL18 ≈ 0.3 × 10−3, shiftsF0 to higher
values in the range of the determinations of the other works.
The values for F are mostly smaller than the physical value.
This is consistent with the findings in Ref. [44].
The NLO I case is the most consistent scenario, since it is

a full calculation up to NLO in LNcChPT and does not rely

on input from other theories with different degrees of
freedom or a different power-counting scheme. However,
our aim was a calculation of the mixing at the one-loop
level up to NNLO in the δ counting. Among these
scenarios, the most complete one is NNLO w/ Ci. Note
that, even in this case, we could not fix all parameters and
set five OZI rule-violating LECs equal to zero.

VI. SUMMARY AND OUTLOOK

We have derived an expression for the η-η0 mixing in the
framework of LNcChPT up to NNLO, including higher-
derivative, kinetic, and mass terms. Furthermore, we have
calculated the axial-vector-current decay constants of the
η-η0 system at NNLO and determined the mixing param-
eters F8, F0, θ8, and θ0 of the two-angle scheme.
The numerical evaluation of the results has been per-

formed successively at LO, NLO, and NNLO. At NLO, we
have determined all LECs by fixing them to the physical
values of the pseudoscalarmassesM2

π,M2
K,M

2
η, andM2

η0 , the
decay constantsFπ andFK , and the quark-mass ratioms=m.
We have compared our results with the values for the LECs
obtained in SU(3) ChPT [44]. Due to the large number of
LECs at NNLO, we have not been able to determine all of
them through our aforementioned input quantities.
Therefore, we have made use of the values obtained in
SU(3) ChPT and have applied the matching relations
between SU(3) and U(3) ChPT. One OZI rule-violating
parameter, L25, has been fixed to the physical value of M2

η.
The impact of OZI rule-violating parameters on our observ-
ables is rather large, and they cannot be neglected. In
addition to using input from SU(3) ChPT, we also
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FIG. 8. Results for F8 and F0=ð1þ Λ1=2Þ obtained within the different scenarios in this work and compared to phenomenological
determinations from (using the same abbreviations as defined in Fig. 7’s caption) Leu 98 [36], FKS 98 [45], BDC 00 [47], EF 05 [48],
EMS 15 [51], Guoþ 15 [40], and Escþ 16 [52].
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investigated the case where we employed LECs which were
computed in a chiral quark model [69]. We have compared
our results for the parameters of the two-angle scheme with
other phenomenological determinations of those quantities.
The mixing angle θ and the angles θ8 and θ0 of the two-

angle scheme depend strongly on the values of the NNLO
corrections given by Ci terms. This leads to results which
deviate very much from the determinations at LO, NLO, or
NNLO without Ci terms. From this observation, we
conclude that the mixing angles are particularly sensitive
to the expansion scheme, and it remains unclear to which
extent the convergence is under control.
At NNLO, it has not been possible to determine all LECs

from the available experimental data. In the future, lattice
QCDmay provide further information on these LECs, since
it will make it possible to study the quark-mass dependence
of the pseudoscalar masses and decay constants.
Our NNLO expressions for the η-η0 mixing can now be

used to study anomalous decays, e.g. ηð0Þ→γγ and ηð0Þ→
πþπ−γ, consistently at the one-loop level. A further step
would be the inclusion of vector mesons as explicit degrees
of freedom and the investigation of PVγ processes, where P
refers to pseudoscalar mesons and V to vector mesons.
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APPENDIX A: BUILDING BLOCKS AND
TRANSFORMATION BEHAVIOR

The effective dynamical degrees of freedom are con-
tained in the U(3) matrix

U ¼ exp

�
i
X8
a¼0

ϕaλa
F

�
¼ e

i
3
ψÛ;

where

detðÛÞ ¼ 1; detðUÞ ¼ eiψ ; ψ ¼ −i lnðdetðUÞÞ:
The external fields s, p, lμ, and rμ are Hermitian, color-
neutral 3 × 3 matrices coupling to the corresponding quark
bilinears, and θ is a real field coupling to the winding-
number density [27]. The traceless components of rμ and lμ
are defined as

rμ ¼ r̂μ þ
1

3
hrμi; hr̂μi ¼ 0;

lμ ¼ l̂μ þ
1

3
hlμi; hl̂μi ¼ 0:

We parametrize the group elements ðVL; VRÞ ∈ Uð3ÞL ×
Uð3ÞR in terms of

VR ¼ exp

�
−i

X8
a¼0

θRa
λa
2

�
¼ e−

i
3
θRV̂R;

detðV̂RÞ ¼ 1; θR ¼ i ln ðdetðVRÞÞ;

VL ¼ exp

�
−i

X8
a¼0

θLa
λa
2

�
¼ e−

i
3
θLV̂L;

detðV̂LÞ ¼ 1; θL ¼ i ln ðdetðVLÞÞ:

We define vμ ¼ 1
2
ðrμ þ lμÞ, aμ ¼ 1

2
ðrμ − lμÞ, and

χ ¼ 2Bðsþ ipÞ. Under the group G ¼ Uð3ÞL × Uð3ÞR,
the transformation properties of the dynamical degrees
of freedom and of the external fields read

U ↦ VRUV†
L;

ψ ↦ ψ − i lnðdetðVRÞÞ þ i lnðdetðVLÞÞ
¼ ψ − ðθR − θLÞ;

rμ ↦ VRrμV
†
R þ iVR∂μV

†
R;

r̂μ ↦ V̂Rr̂μV̂
†
R þ iV̂R∂μV̂

†
R;

hrμi ↦ hrμi − ∂μθR;

lμ ↦ VLlμV
†
L þ iVL∂μV

†
L;

l̂μ ↦ V̂Ll̂μV̂
†
L þ iV̂L∂μV̂

†
L;

hlμi ↦ hlμi − ∂μθL;

haμi ↦ haμi −
1

2
ð∂μθR − ∂μθLÞ;

χ ↦ VRχV
†
L;

θ ↦ θ þ ðθR − θLÞ: ðA1Þ

We define covariant derivatives according to the trans-
formation behavior of the object to which they are applied:

DμU ¼ ∂μU − irμU þ iUlμ ↦ VRDμUV†
L;

DμU† ¼ ∂μU† þ iU†rμ − ilμU† ↦ VLDμU†V†
R;

DμÛ ¼ ∂μÛ − ir̂μÛ þ iÛl̂μ;

Dμψ ¼ ∂μψ − 2haμi ↦ Dμψ ;

DμU ¼ e
i
3
ψ

�
DμÛ þ i

3
DμΨÛ

�
;

Dμθ ¼ ∂μθ þ 2haμi ↦ Dμθ: ðA2Þ

Finally, the parity transformation behavior reads

Uðt; ~xÞ ↦ U†ðt;−~xÞ;
ψðt; ~xÞ ↦ −ψðt;−~xÞ;
θðt; ~xÞ ↦ −θðt;−~xÞ;

DμUðt; ~xÞ ↦ DμU†ðt;−~xÞ:
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APPENDIX B: MASSES AND DECAY CONSTANTS

The pion-decay constant F in the chiral limit is given by

F ¼ Fπ

�
1 −

4M2
πL5

F2
π

−
1

F4
π
ð4ð2M4

πð3ðL5Þ2 − 8L8L5 þ ðC14 þ C17ÞF2
πÞ þ F2

πð2M2
K þM2

πÞL4ÞÞ −
A0ðM2

KÞ þ 2A0ðM2
πÞ

32π2F2
π

�

ðB1Þ

in terms of the physical decay constant Fπ and the physical pion and kaon masses,Mπ andMK, respectively. The expression

for the LO pion mass M2
π

∘
reads

M2
π

∘
¼ 2Bm̂

¼ M2
π

�
1þ 8M2

πðL5 − 2L8Þ
F2
π

þ 1

F4
π
ð8ð2M4

πð8ðL5 − 2L8Þ2 þ ð2C12 þ C14 þ C17 − 3C19 − 2C31ÞF2
πÞ

þ 2F2
πM2

KðL4 − 2L6Þ þ F2
πM2

πðL4 − 2L6ÞÞÞ

þ 1

192F2
π
ðð2

ffiffiffi
2

p
sinð2θ½0�Þ þ cosð2θ½0�Þ − 3ÞA0ðM2

ηÞ − ð2
ffiffiffi
2

p
sinð2θ½0�Þ þ cosð2θ½0�Þ þ 3ÞA0ðM2

η0 Þ þ 6A0ðM2
πÞÞ

�
;

ðB2Þ

and the LO kaon mass M2
K

∘
is given by

M2
K

∘
¼ Bðm̂þmsÞ

¼ M2
K

�
1þ 8M2

KðL5 − 2L8Þ
F2
π

þ 1

F4
π
ð8ð4M4

Kð2ðL5 − 4L8ÞðL5 − 2L8Þ þ ðC12 þ C14 − 3C19 − C31ÞF2
πÞ

þ 2M2
KðF2

πðL4 − 2L6 þ 2ð−C14 þ C17 þ 3C19ÞM2
πÞ þ 4M2

πL5ðL5 − 2L8ÞÞ
− F2

πM2
πð2ðL6 þ ð−C14 þ C17 þ 3C19ÞM2

πÞ − L4ÞÞÞ

þ 1

192F2
πM2

K
ðsin2ðθ½0�Þðð3M2

η0 þM2
πÞA0ðM2

η0 Þ − 4M2
KA0ðM2

ηÞÞ

þ
ffiffiffi
2

p
ð2M2

K −M2
πÞ sinð2θ½0�ÞðA0ðM2

η0 Þ − A0ðM2
ηÞÞ þ cos2ðθ½0�Þðð3M2

η þM2
πÞA0ðM2

ηÞ − 4M2
KA0ðM2

η0 ÞÞÞ
�
: ðB3Þ

In loop contributions, we always use the LO mixing angle

θ½0� ¼ − arctan

�
2

ffiffiffi
2

p ðM2
K −M2

πÞ
3ð1

3
ðM2

π − 4M2
KÞ þM2

η0 Þ
�
; ðB4Þ

which yields θ½0� ¼ −19.6°. The ratio of the physical kaon-decay and pion-decay constants is given by

FK=Fπ ¼ 1þ 4ðM2
K −M2

πÞL5

F2
π

þ 1

F4
π
ð8ðð3M4

K þ 2M2
πM2

K − 3M4
πÞðL5Þ2 þ 8ðM4

π −M4
KÞL8L5

þ 2F2
πðM2

K −M2
πÞðC14M2

K þ C17M2
πÞÞÞ

þ 1

128π2F2
π
ð2A0ðM2

KÞ þ 3cos2ðθ½0�ÞA0ðM2
ηÞ þ 3sin2ðθ½0�ÞA0ðM2

η0 Þ − 5A0ðM2
πÞÞ: ðB5Þ
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The NNLO expressions for the decay constants of the η-η0 system are given by

F8
η ¼ Fπ cosðθ½2�Þ þ

1

3Fπ
ð8ðM2

K −M2
πÞL5ð

ffiffiffi
2

p
sinðθ½2�Þ þ 2 cosðθ½2�ÞÞÞ

þ cosðθ½2�Þ
48π2F3

π
½256π2ðð4M4

K þ 8M2
πM2

K − 9M4
πÞðL5Þ2 þ 16ðM4

π −M4
KÞL8L5 þ 4ðC14 þ C17ÞF2

πM2
KðM2

K −M2
πÞÞ

þ 3F2
πðA0ðM2

KÞ − A0ðM2
πÞÞ�

þ sinðθ½2�Þ
3F3

π
½2

ffiffiffi
2

p
ðM2

K −M2
πÞðF2

πð−Λ1L5 þ 16ðC14 þ C17ÞM2
K þ 6L18Þ þ 16L5ððM2

K þ 3M2
πÞL5 − 4ðM2

K þM2
πÞL8ÞÞ�

þ C12

3Fπð4M2
K − 3M2

η0 −M2
πÞ
½16ðM2

K −M2
πÞð−2ðM2

K −M2
πÞM2

η0 ð
ffiffiffi
2

p
sinðθ½2�Þ − 4 cosðθ½2�ÞÞ

þ 3
ffiffiffi
2

p
M2

πðM2
π − 2M2

KÞ sinðθ½2�Þ þ 3
ffiffiffi
2

p
M4

η0 sinðθ½2�ÞÞ�; ðB6Þ

F8
η0 ¼Fπ sinðθ½2�Þ−

1

3Fπ
ð8ðM2

K −M2
πÞL5ð

ffiffiffi
2

p
cosðθ½2�Þ−2sinðθ½2�ÞÞÞ

−
cosðθ½2�Þ
3F3

π
½2

ffiffiffi
2

p
ðM2

K −M2
πÞðF2

πð−Λ1L5þ16ðC14þC17ÞM2
Kþ6L18Þþ16L5ððM2

Kþ3M2
πÞL5−4ðM2

KþM2
πÞL8ÞÞ�

þ sinðθ½2�Þ
48π2F3

π
½256π2ðð4M4

Kþ8M2
πM2

K −9M4
πÞðL5Þ2þ16ðM4

π −M4
KÞL8L5

þ4ðC14þC17ÞF2
πM2

KðM2
K −M2

πÞÞþ3F2
πðA0ðM2

KÞ−A0ðM2
πÞÞ�

þ C12

3Fπ

�
16

�
1

4M2
K −3M2

η0 −M2
π
½

ffiffiffi
2

p
ðM2

K −M2
πÞcosðθ½2�Þð−2M2

Kð7M2
η0 þ5M2

πÞþ16M4
Kþ3M4

η0 þ2M2
πM2

η0 þ3M4
π

��

− sinðθ½2�Þð−4M2
KðM2

η0 þ2M2
πÞþ8M4

KþM2
πðM2

η0 þ3M2
πÞÞÞ�; ðB7Þ

F0
η ¼ −

1

6Fπ
½16ðM2

K −M2
πÞL5ðsinðθ½2�Þ þ

ffiffiffi
2

p
cosðθ½2�ÞÞ þ 3F2

πðΛ1 þ 2Þ sinðθ½2�Þ�

−
cosðθ½2�Þ
3F3

π
½2

ffiffiffi
2

p
ðM2

K −M2
πÞðF2

πð−Λ1L5 þ 16ðC14 þ C17ÞM2
K

þ 6ðL18 þ 2L46 þ 2L53ÞÞ þ 16L5ððM2
K þ 3M2

πÞL5 − 4ðM2
K þM2

πÞL8ÞÞ�

þ sinðθ½2�Þ
96π2F3

π
½2ð2π2ð32ð4L5ð8ðM4

K −M4
πÞL8 þ ð−2M4

K − 4M2
πM2

K þ 3M4
πÞL5Þ

þ F2
πðM2

πð8ðC14 þ C17ÞM2
K − 3ðL18 þ L46 þ L53ÞÞ − 8ðC14 þ C17ÞM4

K

− 6ðL18 þ L46 þ L53ÞM2
KÞÞ þ 32F2

πΛ1ðM2
K þ 2M2

πÞL5 þ 3F4
πΛ2

1Þ þ 3F2
πA0ðM2

πÞÞ þ 3F2
πA0ðM2

KÞ�

þ C12

3Fπð4M2
K − 3M2

η0 −M2
πÞ
½16ðsinðθ½2�Þð4M2

K − 3M2
η0 −M2

πÞ

× ð2M2
KðM2

η0 − 3M2
πÞ þM2

πðM2
η0 þ 3M2

πÞÞ þ
ffiffiffi
2

p
ðM2

K −M2
πÞ cosðθ½2�Þ

× ð2M2
KðM2

η0 þ 3M2
πÞ − 2M2

πM2
η0 − 3M4

η0 − 3M4
πÞÞ�; ðB8Þ
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F0
η0 ¼

1

6Fπ
½16ðM2

K −M2
πÞL5ðcosðθ½2�Þ −

ffiffiffi
2

p
sinðθ½2�ÞÞ þ 3F2

πðΛ1 þ 2Þ cosðθ½2�Þ�

×
cosðθ½2�Þ
96π2F3

π
½2ð2π2ð32ð4L5ðð2M4

K þ 4M2
πM2

K − 3M4
πÞL5 þ 8ðM4

π −M4
KÞL8Þ

þ F2
πðM2

πð3ðL18 þ L46 þ L53Þ − 8ðC14 þ C17ÞM2
KÞ þ 8ðC14 þ C17ÞM4

K þ 6ðL18 þ L46 þ L53ÞM2
KÞÞ

− 32F2
πΛ1ðM2

K þ 2M2
πÞL5 − 3F4

πΛ2
1Þ − 3F2

πA0ðM2
πÞÞ − 3F2

πA0ðM2
KÞ�

−
sinðθ½2�Þ
3F3

π
½2

ffiffiffi
2

p
ðM2

K −M2
πÞðF2

πð−Λ1L5 þ 16ðC14 þ C17ÞM2
K þ 6ðL18 þ 2L46 þ 2L53ÞÞ þ 16L5ððM2

K þ 3M2
πÞL5

− 4ðM2
K þM2

πÞL8ÞÞ� þ
C12

3Fπð4M2
K − 3M2

η0 −M2
πÞ
½16ðM2

K −M2
πÞð

ffiffiffi
2

p
sinðθ½2�Þ

× ð−2M2
Kð7M2

η0 þ 5M2
πÞ þ 16M4

K þ 3M4
η0 þ 2M2

πM2
η0 þ 3M4

πÞ − 8ðM2
K −M2

πÞ cosðθ½2�Þð2M2
K −M2

η0 ÞÞ�; ðB9Þ

in terms of the physical masses M2
π , M2

K , and M2
η0 and the physical pion-decay constant Fπ . The mixing angle θ½2� is the

NNLO mixing angle given in Eq. (49) in Sec. III. In the case where the loop contributions are added to the NLO results, the
parameters of the two-angle scheme can be simplified to read

F8 ¼ Fπ þ
1

48π2Fπ
½256π2ðM2

K −M2
πÞL5 þ 3A0ðM2

KÞ − 3A0ðM2
πÞ�; ðB10Þ

F0 ¼ Fπ þ
1

96π2Fπ
½16π2ð16M2

KðL5 þ 3L18Þ

þ 8M2
πð3L18 − 2L5Þ þ 3F2

πΛ1Þ
− 3A0ðM2

KÞ − 6A0ðM2
πÞ�; ðB11Þ

θ8 ¼ θ½2� þ arctan

�
−
4

ffiffiffi
2

p ðM2
K −M2

πÞð2L5 þ 3L18Þ
3F2

π

�
;

ðB12Þ

θ0 ¼ θ½2� − arctan
�
−
4

ffiffiffi
2

p ðM2
K −M2

πÞð2L5 þ 3L18Þ
3F2

π

�
:

ðB13Þ

APPENDIX C: KINETIC MATRIX AND MASS
MATRIX AT NNLO

In the following, the NNLO expressions for the matrix
CA defined in Eq. (18) in Sec. III, the kinetic matrixKB, and
the mass matrix MB defined in Eq. (27) are provided. The
components of CA are given by

c8 ¼
32C12ð4M2

K −M2
πÞ

3F2
π

; ðC1Þ

c1 ¼
32C12ð2M2

K þM2
πÞ

3F2
π

; ðC2Þ

c81 ¼
64

ffiffiffi
2

p
C12ðM2

π −M2
KÞ

3F2
π

: ðC3Þ

At NNLO, both tree and loop corrections occur. The
second-order tree contributions to the kinetic matrix read

δð2;trÞ8 ¼ 1

3F4
π
½8ð2ð8ð2M4

K þ 2M2
πM2

K −M4
πÞðL5Þ2 þ 8ðM4

π − 4M4
KÞL8L5 þ ðC14 þ C17ÞF2

πð8M4
K − 8M2

πM2
K þ 3M4

πÞÞ

þ 3F2
πð2M2

K þM2
πÞL4Þ þ 32C12F2

πð8M4
K − 8M2

πM2
K þ 3M4

πÞ�; ðC4Þ

δð2;trÞ1 ¼ 1

3F4
π
½8ð3F2

πð2M2
K þM2

πÞL4 þ 16ðM4
K þM2

πM2
K þM4

πÞðL5Þ2 − 16ð2M4
K þM4

πÞL8L5

þ 2ðC14 þ C17Þð4M4
K − 4M2

πM2
K þ 3M4

πÞ þ 3L18ð2M2
K þM2

πÞÞÞ
þ 32C12F2

πð4M4
K − 4M2

πM2
K þM2

0ð2M2
K þM2

πÞ þ 3M4
πÞ�; ðC5Þ

δð2;trÞ81 ¼ −
1

3F4
π
½8

ffiffiffi
2

p
ðM2

K −M2
πÞð16L5ððM2

K þ 2M2
πÞL5 − 2ðM2

K þM2
πÞL8Þ þ F2

πð8ðC14 þ C17ÞM2
K þ 3L18ÞÞ

þ 32
ffiffiffi
2

p
C12F2

πð4M2
K þM2

0ÞðM2
K −M2

πÞ�; ðC6Þ
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and the loop contributions read

δð2;loÞ8 ¼ A0ðM2
KÞ

16π2F2
π
; δð2;loÞ1 ¼ 0; δð2;loÞ81 ¼ 0: ðC7Þ

The second-order tree contributions to the mass matrix are

ΔM2
8
ð2;trÞ ¼ 1

3F4
π
½16ð16M6

Kð8ðL5 − 2L8ÞL8 þ ð3C19 þ 2C31ÞF2
πÞ þ 8M2

πM4
Kð16ðL8Þ2 − 3ð3C19 þ 2C31ÞF2

πÞ

þ 4M4
πM2

Kð32L8ðL8 − L5Þ þ 3ð3C19 þ 2C31ÞF2
πÞ þM6

πð24ð3L5 − 4L8ÞL8 − ð3C19 þ 2C31ÞF2
πÞ

þ 8F2
πðM2

K −M2
πÞ2L7 þ F2

πð8M4
K þ 2M2

πM2
K −M4

πÞL6Þ�; ðC8Þ

ΔM2
1
ð2;trÞ ¼ 1

3F4
π
½16ðF2

πΛ2ð2M4
K þM4

πÞðL5 − 2L8Þ þ F2
πð2M2

K þM2
πÞ2L6 þ F2

πð2M2
K þM2

πÞ2L7 − 128M6
KðL8Þ2

þ 64M6
KL5L8 þ 64M2

πM4
KðL8Þ2 þ 64M4

πM2
KðL8Þ2 − 64M4

πM2
KL5L8 − 96M6

πðL8Þ2 þ 72M6
πL5L8

þ 24C19F2
πM6

K þ 16C31F2
πM6

K − 36C19F2
πM2

πM4
K − 24C31F2

πM2
πM4

K þ 18C19F2
πM4

πM2
K þ 12C31F2

πM4
πM2

K

þ 3C19F2
πM6

π þ 2C31F2
πM6

π−12F2
πL25M4

K þ 12F2
πL25M2

πM2
K − 9F2

πL25M4
πÞ� þ 6ð2M2

K þM2
πÞvð2Þ2 ; ðC9Þ

ΔM2
81

ð2;trÞ ¼ −
1

3F4
π
½16

ffiffiffi
2

p
ðM2

K −M2
πÞð2ð4M4

Kð8ðL5 − 2L8ÞL8 þ ð3C19 þ 2C31ÞF2
πÞ

þM2
πðF2

πðL6 þ L7 − 2ð3C19 þ 2C31ÞM2
KÞ þ 32M2

KðL5 − L8ÞL8Þ
þ F2

πM2
Kð2ðL6 þ L7Þ − 3L25Þ þ ð3C19 þ 2C31ÞF2

πM4
πÞ þ F2

πΛ2ðM2
K þM2

πÞðL5 − 2L8ÞÞ�; ðC10Þ

and the loop corrections are given by

ΔM2
8
ð2;loÞ ¼ 1

576F2
π
ð2

ffiffiffi
2

p
ð8M2

K − 5M2
πÞ sinð2θ½0�ÞðA0ðM2

ηÞ − A0ðM2
η0 ÞÞ þ ð8M2

K − 5M2
πÞ cosð2θ½0�ÞðA0ðM2

ηÞ − A0ðM2
η0 ÞÞ

þ 3ð8M2
K − 3M2

πÞðA0ðM2
ηÞ þ A0ðM2

η0 ÞÞþ6M2
πð3A0ðM2

πÞ − 2A0ðM2
KÞÞÞ; ðC11Þ

ΔM2
1
ð2;loÞ ¼ 1

144F2
π
ð2

ffiffiffi
2

p
ðM2

K −M2
πÞ sinð2θ½0�ÞðA0ðM2

ηÞ − A0ðM2
η0 ÞÞ þ ðM2

K −M2
πÞ cosð2θ½0�ÞðA0ðM2

ηÞ − A0ðM2
η0 ÞÞ

þ 3M2
Kð4A0ðM2

KÞ þ A0ðM2
ηÞ þ A0ðM2

η0 ÞÞ þ 9M2
πA0ðM2

πÞÞ; ðC12Þ

ΔM2
81

ð2;loÞ ¼ 1

576F2
π
ð4ð4M2

K −M2
πÞ sinð2θ½0�ÞðA0ðM2

η0 Þ − A0ðM2
ηÞÞ þ

ffiffiffi
2

p
ð4M2

K −M2
πÞ cosð2θ½0�ÞðA0ðM2

η0 Þ − A0ðM2
ηÞÞ

− 3
ffiffiffi
2

p
ðð4M2

K − 3M2
πÞðA0ðM2

ηÞ þ A0ðM2
η0 ÞÞ þ ð8M2

K − 4M2
πÞA0ðM2

KÞ − 6M2
πA0ðM2

πÞÞÞ: ðC13Þ
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APPENDIX D: INPUT PARAMETERS

TABLE XIV. Summary of the results for the LECs determined in the numerical analysis of the η-η0 mixing in Sec. V.

μ (GeV) L5 ½10−3� L8 ½10−3� ~Λ L25 ½10−3�
NLO I � � � 1.86� 0.06 0.78� 0.05 −0.34� 0.05 0� 0
NLOþ loops I 0.77 1.37� 0.06 0.85� 0.05 0.52� 0.05 0� 0
NLOþ loops I 1 0.75� 0.06 0.55� 0.05 1.09� 0.04 0� 0
NLO II 0.77 1.20� 0.10 0.55� 0.20 0.02� 0.13 0� 0
NLO II 1 0.58� 0.10 0.24� 0.20 0.41� 0.13 0� 0
NLOþ loops II 0.77 1.20� 0.10 0.55� 0.20 1.34� 0.13 0� 0
NLOþ loops II 1 0.58� 0.10 0.24� 0.20 1.34� 0.13 0� 0
NNLO w/o Ci 0.77 1.20� 0.10 0.55� 0.20 0� 0 0.55� 0.08
NNLO w/o Ci 1 0.58� 0.10 0.24� 0.20 0� 0 0.50� 0.08
NNLO w/ Ci 0.77 1.01� 0.06 0.52� 0.10 0� 0 0.67� 0.13
NNLO w/ Ci 1 0.39� 0.06 0.21� 0.10 0� 0 0.63� 0.13
NNLO w/ Ci J 0.77 1.26� 0.06 0.84� 0.05 0� 0 0.70� 0.07
NNLO w/ Ci J 1 1.26� 0.06 0.84� 0.05 0� 0 0.77� 0.07

TABLE XV. Input LECs used in Sec. V.

μ (GeV) L4 ½10−3� L6 ½10−3� L7 ½10−3� L18 ½10−3�
NLO I � � � 0� 0 0� 0 0� 0 0� 0
NLOþ loops I 0.77 0� 0 0� 0 0� 0 0� 0
NLOþ loops I 1 0� 0 0� 0 0� 0 0� 0
NLO II 0.77 0� 0 0� 0 0� 0 0� 0
NLO II 1 0� 0 0� 0 0� 0 0� 0
NLOþ loops II 0.77 0.21� 0 0.10� 0 0� 0 −0.41� 0
NLOþ loops II 1 0� 0 0� 0 0� 0 0� 0
NNLO w/o Ci 0.77 0� 0.30 0.04� 0.40 0� 0.20 −0.41� 0
NNLO w/o Ci 1 −0.21� 0.30 −0.07� 0.40 0� 0.20 0� 0
NNLO w/ Ci 0.77 0.30� 0 0.18� 0.05 0� 0.09 −0.41� 0
NNLO w/ Ci 1 0.09� 0 0.07� 0.05 0� 0.09 0� 0
NNLO w/ Ci J 0.77 0� 0 0� 0 0� 0.05 0� 0
NNLO w/ Ci J 1 0� 0 0� 0 0� 0.05 0� 0

TABLE XVI. Input LECs used in Sec. V in GeV−2.

μ (GeV) C12 ½10−3� C14 ½10−3� C17 ½10−3� C19 ½10−3� C31 ½10−3�
NLO I � � � 0� 0 0� 0 0� 0 0� 0 0� 0
NLOþ loops I 0.77 0� 0 0� 0 0� 0 0� 0 0� 0
NLOþ loops I 1 0� 0 0� 0 0� 0 0� 0 0� 0
NLO II 0.77 0� 0 0� 0 0� 0 0� 0 0� 0
NLO II 1 0� 0 0� 0 0� 0 0� 0 0� 0
NLOþ loops II 0.77 0� 0 0� 0 0� 0 0� 0 0� 0
NLOþ loops II 1 0� 0 0� 0 0� 0 0� 0 0� 0
NNLO w/o Ci 0.77 0� 0 0� 0 0� 0 0� 0 0� 0
NNLO w/o Ci 1 0� 0 0� 0 0� 0 0� 0 0� 0
NNLO w/ Ci 0.77 −0.33� 0.16 −0.12� 0.06 −0.12� 0.06 −0.34� 0.24 0.63� 0.12
NNLO w/ Ci 1 −0.33� 0.16 −0.12� 0.06 −0.12� 0.06 −0.34� 0.24 0.63� 0.12
NNLO w/ Ci J 0.77 −0.34� 0.01 −0.87� 0.21 0.17� 0.04 −0.14� 0.13 −0.07� 0.13
NNLO w/ Ci J 1 −0.34� 0.01 −0.87� 0.21 0.17� 0.04 −0.14� 0.13 −0.07� 0.13
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