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Multiquark states have been advocated to explain recent experimental data in the heavy-light sector, and
there are already speculations about multiquarks containing only heavy quarks and antiquarks. With a
rigorous treatment of the four-body problem in current quark models, full-charm ðccc̄ c̄Þ and full-beauty
ðbbb̄ b̄Þ tetraquarks are found to be unbound. Thus their stability should rely on more subtle effects that are
not included in the simple picture of constituent quarks. The case of ðbcb̄ c̄Þmight be more favorable if the
naive color-additive model of confinement is replaced by a string-inspired interaction.
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I. INTRODUCTION

Recent discoveries of new particles hint at combinations
of quarks in a way not seen before: pentaquarks [1], and
four-quark states [2], namely particles with hidden heavy
flavor and a pair of light quarks, ðQQ̄qq̄Þ. However, in this
sector, as well as for other multiquark states like dibaryons
or pentaquarks, the experimental candidates are resonan-
ces, lying above their dissociation threshold. These reso-
nances have been discussed in many papers, but in
theoretical studies some special attention is also paid to
configurations which would be stable against spontaneous
breaking, or at least metastable, i.e., lying below their
nearest threshold.
In particular, several recent papers speculated on the

existence of tetraquarks made of four heavy constituents,
ðQQQ̄ Q̄Þ, in either the charm or beauty sector [3–6].
Earlier papers on the subject include Refs. [7–9] (the first
one as early as 1975!), as well as papers in which the
equal-mass case was compared to other flavor configura-
tions [10,11]. These studies are rather timely, as the
evidence for several XYZ states has demonstrated that
hadron and electron colliders provide good opportunities to
extend our knowledge of heavy-flavor spectroscopy.
Experimentally, states with hidden heavy flavor offer some
advantages, as they can be detected with the help of triggers
such as J=ψ which are very efficient. Other configurations
are seemingly more delicate, as illustrated by the difficul-
ties encountered in the search for double-charm baryons
and double-charm tetraquarks.

On the theory side, binding a multiquark configuration is
not as obvious as it may look at first sight. For instance,
Lipkin (private communications and, e.g., Ref. [12,13])
used to stress that for a set of two mesons at rest there are
only two three-dimensional kinetic-energy operators, while
a tetraquark involves three of them.1 So, one should get
some good dynamical effect to overcome this handicap. In
the case of atomic physics, the situation is also rather
delicate: in 1945, Wheeler speculated about the existence
of the positronium molecule Ps2 ¼ ðeþ; eþ; e−; e−Þ (the
paper was published in 1946 [14]); a first calculation by
Ore concluded that this four-electron configuration is likely
unstable [15]; but the following year, the very same Ore,
working with Hylleraas, published an elegant analytic
proof of the stability [16]. In fact, the stability or instability
of few-charge systems depends rather critically on the
masses which are involved; see, e.g., Ref. [17]. In particu-
lar, the very tiny binding of Wheeler’s positronium
molecule contrasts with the comfortable binding of the
hydrogen molecule H2.
The constituent quark model follows rather closely the

patterns of few-charge systems, when the dynamics is taken
as an additive flavor-independent and spin-independent
interaction; see Sec. II. The chromomagnetic interaction
offers some opportunities for multiquarks, which will be
briefly reviewed in Sec. III. Another improvement comes
from the string model, which suggests a multibody variant
of the linear part of the chromoelectric potential, which
gives more attraction, provided the quarks (and the
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1The argument was given for pedagogical purpose. Lipkin was
of course fully aware that, thanks to the virial theorem, the kinetic
energy tends to readjust itself independently of the number of
operators.
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antiquarks) are not constrained by Fermi statistics. This
gives ðbcb̄ c̄Þ some opportunities that equal-mass configu-
rations such as ðbbb̄ b̄Þ or ðccc̄ c̄Þ do not have. The case of
ðbbc̄ c̄Þ or c.c. is more delicate, as it benefits from
C-conjugation breaking, which makes H2 more stable
than Ps2, but is submitted to the constraints of the Fermi
statistics.
In this article, we wish to extend some of the existing

results on fully heavy tetraquark states, and explain why
their binding depends on their detailed flavor content.
We also address the question of metastability, which is
also relevant for the XYZ states. Many scenarios lead to
ðbcb̄ c̄Þ that is below the ðbc̄Þ þ ðcb̄Þ threshold, but leave
the decay into bottomonium and charmonium permitted.
This is similar to the question of the metastability of the
hydrogen-antihydrogen molecule [18].

II. CHROMOELECTRIC MODEL

A. Color-additive model

In the limit of very heavy quarks, the chromomagnetic
forces vanishes. It is thus interesting to consider the case of
a purely chromoelectric interaction

H ¼
X
i

p2i
2mi

− c:o:m:þ V;

V ¼ −
16

3

X
i<j

~λi:~λjvðrijÞ: ð1Þ

This is of course a very crude modeling, with nonrelativ-
istic kinematics, two-body forces, color treated as a global
operator, etc., but, at least, it can be used as a benchmark.
Here, ~λi:~λj should be suitably modified for quark-antiquark
pairs. The normalization is such that vðrÞ is the quarkonium
potential, something like vðrÞ ¼ −a=rþ λr à la Cornell
[19], or vðrÞ ¼ A lnðr=cÞ à la Quigg and Rosner [20], or
vðrÞ ¼ A;rα þ B à la Martin [21].
The latter choice was adopted by Zouzou et al. [10] who

studied ðQQq̄ q̄Þ as a function of the quark mass ratioM=m
and found that a pretty large M=m is needed to achieve
stability below the threshold for decay into two flavored
mesons. With current quark models, stability is achieved
with ðbbū d̄Þ. The stability of ðccū d̄Þ (first obtained by
Janc and Rosina [22], and confirmed in further work [23])
makes use of a favorable chromomagnetic interaction, and
would require a larger M=m if the chromomagnetic term is
removed. Thus the result of Llyod and Vary [9], claiming
the existence of a stable ðccc̄ c̄Þ, was received with some
skepticism.
The stability of ðQQq̄ q̄Þ in the limit of large quark-to-

antiquark mass ratio, as a consequence of flavor independ-
ence, is nowadays an old prediction (about 35 years),
but it has never been tested! The physics of double charm
is seemingly difficult, even with modern detectors. The

existence of the simpler ðQQqÞ configuration, i.e., doubly
charmed baryons is not even established [24].

B. A mathematical digression

The analogy between the stability of few-charge systems
and multiquarks in an additive chromoelectric potential
offers good guidance for identifying the favorable con-
figurations. However, there are some differences, not so
much due to the radial shape of the potential but rather to
the color algebra replacing the simpler algebra of electric
charges.
In Refs. [25,26], there was an attempt to explain why—

unlike in the case of the positronium molecule—the equal-
mass systems are unstable in the chromoelectric model with
frozen color wave functions. In both the atom and quark
cases, the four-body system and its threshold, after simple
rescaling, are governed by a generic Hamiltonian

H ¼
X
i

p2i − c:o:m:þ
X
i<j

gijvðrijÞ;
X
i<j

gij ¼ 2; ð2Þ

with vðrÞ ¼ −1=r in the atomic case, and the quarkonium
potential in the hadron case. Of course, all such
Hamiltonians give a ground-state near the two-atom or
two-meson threshold. A symmetric distribution of the
couplings, gij ¼ 1=3 ∀ i; j, gives the largest energy, and
any asymmetry in fgijg lowers its energy. And one realizes
that the algebra of color is less favorable than the algebra of
charge products in molecules, namely, that fgijg is less
asymmetric for a tetraquark than for the positronium
molecule; in other words, multiquark spectroscopy is
penalized by the non-Abelian nature of color.
It is important to stress that the color configurations,

though they give the same cumulated strength
P

gij, are
not equivalent for the confining energy. Thus a color
configuration which is potentially favorable for the chro-
momagnetic interaction (to be discussed below) might be
far from optimal for the chromoelectric one [27].
The above reasoning on the ground state of Eq. (1) as a

function of fgijg holds for a single color channel. It is
observed in explicit computations that the mixing of color
states does not help much.

C. Solving the four-body problem

To compute the ground-state of a three-body baryon in
the quark model, a crude variational approximation is often
sufficient. The accuracy is not very crucial given the
crudeness of the model, and the exact wave function has
a simple structure. The situation would be even better for a
N-body baryon in the large-N extension of QCD.
For a tetraquark close to its threshold, this is drastically

different. One has to precisely estimate ðq1q2q̄3q̄4Þ and its
thresholds, to see whether there is a bound state. Moreover,
the ðq1q2q̄3q̄4Þ wave function has a ½ðq1q̄3Þðq2q̄4Þ�
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component and a ½ðq1q̄4Þðq2q̄3Þ� one, corresponding to
its “molecular” part, perhaps a ½ðq1q2Þðq̄3q̄4Þ� diquark-
antidiquark component, and a collective component that
prevails in the event of deep binding. This has been
discussed in detail in Ref. [28]. A similar situation is
encountered in atomic physics: the deeply bound He atom
ðα; e−; e−Þ is well described by a simple product of two
functions. For the weakly boundH− ðp; e−; e−Þ, one has to
introduce a much more subtle wave function to demonstrate
the stability against dissociation into Hþ e− [17].
More precisely, a simple Gaussian trial wave function

exp½−aðx2 þ y2 þ z2Þ=2� ¼ exp
h
−a

X
r2ij=4

i
; ð3Þ

where x, y and z are properly normalized Jacobi variables
describing the internal motion, would not distinguish
among the various coupling distributions fgijg envisaged
in Eq. (2), and neither will a wave function assumed to be a
function of x2 þ y2 þ z2 only, which in the technical
language of the four-body problem, is named the hyper-
scalar approximation.
In practice, solving the toy model (2) or the four-quark

problem in constituent models requires sophisticated tools.
In Ref. [29] the hyperspherical harmonic expansion was
pushed up to deal with systems of two quarks and two
antiquarks with the same flavor, ðQQQ̄ Q̄Þ. It was later on
generalized to consider pairs of quarks with different
flavors and masses, ðQQ̄qq̄Þ and ðQQq̄ q̄Þ, where q stands
for a light quark [23]. Another approach is based on
correlated Gaussians, in which the single wave function
(3) is replaced by a sum of correlated Gaussians

X
n

αn
h
exp½−

X
aðnÞij r2ij=4� þ � � �

i
; ð4Þ

where the ellipsis represents terms deduced by symmetry.
The Pauli principle leads to the restrictions on the allowed
combinations of spin-color-orbital basis states contributing
to the ðQ0Q0Q̄ Q̄Þ wave function. In the ðQQ̄Q0Q̄0Þ case,
C-conjugation selects the spin-color-orbital configurations
that can be combined in the wave function.
Note that the dynamics of ðQ0Q0Q̄ Q̄Þ is simpler, with

a single threshold. In the case of ðQQ0Q̄Q̄0Þ with Q ≠ Q0,
the lowest threshold is ðQQ̄Þ þ ðQ0Q̄0Þ for a flavor-
independent interaction, according to a theorem by
Nussinov, Bertlmann and Martin [30,31], and this often
remains true when flavor independence is broken by a
chromomagnetic term. This means for, e.g., ðcc̄qq̄Þ con-
figurations tentatively describing the XYZ states, that one
has to work in the continuum, without a guarantee that a
bound-state approximation is justified.
The four-body problem is notoriously delicate, as illus-

trated by the difficulties encountered and eventually over-
come byOre for the positroniummolecule. Approximations

are thus welcome, especially if they point out the main
degrees of freedom. For instance the hydrogen molecule is
well understood within the Born-Oppenheimer approxima-
tion; see, e.g., Ref. [32]. The Born-Oppenheimer method
translates in the quantum domain standard approximations
of classical physics based on the differences of time scales:
sequential radioactivity following primary fusion, melting
of a ice sphere within a large vessel, or spontaneous
penetration of a horseshoe in the ice [33], for which a
quasiequilibrium state is assumed at any time. The Born-
Oppenheimer method has been applied to ðQQqÞ and heavy
hybrids, and has been generalized to XYZ states; see,
e.g., Ref. [34].
Some other approximations imply a redefinition of

the dynamics—which might be justified from elaborate
QCD studies—but are not direct consequences of the
simple models such as Eq. (1). This is notoriously the
case for the diquark model. Take for instance the harmonic-
oscillator model of baryons. With standard Jacobi variables,
it reads

H ¼ ðp2x þ p2yÞ=mþ 3Kðx2 þ y2Þ=2; ð5Þ

with a factor coming from r212 þ r223 þ r231 ¼ 3ðx2 þ y2Þ=2.
In the naive diquark approximation, one solves first the
problem for (1, 2) alone, and then for ½ð1; 2Þ; 3�, and one
misses a factor ð3=2Þ1=2 for the part of the ground-state
energy associated with x. The effect is not completely
negligible, and is antivariational.
If one repeats the same exercise with an equal-mass

tetraquark and a color 3̄3 wave function, one gets

H ¼ ðp2x þ p2y þ p2zÞ=mþ 3Kðx2 þ y2Þ=4þ Kz2=2; ð6Þ

and, again, the approximation is antivariational, with
ð3=4Þ1=2 → 1=2 for each diquark, and the open question
of whether this becomes worse for a nonharmonic
interaction.
In Ref. [3], there was an interesting statement that the

binding energy of a QQ diquark of color 3̄ is half that of a
QQ̄ singlet: the change in a QQ̄ potential V ¼ grα from g
to g=2 results in a rescaling by a factor 2−2=ðαþ2Þ, according
to the seminal paper [20]. This means a reasonable
logarithmic regime α → 0. On the other hand, for the
diquark-antidiquark binding, the mass dependence is found
∝ mp, with p ¼ 0.712, which if identified with the behav-
ior mα=ðαþ2Þ of a power-law interaction, suggests a nearly
Coulombic regime. The mass increase from the quark-
quark case to the diquark-antidiquark one does not justify
such a change of regime.
Another difficulty ariseswhen adding to theHamiltonian a

regularized form of the spin-spin interaction. Then, accu-
rately solving the few-body problem with a superposition of
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linear confinement and short-range terms becomes rather
delicate.2

To sum up, the technical aspects of multiquark spec-
troscopy should not be underestimated, even if they are less
exciting and challenging than the question of the under-
lying dynamics. For instance, years ago, Semay and
Silvestre-Brac designed an empirical potential model,
sometimes referred to as AL1, to describe heavy and light
hadrons. They then solved the ðccū d̄Þ problem to look at
possible bound states, and found no binding [35], using an
expansion on the eigenstates of a neighboring harmonic
oscillator, a method which was widely used in nuclear
physics. The very same potential was used later by Janc and
Rosina [22] and Barnea et al. [29] who found a 1þ state
below the DD� threshold. The binding is expected to
increase for the ðbbū d̄Þ system. But for its hidden-beauty
analogue ðbb̄qq̄Þ, the competition between the two thresh-
olds discussed above would not drive binding for the
beauty partner of the Xð3872Þ [36].

D. Improved chromoelectric models

The color-additive interaction (1) can be improved to
account for mechanisms suggested by nonperturbative
QCD, in particular lattice simulations. In the case of
baryons, Dosch et al. [37], and many others, proposed
to replace the so-called “1=2” rule, where the linear term λr
of mesons becomes

V1=2 ¼ λðr12 þ r23 þ r31Þ=2; ð7Þ

by the Y-shape interaction (see Fig. 1),

VY ¼ λmin
J
ðr1J þ r2J þ r3JÞ: ð8Þ

As VY ≳ V1=2 [37], the change V1=2 → VY pushes up the
masses, but this is hidden by other uncertainties in the
quark model of baryons.
In the case of tetraquarks, the string-inspired linear

confinement is not always a repulsive correction as com-
pared to the color-additive model. A connected contribu-
tion, sometimes called a “butterfly” diagram (see Fig. 2),

VYY ¼ λmin
J;K

ðr1J þ r2J þ rJK þ r3K þ r4KÞ; ð9Þ

is obviously favorable if the two quarks are far away from
the two antiquarks, as it merges two strings into a
single one.
But the most dramatic effect comes from the “flip-flop”

term (see Fig. 3),

VFF ¼ λminðr13 þ r24; r14 þ r23Þ: ð10Þ

A precursor with quadratic confinement was introduced by
Lenz et al. [38] for the study of meson-meson scattering.
Then the model, in its linear version, was applied to
tetraquarks and other multiquarks, with a good surprise
and a warning [39].
The good surprise is that this interaction provides more

attraction, and enables to bind mass configurations
ðm1; m2; m3; m4Þ that are left unbound by the color-additive
model.
The warning is that, when the tetraquark confinement is

estimated as

V ¼ minðVYY; λðr13 þ r24Þ; λðr14 þ r23ÞÞ; ð11Þ

each term is associated with a different color wave function.
It is a kind of Born-Oppenheimer effective interaction
where the electrons of atomic physics are replaced by the
gluon field, and the nuclei by the heavy quarks and
antiquarks. For identical quarks, restrictions apply. When
one attempts to restore the proper Fermi statistics, the extra
attraction is lost [40]. The role of Fermi statistics was not
mentioned in Ref. [4], and hence we believe that they
predicted binding for a ðQQ0Q̄Q̄0Þ fictitious system with
Q ≠ Q0 but both having the same mass as the b quark. This
is similar to our finding in Ref. [39].
In a purely linear model, with kinetic energy and the

string potential (11), once ðQQ0Q̄Q̄0Þ is stable, this remains
true against any change of the string constant λ and quark
mass M. As shown in the Appendix, the knowledge of the
binding of ðQQ0Q̄Q̄0Þ below its threshold provides a
minimum extension of the stability domain of ðbcb̄ c̄Þ
around the point mb ¼ mc, in the plane of the masses.
Beyond this extension, the question can be raised of

FIG. 1. Y-shape interaction for the confinement of three quarks.

FIG. 2. Double Y-shape, or “butterfly” interaction for the
confinement of two quarks and two antiquarks.

FIG. 3. Flip-flop model for the confinement of two quarks and
two antiquarks.

2We thank Emiko Hiyama for discussions on this point and
many other topics.
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the metastability of possible ðbcb̄ c̄Þ resonances lying
below their highest threshold ðbc̄Þ þ ðcb̄Þ but above the
ðbb̄Þ þ ðcc̄Þ one.

III. CHROMOMAGNETIC INTERACTION

This is the best-known contribution to the energy of
hadrons. During the 1970s, it provided a convincing
explanation of the hyperfine splittings [41], and the first
speculation on multiquarks bound mainly by chromomag-
netic forces [42].
In its most schematic version, it reads

VCM ¼ −C
X
i<j

~λi:~λjσ1σ2
mimj

δð3ÞðrijÞ: ð12Þ

The remarkable feature of this Hamiltonian, stressed in
Ref. [42], is that the sum of strengths, ChPi<j

~λi:~λjσ1σ2i,
might be larger than the cumulated values in the hadrons
constituting the threshold, and thus lead to binding. This
contrasts with the rule

P
gij ¼ 2 in the additive chromo-

electric model of Eq. (1), which reflects the overall color
neutrality.
In the first study of the H ¼ ðuuddssÞ dibaryon, several

simplifying approximations were made: SU(3) symmetry, a
first-order treatment of VCM (otherwise the contact term
should be regularized, as done in several more recent
studies), and moreover, the assumption that the short-range
correlation factor Cij ¼ Chδð3ÞðrijÞi assumes the same
value in the hexaquark and in ordinary baryons. These
hypotheses were shown to artificially enhance the possibil-
ity of binding; see, e.g., Ref. [43,44], etc.
Unfortunately, the computation of the short-range cor-

relations Cij remains almost as difficult as it was in 1977,
and its value in multiquarks is most often inferred from
ordinary hadrons, as in Refs. [3,45].
Another warning is that in Jaffe’s paper onH, as in some

subsequent papers [5,45], only the chromomagnetic part
is taken into account. This means that somehow, it is
implicitly assumed that there is a draw between the
multiquark and its threshold when only the kinetic and
chromoelectric parts are included. This is not always the
case [27,43].

IV. OUTLOOK

Let us summarize the most relevant issues concerning
multiquark hunting:
(1) On the experimental side, identifying fully-heavy

tetraquark bound states or resonances would be very
welcome, to probe the confinement dynamics and
confront different approaches to QCD.

(2) The double hidden-flavor configurations could per-
haps be more easily accessible with most detectors,

with well-identified real or virtual quarkonia in the
final state.

(3) However, many interesting issues deal with open
flavor states, such as ðbbc̄ c̄Þ, and if a J=ψ trigger
remains a powerful tool in experimental setups, it
should not become an addiction that restricts the
investigations in the space of flavors. Before ðbbc̄ c̄Þ,
lighter states remain to be revealed, and a simulta-
neous search of double-charm baryons and double-
charm tetraquarks ðccq̄ q̄Þ is clearly a priority.

(4) On the theoretical side, there is a very rich physics in
the light-quark sector, that potential models hardly
take into account: the more important role of
chromomagnetic effects, chiral dynamics, long-
range Yukawa forces [46], relativistic effects [47],
etc. The fully heavy tetraquarks give a chance to
probe whether potential models, which are very
successful for quarkonia, can be extended for higher
configurations.

(5) For any choice of the four-quark dynamics, calculat-
ing the energy and wave function of the tetraquark
system is far from obvious. In a four-body system,
there is a sharp competition between building a
collective configuration and splitting into two clusters.

(6) The chromoelectric model with additive potentials
bear many similarities with few-charge systems in
atomic physics, especially for the mass dependence
of the binding energies. It differs, however, in the
case of equal masses: while the positronium mol-
ecule Ps2 is weakly bound, ðccc̄ c̄Þ remains unbound
with additive chromoelectric potentials.

(7) The adiabatic version of the string model of confine-
ment, though very appealing, holds for nonidentical
quarks, and provides more attraction than the usual
pairwise models. In particular, the configuration
ðbcb̄ c̄Þ makes full use of the string dynamics.

(8) The chromomagnetic interaction is just one piece of
the story. If one accounts for both chromoelectric
and chromomagnetic terms, one hardly avoids a
careful treatment of the four-body problem, as each
term suggests a different type of clustering and/or
color coupling.

(9) The diquark-antidiquark models require additional
assumptions. If one compares the diquark picture to
a standard quark model, one realizes that the former
artificially lowers the chromoelectric contribution to
the multiquark energy. Some further hypotheses are
sometimes made about the chromomagnetic inter-
action inside the diquarks or between diquarks [48].

(10) The stability and instability patterns observed
for ðQ1Q2Q̄3Q̄4Þ tetraquarks can give some
guidance for higher configurations, for instance
pentaquarks ðQ1Q2ðQQ0ÞQ̄4Þ or hexaquarks
ðQ1Q2ðQQ0ÞðQQ0ÞÞ, starting from the limit where
one or two sets of quarks are strongly correlated. It is
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our intent to extend our investigations to fully heavy
pentaquarks and hexaquarks.
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APPENDIX: METASTABILITY
OF C-SYMMETRIC, UNEQUAL-MASS

CONFIGURATIONS

Here we show that the stability of an equal-mass
configuration ðQQ0Q̄Q̄0Þ, where the quarks Q and Q0 have
the same mass M but are distinguishable, implies the
stability of any ðQ1Q2Q̄1Q̄2Þ with respect to its threshold
ðQ1Q̄2Þ þ c:c:, provided the Hamiltonian is flavor inde-
pendent and the masses obey 2=M ¼ 1=M1 þ 1=M2.
The reasoning is very similar to the proof that the

stability of Ps2 implies that of H2 [17]. In an obvious
notation, the ðQ1Q2Q̄1Q̄2Þ Hamiltonian reads

H ¼ X1ðp21 þ p23Þ þ X2ðp22 þ p24Þ þ V; ðA1Þ

where X1 ¼ 1=ð2M1Þ and X2 ¼ 1=ð2M2Þ. It can be decom-
posed into

H ¼ Hs þHa;

Hs ¼
X1 þ X2

2
ðp21 þ p23 þ p22 þ p24Þ þ V;

Ha ¼
X1 − X2

2
ðp21 þ p23 − p22 − p24Þ; ðA2Þ

where Hs is symmetric and Ha is antisymmetric with
respect to C-conjugation, i.e., simultaneous 1 ↔ 2 and
3 ↔ 4. The asymmetric part Ha lowers the energy of H as

compared to the ground-state energy of the symmetric part
Hs alone, which is the Hamiltonian of ðQQ0Q̄Q̄0Þ.
Moreover, the threshold of Hs and the ðQ1Q̄2Þ þ c:c:
threshold of H have the same energy, since they are
governed by the same inverse reduced mass. Thus, if the
brackets denote the lowest energy

½QQ0Q̄Q̄0� < 2½QQ̄� ⇒ ½Q1Q2Q̄1Q̄2� < 2½Q1Q̄2�: ðA3Þ

For a purely linear potential, the stability of ðQQ0Q̄Q̄0Þ, if
true for some quark massM, holds for any other mass, as a
change of mass induces the same scaling factor for the
mesons and for the tetraquark. For a more complicated
interaction, Eq. (A3) requires the condition 2=M ¼
1=M1 þ 1=M2 on the inverse masses.
The knowledge of the binding in the equal-mass case,

measured by the parameter ϵ defined as

½QQ0Q̄Q̄0� ¼ 2½QQ̄�ð1 − ϵÞ; ðA4Þ

indicates a minimal range of masses M1 and M2 around
M1 ¼ M2 ¼ M for which stability remains. In the case of a
purely linear interaction, it is given by

1=M1 þ 1=M2 ¼ 2=M;

M−1=3
1 þM−1=3

2 ≥ 2ð1 − ϵÞM−1=3 ðA5Þ

which can be solved in closed form. For instance, with an
energy ½QQ0Q̄Q̄0�≃ 4.639 [39] for a unit-mass tetraquark
bound by a string potential of unit strength, to be compared
to a threshold 2½QQ̄� ¼ 4.676 (twice the negative of the first
zero of the Airy function), the stability of ðQ1Q2Q̄1Q̄2Þ is
guaranteed for at least 1=1.72<M1=M2 < 1.72.
In the case of a more general flavor-independent inter-

action, the second equation of Eq. (A5) should be replaced
by an exact estimate of the two-meson lowest threshold as a
function of M1 and M2.
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