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Being interested in how a strongly coupled system approaches asymptotic freedom, we reexamine
existing precision lattice QCD results for thermodynamic properties of the gluon plasma in a large
temperature range. We discuss and thoroughly test the applicability of perturbative results, on which
grounds we then infer that the pressure and other bulk properties approach the free limit somewhat
slower than previously thought. We also revise the value of the first nonperturbative coefficient in the
weak-coupling expansion.
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I. INTRODUCTION

Among the bulk properties of a many-body system,
the pressure p is of particular importance as it is directly
related to the partition function (or the generating func-
tional in the context of quantum field theory). In the
large-volume limit, and as a function of the temperature,
pðTÞ is a thermodynamic potential which allows one to
calculate all other thermodynamic properties of interest,
like the entropy density sðTÞ ¼ ∂p=∂T and the energy
density eðTÞ ¼ sT − p.
Given its phenomenological relevance in heavy-ion

physics, the pressure and the resulting equation of state
of the quark-gluon plasma have been the subject of intense
research in finite-temperature QCD, which has led to
remarkable progress both analytically and numerically:
The expansion in the coupling α has been pushed to its
perturbatively accessible limit Oðα3 ln αÞ [1], while non-
perturbative lattice QCD calculations have become much
more precise due to the possibilities of modern hardware
combined with improved actions.
The (truncated) perturbative result for the pressure of the

quark-gluon plasma with nf massless quark flavors has the
generic structure

pðnÞ ¼ p0

�
1þ

Xn
m¼2

Cmα
m=2

�
; ð1Þ

where p0 ¼ π2

90
ð16þ 21

2
nfÞT4 is the interaction-free limit.

Although the coupling αðμÞ is evaluated at an auxiliary scale
μ, a compatible scale dependence of the factorsCm ensures μ
invariance of pðnÞ up to subleading terms, ∂pðnÞ=∂μ ¼
Oðαnþ1Þ. Due to screening effects, the expansion (1)
contains half-integer powers and some of the “coefficients”
Cm depend on the coupling, viz. Cm ¼ cm þ ~cm lnα for
m ¼ f4; 6g. All cm, ~cm with m ≤ 6 are known [2], except

for c6 which is the first coefficient requiring nonperturbative
techniques.
In the quenched limit of QCD (nf ¼ 0), lattice

calculations have not only reached a remarkable level
of accuracy, but now also cover a huge temperature
range from below the transition temperature Tc up to
Tmax ¼ 103Tc. By fitting to their numerical results the
corresponding analytic expression, the authors of [3] could
refine the first crude estimate [2] of the nonperturbative
coefficient c6. They also concluded that the adjusted
pð6ÞðTÞ topped off by the adjusted c6 term remains
applicable down to T ∼ 10Tc—which appears remarkable
for a weak-coupling approximation.
Motivated by our interest in how a strongly coupled

system like a QCD plasma near Tc approaches the
perturbative limit, we will here reexamine this analysis
of [3]. After a brief summary of the existing results, we will
put forward a somewhat different approach, relating, in a
complementing way, lattice and perturbative results. On
one hand, this will shed some light on the applicability
of perturbation theory. It will also imply a small, but
systematic modification of the published lattice results for
the pressure (and other thermodynamic properties),
and a modification of the value for the nonperturbative
coefficient c6.

II. ON THE STATE OF THE ART

In [3], the pressure was evaluated not directly, but by the
so-called integral method [4],

pðTÞ
T4

¼ σ þ
Z

T

T0

dT 0

T 0
IðT 0Þ
T 04 ; ð2Þ

actually computed in this and many other lattice
simulations is the trace of the energy-momentum tensor,
I ¼ e − 3p ¼ T5∂ðp=T4Þ=∂T, also referred to as inter-
action measure. Thus, for given IðTÞ, the pressure calcu-
lated via (2) also depends on the integration constant
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σ ¼ pðT0Þ=T4
0, which thus affects the “correctness” of

the results.
For T0 sufficiently below the transition temperature Tc, it

is justified to approximate σ → 0, because the confinement
degrees of freedom are massive and hence thermally
suppressed. However, integrating then to T > Tc introdu-
ces a potential uncertainty: Increasing correlation lengths in
the transition region—where I=T4 peaks and thus con-
tributes most to the integral in (2)—leads to sizable finite-
volume effects; see Fig. 2 of [3]. Although these artifacts
were considered in [3] by a scaling analysis, they seem hard
to correct rigorously at the aspired level of accuracy for
pðTÞ particularly for larger T.
In principle, this issue could be circumvented by

choosing T0 ¼ ∞; the corresponding σSB ¼ 16 π2

90
is the

familiar Stefan-Boltzmann constant for the gluon plasma.
Then integrating down in (2) from infinity would require an
extrapolation of the lattice interaction measure I lattðTÞ
beyond the maximal simulation temperature Tmax. To that
end, the aforementioned perturbative fit of [3] could be
used where, more precisely, a subtracted version of I lattðTÞ
and its analytic counterpart derived from pð6ÞðTÞ were
matched for 10Tc < T < Tmax. This fit already improved

the previous, rough estimate c½2�6 ¼ Oð−40Þ (the superscript

gives the reference) of the nonperturbative coefficient to

c½3�6 ¼ −71.8� 2.9, where the uncertainty includes the
statistical error and the sensitivities on the lattice scale
and the fit interval.
We will utilize this “integrating down” idea in our

approach—bearing in mind, however, the necessity to
check thoroughly the consistency of matching weak-
coupling and lattice results in a regime which a priori
may not be “perturbative.” The double-log plots in Fig. 1
indeed reveal somewhat larger discrepancies of the fit [3]
than the original plots may suggest: For T ∈ ½102Tc; Tmax�,
the fit I ð6ÞðTÞ is systematically on the lower bound of the
uncertainty band of I latt—although we would expect
perturbation theory to become more accurate at larger T.
As a direct consequence thereof, the “lattice results” for the
pressure [actually calculated from I latt by integrating “up”
in (2), from T0 < Tc] deviate by more than their uncer-
tainties from the adjusted pð6ÞðTÞ—notably for all temper-
atures in the fit interval ½10Tc; Tmax�; see Fig. 1 lower panel.
Such discrepancies, if they were of a similar magnitude

in the physical case (nf ¼ 2þ 1), are probably too small to
have direct phenomenological implications. Nonetheless, it
seems worthwhile to revisit not only the methodology of
the integral method, but also the published results for the
pressure in the quenched limit (availing from the precision
of I latt), in order to have a firm benchmark for improved
analytic approaches like HTL resummations [5].

III. INTEGRAL METHOD AND
PERTURBATIVE QCD

In order to reexamine the pressure, by integrating down
in the integral method (2) from a large T0, we need to
address the question of how reliable perturbative results can
be for a system in a regime that may or may not be “weakly
coupled”—a notion which deserves a closer look. To avoid
ad hoc assumptions on whether a given value of “the
coupling” is small or large, and to extend somewhat
skeptical positions (based on “nonconvergence of pertur-
bative series” arguments) that perturbation theory may not
be useful at all, let us first specify some basic terminology.
We call, in general, a certain approximate calculational
scheme within a given theory a model. Just as the under-
lying theory, it contains one (or more) parameter(s) that
need to be specified by measuring some observable(s)M at
some value(s) X of its independent variables. Thereafter, we
can use our model to make predictions. Clearly, these
predictions, either for the same observable M at modified
X ≠ X, or another observable M0, should be reasonably
accurate as long as the predicted quantity is “not too
different” from MðXÞ—where the model is exact by
definition (irrespective of the value of “the coupling”).
The primary question for phenomenology is not on con-
vergence properties of the perturbative expansion (which
we see as a sequence of models), but rather the range of

FIG. 1. The lattice results [3] for the interaction measure (top),
and the pressure (bottom) calculated via (2) integrating “up” as
discussed in the main text. In both panels, the lines show the
adjusted perturbative results obtained in [3]; the narrow bands
depict the c½3�6 uncertainty.
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applicability RðXÞ of a given model (which, for fixed
parameters, depends on the observables to predict). How
much “improved” models differ (both in parameter values
and range of applicability), i.e. the question of convergence
of a perturbative series, often seems only a secondary
interest.
In the context of quantum field theory, the step of fixing

the parameters is called renormalization: Expressing bare
parameters in the Lagrangian by renormalized ones speci-
fied by observable(s) M at some renormalization scale X
(while handling the typical infinities from loop integrals
and the occurrence of a regulator μ are merely “technical
details” of renormalization). In our case, the model is the
perturbative pressure (1) at a given order n. Only n ¼ 5 and
n ¼ 6 (the latter depending on the value of the non-
perturbative coefficient c6) give monotonously decreasing
functions of α in the relevant range of values and are thus
physically meaningful.1 In addition to pðnÞðαÞ, the scale-
dependent “running” coupling needs to be specified. To
l-loop accuracy (we will use l ¼ f2; 3g) a common
analytic form reads [6]

αðlÞ ¼
Xl
k¼1

akðLÞL−k; ð3Þ

where L ¼ lnðμ2=Λ2Þ, a1 ¼ 1.142, a2 ¼ −0.963 lnL and
a3 ¼ 0.414þ 0.812ðlnL − 1Þ lnL. For direct comparison
with [3] we also choose the auxiliary scale as μ ¼ 2πT, thus

LðTÞ ¼ 2 ln

�
2π

λ

T
Tc

�
; ð4Þ

with the dimensionless model parameter λ ¼ Λ=Tc to be
adjusted.
Our model is delineated by the orders n and l of the

perturbative pressure and the running coupling, respec-
tively. In order to fully specify it, we can fix the parameter λ
by matching either pðnjlÞ ¼ pðnÞðαðlÞÞ or the corresponding
interaction measure2

I ðnjlÞ ¼ T5∂ðpðnjlÞ=T4Þ=∂T ð5Þ

to the respective lattice result at a given “renormalization
temperature” T. Regardless of the value of the running
coupling at the scale T (which also depends on the
choice of μ), the applicability range RðnjlÞðTÞ of the
resulting model ensues by comparing its predictions to

the nonperturbative lattice results, at temperatures deviating
from T. Besides this applicability range, the stability of the
model is quantified by the behavior of λ as a function of T.

A. Pressure to order n= 5

To order n ¼ 5, all coefficients in the perturbative
pressure (1) are known [2]. Let us match, at a given T,
the perturbative result with two-loop coupling and the
lattice interaction measure (as the primary quantity com-
puted in [3]),

I ð5j2ÞðT; λÞ ¼ I lattðTÞ; ð6Þ

in order to specify the sole model parameter λ ¼ Λ=Tc.
Figure 2 shows that the resulting λðTÞ is peaked with an
empirical log-linear decrease for 2≲ T=Tc ≲ 30. Above
T⋆ ¼ 40Tc, λðTÞ is constant within the uncertainties, which
underpins the perturbative stability of the ð5j2Þ model and
also lets us anticipate its range of applicability. Combining
the T ≥ T⋆ set of parameter values, taking into account
their uncertainties, yields

λ⋆ð5j2Þ ¼ 0.58� 0.11: ð7Þ

The adjusted interacting measure I⋆
ð5j2ÞðTÞ indeed agrees

with the lattice results for T ≳ T⋆, see Fig. 3, which
confirms the anticipated applicability range Rð5j2Þ ≈
½40Tc;∞� of the model. Figure 3 also illustrates the case
where the ð5j2Þ approximation is inapplicable: when fixing
λ at temperatures below T⋆, say at T ¼ 10Tc, the resulting
range of applicability is tiny, just Oð10%Þ around T. This
qualitative change in the applicability range, which mirrors
the behavior of λðTÞ shown in Fig. 2, lets us interpret T⋆ as
a “crossover” to the perturbative regime.
The ð5j2Þ model with fixed parameter λ⋆ð5j2Þ now

allows us to predict, among other observables, the

FIG. 2. The parameter for the ð5j2Þ model adjusted to match, at
a given “renormalization temperature” T, the lattice results [3] for
either the interaction measure, cf. (6), or the pressure, taking into
account the respective uncertainties.

1We do not consider the leading-order (n ¼ 2) result since
strictly speaking, without resummed loop insertions, the coupling
should not run in this case. We also mention that taking the log-
enhanced terms, e.g. ~c4 ln α

ffiffiffi
α

p
4, as a separate perturbative order

would not give a monotonously decreasing pressure.
2Note that I ðnjlÞ is of order Oðαnþ1Þ, as a result of differ-

entiating the running coupling in pðnÞðαðlÞÞ.
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pressure—notably without the need to reconstruct it via (2).
Given its direct relation to I⋆

ð5j2Þ, we expect p⋆
ð5j2Þ to be a

reasonable approximation in a temperature range similar
to Rð5j2Þ, i.e. for T ≳ 40Tc. As it turns out, p⋆

ð5j2ÞðTÞ
systematically deviates for all temperatures from the lattice
pressure obtained in [3]; see Fig. 3 lower panel. However,
for T > 30Tc—i.e. right in the ballpark of Rð5j2Þ—these
deviations are just a constant shift

Δσð5j2Þ ≈ −1.5 × 10−2 ð8Þ

in p=p0.
3 This fact lets us scrutinize, now in a more

substantiated way than in Sec. II, the “lattice pressure” as
published in [3]. Since we have all reasons to consider
the adapted perturbative result p⋆

ð5j2Þ as reliable at large

T ≳ 40Tc, we ascribe the offset (8) to the pronounced
finite-size effects of the lattice interaction measure in the
vicinity of Tc due to large correlation lengths; see Sec. II.

It appears that these artifacts have been only partly
corrected for in [3], which then leads to an accumulation
of errors when integrating in (2) up, i.e. “over the peak” of
I latt=T4 around Tc.
For more accurate results for the pressure at temperatures

T ≳ 2Tc (where the finite size of effects of I latt becomes
negligible; see Fig. 2 of [3]) we therefore propose: Use the
integral method (2) with sufficiently large T0 ≫ Tc and the
integration constant σ specified perturbatively, and then
integrate down to calculate pðTÞ also outside of the
perturbative regime—avoiding the uncertainties of I latt
near Tc. In simple words, the “lattice results” [3] for the
pressure should be corrected by the shift (8) for T ≳ 2Tc.
Before we are going to corroborate this idea, let us

comment on the applicability range of the ð5j2Þ model.
The lower bound T⋆ ¼ 40Tc of Rð5j2Þ seems difficult to
infer just from the magnitude of the coupling: αð2Þð40TcÞ ≈
0.08 does not differ much from, say, αð2Þð10TcÞ ≈ 0.10
or αð2Þð400TcÞ ≈ 0.06. For these coupling values the
successive terms in the expansion (1) are of similar
magnitude4 with alternating signs, e.g. p⋆

ð5j2Þð40TcÞ≈
p0½1 − 0.09þ 0.12 − 0.01 − 0.08�, which we may tenta-
tively interpret to sum up to approximately half of the
leading-order term, pð40TcÞ ≈ p0½1 − 1

2
0.09�. These fea-

tures are indications that the α expansion (1) of the QCD
pressure may have similar properties as asymptotic series—
in which case higher-order terms would not improve the
accuracy of the approximation, except for very small
couplings, α < α⋆ðnÞ, where the bound α⋆ðnÞ decreases
with the order n [7].
The question arises naturally whether the change (8) of

the integration constant σ in (2), which corresponds to an
Oð1%Þ modification of the pressure, should be considered
as relevant. In order to answer in the affirmative, let us fix
anew the scale parameter λ—within the same ð5j2Þ model
—by matching it instead to the “lattice pressure” as
calculated in [3] [i.e. without the proposed amendment
(8)]. In this “p scheme,” the resulting parameter values
λðTÞ do not converge even at the largest matching tem-
peratures, see Fig. 2, opposed to becoming constant for
T ≳ 40Tc in the case when matching the interaction
measure. Lacking perturbative stability, we also expect
a reduced applicability range. Indeed, even for the fairly
large matching point T ¼ 100Tc, we estimate Rp

ð5j2Þ ≈
½40Tc; 300Tc� from Fig. 4, lower panel, noting in particular
that the upper bound clearly does not connect to the
asymptotic free limit.
This striking difference between the two ways of fixing λ

is to be seen against the formal background that the
magnitude of pð5j2Þ=T4 and its slope (as relevant for
I ð5j2Þ) are not independent; both are directly determined
by λ. Thus, the incongruity of the p scheme and the lattice

FIG. 3. Top: The lattice interacting measure vs the ð5j2Þ
model, with (i) adjusted parameter value (7), and (ii) λ fixed
to match I latt at 10Tc (indicated by the arrow) to illustrate a case
out of the applicability range which, by visual inspection, is
T ≳ T⋆ ¼ 40Tc. Bottom: The corresponding results for the
pressure; the deviation of p⋆

ð5j2ÞðTÞ from the results obtained

in [3] is, for T ≳ T⋆, just a shift by the constant (8), as depicted by
the full symbols.

3By contrast, for T ≲ 30Tc the deviations are T dependent,
indicating the breakdown of the approximation. 4Except for C4

ffiffiffi
α

p
4 ≈ 0.0 for all three temperatures considered.
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results—for both the pressure (as obtained in [3]) and the
interaction measure—corroborates from a different per-
spective the importance of our proposed amendment (8) of
the “lattice pressure”.
Let us emphasize that the whole picture does not change

when upgrading the running coupling from two loop to
three loop; in the latter case we find

λ⋆ð5j3Þ ¼ 0.48� 0.09; ð9Þ

which gives virtually the same bulk properties as the ð5j2Þ
model—as expected for a stable scheme.

B. Pressure to order n= 6

At order n ¼ 6, the expansion (1) contains the non-
perturbative coefficient c6 which can be seen, in the present
context, as a second model parameter besides λ. We will
specify both λ and c6 by matching I ð6j3Þ to the lattice
interaction measure [3].5 For meaningfully small

uncertainties, we will fit to several “data points” in the
interval ½Tf; Tmax�, bearing in mind (with regard to our
discussion in Sec. II) to be cautious with presumptions
on the applicability of the weak-coupling expansion at
smaller Tf. For Tf ≥ T⋆

ð6Þ ¼ 300Tc, the fitted λ is within its
uncertainties consistent with (9) in the ð5j3Þ model, while
the nonperturbative coefficient c6 (despite its strong corre-
lation to λ; see Fig. 5) turns out to be somewhat larger in

magnitude than c½3�6 ≈ −72 found in [3].
For Tf < T⋆

ð6Þ, both parameters and in particular their
uncertainty characteristics shift notably, see Fig. 5, which
flags the limit of applicability of the model. The large value
of the lower limit T⋆

ð6Þ ¼ 300Tc substantiates our concerns
in Sec. II on the attempt [3] to extract c6 on the presumption
of the weak-coupling result to be valid down to 10Tc.

6 We
also note that this reduction of the applicability range, when
increasing the perturbative order n ¼ 5 → 6, is another
argument supporting the asymptotic character of the
perturbative expansion.
From the fit with Tf ¼ 400Tc (as a compromise between

uncertainty and being safely in the applicability range) we
estimate

λ⋆ð6j3Þ ¼ 0.44� 0.09; c⋆6 ¼ −95� 6; ð10Þ

which is a significant change of the findings [3], λ½3� ¼
0.79� 0.04 and c½3�6 ¼ −71.8� 2.9. The differences result
from the underlying fit intervals: whereas ½10Tc; 103Tc�
was chosen (somewhat ad hoc) in [3], we are lead by our

FIG. 4. Illustration of the p scheme (to be compared to Fig. 3).
Here λ is fixed by matching pð5j2Þ to the scrutinized “lattice
pressure” [3] at T=Tc ¼ f100; 400g (indicated by arrows; bottom
panel). Top: The “predicted” I ð5j2Þ clearly disagrees with I latt for
all T (even at T), notably more so with increasing “renormaliza-
tion temperature” T, although one would expect perturbation
theory to work better then.

FIG. 5. The parameters fλ; c6g of the ð6j3Þ model with their
95% confidence ellipses, for several fit intervals with lower

bound Tf, and in units of λ⋆ð5j3Þ, Eq. (9), and c½3�6 from [3]. The

huge uncertainty for Tf ¼ 600Tc is a consequence of having only
three “data points” to fit. For better visibility, all ellipses were
stretched by a factor 10 in the direction of their short semiaxis.

5The results with two-loop running coupling are again very
similar and basically amount to a 20% rescaling of λ, similar to
(7) vs (9), without any visible change in the bulk properties.

6Setting Tf ¼ 10Tc, we reproduce formally (since out of the
validity range) the value c½3�6 found in [3] by fitting a subtracted
version of I latt in ½10Tc; Tmax�.
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analysis to a much smaller range ½400Tc; 103Tc�. We note
that the uncertainties of the parameters (10) translate into
fairly small uncertainties for the pressure, similar to our
findings in Sec. III A. With regard to the forthcoming
discussion we also point out that the adjusted contribution
ðc⋆6 þ ~c6 ln αÞα3 is, in its validity range, only a tiny
correction in the expansion (1), in fact even smaller than
the n ¼ 4 contribution discussed in Sec. III A.

IV. DISCUSSION

Our analysis in Sec. III B yields a revised value (10)
for the nonperturbative coefficient c6, albeit with larger
uncertainty than in the original analysis [3], which is
a direct consequence of the small validity range
Rð6j3Þ ≈ ½300Tc;∞�. One may therefore wonder if it is
feasible at all to extract c6 (and possibly higher-order
coefficients) from thermodynamic lattice calculations with
sufficient precision. In order to gain some insight into this
question, let us test if we can determine numerically the
known coefficient c4 in (1).
Fitting the two parameters of this ð4j3Þ “toy” model

along the same lines as in Sec. III B gives λ⋆ð4j3Þ ≈ 0.15
consistently for all fit intervals with Tf ≥ 100Tc, which is a
disconcerting factor of 3 smaller than our previous results
for n ¼ 5, 6. This thwarts hope for perturbative stability,
but more sobering seem to be the findings for c4, whose fit
result 0.6� 0.2 differs drastically from its actual value 16.2
[2]. The reason for this stark discrepancy becomes clear
when recalling, from our discussion following Eq. (8), that
the n ¼ 4 term ðc4 þ ~c4 ln αÞα2 in the perturbative pressure
is almost zero for relevant values of α; see footnote 4.
Consequently, since the n ¼ 4 model truncates the sizable
c5α5=2 term, we now experience a large compensating
effect on the model parameter c4.
How does this situation change when going to order

n ¼ 5, now with c5 as a third model parameter to be
“postdicted” by a fit? Then, although the fits over the few
available “data points” become more challenging and we
need suitable starting values for the algorithm to converge,
we not only find a remarkable agreement of λwith the value
(9), but we can also reproduce within some 10% (depend-
ing on details of the fit) the analytic values of both c4 and
c5. This is actually plausible by the same reasoning that just
explained why c4 cannot be extracted within the ð4j3Þ toy
model: in the n ¼ 5 case, the omitted (n ¼ 6) contribution
is sufficiently small, as noted at the end of Sec. III B, and
thus has hardly any “compensating” impact on the fit.
Against this background, let us reinspect and approve the

ð6j3Þ model and its parameter values (10). To that end, we
complement the n ¼ 6 pressure by the next term c7α7=2 and
adjust the extra parameter c7 of the resulting ð7j3Þ model.
Despite the enlarged parameter space, the fit is virtually
unchanged: λ and c6 are compatible with their ð6j3Þ values,
while the c7α7=2 contribution is very small (zero within

uncertainties) for temperatures in the applicability range
Rð6j3Þ. In other words, the ð6j3Þ model is perturbatively
stable, which corroborates the parameters (10).
We are now in a well-grounded position to predict the

pressure in the adjusted ð6j3Þ model. The results p⋆
ð6j3Þ turn

out to be very similar to p⋆
ð5j2Þ in the common applicability

range T ≳ T⋆
ð6Þ ¼ 300Tc, see Fig. 6, in particular the almost

identical constant difference Δσ to the results [3].
After our careful analysis we therefore conclude that the

results for the pressure published in [3] need to be revised.
Combining the modification from the ð6j3Þ model with the
corresponding ð5j2Þ result (8) we find

Δσ ≈ −1.4 × 10−2: ð11Þ

This shift implies a 0.8% reduction of the pressure at large
T. In addition to the discussion at the end of Sec. III A on
the relevance of such a “small modification” in p=p0, we
underline here that it corresponds to a sizable factor in
terms of the temperature scale, viz. half an order of
magnitude for T ∼ 100Tc; see Fig. 6.
So far we have argued that the “lattice results” [3] for the

pressure need to be revised, based on our analysis of the
interaction measure at large temperatures. Let us now
briefly turn to necessary modifications of the interaction
measure, which underlie this revision of p. Relation (2),
with integration bounds T0 → 0 and T → ∞ implies the
“sum rule”

Z
∞

0

dT
T

IðTÞ
T4

¼! p0

T4
¼ σSB ≈ 1.755; ð12Þ

which is a direct consequence of asymptotic freedom and
confinement [the latter guaranteeing that pðTÞ=T4 → 0 for

FIG. 6. The revised pressure calculated from the lattice inter-
action measure [3] matching the adjusted perturbative models
p⋆
ðnjlÞ (results shown in the respective validity range). Note that

the 0.8% modification in the scaled pressure corresponds to
half an order of magnitude change in the temperature scale at
T ∼ 100Tc.
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T → 0]. Now, the lattice simulations [3] cover the interval
from Tmin ¼ 0.7Tc to Tmax ¼ 103Tc, which gives in (12)
the dominant contribution

σlatt ¼
Z

Tmax

Tmin

dT
T

I lattðTÞ
T4

≈ 1.702ð2Þ;

where the error is only from numerically integrating the
discrete data set (not the uncertainties) of the continuum-
extrapolated lattice interaction measure. The contribution
from T < Tmin, which we may estimate from a simple
glueball resonance gas model, is smaller than the error of
σlatt and can thus be omitted here. Consequently, the sum
rule (12) must be saturated by the remaining large-T
contribution, which we have shown to be perturbative
(with appropriate accuracy, for the n ¼ 5, 6 models
considered here). Hence

σpert ¼
Z

∞

Tmax

dT
T

IpertðTÞ
T4

¼ σSB −
ppertðTmaxÞ

T4
max

;

which leads to the strict constraint

σlatt < ppertðTmaxÞ=T4
max: ð13Þ

It is plain from the need to recalibrate the existing lattice
results for the pressure that our ðnjlÞ models violate this
constraint [by more than the Oð0.1%Þ error from the
numerical integration for σlatt], but so does even the
perturbative fit obtained in [3]. This discrepancy is robust:

The only parameter in the ð5jlÞ models (which give
virtually the same bulk properties as the n ¼ 6 models)
is λ, for which we have substantiated the general expect-
ation that it is of the order of 1—while (13) would require
λ < 0.04. The constraint (13) therefore necessitates that the
lattice results [3] for the continuum-extrapolated interaction
measure itself need to be modified. This revision will be
“small,” but necessary, as we illustrate in Fig. 7 from
another perspective. Shown there is the pressure for
temperatures near Tc calculated by integrating I latt down
from Tmax in (2) (with the constant σ fixed by our
perturbative matching). Doing so leads to pðTÞ < 0 for
T ≲ 0.94Tc, which just reflects the inferred offset (11) to
the findings of [3]. One possibility to correct this shortfall
would be shifting I lattðTÞ, as tabulated in [3], to slightly
below its uncertainty band for the entire temperature range
covered. A more plausible alternative, in our view and
against the background of Sec. II, is that the continuum
extrapolation of I latt=T4 is to be reduced exclusively near
its peak, say for ½Tc; 1.5Tc�, where finite-size artifacts are
largest and thus perhaps more difficult to eliminate than by
the prescription used in [3]. In this case, restoring the limit
p=T4 → 0 for small T and the sum rule (12) requires a
reduction of the published continuum extrapolation of I latt
by a few percent.

V. CONCLUSIONS

We put forward a systematic revision of existing lattice
QCD results for the pressure of the gluon plasma, which is
relevant in particular to understand the approach to the
asymptotically free limit. The scrutinized results were
obtained via the integral method (2), by integrating over
a region around the confinement temperature Tc where
finite-size artifacts are most pronounced, which leads to an
accumulation of errors at larger T. By fitting I ð6Þ to a range
of values 10Tc < T < 103Tc, the corresponding pressure
obtained in [3] seems inconsistent with these errors (see
Fig. 1). We rather match the lattice interaction measure (the
quantity actually computed) directly to its perturbative
counterpart at sufficiently large temperatures. The corre-
sponding perturbative pressure determines the integration
constant σ in (2) at large T, which then allows us to apply
the integral method “down” from the free limit (known
with certainty).
Our revision of the pressure rests on a careful analysis

of the applicability of QCD perturbation theory (at the
relevant orders), making use of a “thermodynamic renorm-
alization,” i.e. fixing the QCD parameter Λ ¼ λTc at some
temperature (range), which we then can classify as pertur-
bative or not. As a spinoff of the analysis, we demonstrated
that the perturbative expansion (1) has some characteristic
features of an asymptotic series, especially for relevant
orders n an applicability range which decreases with
increasing n: The order Oðα5=2Þ result is reliable down

FIG. 7. The pressure at small T, with the symbols matching to
Fig. 6: Open squares (with almost invisibly small uncertainties)
show the results [3] from integrating I latt “up,” assuming p → 0
at T ≲ 0.7Tc. Full squares show our results from integrating I latt

“down,”which turn negative at 0.94Tc. The expectation p=T4 → 0
can be restored by reducing the maximum of I latt beyond the lower
end of its uncertainty (as illustrated by the inset, where error bars
were scaled by 20) in the interval T=Tc ∈ ½1; 1.5�; see text
for details. The resulting pressure depicted by the dotted line then
coincides with [3].
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to some 40Tc vs a lower limit 300Tc at Oðα3Þ. This insight
has direct impact on the determination of c6 as the first
coefficient in the weak-coupling expansion (1) that is not
accessible by perturbative methods. After the previous
value was biased by including too low temperatures in
the fit, we found a 30% amendment; see (10). Our result
seems robust from checking that the subleading correction
c7α7=2 is small, although the range of available large-
temperature lattice results seems too narrow for a mean-
ingful estimate of the value of c7.
Presumably, our revision of the “lattice pressure” (a

“small” effect and more relevant for larger temperatures;
see Fig. 6) will not have immediate phenomenological
implications for heavy-ion physics (if quenched results
were directly applicable to the physical case). However,
it seems important to be taken into account when

benchmarking resummation-improved methods (see [5]
for a recent overview), which then in turn could provide
further insight also at smaller temperatures.
The situation is different for the physical case, with 2þ 1

quark flavors, where available lattice results (i) suffer from
larger finite-size effects and (ii) do not yet cover a temper-
ature range as large as in the quenched limit considered
here. We will discuss implications of our ideas for the
physical case, and phenomenological implications, in a
forthcoming study [8].

ACKNOWLEDGMENTS

We thank the South African National Research
Foundation and the National Institute for Theoretical
Physics for support.

[1] A. D. Linde, Phys. Lett. B 96B, 289 (1980).
[2] K. Kajantie, M. Laine, K. Rummukainen, and Y. Schroder,

Phys. Rev. D 67, 105008 (2003).
[3] S. Borsanyi, G. Endrodi, Z. Fodor, S. D. Katz, and K. K.

Szabo, J. High Energy Phys. 07 (2012) 056.
[4] J. Engels, J. Fingberg, F. Karsch, D. Miller, and M. Weber,

Phys. Lett. B 252, 625 (1990).

[5] J. O. Andersen, N. Haque, M. G. Mustafa, M. Strickland, and
N. Su, AIP Conf. Proc. 1701, 020003 (2016).

[6] K. A. Olive et al. (Particle Data Group Collaboration),
Chin. Phys. C 38, 090001 (2014).

[7] C. G. Itzykson and J.-B. Zuber, Quantum Field Theory
(McGraw-Hill, New York, 1980).

[8] H. Elboghdadi, G. Jackson, and A. Peshier (to be published).

G. JACKSON and A. PESHIER PHYSICAL REVIEW D 95, 054021 (2017)

054021-8

https://doi.org/10.1016/0370-2693(80)90769-8
https://doi.org/10.1103/PhysRevD.67.105008
https://doi.org/10.1007/JHEP07(2012)056
https://doi.org/10.1016/0370-2693(90)90496-S
https://doi.org/10.1063/1.4938592
https://doi.org/10.1088/1674-1137/38/9/090001

