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We present a calculation of the rates for Higgs-boson decays to a vector heavy-quarkonium state plus a
photon, where the heavy-quarkonium states are the J=ψ and the ϒðnSÞ states, with n ¼ 1, 2, or 3. The
calculation is carried out in the light-cone formalism, combined with nonrelativistic QCD factorization, and
is accurate at leading order in m2

Q=m
2
H , where mQ is the heavy-quark mass and mH is the Higgs-boson

mass. The calculation contains corrections through next-to-leading order in the strong-coupling constant αs
and the square of the heavy-quark velocity v, and includes a resummation of logarithms ofm2

H=m
2
Q at next-

to-leading logarithmic accuracy. We have developed a new method, which makes use of Abel summation,
accelerated through the use of Padé approximants, to deal with divergences in the resummed expressions
for the quarkonium light-cone distribution amplitudes. This approach allows us to make definitive
calculations of the resummation effects. Contributions from the order-αs and order-v2 corrections to the
light-cone distribution amplitudes that we obtain with this new method differ substantially from the
corresponding contributions that one obtains from a model light-cone distribution amplitude [M. König and
M. Neubert, J. High Energy Phys. 08 (2015) 012]. Our results for the real parts of the direct-process
amplitudes are considerably smaller than those from one earlier calculation [G. T. Bodwin, H. S. Chung,
J.-H. Ee, J. Lee, and F. Petriello, Phys. Rev. D 90, 113010 (2014)], reducing the sensitivity to the Higgs-
boson–heavy-quark couplings, and are somewhat smaller than those from another earlier calculation
[M. König and M. Neubert, J. High Energy Phys. 08 (2015) 012]. However, our results for the standard-
model Higgs-boson branching fractions are in good agreement with those in M. König and M. Neubert,
J. High Energy Phys. 08 (2015) 012.
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I. INTRODUCTION

Several years ago, it was pointed out that Higgs-boson
(H) decays into a vector charmonium state (V) plus a
photon (γ) proceed through two processes [1]. One process
is the “direct process,” in which the Higgs boson decays
into a heavy quark-antiquark (QQ̄) pair, followed by the
radiation of a real photon by theQ or Q̄ and the subsequent
evolution of the QQ̄ pair into the quarkonium. The other
process is the “indirect process,” in which the Higgs boson
decays via a W-boson loop or a quark loop into a γ and a
virtual photon (γ�), followed by the decay of the γ� into a
QQ̄ pair, which evolves into the quarkonium.
The direct amplitude is proportional to the HQQ̄

coupling. However, its standard-model (SM) value is
generally too small to lead to a rate that is measurable at
the LHC. In the case in which the quarkonium is a J=ψ , the
SM indirect amplitude is much larger than the SM direct
amplitude and leads to a rate that is potentially measurable

in a high-luminosity LHC [1]. Furthermore, the contribu-
tion from interference between the direct and indirect
amplitudes, which is destructive, may also be within the
realm of measurement at a high-luminosity LHC [1] and
could lead to a determination of the Hcc̄ coupling. In the
cases in which the quarkonium is an ϒðnSÞ state, the SM
rates are too small to be measured even at a high-luminosity
LHC [1]. However, owing to the destructive interference
between the direct and indirect amplitudes, the rates are
very sensitive to deviations of the direct amplitudes from
the SM values [1]. Because the direct and indirect ampli-
tudes for the decays H → V þ γ are comparable in size,
these decays can give information about the phases of the
HQQ̄ couplings. They are the only processes that have
been identified so far that can yield that phase information.
The indirect amplitude can be obtained, up to corrections

of relative order m2
Q=m

2
H, from the amplitude for H → γγ

[1], which is known in the SM with a precision of a few
percent [2,3]. Here, mQ is the heavy-quark mass and mH is
the Higgs-boson mass.
In Ref. [1], the direct amplitude was computed through

next-to-leading order (NLO) in the strong coupling αs by
making use of the result of Shifman and Vysotsky [4]. That
result was derived by making use of light-cone methods
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[5,6] that are valid up to corrections of order m2
Q=m

2
H. In

addition, in Ref. [1], logarithms ofm2
H=m

2
Q were resummed

at leading logarithmic (LL) accuracy to all orders in αs by
making use of the LL resummed expression for the direct
amplitude in Ref. [4].
The largest single uncertainty in the calculation of

Ref. [1] was due to uncalculated relativistic corrections
to the direct amplitude of relative order v2, where v is the
velocity of the Q or Q̄ in the quarkonium rest frame. Those
order-v2 corrections were computed in Ref. [7] in the
nonrelativistic QCD (NRQCD) formalism [8] and, also, in
the light-cone formalism [5,6], so as to make contact with
the light-cone calculation of Ref. [4].
Logarithms ofm2

H=m
2
Q can be resummed by evolving the

HQQ̄ coupling, which is proportional to mQðμÞ, the
quarkonium decay constant, and the light-cone distribution
amplitude (LCDA) from the renormalization scale μ ¼ mQ

to the renormalization scale μ ¼ mH. The standard method
for carrying out the evolution of the LCDA is to expand the
LCDA in a series of eigenfunctions of the lowest-order
evolution kernel. The eigenfunctions are proportional to
Gegenbauer polynomials [9]. In Ref. [7], it was noticed that
the eigenfunction series is not convergent in the case of the
order-v2 corrections to the direct amplitude. Consequently,
for the order-v2 correction, logarithms of m2

H=m
2
Q were

summed only through relative order α2s in Ref. [7].
Resummation of logarithms of m2

H=m
2
Q at next-to-

leading-logarithmic (NLL) accuracy requires a calculation
in the light-cone formalism of the order-αs corrections to
both the hard-scattering kernel for the direct process and the
LCDA. That calculation was accomplished in Ref. [10] at
leading order (LO) in v. (The calculation of the order-αs
correction to the hard-scattering kernel in Ref. [10] was
confirmed in Ref. [11].) The calculation of the LCDAwas
carried out in the NRQCD framework, and the result
was expressed in terms of the NRQCD nonperturbative
long-distance matrix elements (LDMEs) [12].
The actual resummation of logarithms of m2

H=m
2
Q at NLL

accuracy was carried out in Ref. [11], in which it was found
that the NLL corrections have a substantial impact on the
numerical results for the rates. In that work, the calculational
strategy involved introducing a model LCDAwhose nonzero
second moment would take into account the known order-v2

and order-αs corrections to the LCDA at a scale of 1 GeV.
This approach avoids the problem of the lack of convergence
of the eigenfunction expansion in a calculation of the order-
v2 corrections to the LCDA. However, as we will see, the
model wave function does not give a very accurate account-
ing of the order-v2 and order-αs corrections to the LCDA,
even after evolution to the scale mH.
In this paper, we present a new method for calculating

the evolution of the order-v2 corrections to the LCDA. The
method introduces a regulator that defines the generalized

functions (distributions) that appear in the initial LCDAs as
sequences of ordinary functions. The regulator method is
equivalent to Abel summation of the eigenfunction expan-
sion. In order to accelerate the convergence of the Abel
summation, we introduce Padé approximants to obtain an
approximate analytic continuation in the regulator variable
that converges rapidly as the regulator is removed. We refer
to this method that makes use of a combination of Abel
summation and Padé approximants as the “Abel-Padé
method.” The Abel-Padé method gives very accurate
results in cases for which analytic results are known for
the LCDAs, even in situations in which the eigenfunction
expansion diverges. The Abel-Padé method solves the
general problem of carrying out the scale evolution in
a nonrelativistic expansion of the LCDA for heavy-
quarkonium systems, and it should be applicable in other
situations in which series of orthogonal polynomials fail to
converge.
The results that we obtain with the Abel-Padé method

agree reasonably well with the perturbative estimates of
Ref. [7]. However, the Abel-Padé method gives results that
differ significantly from those that are obtained by making
use of the model of Ref. [11]. We use the Abel-Padé
method to obtain a complete calculation of the rates for
H → V þ γ through orders αs and v2 and to all orders in αs
through order v2 at NLL accuracy.
The remainder of this paper is organized as follows. In

Sec. II, we discuss the light-cone amplitude for the direct
process through orders αs and v2. In Sec. III, we describe the
resummation of logarithms of m2

H=m
2
Q and give resummed

expressions for the contributions to the direct amplitude in
terms of sums over eigenfunctions of the LO evolution
kernel. Section IV contains a discussion of the problem of
the nonconvergence of the eigenfunction series and a
presentation of a solution of the problem, which leads to
the Abel-Padé method for summing the series. In Sec. V, we
compare results from the Abel-Padé method with those that
follow from the model LCDA that was proposed in
Ref. [11]. In Sec. VI we give the expressions that we use
to compute the direct amplitudes and the indirect amplitudes
and discuss the numerical inputs that we use and the sources
of uncertainties. We also present a novel method to compute
uncertainties in the decay rates that allows us to deal with the
highly nonlinear dependences of the decay rates on the input
parameters. We give our numerical results in Sec. VII, and
we summarize and discuss our results in Sec. VIII.

II. LIGHT-CONE AMPLITUDE FOR
THE DIRECT PROCESS

In the light-cone approach, the direct amplitude for
H → V þ γ is given, up to corrections of relative order
m2

Q=m
2
H, by

1

1See, for example, Ref. [1].
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iMLC
dir ½H → V þ γ� ¼ i

2
eeQκQm̄QðμÞð

ffiffiffi
2

p
GFÞ1=2f⊥V ðμÞ

×

�
−ϵ�V · ϵ�γ þ

ϵ�V · pγp · ϵ�γ
pγ · p

�

×
Z

1

0

dx THðx; μÞϕ⊥
V ðx; μÞ; ð1Þ

where e is the electric charge, eQ is the fractional charge of
the heavy quark Q, κQ is an adjustable parameter in the
HQQ̄ coupling whose SM value is 1, m̄Q is the mass of Q
in the modified minimal subtraction (MS) scheme, GF is
the Fermi constant, f⊥V is the decay constant of the vector
quarkonium V, ϵV and p are the quarkonium polarization
and momentum, respectively, ϵγ and pγ are the photon
polarization and momentum, respectively, μ is the renorm-
alization scale, and x is the QQ̄ momentum fraction of V,
which runs from 0 to 1. ϕ⊥

V ðx; μÞ is the vector-quarkonium
LCDA, which is defined by

1

2
hVjQ̄ðzÞ½γμ; γν�½z; 0�Qð0Þj0i ¼ f⊥V ðμÞðϵ�μV pν

V − ϵ�νV pμ
VÞ

×
Z

1

0

dx eip
−zxϕ⊥

V ðx; μÞ

ð2Þ

and has the normalization
R
1
0 dxϕ

⊥
V ðx; μÞ ¼ 1. The coor-

dinate z lies along the plus light-cone direction, and the
gauge link

½z; 0� ¼ P exp

�
igs

Z
z

0

dxAþ
a ðxÞTa

�
ð3Þ

makes the nonlocal operator gauge invariant. In Eq. (3),
gs ¼

ffiffiffiffiffiffiffiffiffiffi
4παs

p
, Aμ

a is the gluon field with the color index
a ¼ 1, 2,…,N2

c − 1, Ta is the generator of the fundamental
representation of SUðNcÞ color, and the symbol P denotes
path ordering. The nonrelativistic expansion of ϕ⊥

V ðx; μÞ,
through linear orders in αs and v2, is

ϕ⊥
V ðx; μÞ ¼ ϕ⊥ð0Þ

V ðx; μÞ þ hv2iVϕ⊥ðv2Þ
V ðx; μÞ

þ αsðμÞ
4π

ϕ⊥ð1Þ
V ðx; μÞ þOðα2s ; αsv2; v4Þ; ð4Þ

where the LO contribution is given by

ϕ⊥ð0Þ
V ðx; μÞ ¼ δ

�
x −

1

2

�
ð5Þ

and δ is the Dirac delta function. hv2iV is proportional to the
ratio of the NRQCD LDME of order v2 to the LDME of
order v0:

hv2iV ¼ 1

m2
Q

hVðϵVÞjψ†ð− i
2
∇
↔Þ2σ · ϵVχj0i

hVðϵVÞjψ†σ · ϵVχj0i
: ð6Þ

Here, ψ is the two-component (Pauli) spinor field that
annihilates a heavy quark, χ† is the two-component spinor
field that annihilates a heavy antiquark, σi is a Pauli matrix,
jVðϵVÞi denotes the vector quarkonium state in the quar-
konium rest frame with spatial polarization ϵV , and mQ

denotes the quark pole mass. The coefficient of the order-v2

contribution, ϕ⊥ðv2Þ
V , was computed in Ref. [7] and is

given by

ϕ⊥ðv2Þ
V ðx; μÞ ¼ 1

24
δð2Þ

�
x −

1

2

�
; ð7Þ

where δðnÞ is the nth derivative of the Dirac delta function.

The coefficient of the order-αs contribution, ϕ⊥ð1Þ
V ðx; μÞ,

was computed in Ref. [10] and is given by2

ϕ⊥ð1Þ
V ðx; μÞ ¼ CFθð1 − 2xÞ

×

��
8x

1 − 2x

�
log

μ2

m2
Qð1 − 2xÞ2 − 1

��
þ

þ
�
16xð1 − xÞ
ð1 − 2xÞ2

�
þþ

�
þ ðx ↔ 1 − xÞ; ð8Þ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ, Nc ¼ 3 is the number

of colors, and the plus and plus-plus distributions are
defined byZ

1

0

dx fðxÞ½gðxÞ�þ ¼
Z

1

0

dx

�
fðxÞ − f

�
1

2

��
gðxÞ; ð9aÞ

Z
1

0

dx fðxÞ½gðxÞ�þþ

¼
Z

1

0

dx

�
fðxÞ − f

�
1

2

�
− f0

�
1

2

��
x −

1

2

��
gðxÞ: ð9bÞ

Although ϕ⊥ð0Þ
V ðx; μÞ and ϕ⊥ðv2Þ

V ðx; μÞ are independent of μ,
we keep μ explicit in their arguments as a reminder that a
single scale μ applies to all of the terms in ϕ⊥

V ðx; μÞ
[Eq. (4)].
The quarkonium decay constant f⊥V ðμÞ is given by

f⊥V ðμÞ ¼
ffiffiffiffiffiffiffiffi
2Nc

p ffiffiffiffiffiffiffiffiffi
2mV

p
2mQ

ΨVð0Þ
�
1 −

5

6
hv2iV −

CFαsðμÞ
4π

×

�
log

μ2

m2
Q
þ 8

�
þOðα2s ; αsv2; v4Þ

�
; ð10Þ

2Equation (3.17) of Ref. [10] applies to the case in which Δ in
Eq. (3.16) of Ref. [10] is set equal to zero. We thank the authors
of Ref. [10] for confirming that this is the case.
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where the order-v2 term was computed in Ref. [7] and the
order-αs term was computed in Ref. [10]. Here, ΨVð0Þ is
the quarkonium wave function at the origin, which is given
in terms of an NRQCD LDME by [8]

ΨVð0Þ ¼
1ffiffiffiffiffiffiffiffi
2Nc

p hVðϵVÞjψ†σ · ϵVχj0i: ð11Þ

The hard-scattering kernel TH for the process H → V þ
γ is given by

THðx; μÞ ¼ Tð0Þ
H ðx; μÞ þ αsðμÞ

4π
Tð1Þ
H ðx; μÞ þOðα2sÞ; ð12aÞ

where

Tð0Þ
H ðx; μÞ ¼ 1

xð1 − xÞ ; ð12bÞ

Tð1Þ
H ðx; μÞ ¼ CF

1

xð1 − xÞ
�
2

�
log

m2
H

μ2
− iπ

�
log xð1 − xÞ

þ log2xþ log2ð1 − xÞ − 3

�
: ð12cÞ

The order-αs term in TH was computed in Ref. [10] by
taking the quark mass to be the pole mass and in Ref. [11]
by taking the quark mass to be the MS mass.3 The
expression in Eq. (12c) is for the case in which the quark
mass is taken to be the MS mass.

III. RESUMMATION OF LOGARITHMS IN THE
DIRECT AMPLITUDE

Our strategy for resumming logarithms of m2
H=m

2
Q is

the following. In Eq. (1) we take the scale μ to bemH. Then
TH [Eq. (12)] contains no large logarithms. Note that, if
one takes the quark mass in the computation of TH to be
the pole mass, then the order-αs correction to THðx; μÞ
contains a term that is proportional to logðm2

H=m
2
QÞ, as can

be seen from the corrected version of Eq. (4.23) of
Ref. [10]. Such large NLLs would slow, or even spoil,
the convergence of the perturbation expansion. We initially
evaluate ϕ⊥

V ðx; μÞ and f⊥V ðμÞ at a scale μ0 of order mQ, so
that the perturbative expressions in Eqs. (5), (7), and (8)
do not contain any logarithms of m2

H=m
2
Q. Then, we evolve

ϕ⊥
V ðx; μÞ and f⊥V ðμÞ to the scale μ ¼ mH, along with

m̄QðμÞ. Expressions for the evolution of m̄QðμÞ and
f⊥V ðμÞ are given in Appendix A. We now address the
evolution of ϕ⊥

V ðx; μÞ.

A. Evolution of the LCDA

The LCDA ϕ⊥
V ðx; μÞ satisfies the evolution equation [5]

μ2
∂
∂μ2 ϕ

⊥
V ðx; μÞ ¼ CF

αsðμÞ
2π

Z
1

0

dyVTðx; yÞϕ⊥
V ðy; μÞ;

ð13Þ

where the LO evolution kernel VTðx; yÞ is given by [5]

VTðx; yÞ ¼ V0ðx; yÞ −
1 − x
1 − y

θðx − yÞ − x
y
θðy − xÞ; ð14aÞ

V0ðx; yÞ ¼ VBLðx; yÞ − δðx − yÞ
Z

1

0

dzVBLðz; xÞ; ð14bÞ

VBLðx; yÞ ¼
1 − x
1 − y

�
1þ 1

x − y

�
θðx − yÞ

þ x
y

�
1þ 1

y − x

�
θðy − xÞ: ð14cÞ

As is well known, the eigenfunctions of LO evolution
kernel for ϕ⊥

V ðx; μÞ are given by [9]

GnðxÞ ¼ wðxÞCð3=2Þ
n ð2x − 1Þ; ð15Þ

where wðxÞ ¼ xð1 − xÞ is the weighting function and the

Cð3=2Þ
n are Gegenbauer polynomials. The corresponding

eigenvalues (anomalous dimensions) are

γ⊥ð0Þ
n ¼ 8CFðHnþ1 − 1Þ; ð16Þ

where the Hn are harmonic numbers. The orthogonality
relation of the Gegenbauer polynomials is given by

Nn

Z
1

0

dxwðxÞCð3=2Þ
n ð2x − 1ÞCð3=2Þ

m ð2x − 1Þ

¼ Nn

Z
1

0

dxGnðxÞCð3=2Þ
m ð2x − 1Þ

¼ δnm; ð17Þ

where the normalization factor Nn is given by

Nn ¼
4ð2nþ 3Þ

ðnþ 1Þðnþ 2Þ : ð18Þ

In order to work out the evolution of the LCDAs, it is
convenient to write them in terms of the eigenfunctions.
Using Eq. (17), we have

ϕ⊥
V ðx; μÞ ¼

X∞
n¼0

ϕ⊥
n ðμÞGnðxÞ; ð19aÞ

3Equation (4.23) of Ref. [10] contains a typo: 3 ln½μ2=ð−m2
hÞ�

should be replaced with 3 lnðμ2=m2
QÞ. This typo was noted in

Ref. [11]. We thank the authors of Ref. [10] for confirming the
existence of this typo.
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where the moments ϕ⊥
n ðμÞ are given by

ϕ⊥
n ðμÞ ¼ Nn

Z
1

0

dxCð3=2Þ
n ð2x − 1Þϕ⊥

V ðx; μÞ: ð19bÞ

In a similar fashion, we can write TH in terms of
Gegenbauer polynomials:

THðx; μÞ ¼
X∞
n¼0

NnTnðμÞCð3=2Þ
n ð2x − 1Þ; ð20aÞ

where

TnðμÞ ¼
Z

1

0

dx THðx; μÞGnðxÞ: ð20bÞ

Then, using Eq. (17), we can write the light-cone amplitude,
at least formally, as a sum over moments of TH and ϕ⊥

V :Z
1

0

dx THðx; μÞϕ⊥
V ðx; μÞ ¼

X∞
n¼0

TnðμÞϕ⊥
n ðμÞ: ð21Þ

The moments ϕ⊥
n ðμÞ can be written in terms of the

moments ϕ⊥
n ðμ0Þ as

ϕ⊥
n ðμÞ ¼

Xn
k¼0

Unkðμ; μ0Þϕ⊥
k ðμ0Þ; ð22Þ

where we are using the notation of Ref. [11]. The
expressions for Unkðμ; μ0Þ at LL and NLL accuracies are
given in Appendix B. Note that the off-diagonal elements
of Unkðμ; μ0Þ are nonvanishing only for even n − k [13,14].
We decompose the light-cone amplitude according to the

powers of αs and v2:Z
1

0

dx THðx; μÞϕ⊥
V ðx; μÞ ¼ Mð0;0ÞðμÞ þ αsðμÞ

4π
Mð1;0ÞðμÞ

þ αsðmQÞ
4π

Mð0;1ÞðμÞ
þ hv2iVMð0;v2ÞðμÞ
þOðα2s ;αsv2; v4Þ; ð23aÞ

where

Mði;jÞðμÞ ¼
Z

1

0

dx TðiÞ
H ðx; μÞϕ⊥ðjÞ

V ðx; μÞ

¼
X∞
n¼0

TðiÞ
n ðμÞϕ⊥ðjÞ

n ðμÞ: ð23bÞ

Tð0Þ
n ðμÞ and Tð1Þ

n ðμÞ vanish for n odd and are given for n
even by

Tð0Þ
n ðμÞ ¼ 1; ð24aÞ

Tð1Þ
n ðμÞ=CF ¼ −4ðHnþ1 − 1Þ

�
log

m2
H

μ2
− iπ

�
þ 4H2

nþ1 − 3þ 4πi; ð24bÞ

where the expression for Tð1Þ
n ðμÞ was first given in

Ref. [11]. The ϕ⊥ðiÞ
n ðμÞ also vanish for n odd.

ForMð0;0ÞðμÞ, we use the NLL expression forUnkðμ; μ0Þ
to compute ϕ⊥ð0Þ

n ðμÞ, while, for the otherMði;jÞðμÞ, we use
the LL expression for Unkðμ; μ0Þ.
As was noted in the appendix of Ref. [7], the eigen-

function series for Mð0;v2ÞðμÞ is not convergent. Some of
the eigenfunction series for the other Mði;jÞðμÞ converge
rather slowly. We address these issues of nonconvergence
and slow convergence in Sec. IV.

IV. NONCONVERGENCE OF THE
EIGENFUNCTION SERIES AND SUMMATION

BY THE ABEL-PADÉ METHOD

A. The problem of nonconvergence

From the theory of orthogonal polynomials on a finite
interval, we know that a series of Gegenbauer polynomials

Cð3=2Þ
n ð2x − 1Þ can represent sufficiently smooth functions

over the interval 0 < x < 1. That is, Cð3=2Þ
n ð2x − 1Þ are a

complete set of functions and satisfy the completeness
relation

X∞
n¼0

NnwðxÞCð3=2Þ
n ð2x − 1ÞCð3=2Þ

n ð2y − 1Þ ¼ δðx − yÞ:

ð25Þ

It follows that the sum over n on the right side of
Eqs. (21) or (23b) is well defined and is equal to the left
side of Eqs. (21) or (23b) when THðx; μÞ and ϕ⊥

V ðx; μÞ
are sufficiently smooth functions of x [15]. A difficulty
can arise because the nonrelativistic expansion of
ϕ⊥
V ðx; μÞ contains generalized functions (distributions)

in x about the point x ¼ 1=2. For example, the factor

δð2Þðx − 1
2
Þ in ϕ⊥ðv2Þ

V [Eq. (7)] causes the sum over n in

the expression for Mð0;v2ÞðμÞ to diverge, as was shown in
the appendix of Ref. [7]. Nevertheless, Mð0;vnÞðμÞ
remains well defined as μ evolves.
In order to demonstrate this, we define the quantity

Mði;jÞðμf; μÞ ¼
Z

1

0

dx TðiÞ
H ðx; μfÞϕ⊥ðjÞ

V ðx; μÞ; ð26Þ

which gives the projection of ϕ⊥ðjÞ
V ðx; μÞ onto the hard-

scattering amplitude evaluated at the final scale in the
evolution μf. Note that Mði;jÞðμf; μfÞ ¼ Mði;jÞðμfÞ. Now,
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Mð0;vnÞðμf; μÞ satisfies the same evolution equation as does
ϕ⊥
V ðx; μÞ, namely,

μ2
∂
∂μ2M

ð0;vnÞðμf;μÞ

¼CF
αsðμÞ
2π

Z
1

0

dx
Z

1

0

dyTð0Þ
H ðx;μfÞVTðx;yÞϕ⊥ðvnÞ

V ðy;μÞ:

ð27Þ

First, we note that Mð0;vnÞðμf; μ0Þ is well defined. This
follows from the definition of Mð0;vnÞðμf; μ0Þ in Eq. (26),

the fact that ϕ⊥ðvnÞ
V ðx; μ0Þ is proportional to δðnÞðx − 1

2
Þ, and

the fact that Tð0Þ
H ðx; μfÞ is infinitely differentiable at

x ¼ 1=2. [We remind the reader that Tð0Þ
H ðx; μÞ is actually

independent of μ.] Furthermore, it is easy to see thatR
1
0 dx Tð0Þ

H ðx; μÞVTðx; yÞ is infinitely differentiable with
respect to y at y ¼ 1=2. It then follows from the evolution
equation (27) that μ2ð∂=∂μ2ÞMð0;vnÞðμf; μÞ is well defined
for all μ between μ0 and μf. Therefore, Mð0;vnÞðμf; μfÞ ¼
Mð0;vnÞðμfÞ is well defined.

B. Solution of the problem and the Abel-Padé method

In order to address the difficulty of nonconvergent
eigenfunction series, we first define a smearing function
Sðx; y; zÞ by modifying the completeness relation (25). We
introduce a factor zn into each term in the sum over n:

Sðx; y; zÞ ¼
X∞
n¼0

znNnwðxÞCð3=2Þ
n ð2x − 1ÞCð3=2Þ

n ð2y − 1Þ;

ð28Þ
where z is a complex parameter. For jzj < 1, the sum over n
in Eq. (28) is absolutely convergent, and Sðx; y; zÞ is an
ordinary function of x and y. As z approaches 1, Sðx; y; zÞ
becomes more and more sharply peaked around x ¼ y and,
in the limit z → 1, is a representation of δðx − yÞ. We use
the smearing function to define a smeared distribution
amplitude:

ϕSðx; z; μÞ ¼
Z

1

0

dy Sðx; y; zÞϕ⊥
V ðy; μÞ

¼
X∞
n¼0

ϕ⊥
n ðμÞ

X∞
m¼0

zmwðxÞCð3=2Þ
m ð2x − 1ÞNm

×
Z

1

0

dywðyÞCð3=2Þ
m ð2y − 1ÞCð3=2Þ

n ð2y − 1Þ

¼
X∞
n¼0

ϕ⊥
n ðμÞ

X∞
m¼0

zmwðxÞCð3=2Þ
m ð2x − 1Þδnm

¼
X∞
n¼0

ϕ⊥
n ðμÞznGnðxÞ; ð29Þ

where we have used the orthogonality relation (17). For
jzj < 1, ϕSðx; z; μÞ is an ordinary function of x. Because
Sðx; y; zÞ is a representation of δðx − yÞ in the limit z → 1,
ϕSðx; z; μÞ is a representation of ϕ⊥

V ðx; μÞ in the limit z → 1.
That is, Eq. (29) can be used to define generalized functions
in ϕ⊥

V ðx; μÞ as a limit of a sequence of ordinary functions. It
then follows, from the theory of orthogonal functions, that,
for any z < 1,4

Z
1

0

dx THðx; μÞϕSðx; z; μÞ ¼
X∞
n¼0

TnðμÞznϕ⊥
n ðμÞ: ð30Þ

Then, we obtain the light-cone amplitude M that corre-
sponds to the distribution ϕ⊥

V ðx; μÞ by taking the limit of the
sequence of ordinary functions that we use to define
ϕ⊥
V ðx; μÞ:

M ¼
Z

1

0

dx THðx; μÞϕ⊥
V ðx; μÞ

¼ lim
z→1

Z
1

0

dx THðx; μÞϕSðx; z; μÞ

¼ lim
z→1

X∞
n¼0

TnðμÞznϕ⊥
n ðμÞ: ð31Þ

We note that Eq. (31) amounts to Abel summation of the
eigenfunction series. A mathematical proof of Eq. (31) is
beyond the scope of this paper. However, we will describe
several numerical tests that strongly support the validity of
the Abel summation in Eq. (31).
In principle, one can use Eq. (31) to compute the light-

cone amplitude, making use of Eq. (22) to take into account
the scale evolution of the LCDA. In order to do this, one
would need carry out the sum in Eq. (31) before taking limit
z → 1. In practice, in carrying out a numerical evaluation,
one must include enough terms in the sum to guarantee that
the remainder is small for a given value of j1 − zj. For the
functions THðx; μÞ and ϕ⊥

V ðx; μÞ that we consider, this
typically requires that one include thousands of terms in
order to achieve percent-level precision.5

A much more efficient procedure is to use Padé
approximants to approximate the sum in Eq. (31). As
we have mentioned, we refer to this method that makes use
of a combination of Abel summation and Padé approx-
imants as the Abel-Padé method. The sum in Eq. (31)
defines a function of z that is analytic for jzj < 1. The Padé

4It can be seen from the analysis of the appendix of Ref. [7]
that, for ϕ⊥

V ðx; μÞ → ϕ⊥ ð0Þ
V ðx; μÞ≡ δð0Þðx − 1

2
Þ and THðx; μÞ →

Tð0Þ
H ðx; μÞ, the sum on the right side of Eq. (30) is absolutely

convergent for arbitrary μ when z < 1.
5We have verified numerically, for the cases Mð0;0Þ and

Mð0;v2Þ, with μ ¼ mQ, mH=2, mH , 2mH , 1 TeV, and 2 TeV, that
the Abel summation does converge, although very slowly, to the
result that is given by the Abel-Padé procedure.
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approximant gives an approximate analytic continuation of
that function to larger values of jzj. In particular, the Padé
approximant can give precise values of Eq. (31) for z ¼ 1,
even when poles in the disc jzj < 1 render the radius of
convergence of the series to be less than 1. Consequently, a
Padé-approximant expression that is based on a given
partial sum can give much better precision as z → 1 than
does the original partial sum. For the functions THðx; μÞ
and ϕ⊥

V ðx; μÞ that we consider, one can typically achieve
much better than percent-level precision by keeping 20
terms in the partial sum and generating a 10 × 10 Padé
approximant.
In Appendix C 3, we have tested the Abel-Padé method

for the cases ϕ⊥
V ðx; μÞ → ϕ⊥

V ðx; μ0Þ → δðkÞðx − 1
2
Þ, with

k ¼ 0; 2;…; 10, and THðx; μÞ → Tð0Þ
H ðx; μ0Þ, i.e., with no

evolution. Analytic results are easily obtained in these
cases, and the Abel-Padé expression converges quickly
to them, even though the eigenfunction series are not
convergent for k > 0. As can be seen from the appendix of

Ref. [7], evolution of ϕ⊥ð0Þ
V ðx; μ0Þ to a higher scale

generally improves that convergence of the eigenfunction
series. (This general property is confirmed numerically in
Appendix C 3.) It seems, therefore, that the zero-evolution
tests of the Abel-Padé method that we have made are
particularly demanding. We have also tested the Abel-Padé
method by expanding the LL evolved expression for
c2ðμÞ ¼ f⊥V ðμÞMð0;v2ÞðμÞ as a series in αs, using the
Abel-Padé method to compute the first three terms in
the series from their eigenfunction expansions (taking
μ0 ¼ mc, mb and μ ¼ mH), and comparing the results with
the analytic expressions for the first three terms in the series
in Eq. (39b) of Ref. [7]. Again, the Abel-Padé expressions
converge rapidly to the analytic results, even though the
eigenfunction series themselves are not convergent.
We conclude that the Abel-Padé method is reliable, and

we use it in this paper to sum all of the eigenvalue series for
the LCDAs.

V. COMPARISON WITH A MODEL LCDA

In Ref. [11], it was proposed to incorporate the effects of
the order-v2 and order-αs corrections to the LCDA by
making use of a model LCDA:

ϕ⊥M
V ðx; μ0Þ ¼ Nσ

4xð1 − xÞffiffiffiffiffiffi
2π

p
σVðμ0Þ

exp

�
−
ðx − 1

2
Þ2

2σ2Vðμ0Þ
�
: ð32Þ

Here, Nσ is chosen so thatZ
1

0

dxϕ⊥M
V ðx; μ0Þ ¼ 1: ð33Þ

It is stated in Ref. [11] that the width parameter σVðμ0Þ is
chosen so that ϕ⊥M

V ðx; μ0Þ yields the second moment of
ϕ⊥
V ðx; μÞ through linear order in v2 and αs:

4σ2Vðμ0Þ ¼
Z

1

0

dx ð2x − 1Þ2ϕ⊥M
V ðx; μ0Þ

≡ hv2iV
3

þ CFαsðμ0Þ
4π

�
28

9
−
2

3
ln
m2

Q

μ20

�
: ð34Þ

The initial scale is chosen to be μ0 ¼ 1 GeV.
The model LCDA circumvents the problem of the non-

convergence of the eigenfunction series for Mð0;v2ÞðμÞ:
Because ϕ⊥M

V ðx; μ0Þ is an ordinary function of x, the
eigenfunction series converges. However, a number of
assumptions go into the construction of the model
LCDA. We now discuss the validity of those assumptions.
First, we note that the first equality in Eq. (34) holds only in

thezero-width(σV → 0) limit. InRef. [11],numericalvaluesof
σVð1 GeVÞwere computed by equating 4σ2V to the expression
on the right side of the second equality in Eq. (34). This
procedure leads to values for the second x moments of
ϕ⊥M
V ðx; 1 GeVÞ that differ substantially from the true values

of second xmoments ofϕ⊥
V ðx; 1 GeVÞ through linear order in

v2 and αs. For example, in the case of the J=ψ , with mc ¼
1.4 GeV and hv2iJ=ψ ¼ 0.225, the second x moment of
ϕ⊥M
V ðx; 1 GeVÞ is 0.120256, while the second x moment of

ϕ⊥
V ðx; 1 GeVÞ through linearorder inv2 andαs is 0.207729. In

fact, in thiscase, there isnochoiceofσVð1 GeVÞ thatyields the
correct second x moment through linear order in v2 and αs.
Second, we note that only the second x moment of the

order-αs correction to the LCDA enters into the model
LCDA. That is, there is an implicit assumption that the
order-αs correction can be adequately characterized by its
second x moment alone. However, the order-αs correction
to the LCDA has substantial x moments beyond the second
moment, and, so, this assumption seems to be questionable.
In contrast, only the second x moment of the order-v2

correction to the LCDA is nonvanishing.
Third, the functional form of the LCDA has implications

for the higher x moments of the LCDA. These higher x
moments are related to corrections to the LCDA of higher
order in v2 (see Refs. [16–18] and Appendix C) and to
higher xmoments of the corrections to the LCDAof order αs
and higher. It is not clear that the functional form of the
LCDA accounts adequately for these corrections. In
Appendix C 2, we examine x moments of the model
LCDA in order α0s, using the relationships between the x
moments of the LCDA and the NRQCD LDMEs that are
given in Refs. [16–18].We find that xmoments of themodel
LCDA are much larger than expectations from the NRQCD
velocity-scaling rules, suggesting that the model LCDA
leads to spuriously large corrections of higher order in v2.6

6Strictly speaking, the velocity-scaling rules state that a LDME
hvniV , which is defined by the obvious generalization of Eq. (6),
vanishes as vn in the limit v → 0. However, in phenomenology,
the velocity-scaling rules are usually taken to mean that hvniV is
equal to vn times a coefficient of order 1. This point of view is
supported by the generalized Gremm-Kapustin relation [19].
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The ultimate test of the model LCDA is whether it leads
to an accurate numerical result for the light-cone amplitude.
We will carry out such a test by comparing the results for
the light-cone amplitude that are obtained from the model
LCDAwith the results for the light-cone amplitude that are
obtained from our calculation through orders αs and v2. In
doing so, we are implicitly assuming that the expansions in
the small parameters αs and v2 are valid and that corrections
beyond those in orders αs and v2 are small in comparison
with the corrections of orders αs and v2. One could question
whether the evolution from the scale μ0 to the scale mH

could invalidate the αs and v2 expansions. Regarding the αs
expansion, evolution from the scale 1.0 GeV to the scale
mH changes the order-αs correction from 16% of the order-
α0s contribution to 9% of the order-α0s contribution, sug-
gesting that evolution does not spoil the αs expansion.
Further tests of the αs expansion would require the
computation of corrections of still higher orders in αs.
We can investigate the convergence of the v2 expansion
(nonrelativistic expansion) and the effects of evolution on it
more completely, and we do so in Appendix C. There, we
test the numerical convergence of the nonrelativistic
expansion in order α0s for the example of the model
LCDA. We find that the nonrelativistic expansion con-
verges rapidly to the exact result for the model LCDA at the
scale μ ¼ μ0 and that it converges even more rapidly at the
scale μ ¼ mH. The expansion through order v2 gives a
good approximation to the exact result. We conclude that
the model LCDA, if it is valid, should not produce
corrections beyond the leading order in αs and v2 that
deviate significantly from the sum of the corrections of
order αs and order v2 that we compute in this paper.
We can assess whether the contributions of higher order

that arise from the model LCDA ϕ⊥M
V ðx; μÞ agree with the

contributions of order v2 and order αs that we compute by
examining the quantity

ΔðμÞ ¼ αsðμ0Þ
4π

Mð0;1ÞðμÞ þ hv2iVMð0;v2ÞðμÞ; ð35Þ

where, in order to compare with ϕ⊥M
V ðx; μÞ, we take

μ0 ¼ 1 GeV in αsðμ0Þ and, implicitly, in Mð0;1ÞðμÞ and
Mð0;v2ÞðμÞ. The equivalent expression for the model LCDA
ϕ⊥M
V ðx; μÞ, is given, up to corrections of higher orders in αs

and v2, by

ΔMðμÞ ¼
Z

1

0

dx Tð0Þ
H ðx; μÞ½ϕ⊥M

V ðx; μÞ − ϕ⊥ð0Þ
V ðx; μÞ�: ð36Þ

In Table I we compare the values of Δðμ0Þ and ΔMðμ0Þ for
the J=ψ and ϒðnSÞ states, using the values of the input
parameters that are given in Ref. [11]. In the case of
ΔMðμ0Þ, we also show the values that result from varying
σVðμ0Þ by �25%, as was suggested in Ref. [11].

As can be seen from Table I, the central value of ΔMðμ0Þ
deviates from the value of Δðμ0Þ by −13% for the J=ψ ,
þ174% for theϒð1SÞ,þ72% for theϒð2SÞ, andþ55% for
theϒð3SÞ. We also see that the result is very sensitive to the
choice of σVðμ0Þ: The values ofΔMðμ0Þ vary by factors of 2
or more as σVðμ0Þ is varied by �25%. [In contrast, Δðμ0Þ
would vary by less than �25% if the input parameter hv2iV
were varied by �25%.] Therefore, we regard the approxi-
mate agreement of the central value of ΔMðμ0Þ with the
value of Δðμ0Þ for the case of the J=ψ as accidental.
In Table II we compare the values of ΔðmHÞ and

ΔMðmHÞ for the J=ψ and ϒðnSÞ states, using the values
of the input parameters at 1 GeV that are given in Ref. [11].
Again, in the case ofΔMðmHÞ, we also show the values that
result from varying σVðμ0Þ by �25%. We make use of the
Abel-Padé method in carrying out the evolution of μ from
μ0 ¼ 1 GeV to mH ¼ 125.09 GeV, taking 100 terms in
the eigenfunction expansion and using a 50 × 50 Padé
approximant.
In Ref. [11], it was suggested that the evolution of the

model LCDA to the scale μ ¼ mH would reduce the
dependence on the specifics of the model. As can be seen
from Table II, the central value of ΔMðmHÞ deviates from
value of ΔðmHÞ by −24% for the J=ψ , þ46% for the
ϒð1SÞ, þ23% for the ϒð2SÞ, and þ16% for the ϒð3SÞ.
Comparison with Table I shows that, in the case of the J=ψ ,
the deviation of ΔMðmHÞ from ΔðmHÞ actually increases as
μ is evolved from μ0 ¼ 1 GeV to mH. While the deviations
in the case of theϒðnSÞ states decrease as μ is evolved from
1 GeV to mH, they are still rather large, especially in the
case of the ϒð1SÞ. Furthermore, the results are very
sensitive to the choice of σVð1 GeVÞ: The values of

TABLE I. Numerical values of Δðμ0Þ and ΔMðμ0Þ for V ¼ J=ψ
and ϒðnSÞ at μ0 ¼ 1 GeV. In the last two columns, we have
evaluated ΔMðμ0Þ by replacing σVðμ0Þ by 0.75 and 1.25 times its
nominal value, respectively.

V Δðμ0Þ ΔMðμ0Þ ΔMðμ0ÞjσV→0.75σV ΔMðμ0ÞjσV→1.25σV

J=ψ 0.971375 0.843339 0.510365 1.12087
ϒð1SÞ 0.0770658 0.211269 0.116175 0.338490
ϒð2SÞ 0.209066 0.359150 0.195740 0.563622
ϒð3SÞ 0.295732 0.458135 0.250834 0.697510

TABLE II. Numerical values of ΔðμÞ and ΔMðμÞ for V ¼ J=ψ
andϒðnSÞ at μ ¼ mH . In the last two columns, we have evaluated
ΔMðμÞ by replacing σVðμ0Þ by 0.75 and 1.25 times its nominal
value, respectively.

V ΔðμÞ ΔMðμÞ ΔMðμÞjσV→0.75σV ΔMðμÞjσV→1.25σV

J=ψ 0.684103 0.522962 0.337973 0.666378
ϒð1SÞ 0.103008 0.150110 0.084148 0.233466
ϒð2SÞ 0.200579 0.246479 0.139542 0.368862
ϒð3SÞ 0.264641 0.307054 0.176647 0.444124
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ΔMðmHÞ vary by factors of 2 or more as σVð1 GeVÞ is
varied by �25%.
We would expect the uncalculated corrections of higher

orders in αs and v2 to be of size αs or v2 relative to the
corrections that we have calculated. We see that the model
LCDA of Ref. [11] produces results that deviate from ours
by amounts that are much larger than the expected sizes of
these uncalculated corrections. Therefore, we conclude that
the model LCDA of Ref. [11] does not lead to reliable
results for contributions to the light-cone amplitude of the
order-αs and order-v2 corrections to the LCDA. However,
because the value ofΔðmHÞ is small in comparison with the

leading contribution to the leading light-cone amplitude
Mð0;0Þ ¼ 4, the deviations of ΔMðmHÞ from ΔðmHÞ affect
the light-cone amplitude only at the level of about 4%
for the J=ψ and at the level of about 1% for the ϒðnSÞ
states.

VI. COMPUTATION OF THE DECAY RATES

A. Direct amplitude

Our formula for the light-cone direct amplitude
through order αs, with NLL resummation of logarithms
of m2

H=m
2
Q, is

iMLC
dir ½H → V þ γ� ¼ i

2
eeQκQm̄QðμÞð

ffiffiffi
2

p
GFÞ1=2

�
−ϵ�V · ϵ�γ þ

ϵ�V · pγp · ϵ�γ
pγ · p

�
f⊥V ðmHÞ
f⊥V ðμ0Þ

ffiffiffiffiffiffiffiffi
2Nc

p ffiffiffiffiffiffiffiffiffi
2mV

p
2mQ

ΨVð0Þ

×

��
1 −

5

6
hv2iV þ CFαsðμ0Þ

4π

�
log

m2
Q

μ20
− 8

��
Mð0;0ÞðμÞ

þ αsðμÞ
4π

Mð1;0ÞðμÞ þ αsðμ0Þ
4π

Mð0;1ÞðμÞ þ hv2iVMð0;v2ÞðμÞ
�
; ð37Þ

where, in computing iMLC
dir ½H → V þ γ�, we take

e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παð0Þp

.
We note that the formula (37) does not contain any cross

terms of order α2s, αsv2, or v4. In contrast, the expressions in
Ref. [11] do contain such cross terms because the expan-
sions of TH and the ratio f⊥V =fV in powers of αs and hv2iV
appear as factors in the expression that was used in
Ref. [11] for the direct amplitude. On the other hand,
our computation contains cross terms that arise from the
ratio f⊥V=fV that are not contained in the expression for
f⊥V=fV in Ref. [11]. That is because we use the values of the
LDMEs that were extracted in Refs. [20,21] by making use
of a formula for the quarkonium leptonic width that
contains the expansion of the factor fV in powers of αs
and hv2iV . All of the cross terms that we have mentioned
appear at orders that are beyond the claimed precision of
our calculation or the calculation of Ref. [11]. In our
calculation, they are taken into account in our estimates of
uncertainties from uncalculated higher-order corrections.
In the evolution of the expression in Eq. (37), we choose

the initial scale to be μ0 ¼ mQ and the final scale to be
μ ¼ mH. This choice incorporates the logarithms of
m2

H=m
2
Q into the evolved expressions. We will discuss

the effect of using the choice of scale μ0 ¼ 2mQ in Sec. VII.
We note that, in Ref. [11], the initial scales were taken to

be 1 GeV for the LCDAs and 2 GeV for the ratio of decay
constants f⊥V =fV . This latter choice is somewhat incon-
sistent with the use of values of hv2iV from Refs. [20,21],
as they were extracted by making use of the expansion of
fV in powers of αs and hv2iV , with αsðμÞ evaluated at the
scale mV .

B. Indirect amplitude

In computing the indirect amplitude, we follow
Refs. [1,7], taking

iMind ¼ iAind

�
−ϵ�V · ϵ�γ þ

ϵ�V · pγpV · ϵ�γ
pγ · pV

�
; ð38aÞ

where

Aind ¼
gVγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παðmVÞmH

p
m2

V

�
16π

αðmVÞ
αð0Þ ΓðH → γγÞ

�1
2

;

ð38bÞ
and gVγ is expressed in terms of the width of V into
leptons [1]:

gVγ ¼ −
eQ
jeQj

�
3m3

VΓðV → lþl−Þ
4πα2ðmVÞ

�1
2

: ð38cÞ

We obtain ΓðH → γγÞ from the values of the Higgs-boson
total width and branching fraction to γγ in Refs. [2,3]. In the
expression (38b) for Aind, we neglect a small phase that is
about 0.005. As in Ref. [1], we have chosen the scales
of the electromagnetic coupling as follows: we use αðmVÞ
to compute gVγ from the V leptonic width, we use e ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παðmVÞ

p
for the couplings of the virtual photon, and we

use e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παð0Þp

for the coupling of the real photon. We
have also compensated for the fact that ΓðH → γγÞ was
computed in Refs. [2,3] using e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4παð0Þp
.

In contrast with the calculations in Refs. [1,11], our
calculation of Aind does not include contributions that are
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suppressed as m2
V divided by combinations of m2

H, m
2
t , m2

Z,
or m2

W, where mt, mW , and mZ are the masses of the
top quark, W� boson, and Z0 boson, respectively. Such
contributions can arise not only from explicit mV terms in
the amplitude for H → γγ�, but also from electroweak
corrections to the amplitude for H → V þ γ. In the latter, it
is not possible to distinguish between direct and indirect
processes in a gauge-invariant way.

C. Numerical inputs

We take the pole masses to be the one-loop values
mc ¼ 1.483 GeV and mb ¼ 4.580 GeV, we take the MS
masses to be m̄c ¼ 1.275 GeV and m̄b ¼ 4.18 GeV, and
we take mH ¼ 125.09� 0.21ðstatÞ � 0.11ðsystÞ GeV,
which implies, from the tables in Refs. [2,3], that
ΓðH→ γγÞ¼ ð9.308 � 0.120Þ×10−6 GeV. Here, we have
included a 1% uncertainty from uncalculated higher-order
terms in the theoretical expression, an uncertainty of
0.022% from the uncertainty in mt, an uncertainty of
0.024% from the uncertainty in mW , and an uncertainty
of 0.82% from the uncertainty in mH. Our values for
jΨVð0Þj2 and hv2iV are shown in Table III. Following
Ref. [1], we use the values from Refs. [20,21], except that
we have increased the uncertainties in hv2iϒð1SÞ and
hv2iϒð2SÞ from those in Ref. [21]. The uncertainty from
uncalculated corrections of order v4 was estimated in
Ref. [21] by multiplying the central value of hv2iϒðnSÞ
by v2, where v2 ¼ 0.1 was used for the ϒðnSÞ states.
Because the central value of hv2iϒð1SÞ is anomalously small
(much less than v2), owing to an accidental cancellation in
the MS subtraction scheme, the estimate of the uncalcu-
lated order-v4 corrections in Ref. [21] considerably under-
states the uncertainty from this source. The uncertainty for
hv2iϒð2SÞ was also slightly underestimated. Instead of using
the estimates in Ref. [21], we take the uncertainties in
hv2iϒð1SÞ and hv2iϒð2SÞ from uncalculated order-v4 correc-
tions to be v4 ¼ 0.01.

D. Sources of uncertainties

In calculating the decay rates, we take into account
uncertainties in both the direct and indirect amplitudes, as is

described below. In computing branching fractions, we also
take into account the uncertainty in the total decay width of
the Higgs boson [2,3].

1. Direct amplitude

In the direct amplitude, we include the uncertainties
that arise from the uncertainties in ΨVð0Þ and the uncer-
tainties in hv2iV . We also include the uncertainties that
arise from uncalculated corrections of order α2s, order αsv2,
and order v4. We estimate the uncertainties from these
uncalculated corrections, relative to the lowest nontrivial
order in the direct amplitude, to be f½CFCAα

2
sðmQÞ=π2�2 þ

½CFαsðmQÞv2=π�2 þ ½v4�2g1=2 for the real part of the direct
amplitude and f½CAαsðmQÞ=π�2 þ ½v2�2g1=2 for the imagi-
nary part of the direct amplitude. (Note that the real part of
the direct amplitude starts in absolute order α0s and the
imaginary part of the direct amplitude starts in absolute
order αs.) We take v2 ¼ 0.3 for the J=ψ and v2 ¼ 0.1 for
the ϒðnSÞ states.
In Ref. [11], it was suggested that the uncertainties in

ΨVð0Þ and hv2iV were underestimated in Refs. [20,21]. We
now address these issues.
One difficulty that was raised in Ref. [11] is that one-

loop pole masses were used in Refs. [20,21] in the one-loop
expression for ΓðV → lþl−Þ, which was used to compute
ΨVð0Þ. The objection is that the pole mass is ill defined
outside of perturbation theory and is subject to renormalon
ambiguities. However, in Refs. [20,21], the pole mass
was used in conjunction with one-loop corrections to
ΓðV → lþl−Þ that are calculated using the pole mass.
This is equivalent, up to corrections of higher order in αs, to
the use of the MS mass in conjunction with one-loop
corrections to ΓðV → lþl−Þ that are calculated using the
MS mass. At one-loop order, the numerical difference
between the two procedures is small.
Another difficulty that was raised in Ref. [11] is that the

perturbation series for ΓðV → lþl−Þ has very large cor-
rections at two-loop and three-loop orders [22–25]. The
perturbation series was truncated at one-loop order in
Refs. [20,21]. While an understanding of the large two-loop
and three-loop corrections to ΓðV → lþl−Þ is still lacking,
it should be noted that the analyses in Refs. [20,21] of the
wave functions at the origin for the vector states V and the
pseudoscalar states P, which make use of the one-loop
expressions for ΓðV → lþl−Þ and ΓðP → γγÞ, result in the
same values for the corresponding V andPwave functions at
the origin, up to differences whose numerical sizes are of
order v2, in agreement with NRQCD velocity scaling. This
agreement was obtained in spite of the fact that both ΓðV →
lþl−Þ and ΓðP → γγÞ receive different large corrections in
two-loop order [24], and it suggests that one-loop truncation
is a reasonable procedure at the current level of precision.
In Ref. [11], the ratio f⊥V ðμÞ=fV appears, where the direct

amplitude is proportional to f⊥V ðμÞ and ΓðV → lþl−Þ is

TABLE III. Values of jΨVð0Þj2 in units of GeV3 and hv2iV for
V ¼ J=ψ and ϒðnSÞ. These values have been taken from
Refs. [20,21], except for the uncertainties in hv2iϒð1SÞ and
hv2iϒð2SÞ, which are described in the text.

V jΨVð0Þj2ðGeV3Þ hv2iV
J=ψ 0.0729� 0.0109 0.201� 0.064
ϒð1SÞ 0.512� 0.035 −0.00920� 0.0105
ϒð2SÞ 0.271� 0.019 0.0905� 0.0109
ϒð3SÞ 0.213� 0.015 0.157� 0.017
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proportional to f2V . The expression for this ratio through
order αs (one-loop order) and through order v2 was used
in Ref. [11], rather than the separate expressions for
the numerator and the denominator. At the one-loop
order, for which the perturbation series for the numerator
and the denominator are separately well behaved, the
use of the ratio confers no particular advantage. At the
two-loop order, at which the perturbation series for
ΓðV → lþl−Þ ∝ f2V is badly behaved, the ratio could
conceivably be better behaved than either the numerator
or the denominator. However, this conjecture has not yet
been validated, as the two-loop corrections to f⊥V ðμÞ have
yet to be calculated.
Finally, we mention that, even if we assume that

the uncertainty in the perturbative expression for
ΓðV → lþl−Þ is as large as 100% of the contribution of
the one-loop term, the resulting uncertainty in hv2iV is
comparable to that from other sources of uncertainty. If we
repeat the analyses of Refs. [20,21], but allow the pertur-
bative expression for ΓðV → lþl−Þ to vary by 100% of the
contribution of the one-loop term, then the values for hv2iV
deviate from the central value by a maximum of 88%,
143%, 62%, and 135% of the error bars in Table III for
the J=ψ , ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ, respectively. Hence,
the uncertainties in hv2iV that are given in Table III seem to
be ample to take into account the uncertainties in the
perturbative expression for ΓðV → lþl−Þ.

2. Indirect amplitude

In estimating the uncertainties in the indirect amplitude,
we follow the method that is given in footnote 2 of Ref. [1].
As we have already mentioned, we include in ΓðH → γγÞ
the uncertainties that arise from uncalculated higher-order
terms in the theoretical expression, the uncertainty in mt,
the uncertainty in mW , and the uncertainty in mH. We
assume that the uncertainties in the leptonic decay widths
are 2.5% for the J=ψ , 1.3% for theϒð1SÞ, and 1.8% for the
ϒð2SÞ andϒð3SÞ states. We take the relative uncertainty in
the indirect amplitude from uncalculated mass corrections
to be m2

V=m
2
H.

E. Method for computing uncertainties
in the decay rates

Owing to cancellations between the direct and indirect
amplitudes, small variations in those amplitudes can
result in very nonlinear changes in ΓðH → V þ γÞ.
Hence, one cannot reliably estimate the total uncertainty
in ΓðH → V þ γÞ simply by adding the uncertainties from
the individual sources in quadrature. Instead, we use the
following method to estimate the total uncertainty in
ΓðH → V þ γÞ. We write ΓðH → V þ γÞ as a function of
the various uncertain input parameters and the normaliza-
tions of the direct and indirect amplitudes. Then, we find
the global maximum and global minimum of ΓðH→VþγÞ

in a region about the central values of the input parameters
and normalizations that is constrained as

X
i

				 ci − ci0
Δci

				2 ≤ 1; ð39Þ

where the ci are the input parameters and normalizations,
the ci0 are the central values of the ci, and the Δci are the
uncertainties in the ci. We take the upper (lower) error bar
on ΓðH → V þ γÞ to be the global maximum (minimum) of
ΓðH → V þ γÞ minus the central value of ΓðH → V þ γÞ.

VII. RESULTS

Our results for the direct and indirect amplitudes are
given in Table IV, where the evolution of the direct
amplitudes has been computed by the Abel-Padé method,
and we have retained 100 terms in the eigenvalues series
and used 50 × 50 Padé approximants.
We note that, had we made the choice of initial scale

μ0 ¼ 2mQ, that would have shifted our results for the real
parts of the direct amplitudes by þ13%, þ4%, þ4%, and
þ4% for the J=ψ , ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ, respectively.
These shifts are within our estimated uncertainties for the
real parts of the direct amplitudes, which are 15%, 4%, 4%,
and 4% for the J=ψ , ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ, respec-
tively. The choice of initial scale μ0 ¼ 2mQ would have
shifted our results for the imaginary parts of the direct
amplitudes by þ0.1% and −1.6% for the J=ψ and ϒðnSÞ
states, respectively. These shifts are well within our
estimated uncertainties for the imaginary parts of the direct
amplitudes.
The results in Ref. [7] for the real parts of the direct

amplitudes are considerably larger than our results, by
66%, 20%, 22%, and 23% for the J=ψ , ϒð1SÞ, ϒð2SÞ, and
ϒð3SÞ, respectively. These differences are due, primarily, to
the use of LL evolution, rather than NLL evolution, for
m̄ðμÞ and f⊥V ðμÞ in Ref. [7]. The differences are larger than
the values that one obtains simply by considering the
generic size of a next-to-leading logarithm, namely,
½αsðmQÞ=π�2 logðm2

H=m
2
QÞ. In the case of ϕ⊥

V ðx; μÞ, the
use of NLL evolution, rather than LL evolution, changes
the direct amplitude by about 0.12% for the J=ψ and about
0.16%–0.17% for the ϒðnSÞ states. These changes are
negligible in comparison with the uncertainties in the direct

TABLE IV. Values of the parameters αV and βV in ΓðH →
V þ γÞ ¼ jαV − βVκQj2 × 10−10 GeV for V ¼ J=ψ and ϒðnSÞ.
V αV βV

J=ψ 11.71� 0.16 ð0.627þ0.092
−0.094 Þ þ ð0.118þ0.054

−0.054 Þi
ϒð1SÞ 3.283� 0.035 ð2.908þ0.122

−0.124 Þ þ ð0.391þ0.092
−0.092 Þi

ϒð2SÞ 2.155� 0.028 ð2.036þ0.087
−0.089 Þ þ ð0.293þ0.069

−0.069 Þi
ϒð3SÞ 1.803� 0.023 ð1.749þ0.077

−0.078 Þ þ ð0.264þ0.062
−0.062 Þi

NEW APPROACH TO THE RESUMMATION OF LOGARITHMS … PHYSICAL REVIEW D 95, 054018 (2017)

054018-11



amplitudes. The use of the Abel-Padé method to sum the
logarithms of c2ðμÞ ¼ f⊥V ðμÞMð0;v2ÞðμÞ to all orders in αs,
rather than through order α2s, as in Ref. [7], amounts to
about a 10% change in the case of the J=ψ and to about a
4% change in the case of the ϒðnSÞ states. Since the
corrections to the direct amplitude that arise from c2ðμÞ are
about 4% in the case of the J=ψ and about 3% in the case of
the ϒðnSÞ states, the changes to the direct amplitude that
result from the use of the Abel-Padé method are negligible
in comparison to the uncertainties.
The results in Ref. [11] for the ratio of the real part of the

direct amplitude to the indirect amplitude are slightly larger
than our results for that ratio, by 17%, 7%, 7%, and 8.5%
for the J=ψ , ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ, respectively. These
differences are somewhat larger than our relative uncer-
tainties in the real parts of the direct amplitudes, and they
are also larger than the uncertainties that are given in
Ref. [11] for the ratio of the real part of the direct amplitude
to the indirect amplitude.
The results in Ref. [11] for the ratio of the imaginary part

of the direct amplitude to the indirect amplitude differ from
our results for that ratio by −12%, 9%, 4%, and 1% for the
J=ψ , ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ, respectively. These
differences are well within our relative uncertainties for
the imaginary parts of the direct amplitudes.
As we have already mentioned, there are several possible

sources of these differences between our results for the
direct amplitudes and those of Ref. [11]. (1) Our initial
scales for the evolution of f⊥V ðμÞ and the LCDAs are
different from those in Ref. [11]. (2) Our formula for the
direct amplitude (37) treats cross terms of order α2s, αsv2,
and v4 differently than does the corresponding formula in
Ref. [11]. (3) Our treatment of the order αs and order v2

corrections to the LCDA is different from the model-LCDA
treatment of Ref. [11].
Our results for the SM decay rates and branching

fractions (κQ ¼ 1) are given in Table V. In computing
the uncertainties in the branching fractions, we have
included the effect of the uncertainty in the Higgs-boson
total width.
Our results for the SM decay rates agree with those in

Ref. [7], within the uncertainties that are given in Ref. [7],
except in the case of theϒð1SÞ. In this case, the real parts of
the SM direct and indirect amplitudes nearly cancel, and so,

as was pointed out in Ref. [11], the inclusion of the
imaginary part of the direct amplitude results in a signifi-
cant increase in the rate.
Our results for the SM branching fractions agree with

those in Ref. [11], within our uncertainties. Note that our
estimated uncertainties in the branching fractions are
comparable to those of Ref. [11], except in the case of
theϒð1SÞ, for which our uncertainty is considerably larger.
Since, in the ϒð1SÞ case, our uncertainty in the ratio of the
direct amplitude to the indirect amplitude is essentially the
same as Ref. [11], we suspect that the difference between
the uncertainty estimates arises because of the highly
nonlinear dependences of the decay rate on the input
parameters. (See Sec. VI E.)

VIII. SUMMARY AND DISCUSSION

In this paper, we have presented new calculations of
Higgs-boson decay rates to vector heavy-quarkonium states
plus a photon, where we have considered the vector
quarkonium states J=ψ and ϒðnSÞ, with n ¼ 1, 2, or 3.
As was pointed out in Ref. [1], these decay rates, when
compared with data from a high-luminosity LHC run, can
provide information about theHcc̄ andHbb̄ couplings. Our
calculation is carried out in the light-cone formalism in
which the nonperturbative parts of the quarkonium LCDAs
are expressed in terms of NRQCD long-distance matrix
elements [10]. Our calculations of the direct decay ampli-
tudes take into account corrections through order αs and
order v2 and include resummations of logarithms ofm2

H=m
2
Q

to all orders in αs through order v2 at NLL accuracy.
In order to resum logarithms that are associated with the

quarkonium LCDAs, we have devised a new method,
called the Abel-Padé method, which makes use of Abel
summation, accelerated through the use of Padé approx-
imants. The new method allows us to compute formally
divergent sums over the eigenfunctions of the LO evolution
kernels. These divergences arise because the LCDAs at
initial scale of the evolution are generalized functions
(distributions) of the light-cone fractions, rather than
ordinary functions. The Abel-Padé method defines these
distributions as sequences of ordinary functions and, hence,
gives finite and unambiguous results for the formally
divergent sums. We have tested this method numerically
against known analytic results for the LCDAs, and we find
that it converges quickly and reliably to the values from
analytic calculations. It solves the general problem of
carrying out the scale evolution in a nonrelativistic expan-
sion of the LCDA for heavy-quarkonium systems, and it
should be applicable in other situations in which series of
orthogonal polynomials fail to converge when they are used
to represent generalized functions. Using the Abel-Padé
method, we were able to make definitive calculations of the
LCDA-evolution effects in Higgs-boson decays to a quar-
konium plus a photon.

TABLE V. SM values of ΓðH → V þ γÞ in units of GeV and
BrðH → V þ γÞ for V ¼ J=ψ and ϒðnSÞ.
V ΓðH → V þ γÞ ðGeVÞ BrðH → V þ γÞ
J=ψ 1.228þ0.042

−0.042 × 10−8 3.01þ0.16
−0.15 × 10−6

ϒð1SÞ 2.94þ1.25
−1.02 × 10−11 7.19þ3.07

−2.52 × 10−9

ϒð2SÞ 1.00þ0.48
−0.39 × 10−11 2.45þ1.18

−0.96 × 10−9

ϒð3SÞ 7.27þ3.67
−2.93 × 10−12 1.78þ0.90

−0.72 × 10−9
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We have compared the Abel-Padé method with the
approach of Ref. [11], in which a model LCDA is used
to take into account relativistic and QCD corrections to the
LCDA. In contrast with the model approach, the Abel-Padé
method makes use only of the calculated nonrelativistic
corrections [7] and QCD corrections [10], and does not
introduce any new model assumptions. We find that the
model of Ref. [11] gives results that disagree substantially
with those from the Abel-Padé method and that the model
results are very sensitive to the choices of model param-
eters. It turns out that the relativistic and QCD corrections
to the LCDA have only small effects on the direct decay
amplitude, and so the large differences between the model
and Abel-Padé calculations of the relativistic and QCD
corrections to the LCDA have only small effects on the
decay rates.
Our results for the ratios of the direct decay amplitudes to

the indirect decay amplitudes are in reasonable agreement
with those in Ref. [11]. Since the indirect decay amplitude
can be determined quite precisely, this implies that our
direct decay amplitudes are in reasonable agreement with
those in Ref. [11]. Our results for the real parts of the direct
decay amplitudes are considerably smaller than those in
Ref. [7], owing to the use in Ref. [7] of LL resummation,
rather than NLL resummation, of the logarithms of
m2

H=m
2
Q. Our result implies that the sensitivities of the

decay rates to the HQQ̄ couplings are considerably smaller
than the sensitivities that were suggested in Ref. [7],
especially in the case of the J=ψ .
Our results for the SM decay rates are in good agreement

with those of Ref. [7], except in the case of the ϒð1SÞ. As
was pointed out in Ref. [11], it is important to include the
imaginary part of the direct amplitude in the case of the
decay to ϒð1SÞ because there is an almost exact cancella-
tion between the real parts of the direct and indirect
amplitudes. The inclusion of the imaginary part of the
direct amplitude in our calculation increases the decay rate
in the ϒð1SÞ case substantially in comparison to the rate
that is given in Ref. [7].
The branching fractions that we find are in good agree-

ment with those in Ref. [11]. Our uncertainty estimate in
the case of theϒð1SÞ differs from that in Ref. [11], possibly
owing to the highly nonlinear dependence of the rate on the
input parameters. In Sec. VI E, we have presented a novel
method for estimating the uncertainties in the presence of
such nonlinearities.
In the calculations that we have described, there is one

important theoretical issue that remains unresolved. The
direct amplitude is proportional to the quarkonium wave
function at the origin. The wave function at the origin is
usually determined by comparing the theoretical expression
for the quarkonium decay rate to leptons with the measured
rate. In Refs. [7,11], and in the present work, the one-loop
expression for the decay rate was used. Two- and three-loop
expressions exist [23–25], but the higher-loop corrections

apparently destroy the convergence of the perturbation
series. As we have mentioned, the one-loop analyses in
Refs. [20,21] result in values for the corresponding vector
and pseudoscalar wave functions at the origin that agree, up
to differences whose numerical sizes are of relative order
v2. This agreement, which is predicted by the NRQCD
velocity-scaling rules, is obtained in spite of the fact that the
two-loop corrections to the vector decays to leptons and the
pseudoscalar decays to two photons are large and different
in relative size. The agreement suggests that the one-loop
truncations of the perturbation series may lead to reason-
able results for the wave functions at the origin at a level of
precision of order v2.
In Ref. [11], the ratio of decay constants f⊥V=fV appears.

The directH → V þ γ amplitude is proportional to f⊥V , and
the leptonic width of the vector quarkonium is proportional
to f2V . This ratio is evaluated through order αs (one-loop
order) and order v2. Hence, the calculation in Ref. [11] also
truncates the perturbation series for the leptonic width at
one-loop level. It is conceivable that the ratio f⊥V=fV is
better behaved than either the numerator or the denomi-
nator. A calculation of two-loop QCD corrections to f⊥V
would help to test this conjecture.
Higgs-boson decays to a vector quarkonium plus a

photon provide important opportunities to measure the
HQQ̄ couplings at the LHC and are the only known
processes that can provide phase information about those
couplings. In order to take advantage of these opportunities
to determine the HQQ̄ couplings, it is essential to have the
theoretical calculations of the decay rates under good
control. In this paper, we have addressed the issue of the
divergences that appear when one uses conventional
eigenfunction-expansion methods to resum the logarithms
of m2

H=m
2
Q that appear in the nonrelativistic expansions of

the quarkonium light-cone distribution amplitudes. With
the resolution of this issue, we believe that, aside from the
matter of the determination of quarkonium wave functions
at the origin that we have mentioned above, calculations of
the rates for Higgs-boson decays to vector quarkonia plus a
photon are now on a sound theoretical footing.
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APPENDIX A: EVOLUTION OF THE RUNNING
MASS AND DECAY CONSTANT

Here, we collect formulas at NLL accuracy for the
evolution of the running MS mass m̄ðμÞ [26] and the decay
constant f⊥V ðμÞ [27]:

m̄ðμÞ
m̄ðμ0Þ

¼
�
αsðμÞ
αsðμ0Þ

�
−γm

0
=ð2β0Þ

×

�
1 −

γm1 β0 − β1γ
m
0

2β20

αsðμÞ − αsðμ0Þ
4π

þ…

�
;

ðA1aÞ

f⊥V ðμÞ
f⊥V ðμ0Þ

¼
�
αsðμÞ
αsðμ0Þ

�þγT
0
=ð2β0Þ

×

�
1þ γT1β0 − β1γ

T
0

2β20

αsðμÞ − αsðμ0Þ
4π

þ…

�
;

ðA1bÞ

where

γm0 ¼ −6CF; γm1 ¼ −3C2
F −

97

3
CFCA þ 20

3
CFTFnf;

ðA2aÞ

γT0 ¼ 2CF; γT1 ¼ −19C2
F þ 257

9
CFCA −

52

9
CFTFnf:

ðA2bÞ

Here, β0 ¼ 11
3
Nc − 2

3
nf is the one-loop coefficient of the

QCD beta function, β1 ¼ 34
3
C2
A − 20

3
CATFnf − 4CFTFnf is

the two-loop coefficient of the QCD beta function,
CF ¼ ðN2

c − 1Þ=ð2NcÞ, CA ¼ 3, Nc ¼ 3 is the number of
colors, TF ¼ 1=2, and nf is the number of active quark
flavors.

APPENDIX B: EVOLUTION MATRIX

At NLL accuracy, the evolution matrix Unkðμ; μ0Þ is
given by [13]

Unkðμ; μ0Þ ¼
(
ENLO
n ðμ; μ0Þ; if k ¼ n;

αsðμÞ
4π ELO

n ðμ; μ0Þdnkðμ; μ0Þ; if k < n;

ðB1Þ

where

ELO
n ðμ; μ0Þ ¼

�
αsðμÞ
αsðμ0Þ

�γ
⊥ð0Þ
n
2β0 ; ðB2aÞ

ENLO
n ðμ; μ0Þ ¼ ELO

n ðμ; μ0Þ

×

�
1þ αsðμÞ − αsðμ0Þ

4π

γ⊥ð1Þ
n β0 − γ⊥ð0Þ

n β1
2β20

�
;

ðB2bÞ

dnkðμ;μ0Þ ¼
Mnk

γ⊥ð0Þ
n − γ⊥ð0Þ

k − 2β0

8<
:1−

�
αsðμÞ
αsðμ0Þ

�γ
⊥ð0Þ
n −γ⊥ð0Þ

k
−2β0

2β0

9=
;;

ðB2cÞ

Mnk ¼
ðkþ 1Þðkþ 2Þð2nþ 3Þ

ðnþ 1Þðnþ 2Þ ðγ⊥ð0Þ
n − γ⊥ð0Þ

k Þ

×
�
8CFAnk − γ⊥ð0Þ

k − 2β0
ðn − kÞðnþ kþ 3Þ

þ 4CF
Ank − ψðnþ 2Þ þ ψð1Þ

ðkþ 1Þðkþ 2Þ
�
; ðB2dÞ

Ank ¼ ψ

�
nþ kþ 4

2

�
− ψ

�
n − k
2

�
þ 2ψðn − kÞ − ψðnþ 2Þ − ψð1Þ: ðB2eÞ

Here ψðnÞ is the digamma function. The LO and NLO

anomalous dimensions, γ⊥ð0Þ
n and γ⊥ð1Þ

n , respectively, are
given by

γ⊥ð0Þ
n ¼ γð0Þn − γT0 ; ðB3aÞ

γ⊥ð1Þ
n ¼ γð1Þn − γT1 ; ðB3bÞ

where, from Refs. [4,28], we have

γð0Þn ¼ 8CFðHnþ1 − 3=4Þ; ðB4Þ

and, from Refs. [29,30], we have
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γð1Þn ≡ 4C2
F

�
Hð2Þ

nþ1 − 2Hnþ1 −
1

4

�
þ CFCA

�
−16Hnþ1H

ð2Þ
nþ1 −

58

3
Hð2Þ

nþ1 þ
572

9
Hnþ1 −

20

3

�

− 8

�
C2
F −

1

2
CFCA

��
4Hnþ1

�
S0ð2Þðnþ1Þ=2 −Hð2Þ

nþ1 −
1

4

�
− 8~Snþ1 þ S0ð3Þðnþ1Þ=2 −

5

2
Hð2Þ

nþ1

þ 1þ ð−1Þn
ðnþ 1Þðnþ 2Þ þ

1

4

�
þ 32

9
CF

nf
2

�
3Hð2Þ

nþ1 − 5Hnþ1 þ
3

8

�
; ðB5aÞ

where

HðkÞ
n ≡Xn

j¼1

1

jk
; with Hð1Þ

n ≡Hn; ðB5bÞ

S0ðkÞn=2 ≡
8<
:

HðkÞ
n=2; if n is even;

HðkÞ
ðn−1Þ=2; if n is odd;

ðB5cÞ

~Sn ≡
Xn
j¼1

ð−1Þj
j2

Hj: ðB5dÞ

Here, the HðkÞ
n are the generalized harmonic numbers. Note

that the off-diagonal matrix elements, which are propor-
tional to dnkðμ; μ0Þ, are nonvanishing only for even n − k
[13,14]. One can obtain Unkðμ; μ0Þ at LL accuracy by
replacing ENLO

n ðμ; μ0Þ in Eq. (B1) with ELO
n ðμ; μ0Þ and

setting the off-diagonal terms to zero.

APPENDIX C: NONRELATIVISTIC EXPANSION

In this appendix we discuss the nonrelativistic expansion
of the light-cone amplitude in order α0s and investigate the
convergence of that expansion numerically.

1. Formulation of the expansion

In Ref. [7], a formal expansion of the LCDAwas given.
Making the change of light-cone variables x → 2x − 1, we
write that expansion as

ϕ⊥
V ðxÞ ¼

X∞
k¼0

ð−1Þkhxki
2kk!

δðkÞ
�
x −

1

2

�
; ðC1Þ

where the normalization condition isZ
1

0

dxϕ⊥
V ðxÞ ¼ 1: ðC2Þ

Here, hxki is defined by

hxki ¼ 2k
Z

1

0

dx

�
x −

1

2

�
k
ϕ⊥
V ðxÞ: ðC3Þ

As we will see in Appendix C 2, the kth x moment in
Eq. (C3) is proportional, in order α0s, to the NRQCD LDME

hvki. Hence, the expansion in Eq. (C1) is the nonrelativistic
expansion of the LCDA in order α0s. In the following
discussions, we will assume that ϕ⊥

V ðxÞ is even under the
replacement x ↔ 1 − x (charge-conjugation parity), in
which case, only the moments hxki with k even are
nonvanishing.
The meaning of this formal expansion is that, if one

integrates ϕ⊥
V ðxÞ against a test function fðxÞ, then that

integral is replaced by the sum of the integrals of ϕ⊥
V ðxÞ

against each term in the Taylor expansion of fðxÞ,
Z

1

0

dx fðxÞϕ⊥
V ðxÞ ¼

X∞
k¼0

1

k!

�
dk

dxk
fðxÞ

�				
x¼1=2

×
Z

1

0

dx ðx − 1=2Þkϕ⊥
V ðxÞ

¼
X∞
k¼0

fðkÞhxki; ðC4aÞ

where

fðkÞ ¼ 1

2kk!

�
dk

dxk
fðxÞ

�				
x¼1=2

: ðC4bÞ

In our case, we wish to compute the light-cone amplitude

Mð0ÞðμÞ ¼
Z

1

0

dx THðx; μÞϕ⊥
V ðx; μÞ; ðC5Þ

where the superscript (0) denotes order α0s.Mð0ÞðμÞ has the
nonrelativistic expansion

Mð0ÞðμÞ ¼
X∞
k¼0

Mð0;v2kÞðμÞ; ðC6Þ

where

Mð0;v2kÞðμÞ ¼ fð2kÞhx2ki; ðC7Þ

and we make the identification

fðxÞ ¼
X∞
n¼0

Xn
m¼0

TnðμÞUnmðμ; μ0ÞNmC
ð3=2Þ
m ð2x − 1Þ: ðC8Þ
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We compute the derivatives of this quantity by making use
of the Abel summation in Eq. (31). That is, we compute

fð2kÞ ¼ lim
z→1

X∞
n¼0

Xn
m¼0

znTnðμÞUnmðμ; μ0ÞNm

×
1

22kð2kÞ!
d2k

dx2k
Cð3=2Þ
m ð2x − 1Þ

				
x¼1=2

ðC9Þ

and we accelerate the convergence of the sum of m by
making use of Padé approximants, as we have described
earlier.
Making use of the identities

d
dx

Cλ=2
n ðxÞ ¼ λCðλþ2Þ=2

n−1 ðxÞ ðC10aÞ

and

Cλ=2
2n ð0Þ ¼

ð−1Þn
ð2nÞ!!

ðλþ 2n − 2Þ!!
ðλ − 2Þ!! ; ðC10bÞ

we obtain a convenient expression for the even derivatives
of the even-order Gegenbauer polynomials:

d2k

dx2k
Cð3=2Þ
2n ð2x − 1Þ

				
x¼1=2

¼ ð−1Þn−k22k ð2nþ 2kþ 1Þ!!
ð2n − 2kÞ!! :

ðC11Þ

2. Sizes of the nonrelativistic moments

In order α0s, the x moments of the LCDA [Eq. (C3)]
have the following relationships to the NRQCD LDMEs
[16–18]:

hx2ki ¼ hv2ki
2kþ 1

: ðC12Þ

As we have mentioned in footnote 6, the NRQCD velocity-
scaling rules, in their strictest sense, state that hvniV
vanishes as vn in the limit v → 0. However, in phenom-
enology, the velocity-scaling rules are usually taken to
mean that

hv2ki ∼ hv2ik; ðC13Þ

where ∼ means equal up to a coefficient of order 1. These
approximate sizes of the LDMEs are consistent with the
generalized Gremm-Kapustin relation [19].
Now let us consider the x moments of the model LCDA

in Eq. (32), which we denote by hxkiM. We compute
σJ=ψðμ0Þ using Eq. (34), but we drop the order-αs term so as
to obtain the behavior at order α0s. Then, using hv2iJ=ψ ¼
0.201 we obtain σJ=ψ ¼ 0.129422. The first several x
moments are then

hx0iM ¼ 1;

hx2iM ¼ 0.0573955;

hx4iM ¼ 0.00962303;

hx6iM ¼ 0.00259973;

hx8iM ¼ 0.000943655;

hx10iM ¼ 0.000419855: ðC14Þ

On the other hand, from the relationship between the
x moments and the LDMEs at order α0s [Eq. (C12)] and
the NRQCD velocity-scaling rules [Eq. (C13)], we expect
that

hx0i ¼ 1;

hx2i ¼ 0.0573955;

hx4i ∼ 0.00592964;

hx6i ∼ 0.000729288;

hx8i ∼ 0.0000976684;

hx10i ∼ 0.0000137595: ðC15Þ

The expression for hx2kiM in the limit σV → 0 is given by

hx2kiM ¼ ð2σVÞ2kð2k − 1Þ!!½1þOðσ2VÞ�: ðC16Þ

Hence, the model LCDA satisfies the NRQCD velocity-
scaling rules in the strict sense that the 2kth moment
vanishes as the kth power of a quantity that could be
interpreted as the square of the velocity. However, we see
from Eq. (C14) that the first several x moments of the
model LCDA badly violate the broader expectation that the
LDMEs satisfy the relationship in Eq. (C15).
The crucial issue for the convergence of the velocity

expansion is the behavior of the 2kth x moment of the
LCDA in the limit k → ∞ for fixed σV . We can derive an
asymptotic expansion for the x moments of the model
LCDA by integrating the definition in Eq. (C3) twice by
parts. The result for even moments is

hx2kiM ¼ ½ ∂∂xϕ⊥M
V ðxÞ�jx¼0 − ½ ∂∂xϕ⊥M

V ðxÞ�jx¼1

4ð2kþ 1Þð2kþ 2Þ þO½1=ð2kÞ3�

¼ Nσ

ffiffiffiffiffiffiffiffi
2=π

p
e−1=ð8σ2VÞ

σVð2kþ 1Þð2kþ 2Þ þO½1=ð2kÞ3�: ðC17Þ

Hence, we see that the 2kth moment falls as 1=k2 in the
limit k → ∞, while we expect, from Eqs. (C12) and (C15),
that the 2kth moment should fall faster than v2k.
Nevertheless, Eq. (C17) shows that the nonrelativistic
expansion converges for the model LCDA, in the absence
of evolution, provided that
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Tð2kÞ
H ≡ 1

22kð2kÞ!
�
d2k

dx2k
THðxÞ

�				
x¼1=2

ðC18Þ

grows more slowly than a power of k.7

We record here the values for hx2ki that we obtain by
retaining both the order-αs term and the order-v2 term in
Eq. (34), which corresponds to taking σJ=ψ ¼ 0.228,

hx0iM ¼ 1;

hx2iM ¼ 0.120256;

hx4iM ¼ 0.0373473;

hx6iM ¼ 0.0166916;

hx8iM ¼ 0.00909954;

hx10iM ¼ 0.00561735: ðC19Þ
These x moments, of course, lead to a slower convergence
of the nonrelativistic expansion than those for the case
σJ=ψ ¼ 0.129422.

3. Numerical tests of the convergence of the
nonrelativistic expansion

Now let us test numerically the convergence of the
nonrelativistic expansion of the light-cone amplitude in
order α0s, which is given in Eq. (C6). We do this by
comparing the numerical results from the nonrelativistic
expansion of the light-cone amplitude with the numerical
results that are obtained by computing the light-cone
amplitude directly from a model LCDA. For this purpose,
we make use of the model LCDA in Eq. (32). As we have
pointed out, the x moments of this model LCDA decrease
much more slowly with increasing moment number than
would be expected from the NRQCD velocity-scaling
rules. Therefore, we expect the nonrelativistic expansion
to converge more slowly for this model LCDA than for a
more realistic LCDA. However, as we will see, even for this
model LCDA, the convergence of the nonrelativistic
expansion is quite rapid.

a. Without evolution

We first take the case of no evolution, i.e., μ ¼ μ0. We

consider THðμÞ at leading order in αs. Then, fðxÞ ¼ Tð0Þ
H ,

and we can compute fð2kÞ analytically from Eq. (C4b), with
the result

Mð0;v2kÞðμ0Þ ¼ 4hx2ki ðC20Þ
for all k. We note that we can also compute the fð2kÞ in
Eq. (C20) by making use of the Abel summation in
Eq. (C9). If we accelerate the convergence of the sum

over m by employing a 50 × 50 Padé approximant, then,
through Mð0;v10Þ, the agreement with the coefficient 4 in
Eq. (C20) holds to greater than 5 places after the decimal.
This agreement provides strong confirmation of the validity
of the Abel summation in Eq. (C9), as supplemented by the
use of Padé approximants.
Using the x moments of the model LCDA that corre-

spond to σJ=ψ ¼ 0.129422 [Eq. (C14)], we find that

X5
k¼0

Mð0;v2kÞðμ0ÞjM ¼ 4.28393: ðC21Þ

On the other hand, if we evaluate Mðμ0Þ directly
in Gegenbauer-moment space, taking the first 20
Gegenbauer moments, we obtain

Mðμ0ÞjM ≈ 4.28670: ðC22Þ

This value agrees very well with the one that is obtained
from the first 5 terms in the nonrelativistic expansion. [It
also agrees very well with the value that is obtained by
direct computation of the amplitude in x space as, in
Eq. (C5).] The order-v2 term in the expansion accounts for
80% of the higher-order corrections. As we have noted, the
x moments of the model LCDA severely violate the
velocity-scaling relation in Eq. (C13), and, so, we would
expect that, in the case of a more realistic LCDA, the order-
v2 term in the expansion would account more fully for the
higher-order corrections. If we use the values of the x
moments in Eq. (C15), which are based on the NRQCD
velocity-scaling rules, then we find that the order-v2 term in
the expansion accounts for 89% of the higher-order
corrections.
We can evaluate these same quantities for the xmoments

in Eq. (C19), which correspond to the choice σJ=ψ ¼ 0.228.
We remind the reader that this value of σJ=ψ corresponds to
the inclusion of the order-αs corrections, as well as the
order-v2 corrections, in the model LCDA. Hence, for this
value of σJ=ψ , the relationship between the x moments of
the model LCDA and the NRQCD LDMEs in Eq. (C12)
does not hold, and the x-moment expansion is not, strictly
speaking, a nonrelativistic expansion. Nevertheless, it is
interesting to examine the convergence of the x-moment
expansion in this case. The result for the x-moment
expansion is

X5
k¼0

Mð0;v2kÞðμ0ÞjM ¼ 4.75605; ðC23Þ

and the result for the direct evaluation, using the first 20
Gegenbauer moments, is

Mðμ0ÞjM ≈ 4.84334: ðC24Þ
7We note that the limits k → ∞ and σV → 0 cannot be

interchanged, as can be seen explicitly from Eqs. (C16) and
(C17).
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Again, there is good agreement between the results from
x-moment expansion and the direct evaluation, although, as
expected, the x-moment expansion converges more slowly
with this choice of σJ=ψ .

b. With evolution

In this section, we compute the same quantities as in the
preceding section, but taking μ ¼ mH and μ0 ¼ 1 GeV. We
use LL evolution. In order to compute the coefficients of
the hx2ki in the presence of evolution, we use the Abel
summation in Eq. (C9), accelerating the convergence
to the limit by employing a 50 × 50 Padé approximant.
The result is

Mð0;0ÞðμÞ ¼ 4.91403hx0i;
Mð0;v2ÞðμÞ ¼ 2.95670hx2i;
Mð0;v4ÞðμÞ ¼ 2.31150hx4i;
Mð0;v6ÞðμÞ ¼ 1.96596hx6i;
Mð0;v8ÞðμÞ ¼ 1.74271hx8i;
Mð0;v10ÞðμÞ ¼ 1.58320hx10i: ðC25Þ

We note that the evolution results in a decreasing sequence
of coefficients, and, so we expect the nonrelativistic
expansion to converge more rapidly than in the absence
of evolution. With choice σJ=ψ ¼ 0.129422, the nonrela-
tivistic expansion gives

X5
k¼0

Mð0;v2kÞðμÞjM ¼ 5.11340; ðC26Þ

and the direct evaluation, using the first 20 Gegenbauer
moments, gives

MðμÞjM ¼ 5.11425: ðC27Þ

There is good agreement between the nonrelativistic
expansion and the direct evaluation. As expected, the
nonrelativistic expansion converges more rapidly than in
the case of no evolution. In this case, the order-v2 term in
the expansion accounts for 85% of the higher-order
corrections. We would expect that, in the case of a more
realistic LCDA, the order-v2 term in the expansion would
account more fully for the higher-order corrections. If we
use the values of the x moments in Eq. (C15), which are
based on the NRQCD velocity-scaling rules, then we find
that order-v2 term in the expansion accounts for 92% of the
higher-order corrections.
Finally, we carry out the same computation with the

choice σJ=ψ ¼ 0.228. Again, we remind the reader that this
value of σJ=ψ corresponds to the inclusion the order-αs
corrections, as well as the order-v2 corrections, in the
model LCDA, and, so, for this value of σJ=ψ , the expansion
the x-moment expansion of the LCDA is not, strictly
speaking, a nonrelativistic expansion. The result for the
x-moment expansion is

X5
k¼0

Mð0;v2kÞðμÞjM ¼ 5.41349; ðC28Þ

and the result from the direct evaluation is

MðμÞjM ≈ 5.43700: ðC29Þ

Again, the x-moment expansion converges rapidly to the
result from the direct evaluation, although, as expected, not
as rapidly as with the choice σJ=ψ ¼ 0.129422.
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