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Relativistic two-body calculation of bb-mesons radiative decays
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This paper is a continuation of a previous work where we presented a unified two-fermion covariant
scheme which produced very precise results for the masses of light and heavy mesons. We extend the
analysis to some radiative decays of mesons Y, yy», Ay, Y515 X0, and 17, and we calculate their branching
ratios and their widths. For most of them, we can make a comparison with experimental data, finding a
good agreement. For the decays for which data are not available, we compare ours with other recent

theoretical previsions.
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I. INTRODUCTION

Potential models have long been used to investigate the
meson spectrum [1-5]. After the pioneering nonrelativ-
istic work [1], it clearly emerged that the relativity effects
are important for the description of mesons [6], both light
and heavy. In order to reach a reasonable precision, the
following papers have eventually included relativistic
corrections, either by perturbation techniques or by
covariant approaches [2,7]. The chromodynamic inter-
actions of heavy quarks through order (v/c)?> were
introduced in Ref. [8] starting from a nonrelativistic
treatment of QCD. An effective theory, called nonrela-
tivistic QCD, was thus defined and used for lattice and
continuum calculations [9,10]. This theory and the
“potential nonrelativistic QCD” [11], a further effective
theory derived from it, are among the most diffused
methods for calculating meson spectra and decays [12].
The lattice techniques, on the other hand, have progres-
sively improved up to the present day by including higher
relativistic orders and QCD radiative effects. Increasingly
accurate determinations of hyperfine splittings have then
been calculated in this way [13-15].

Other types of approaches move directly from a covar-
iant formulation. A short list of up-to-date available
relativistic or semirelativistic treatments [16—19] was dis-
cussed in Ref. [20]. Starting from our previous results
[21,22], we derived in Ref. [20] a covariant potential model
for two relativistic quarks of arbitrary mass. The fermionic
nature of the particles is explicitly considered, and each
quark satisfies a Dirac equation; the two equations are then
coupled by the interaction, described by the Cornell
potential. As is well known, this potential is formed by
a Coulomb-like part which appears in a vector coupling and
by a linear term which must describe a scalar interaction in
order to be confining [23]. Obviously, the two spin-orbit
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contributions for the two quarks are completely included
and no problem concerning the reduced mass has to be
posed. A first-order correction to the potential is added by
means of the Breit term. In Ref. [20], we have shown that
our wave equation is able to provide a unified framework to
investigate all ranges of meson masses. For heavier mesons,
the agreement with experimental data turns out to be really
very precise up to the pair production threshold, not
included in the Cornell potential. This has given sugges-
tions for unknown spectroscopic classifications of some
mesons and has allowed us to obtain a good accuracy when
calculating the masses of light mesons, for which potential
models usually fail.

All the methods so far described are currently applied
to the radiative meson decays. The electromagnetic cou-
pling is generally taken in the dipole approximation,
electric or magnetic according to the considered transitions.
Sometimes, the contributions due to the strong interactions
are brought to bear to the calculation. In addition to the
obvious comparison of the theoretical results with exper-
imental data, in many papers previsions are also made
about radiative transitions lacking direct data. In particular,
this is the case of the transitions of the recently observed
mesons /,(1p) and h,(2p) decaying into #,(1s) and
substantiating the evidence of 7, (2s) [24]. The results of
some recent papers using a semirelativistic framework are
found in Refs. [25,26], and those obtained by an effective
potential are in Ref. [27]. QCD-based approaches are used
in Refs. [28-31], and lattice calculations of three-point
matrix elements for radiative bottomonium decays are
presented in Ref. [32]. The width of the radiative decay
of T(2s) into 7,(1s) is given in Ref. [33]. The agreement
between theoretical and experimental widths is generally
not as good as it is for the spectra, even when taking into
account the large errors that affect the experimental
data [34].
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FIG. 1. The normalized densities of the states involved in the
T(3) decay times the measure factor in the dimensionless
coordinate s defined in Sec. A 4.

As we have stated in the abstract, this paper is a
continuation of Ref. [20]. The purpose is to calculate the
widths of the purely radiative decays of bb, still assuming
the Cornell potential as a constitutive interaction for the
mesons. The electromagnetic coupling for the composite
two-fermion system is then determined in analogy to the
procedure established in Ref. [35]. In that paper, we
calculated the hyperfine spacings for different hydrogenic
atoms and the width of corresponding transitions: no
additional corrections to the Coulomb interaction were
included, apart from the first order of the Breit term,
representing the spin-spin interaction responsible of the
hyperfine splitting. The results we found are in extremely
good agreement with the experimental data. It is therefore
very tempting, if not compulsory, to have a look at the
meson radiative decays by extending to mesons the treat-
ment applied in Ref. [35] to atoms. We thus evaluate here
the branching ratios and the widths of the measured
radiative decays of Y(3s), x,2(2p), x51(2P), xp0(2P),
and Y'(2s) (see Tables III and IV), and we make previsions
for some decays of h,(1p), h,(2p), x»1(2p), T(2s), and
Y (1s) (see Table V) for which direct experimental data are
not yet available. The results are rewarding, although we
cannot expect to reach the same accuracy of the atomic
transitions for several reasons. In the first place, the Cornell
potential is itself an effective potential more suitable to the
description of a stationary situation, such as the calculation
of the spectrum, as opposed to the atomic interaction which
comes from a fundamental theory. Second, for atoms the
fine structure coupling constant a, is the same for the
Coulomb potential, the Breit spin-spin interaction, and the
decay process. In Fig. 1 we represent the normalized
densities of the states related to some decays treated in
the following. We are thus allowed to make a proper
calculation of the first-order corrections to the wave
functions due to the Breit term, as we did in Ref. [35].
These corrections turn out to be essential for getting very
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TABLE I. The bb levels in MeV. First column: term symbol,
I6(JPC) numbers, particle name. ¢ = 1.111 GeV/fm, a =
0.3272, and m;, = 4725.5 MeV. Experimental data are taken
from Ref. [34]. Our values can be compared with those obtained
by different approaches, reported in Ref. [26].

State Experiment Numeric

(1150)07 (0= "), 9398.0 £ 3.2 19390.39
(135)0~(177)Y 9460.30 + 0.25 19466.10
(13 )0t (07 ) x40 9859.44 +0.73 19857.41
(1Pp)0t (1 )y 9892.78 + 0.57 19886.70
(1'p)0=(177)hy, 9898.60 + 1.4 19895.35
(13 )0t (27 )ypa 9912.21 +0.57 19908.14
(2'50)0 (0= ")y, 9974.0 + 4.4* 9971.14
(235)0~(177)T 10023.26 + 0.0003 10009.04
(23 p)0H (07 )xp0 10232.50 + 0.0009 10232.36
(23 p)0t (17 )y 10255.46 + 0.0005 10256.58
(2'p)0=(177)hy, 10259.8 + 1.6 110263.62
(23p2)0t (27 ) ypa 10268.65 4 0.0007 10274.26
(3%5,)0~(177)Y 10355.20 + 0.0005 10364.52

“See [36].

precise values of both the hyperfine levels of different
hydrogenic atoms and the decay widths. Without them, the
levels involved in hyperfine transitions would be degener-
ate, and first-order corrected wave functions are necessary
to calculate the rate. This is not the situation for meson
radiative decays, for which a rigorous perturbation expan-
sion in the Breit term is not feasible. Indeed, in most
quarkonium models the values assumed for the bottom
mass m,, the string tension o, and agcp are obtained from a
fit of the experimental meson spectrum. In our case, the fit
is calculated by including the first order of the Breit
correction. Thus, a remnant of that correction is already
present at the lowest order in the wave equation and in its
solutions. In Table I, we report the masses of the mesons we
will consider later on. In Table II, we show that the
influence of the Breit term is actually very different on
the different states. Because of the structure of the transition
rate given in the following equation (2.11), if we use the
physical (i.e. Breit-corrected) value for the transition
frequency, it seems reasonable to take the corresponding
spinors at the lowest perturbation order. However, for the
states with j = 0, namely, 77, and y;, the hyperfine shift is
maximal and considerably larger than for the other states of
their respective multiplets. These states are connected by a
parity transformation, and in our model they are structurally
distinguished from the other components of the respective
multiplets, since they are determined by a second-order

TABLE II. The Breit corrections in MeV for the lowest states.
(1) Tp(ls)  xpo(lp)  xpi(1p) hy(1p)  xp(lp)
-92.13 -18.09 —44.3 —19.98 -15.95 -7.51
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differential system instead of by a fourth-order one.
Moreover, the inclusion of the first-order corrections in
their wave functions makes a really great improvement on
the results of the decay transition rate. Still in the context of
radiative meson decays, an analogous situation was met in
Ref. [5] for the relativistic corrections in (v/c)* “retained in
the calculation of those rates where those terms make a
substantial difference” (see [5], note 18). Thus, we shall
assume unperturbed wave functions for all the j # O states
and first-order corrected wave functions for all the j = 0
states. In Sec. III, the numerical way of calculating the
corrections to the levels and to the states will be recalled.

We now give a sketchy summary of what follows. In
Sec. II, we state the general formulas for calculating the
radiative transitions. A plot of the radial probability density
of the states is also presented so as to give an idea of the
properties of the eigenfunctions. In Sec. III, we discuss
some numerical aspects, describing how we calculate our
spinors and giving some details on the numerical precision.
In Sec. IV, we make some brief concluding remarks. As
already stated, this paper is a continuation and a completion
of our previous ones, and we have intended to give it a
phenomenological exposition centered on the results.
However, in order not to redirect too frequently the readers
to our previous works [20-22,35] but also not to over-
whelm the exposition with accessory technical details, we
have added an Appendix. There we explain the notations,
we recall the basic covariance properties of the model, and
we give some references for treatments of related subjects
of more mathematical flavor. Moreover, we contextualize
the general relations of our previous papers to the present
case, which is simpler because of the equal quark masses.

II. THE TRANSITION PROBABILITIES

Using the coordinates (Al), (AS), and (A6), the two-
body relativistic wave equation for bb, with eigenvalue 1,
reads (see Secs. A3 and A 4)

1
{(Y‘(ﬂ)m)a — Vi)Y @a)4a + 5 () +7()) (2my + 07)

- (4 + %) + VB(r)} w(r) = 0. (2.1)

In (2.1), y(r) is a 16-component spherical spinor, explicitly
given in Sec. A 3, with components ordered as specified in
(A10) and (A11); 7?1')’ Y(),(i = 1,2) are the y matrices
acting on the space of the quark and antiquark fermion;
b = (4/3)aqgcp. The vector and scalar parts of the Cornell

potential, respectively, give the (A + b/r) and (2m;, + or)
terms. Finally, the Breit potential Vz(r) has the form

ryr,
Valr) = gty ooy (0 + 2. (22)
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The calculation of the meson mass spectrum reduces to
the solution of two boundary value problems for the fourth-
order systems [(A15)-(A17)], one for each parity.

We factorize the wave functions of initial and final
bottomonium states, normalized in a box of volume V, into

W, (Z,r) = V127 Prtyg,(r), =i f., (23)
where y;(r) and y,(r) are the spinors corresponding to
initial and final energies, angular momenta, and parities.
The Breit term (2.2) will always be considered a first-order
perturbation term. As previously said, when necessary we
will consider wave functions represented by the sum of a
lowest-order contribution given by the exact eigenfunction
of Eq. (2.1) with Vg(r) =0 and a first-order correction
generated by V(r) itself. The general systems of equations
for the case of mesons formed by quarks with possibly
different masses is presented in Ref. [20]: we report in
Sec. A 4 the systems for the bb case, not explicitly written
in our previous papers. In Ref. [35], it was shown that the
electromagnetic coupling for the fermion-antifermion
bound system is introduced by means of the interaction
Hamiltonian

Hiy = —ep (e - AV — ) - A@), (2.4)
where e, = (1/3)e is the bottom charge, e being the
electron charge. Here ay;) is the vector of the a matrices

for the ith fermion space, and A is the wave function of a
photon with 4-momentum k and polarization €z in the
Coulomb gauge [37],

Var
20V

—ik XM
ik, X

A(k.B) = ege (2.5)

A is evaluated at the point x = X(i), where @ = kj is the
photon frequency. The invariant integration on the global

coordinates, present in the calculation of the first pertur-
bation order of the S-matrix element, yields

(27)* Van
V20V V2

Sfi = —iey (34(Pf+k—P,')(€;§'Mfi)' (26)

The 6* function represents the conservation of the global 4-
momentum of the three particles
P! = Pﬁ + k* (2.7)
and contains the recoil of the meson due to the radiation
emission. Since the experimental value of the physical

width of the decay is given in the rest frame of the initial
meson, we choose P; = 0, and we obtain
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My = / Pry () e — Ry (r). (2.8)

Here @ are the transformed matrices in the basis of the
spinors with components ordered as in (A10) and (A11).

Using (A12), the integrals over the angular variables are
calculated analytically, without any approximation on the
exponential, in terms of elementary functions that corre-
spond to the lowest-order Bessel functions appearing in the
usual series expansions. The radial integrals are calculated
numerically for all the allowed transitions as described in
more detail in the next section.

Summing over the polarizations and the possible final
states and averaging over the initial states, the differential
transition rate therefore reads

e ;- M|
dw =t 4P, +k-pP,)S LI Brap,. (2.9

The dipole approximation for M ; is obtained by letting the
exponentials equal to unity in (2.8). For the transitions for
which the dipole approximation gives a nonvanishing
result, the sum over the polarizations is more easily
calculated by using the Wigner-Eckart theorem.

As [d®P/2P° = [d*PO(P°)5(P? — 2%), integrating over
the final global momentum we get

dw elw , —w)&(a)—/liz _’1%> Z €5 .'Zufi|2
dodQ, 27, 24; 2j;+1

(2.10)

’

where dQ,, is the unit solid angle in the directionn = k/|k|.
Reinserting the 7 and c factors, the final integration over
the solid angle gives the total transition rate

42 |€}§‘Mﬂ|2
=_—Lw. A2 — 2.11
W= 3 e @rnih D 2+ 1 (2.11)
while
Cll+ﬂ.f
= — A=A 2.12

is the frequency of the emitted photon that completely
includes the recoil. Finally,

A+
2 1 i
Aj; = 7 (2.13)

is the relativistic correction factor coming from kinematics.
This is not very far from unity but for the transitions
between states with a large mass difference.
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II1. DISCUSSION OF THE RESULTS

The levels and the eigenstates of bb are obtained by a
numerical solution of the singular boundary value problem
posed by the Hamiltonian (2.1). The unknown functions are
the eight radial function coefficients {a;(r),b;(r),
¢;(r),d;(r)}i—o,. The symmetries of the problem imply
four algebraic relations, so that the previous radial func-
tions can be expressed in terms of only four unknown
functions {u;(r)};,_;, giving rise to the 4 x4 system
described in Sec. A4. For the j =0 states, the 4 x 4
system actually reduces to a 2 x 2 one. The corrections due
to the Breit term (2.2) are calculated by solving the spectral
problem for £V z(r) and taking the first-order expansion in
e for both levels and spinors normalized to unity. Because
of the value of the bottom mass, the parameters entering the
system are such that the solutions can be expressed directly
in terms of Padé approximants, so that we get a complete
control of the numerical error. The Padé we have calculated
are of the order of [260, 260], and, since the arithmetical
precision has also been taken with a sufficiently large
number of digits, our numerical errors can safely be
assumed to be vanishing. We have used our eigenfunctions
to give some estimates of the average meson radii and
quark velocity. For the radii we have seen a monotonic
increase with mass, from 0.156 fm of the #,(1s) to
0.609 fm of Y(3p). The estimate of the quark velocity
has been approximated by g = ((g*)/(m*c* + (¢*)))"/?,
where ¢ = (p; — p,)/2 is the conjugate relative momen-
tum of the two fermions (A5) and (g*) has been taken as the
average of —#2V?2 over the corresponding state. Averaging
then over all the states, we have found a = 0.29 in good
agreement with the estimate of Ref. [31]. Such a value, in
our opinion, strengthens the idea that a relativistic treatment

TABLE III. Comparison of our calculated branching ratios of
the radiative decays with experimental data. The experimental
errors have been linearly combined.

Branching ratios Theory  Experiment
Y(3s) = vrp1(2p)/T(3s) = vxpn(2p) 0.812  0.96 +0.21
T(35) = 7260(20)/T(3) = 174m(2p) 0433  0.45+0.10

Y(3s) = y1,(25)/Y(3s) = yxpo(2p)  0.002 < 0.005

Y(3s) = 125 (1p)/T(3s) = 7252(2p)  0.042  0.075 % 0.019

Y(3s) = 725 (19)/T(3s) = 722(2p)  0.010  0.007 £ 0.005

Y(3s) = yruo(1p)/Y(3s) = yxn(2p)  0.010 0.021 £ 0.006

Y(3s) = yn,(15)/Y(3s) = yyp(2p)  0.003  0.004 & 0.001

T(25) = 7201 (19)/T(25) = 7xm(1p) 0812 0.96+.10

T(25) = 7200 (1p)/Y(25) = rxm(1p) 0410 053 +0.08
Y(25) = ymy(1)/T(25) = 7x,(1p)  0.006  0.006 = 0.002

2 (2p) = ¥ Y(1s)/xin(2p) = yY(2s) 0.55 0.66 +0.23

151(2p) = ¥y Y (1s)/xpi(2p) = yY(2s) 0.46 0.46 +0.08

x00(2p) = ¥Y(15)/xp0(2p) = yYT(2s) 0.13  (0.20 £ 0.20)"

*This case is not very meaningful due to the large error by
which it is affected.
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TABLE IV. Values in keV of the widths of radiative decays of
the mesons Y'(3s), x52(2p), xu1(2P)s xp0(2p), and YT (2s). In the
second column, we give our theoretical data obtained from
Egs. (6)—(11). In the third column, we report the results for
the calculations in the electric dipole approximation (D.A.). The
final column shows the experimental data.

Decay Theory D.A. Experiment
YT(3s) = yxin(2p) 3.51 2.99 270 £0.57
Y(3s) = vy (2p) 2.85 2.16 2.58 +£0.48
Y(3s) = yxu0(2p) 1.52 1.26 1.21 +£0.23
Y (3s) = yn,(2s) 0.006 <0.013
T(3s) = yxp(lp) 0.149 0.204 0.204 £ 0.045
T(3s) = yxpi(1p) 0.036 0.067 0.019 £0.012
YT(3s) = yyno(lp) 0.032 0.060 0.056 +0.013
T(3s) = yn,(1ls) 0.009 0.011 £ 0.003
Y(2s) = yym(lp) 2.13 1.85 2.30£0.20
Y(2s) = yypi(lp) 1.73 1.35 22240.21
T(2s) = yxpo(lp) 0.87 0.71 1.22 +£0.15
T(2s) = ynp(Ls) 0.013 0.013 £0.04
In(2p) = yYT(2s) 18.77 23.34 15.10 +5.60
1n(2p) = yY(1s) 10.27 12.01 9.80 £+ 2.30
1n(2p) = yY(2s) 16.80 12.75 14.40 +5.00
1n(2p) = yY(1s) 7.68 5.08 8.96 £2.24
x0(2p) = yY(2s) 11.77 4.03 -
x00(2p) = yY(1s) 1.49 1.38

X (1p) = rY(ls) 3.73

xn(lp) = yY(1s) 29.48

is appropriate. Finally, we have calculated the average
values of the orbital angular momentum from the radial part
of the Laplace operator, and we have found values no larger
than 0.115 for s states and values between 0.976 and 1.045
for p states.

In Table III, we present our results for “relative”
branching ratios of bottomonium radiative decays, namely,
for branching ratios not using the total width of the
decaying particle, and we make a comparison with exper-
imental data whose errors have been linearly combined. It
appears that the agreement between the theoretical and
experimental data is very good for most of the decays and
that the worst results are different for a factor not greater
than 1.5.

In the second column of Table IV, we report the values in
keV we have calculated for the hb-meson radiative decays.
We get from Ref. [34] the total widths Iy, = 20.32 +
1.85 keV and I'y(y,) = 31.98 & 2.63 keV. The total widths
of I’y op)y = 138. £19. keV and ', (5,) = 96. &+ 16. keV
are taken from Ref. [38]. Again we have assumed a linear
composition of the errors of the experimental data. The
agreement is again very good even for the decays involving
the 7, and the y, states. The widths of the allowed electric
dipole transition are reported in the third column of the
table. As expected, they show that the dipole approximation
gives also results in a very good agreement with the data.

PHYSICAL REVIEW D 95, 054022 (2017)

TABLE V. Comparison of the previsions for the theoretical
widths of some radiative decays of x5, hp, ¥p1> X50- and Y. Units
are eV.

Decay Ours Ref. [27] Ref. [22]
hy(2p) = yn,(2s) 20681 17 600 16 600
hy(2p) = yn,(1s) 16 884 14900 17 500
T(2s5) = iy (2s) 0.369 0.58 0.59
np(2s) = yY(1s) 65.41 45 64
202(1p) = 7hy(1p) 0.015 0.089

Yo (1p) = 7T(1s) 33731 39 150 31800
hy(1p) = vxpi(1p) 0.050 0.012 0.0094
h,(1p) = vxpo(1p) 0.124 0.86 0.90
hy(1p) — 7, (1s) 39318 43 660 35800
Y(1s) = yn,(1s) 3.101° 9.34 10

*This value is in agreement with the value (3.6 £2.9) eV
of Ref. [29].

The decay widths obtained by several different approaches
can be found in Ref. [26].

In Table V, we give the results of our previsions in
comparison with those of Refs. [26,31].

IV. CONCLUSIONS

We close the paper with some short observations on the
positive aspects of the potential model we have constructed
and on its main limitations. We have constructed a
covariant model for two fermions with the correct non-
relativistic limit and the single-body limit when the mass of
one fermion tends to infinity. It includes in a nonperturba-
tive scheme all the relativistic effects. It uses coupled Dirac
equations to describe the component quarks and to estab-
lish the correct vector or scalar couplings. The model is
conceptually simple: indeed, although the expressions
(A12)—(A20) may look awkward, they are directly obtained
by extending to a two-fermion system the standard pro-
cedure of the Dirac equation in a central potential. It
contains the Breit correction responsible for the hyperfine
splittings: in fact, this is the only first-order correction
needed to achieve a very good agreement of the computed
mass spectrum with the experimental data. It is efficient,
without any change in its structure, for dealing with both
heavy and light mesons. It involves a minimal number of
fitted parameters. On the other hand, it is not suited for an
analytic development. However, it is rather manageable for
obtaining numerical results in a combined environment of
computational methods and computer algebra. We believe,
therefore, that the framework in which it operates and the
type of effects it is able to take into account are very
transparent. The quality of the results depends then
essentially upon the capability of the potential to give an
accurate description of the physical interaction. Although
very simple, the Cornell potential has proved to be very
effective in this respect, both for the determination of the
meson spectra and for the calculation of the radiative decay
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widths. However, in the latter application, additional
caution is in order when dealing with the Breit correction
to the wave functions. Indeed, since the connection with
QCD is only through the potential, we meet two general
types of difficulties. In the first place, since we give a
nonperturbative treatment of some classes of effects and the
potential contains the fitted parameters, it is not straightfor-
ward to single out the dominant effects in the description.
Second, we obviously do not yet have a direct way to
determine an systematic expansion for adding further
corrections. We finally could say that the framework of
the two coupled Dirac equation plus Breit term is a starting
point quite well suited to study meson physics. A closer
connection with QCD is certainly necessary to improve the
agreement with experimental data and to enlarge the types
of phenomena to be treated.

APPENDIX

The kinematics and the classical dynamics of two
relativistic interacting bodies constituted an active field
of research during the 1970s and 1980s. One of the main
approaches was the use of the theory of constrained
systems [39] where the phase space was cut by imposing
some invariant relations (the “first- and second-class con-
straints”’). The motion was described in a covariant way,
although not all physical problems were completely settled.
This framework keeps being used up to present day to
produce quantum potential models for atoms and quarko-
nium systems (see, e.g., [39], where the choice of the
potential is different from ours). Our approach to the two-
body relativistic problems was also developed long ago
[40] using the ideas of the reduction of Hamiltonian
systems with symmetry and, more generally, of the induced
representations of groups on homogeneous spaces and of
geometrical quantization [41]. The kinematics and the
dynamics were thus obtained from an invariant canonical
reduction of the direct product of the phase space of a
system of two particles with masses m ), m ;). The reduced
phase space, therefore, turns out to be a manifold support-
ing a canonical action of the Poincaré group, and no choice
of reference frame is necessary. The quantum mechanical
picture has been developed accordingly in more recent
papers [20-22], which we refer to for proofs and details.
We briefly describe the main ideas in coordinates, and we
specify some properties for the case of hb mesons.

1. The classical setting

We first sketch the classical setting. We denote by
(%) P{1)» X(2) Pp)) the coordinates of the two-particle

phase space. Letting

and a = 1, 2, 3, we define the “vierbein”

PHYSICAL REVIEW D 95, 054022 (2017)

(P) =L dp) =y - DL V)
e © VPP + VPR
(A2)
They satisfy the identities (4, @ = 0, 3)
Nuea(P)es(P) =g, nPea(P)es(P) =1, (A3)

1, being the Lorentz metric tensor. We then make a
canonical transformation (a = 1, 2, 3)

(G Py (aly Pl )} > {25 P9). (7. ). (ran ).

(A4)

where, letting X* = (x’(‘l) + xé))/ 2,
2 it EapePatlyLe N €a (quF = rad) + P
= Qar - ruq 2 q r,

q = eo(P)(P(iyu = Pyu)/2s
da = gﬂa(P)(p(l)u - p(Z)ﬂ)/z
(AS)

F= ‘EJ(;(P)(x(l)y —XQ)u»
ra = €a(P) (X1 = X))

(Zi)i—125 is a Newton-Wigner position vector for a
particle with angular momentum L, = e,,.7,q.; 1 = (1)
and ¢ = (gq,) are Wigner vectors of spin one and

Far=vVr,  q=\/gtq-r, PZ'=PX +iF
(A6)

are Lorentz invariant. The reduction of the phase space is
then generated by the invariant § = (m} — m3)/(2V P?)
(g = 0 for bb). Correspondingly, the invariant relative time
coordinate 7 becomes cyclic. Observe, for instance, that
P! X+ P X = P2y —q 1. (A7)
Thus, 7 disappears from the treatment and can be assigned

any arbitrary value. We can choose a vanishing relative
time 7. For a free system, the mass-shell conditions

p?=m?, p3 =m3 immediately yield P> = (\/q,q, +m?} +

\V/qaq.+m3)*. In the presence of an interaction, the
obvious changes must be applied to this invariant.

2. The coupled Dirac equations

The quantum description of two relativistic fermions is
obtained by means of two Dirac operators coupled by
the interaction. The wave functions are therefore 16-
dimensional spinors. When the fermions are free, we
combine the two Dirac operators written in terms of

(A5). The matrices 7 ;) = s’g(P)y’(’i) and 7, = e’é(P)y’{D
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are unitary transformed and can be given the usual
representation. Finally, the wave equation is expressed
by an invariant operator:

(A8)

Ty, =727 2))9a + Fayma) +7

The eigenvalues of (A8) are the invariant masses given by
the four possible combinations

A= i\/nga + m%l) + \/qaqa + m%z)’ (A9)
each one with multiplicity four. The relative momentum is
again fixed to § = (m%l) — mpy)/(22), and the relative time
is cyclic. We finally mention that (a) the Schrodinger
equation is obtained in the nonrelativistic limit and (b) the
Dirac equation for a single particle in an external potential
is reproduced when the mass of the other tends to infinity.
This second limit is generally not obtained in approaches
a la Bethe-Salpeter.

3. The 16-component spinors
In analogy to the usual treatment of the Dirac equation
in a central field [37], we define a 16-component
spherical spinor by diagonalizing angular momentum
and parity. We then reorder its components by collecting
them in four groups labeled by the free eigenvalues
(A9) with the choice of signs (++), (—=), (—+), (+-),
respectively:
vy =S e e ) (A1)
Here the subscript (+) refers to the parity. In each group,
the components are in the singlet-triplet order:

LPEE*> _ [(lp(ﬂj))’ lpgi‘j)+ ) ) ’ LPS,*I))’

+1 (A11)

where (%) indicates any combination of + and —, the
subscript O refers to the singlet component, while 1, 1,
and 1_ denote the triplet components. The operator are
reordered accordingly. The parity operator is given by the
inner parity—which is the reordered y ® y—combined
with the change r — —r times a global arbitrary phase.
In our previous papers dealing with atomic states, we had
called “even” or “odd” the states with eigenvalues of P
equal to (—)/ or (=)/*!, respectively, choosing the arbitrary
phase equal to unity. With such a choice, the ground state of
an atomic system has the parity eigenvalue equal to unity.
‘We maintain this terminology, but we observe that we have
to choose the global phase equal to —1 in order to agree
with the usual meson classification scheme. The explicit
form of reordered spinor we have called even for general
masses is given in Refs. [21,35]. For equal masses, as in the
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present case where m(j) = m() = my;, some simplifica-
tions are in order and the spinor reads

" = i (0. p)ay(r),
(1) Ni—m+1/j+m

Vi, =~ \/—\/m Y{n—l(e"i))bO(”)’
(++) _
Vi = Y0 ().

) :\/J_m\/J+m+lyj
+1_ \/2_]\/]4'—1 m+1
yio ) = Yh(0.g)a(r),

() _ Vi—m+1J/j+m
Vi, =~

(0, 9)bo(r),

f _1(0,9)by (1),

T
(=) _

l//-5—10 \/_ /1 + Y] (9 ¢) ( )
(__)7\/J—m\/j+m+l ;

Vi = \/Z\/J“'—l Yin+1(9’¢>bl(r)’
=+ _ .

Y10

) _Vitm=-1J/j+m ;,
l//+1+ - \/2—\/2.]—_1 Yﬁn—l(eﬂ ¢)C0(r)

Vi—-m+1j- m—|—2Y]+1

S 1(0.¢)dy(r),
o %ﬁ Vi (0.)co(r)
(—+) _ Vj=—m~— 1\/J

l//+17 - ﬁ'm Yinl1(9’¢)c()(r)

\/J+m+1x/1+m+2 pit
V2ji+22j+3 Vi

(6. p)do(r).

‘l’gro)_o
(o) _Vitm—1/j+m i1

W) = 0.9)en ()
Vi \-/%\%}_;”3* Y (0. 4)dy (),
W) =Y 0. g)en )
Vi "f,tll%+ i .91, (r).
Yo VT \‘/zﬁ ;;JV__J] — Myl (0. d)ei(r)
Vi :L/Z—I;%Jr Y (0. 0)dy (r).
(A12)
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We get a state with opposite parity by applying to (A12) the
block matrix with the 8 x 8 zero matrices on the diagonal
and the 8 x 8§ identity on the antidiagonal.

4. The 4 x 4 spectral problem

When considering two quarks interacting by the Cornell
potential depending upon r, the invariant equation (A8) is
replaced by (2.1). Obviously, as in the solution of the Dirac
equation for the hydrogen spectrum, when determining
meson masses or atomic levels, the mass contribution to the
eigenvalue is given the maximal positive value [37].

We introduce the dimensionless variables €, w, and s by

o= mlz,Q%, A=my(2 + Qw), r= m;lg_%s,
(A13)

and the dimensionless functions

h(s) = (2 +Qw)/VQ+b/s, k(s)= (24 Qs)/(2VQ).
(A14)

The coefficient functions {a;(s), b;(s), c;(s),d;(s)}i—01

for the eigenstates are obtained by solving a boundary
value problem. Because of the symmetries of the
Hamiltonian, this is actually equivalent to solving a reduced
4 x 4 system for each different parity. The system is [20]

() 0 Aols) —Bols) O
) | (Al s 0 B
, +
bo) |l 0 2 Al
iy (s) 0 Ds) Als) /s
uy(s)
|y, (A15)
uz(s)
uy(s)
In (A15), Ay = A,|,_¢» Bo = B.|,_, and the four unknown
functions  {u;(s)},_,, determine the above eight
{ai(s),b;(s), c;(s),d;(s)},—o, as reported below. The even

parity coefficients for bb are
Ac(s) =0,

B.(s) = 2% (h(s)s + 2eb),

1 2J? 262(s)s
Cels) = 5, (h(s)s +2eb) " SUhs)s —2eb) " Shs) —deb’
2 2 S)Ss
D, (s) = —%s(h(s)s +2eb) +h(2sj)s2 sh2(];)(_)2€b’

(A16)
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The odd parity coefficients for bb read [42]

Afs) = — 2V 72k (s) ’
h(s)s —2eb
B.(5) = o (his)s +260) 2
C.(s) = %s(h(s)s + 4eb) — s(h(s)zsjz—Zeb)’
=t 2 (A1)
In (A16) and (A17), J?> = j(j + 1).
5. The coefficients of the even states
For integer n, we let
A, (s) = 2+ Qw)s +VQb(1 —ne).  (AlS)

The relations among the four u; and the eight a;, b;, c;, d;
variables for the even states are then

1 (Qs +2)s
ag(s) = 5 (1 +A4()> ui(s),
%(1 (Qs+2 >M1<S),
;<1+(Qs+2 >u2(s),
ST O
c (S):— ( )\/_ul( )+VJ+1\/§JMZ(S)
’ V2] + TAs(s) V2] + TAy(s)
1 V() 1T Tus)
2V2j+1 2 V241 7
o) = Y8 D VTnls) TVl
: V2 + Th(s) V2] + TAg(s)
1) 1T Tl
2V2j+T 2 V24T 7
do(s) = ~ VI T IVRju(s) _ Vi + 1)V Qu(s)
’ V2] + 1Ay (s) V2] + TAg(s)
VT T(s) 1l
2 V2T 2V FT
d,(s) = ~ VI IVQju(s) | Vil + 1)vQus(s)
: V2] + 1Ay (s) V2] +TAg(s)
LG+ Tus(s)  1+/Juy(s)
AT AT (AL9)
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6. The coefficients of the odd states

The relations for the odd states are

a0(s) = a(s) = 320 (s).

bo(s) = =b,(s) = %uz(s),

cols) = VO 1\fj<\/j+ lul(s)_\/juz(s)>
' VT U a6 T A
11 . (Qs +2)s s (Qs +2)s VS
2v2]'+1[\/]<1+ Ao(s) ) 3()+(1+ Ay (s) > VI 1]’
i) = ~YRTTI(TTe) | Vel
Y,y ¥ Ay (s) Ao(s)
L I PR (e ua(s) = /i _(Qs+2)s s
2\/21'+1[\/]<1 Ao(s) )3() ”H(] A (s) )4( )}’
dy(s) ——\/ﬁ"jJrl\/;(\/j”l(s) Vj+1”2(s)>
T T T A Ao(s)
11 . (Qs +2)s : (Qs +2)s
+§ﬁ|:\/]+l<l+T(s))u3(S)—\/}<1+T(s)>u4(s):|,
dy(s) = YT HIV (xfful(s> ViHT 1“2(S>>
1 VT \ Ay(s) Ao(s)

1 1

(A20)
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