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Observation of 7= — n)z"v, decays at Belle-Il would indicate either a manifestation of isospin
symmetry breaking or genuine second class current (SCC) effects. The corresponding radiative 7~ —
n") 7~ v,y decay channels are not suppressed by G-parity considerations and may represent a serious
background in searches of SCCs in the former. We compute the observables associated to these radiative
decays using resonance chiral Lagrangians and conclude that vetoing photons with £, > 100 MeV should
get rid of this background in the Belle-II environment while searching for the 7~ — nz~v, channel. Similar
considerations hold inconclusive for decays involving the 7/, given the theory’s uncertainties in the
prediction of the = — #'z~v, branching ratio. Still, additional kinematics-based cuts should be able to

suppress this background in the 5’ case to a negligible level.
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I. INTRODUCTION

Searches for the tau lepton decays 7~ — a(980)v, and
7= — by (1235)v, were suggested long ago in Ref. [1] as
clean signatures of second class currents (SCCs) [2]." SCCs
are defined as those having opposite G-parity to the weak
currents in the standard model (SM). Since G = Ce'*'> (with
C the charge conjugation operator and /; the generators of
isospin rotations), the above decay channels of 7 leptons can
be induced also by breaking of charge-conjugation and/or
isospin symmetry. Breaking of isospin symmetry [3] allows
us to estimate that branching fractions of G-parity suppressed
channels are 4 orders of magnitude smaller than similar
decays that are allowed in the SM. The opposite G-parities of
pions and 7 mesons would yield a violation of this quantum
number in #")z~ production through the dy*u current
independently of the intermediate (resonance) dynamics.2
Therefore, the measurement of 7~ — z~5")v, would be an
unambiguous signature of SCCs: either induced by isospin or
C-parity breaking (within the SM) or genuine (by beyond-
the-SM currents). On the contrary, the detection of 7~ —
b7 (1235)v, through the by (1235) dominant decay products
[w(782)x, where the @ decays in turn mostly to 777~ 7]
must be indirect, since the intermediate wz system could
have been produced via a p(770) resonance (which is an
ordinary first class current process). Analyzing the angular
distribution of the final-state pions allows to set an upper
bound of 1.4 x10™* on the SCC decay wz at the

'The other two SCCs have the quantum numbers of the 1/#’
and w/¢ mesons, respectively. Thus, in their production via the
charged weak current they need to come along with an associated

+
T,
2Although nz~ is the predominant decay mode of the ag (980)
[4], this final-state dimeson system need not be produced through

an intermediate a; resonance.
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90% confidence level [5], to be compared with the measured
rate of ~2% for this process [4]. Theoretical expectations of
SCC contributions to this decay mode within the SM have
been explored in Ref. [6], estimating BR ~ 2.5 x 107> based
on spin-1 meson dominance.

After unsuccessful searches of SCCs in nuclear beta
decays [7], there was renewed interest in this topic after
the claim by the HRS Collaboration [8] of having observed
the decay channel 7~ — z75v, with a branching fraction of
(5.1 = 1.5)% [8], an unexpectedly large rate. This result was
followed by an effort of theorists to assess the size of this
decay [9], which led to O(107~1073) for the branching ratio
into the 7z~ channel (and < 107° for the /2~ decay mode).
Currently, the best upper limits available are based on
searches by the BABAR Collaboration [10] corresponding
to BR(7™ = z7nr,) < 9.9 x 107> and BR(7™ = 7771,) <
7.2 x 107° [11], which lie close to the estimates based on
isospin symmetry breaking for the BR(z~ — 77 7")v) decays
[9,12].3 Future searches at superflavor factories (like Belle-
IT) will hopefully provide us with the discovery of these
channels [14]. In view of this experimental improvement and
since the discovery of genuine SCCs would point to the
existence of new physics, it becomes interesting to revisit
these tau lepton decays. For this purpose it is very important
to have a reliable theoretical estimate of the SM prediction
on these channels, as well as of all possible physical
backgrounds in experimental searches.

Along this line of research, two QCD-based studies of
the 7= — z7nv, decays have been published recently
[15,16] (also discussing the #' channel in the latter

*Belle reported slightly smaller branching ratio upper limits
[13], BR < 7.3 x 1075(<4.6 x 107%) for the 7z n(y) decay
channels, at 90% C.L., in the 2009 Europhysics Conference
on High Energy Physics.
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reference). It is clear, however, that both the errors on the
mixings in the 7° — 5 — 5’ system [17] and the uncertainties
of the parameters describing the dominant scalar form
factor (obtained from a fit to meson-meson scattering data
[18] in Ref. [16]) are currently limiting the accuracy of
these predictions. Still, 7= — z7nv, decays are predicted
with a branching fraction of ~1 x 107> (certainly within
reach of even first-generation B-factories), while 7= —
7 v, decays are expected with a branching ratio of
[1077, 107¢] (which could even be challenging for Belle-1I).

If SCCs were not discovered in 7~ — 77 nu, decays at
first-generation B-factories it was due to the tough back-
ground present [19,20]. That happened even though Belle
undertook a thorough program to measure the main of these
backgrounds to allow a data-driven rejection of them in the
search for SCCs: 7 — K™ nu, [21] (with the K misidentified
asan); 7 — na~ v, [21] (failing to reconstruct the z° from
its two-photon decay products); and similarly 7 —
n(Kn)~v, [21], = = (4n)"v, [22] (if the n meson in the
SCC process is to be detected through its three-pion
decays); and 7 — 7~ yv, [23] (due to an additional photon
from elsewhere with a diphoton invariant mass around m,)).
Unfortunately 7 — z~v, (with continuum yy contributions)
was not measured at the B-factories, and among the most
frequent tau decay modes, two- [24] and three-pion modes,
the latter was measured at BABAR [11] but not at Belle,
given that these decay channels also have a difficult
background to reject. In parallel to this remarkable exper-
imental effort, some of these decays have also been studied
recently [25-30] to reduce the associated uncertainties in
the related Monte Carlo simulation [31-33]. A notable
program in this direction was also pursued by the BABAR
Collaboration [10,11,34].

In this article we study the related 7= — 7~ 1)1,y decays,
which provide a physical background for undetected pho-
tons. Since the nonradiative decay is very suppressed in the
SM owing to isospin breaking, photon radiation off external
lines is further suppressed by at least 2 orders of magnitude
[O(a) suppression in the observables].4 Instead, the model-
dependent contributions to this radiative decay (of order k in
photon four-momentum [35]) are not suppressed by G-parity
considerations and involve only the effective YWz
vertex. Corresponding to an isospin breaking analysis (where
effects due to m, # m,; and e # 0 have to be taken into
account at the same order), we expect a similar rate for the
G-parity violating 7~ — 7~ nv, decays and for their radiative
counterpart [with structure-dependent contributions sup-

0 mg—m _
pressed only by O(a)~ efm) = m#’]%/z) ~1072].

Another important aspect to note is the fact that while inner
bremsstrahlung (IB) contributions peak at low photon
energies, this is not the case for the model-dependent

*We check in Appendix A that this is indeed the case using a
reasonable threshold for photon detection.
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contributions we are interested in. In fact, we will see that
this should enable us to get rid of the radiative background
by cutting above certain reasonable photon energies.”

Noticeably, Refs. [15,16] disagree in the presence of a
characteristic signature of the #z decay mode as a peak
corresponding to the ay(980) state. While Ref. [15] con-
cludes that the strength of this particular signal depends on
the energy dependence of the relevant phaseshift (and
specifically on the energy at which it exhibits a dip),
Ref. [16]—on the contrary—concludes that meson-meson
scattering data require that any structure in the ay(980)
resonance region be weak enough to appear as buried in
the continuum. Nevertheless, this last reference concludes
that a signature of scalar form factor contributions to the
7~ — n nu, decays should appear as a prominent sharp peak
around the a,(1450) resonance, while basically no signal is
expected above the GeV according to Ref. [15]. In view of
these contradictory predictions it is therefore appropriate to
discuss if the presence of t~ — z7nyv, decays can be a
relevant background, particularly concerning the scalar
resonance signatures, a feature to which we will pay
particular attention.

We carry out our computations in the framework of the
resonance chiral Lagrangians and compare our results to a
simplified calculation based on a meson dominance model.
To the best of our knowledge, this decay has not been
considered before in the literature. Our results confirm
that the isospin breaking counting as radiative and non-
radiative processes is predicted with BR ~ 107> for the 7z
case. However, a feasible cut (even at Belle-II) for E, >
100 MeV allows us to suppress this particular background
enough to allow the possible detection of SCCs in 77 —
z v, decays. We will see, however, that this is not
clear for the i/ case, where the theory uncertainties on
BR(7™ — 77 nu,) are large enough to cast doubts on the
need for a cut around 50 MeV to reject the radiative
background. This cut does not seem realistic for Belle-1I
because a lot of activity will appear in the electromagnetic
calorimeter at such low energies.

The paper is organized as follows. We start by deriving
the expression for the matrix element of the 7= — 77 nyv,
decays and splitting the model-(in)dependent contributions
in Sec. II. In the structure-dependent part we then deduce
the basis of the hadronic form factors that will be used
throughout the paper. In Sec. III we consider a meson
dominance model to get a first prediction of these form
factors and recall the phenomenological determination of
the relevant couplings. In Sec. IV we begin by discussing
how the chiral Lagrangians are extended to include
resonances so that they can be applied at ~1 GeV energies,
corresponding to semileptonic tau decays, and give all

One cannot reject all photons since one of the preferred 7
detection modes is its two-photon decay. Also its decays involving
7°°s need them to be detected by means of two-photon decays.
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relevant pieces of the Lagrangians that will be used to
obtain the hadronic matrix element of 7~ — 7z 5")yv,
decays. In this case a much larger number of couplings
emerges than in the meson dominance model. We will
recap how some of them can be fixed, demanding that the
Green functions and related form factors obtained in the
meson theory match their QCD counterparts obtained by
doing the operator product expansion. Still some of them
need to be determined phenomenologically, which does not
appear possible to us for a number of them, such that we
could only make an estimation based on the scaling of the
low-energy constants of the chiral Lagrangian. In Sec. V we
use the results in the two previous sections to examine the
backgrounds that 7= — 7~ #)yu, decays constitute in the
search for SCCs in the 7~ — 7~ 5)v, decays. Finally, in
Sec. VI we state our conclusions and discuss the prospects
for discovering SCCs in the considered decays at Belle-II.
The analytical expressions for the one- and two-resonance
mediated contributions to the form factors in the resonance
chiral Lagrangian formalism and the corresponding energy-
dependent resonance widths are included in the appendixes.

II. MATRIX ELEMENT AND FORM FACTORS

The 7= — 7z~ 5")yv, decays have a richer dynamics than
their nonradiative counterpart (see, e.g., Refs. [15,16]). In
the SM, both weak currents, vector and axial-vector, can
contribute to their decay amplitude. Since the final state is
not a G-parity eigenstate, these decays are not suppressed
by isospin breaking/C-parity violation. As anticipated
before, this decay channel is only suppressed by the fine
structure constant, and may be of similar magnitude as the
SCC channel. The radiative decay can pollute the non-
radiative one if photons are undetected (either low-energy
photons, which come mostly from IB and should not be an
issue since they are doubly suppressed by G-parity and «a,
or those present in inclusive measurements, where they can
indeed become problematic if not properly cut above a
certain energy at which they can already be isolated
properly from continuum contributions).

We chose the following convention of four-momenta:
7= (P) = 7~ (p)n") (po)v(p")y(k, €). Thus, the general form
of the decay amplitude for this radiative decay is

M= eGFVZdG*,, H,(po.p)
V2 —2P-k

xy,,u<P>+<v,w—A,w>a<p'>w<1—mu(P)}. ()

a(p)y'(1—ys) (M, +P—k)

The first term refers to the photon emission off the tau
lepton. We recall that H, = H,(po., p) is the hadronic
current whose general form is
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H, = ("7~ |dy,ul0)

) (<po ), —A—zqﬂ) 0. @

t t

where A% = m}?(,) —m2, q = py+ p is the momentum

transfer, and ¢t = ¢>. With the above parametrization one
can identify f, () and f((z) with the form factors asso-
ciated to the L = 1 and L = 0 waves of the ")z~ system,
respectively [15,16]. Within the standard theory, this decay
can be induced by isospin breaking, giving contributions to
both L =0, 1 waves. Genuine SCCs (due, for example,
to charged Higgs exchange) will contribute only to the
L =0 wave.

The hadronic V,, and A, tensors in Eq. (1) are
associated to the effective vector and axial-vector hadronic
vertices with photon emission, shown in Fig. 1. The vector
tensor can be decomposed into a structure-independent
(SI) piece, which depends only upon the nonradiative
decay amplitude, and a structure-dependent (SD) piece:
V= Vil + V3P, On the contrary, A,, receives only SD
contributions.

The model-independent contribution to the effective
hadronic vector vertex is given by

2
Lt (pop +0+ 1O~ (olO) =10 |

f()=f(t) A?
W {(Po -P), —7%} (Po+P)y

o |1 O+ =)

X (Po+P) 4y (3)

SI_
V=

where ¢’ = (po+ p + k)> =t +2(po + p) - k. Itis easy to
check that
(i) The Ward identity k*V3) = H,(p, p) is satisfied.
This ensures the current conservation for the corre-
sponding SI part of Eq. (1).

FIG. 1. Effective hadronic vertex (grey blob) that defines the
V, and A, tensors.
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(ii) In the limit of equal hadron masses (A = 0), Eq. (3)
coincides with the SI part of Eq. (2.4) in Ref. [36].

(iii) Note that in 7~ — 7~ 7y, it is justified to neglect
A?/t terms [37]. This is not the case for the 7= —
7 n"yv, decays under study, because A2/t is not
small in this case.

The first term in Eq. (1) and the SI piece in Eq. (3)
furnish the Low’s amplitude with terms up to O(k°). The
SD terms, of O(k) in the decay amplitude, can be para-
metrized as follows [36,38]:

Vi = v1(P-kgu, — puk,) + v2(guPo-k — Pouk,)
+ v3(Pupo-k — pour-k)p,
+ v4(puro-k = poup-k) pou
Ay = i85 (a1 pike + arkP W?)
+ ieupeck” PP (az W, + as(po + k),), (4)

where W = P — p’ = p+ po + k. These tensors depend
upon four vector (v;) and four axial-vector (a;) form
factors, respectively, each one corresponding to coefficients
of gauge-invariant structures. This decomposition is not
unique and the nonvanishing form factors are determined
by the specific theory input used to describe the z~5")y
weak vertex. The Lorentz-invariant form factors v;, a;
depend upon three Lorentz scalars. We can choose them as
W2, (W =po)* = (p+k)? and (W—p)*=(py+k)?
(or any other convenient set). In writing the axial-vector
part of the amplitude, the Schouten’s identity has been
used.

Since the form factors describing the nonradiative decay
7~ — m nu, are suppressed by isospin breaking giving
BR < 1073 (see above), we expect that the Low’s amplitude
contribution to the rate of the radiative decay will be
suppressed as e,zma (BR's < 1077).° Thus, in the following
we will focus only on the SD contributions contained in
Eq. (4). In order to ascribe some systematic error to our
predictions we will start by using a simple meson domi-
nance model whose results will be compared later on to
those obtained from the more elaborated resonance chiral
Lagrangian approach.

III. MESON DOMINANCE MODEL PREDICTION

A. Framework

The vertex of our interest, shown in Fig. 1, involves the
interactions of mesons with the weak and electromagnetic
currents. In the meson dominance model (MDM) one
assumes that the weak and electromagnetic couplings are
dominated by the exchange of a few light mesons (and their
excitations). This approach is useful provided one is able to

®These types of contributions can also be neglected in
7= = n v,y decays.
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determine the relevant couplings from other independent
sources (data fitting or model assumptions). The different
contributions to the effective hadronic vertex in the MDM
are depicted in Fig. 2. The contribution of the ay(980)
meson (and its excitation, with mass around 1450 MeV),
may produce a peak in the z7# invariant mass distribution
that can mimic the effect of SCCs (albeit we recall that there
is some disagreement in the predicted scalar resonance
effects according to different studies).

In MDM the structure of the vertices is more simple than
the one obtained using chiral Lagrangians. The Feynman
rules required for the calculations are

VIE(r) = VE(s)P(1): igyryp€e"™°s,t,, (5)

Vﬂ(}’) - }/a(S)P(l): igVPyeﬂapUsptm (6)

A”(l") - Va(S)P([): igVAP(r : sg/m - r(xs;t)’ (7)
Vﬂ(r) - ya(s)S(t): igVSy(r : sQﬂa - rlls/l)’ (8)

S(r) = P(s)P'(1): igspp- ©)

Here, momenta are indicated within parentheses. V, A,
P, S stand for the vector, axial-vector, pseudoscalar, and
scalar mesons, respectively.

To simplify calculations, let us assume that

(i) The contribution from the intermediate b,(1235)

meson can be neglected given that the b, couplings
to both possible contributing vertices are suppressed:
BR(b, — 7y) = (1.6 £ 0.4) x 1073 and, conserva-
tively, BR(b; — pn) < 10% [4]. We will also follow
this hypothesis along the chiral Lagrangian analysis
in the next section.

(i) The contribution with the pion pole (last diagram in
Fig. 2)is very suppressed because the pion is far off its
mass shell. This approximation, on the contrary,
cannot be taken using (resonance) chiral Lagrangians.
We note that, as a result of this approach, all MDM
contributions are in fact mediated by two-resonance
exchanges.

B. Form factors in the meson dominance model

The following contributions to the effective weak vertex
are found as follows (the superscripts denote the ordering of
diagrams in the right-hand side of Fig. 2), from left to right
and from top to bottom:

iv2m} 1 1
HY = "9 p 19y 2 2
9 D,(W*) D,((p +k)%)

X E,4p0 (P + k)P D™k, ps€;, (10)
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FIG. 2. Contributions to the effective weak vertex in the MDM model. The wavy line denotes the photon.

ivV2m? 1 1
= 9p~wr Yo
9 "' D,(W?) D, ((py + k)?)

X 81/{1/){;([70 + k)ppae{wﬁkyPO(‘)'E*’ (1 1)

B i\/imgl

Ya,

My

Hy

onu;ﬂ-gpoqy((l?o + k)'Wgya - Wa<p0 + k)p)
1
D, (W*)D,((po + k)?)

i

9p

X e""”‘sky Pos€r (12)

My

gp’aaygaan’n(w'kgm/ - kv Wﬂ)e*ﬂ

1
“D,(WOD,, ((p + p0)?)”

(13)

In the above expressions, we have used the definition
H, = (ViP — A, )e*. We have defined Dy(Q?) as the
denominator of the meson propagator, which may (or not)
have an energy-dependent width. gy represents the weak
couplings of spin-1 mesons, defined here as (X|J,|0) =
n/im% /9x1y (n, is the polarization four-vector of meson

X), and gyy, denotes the trilinear coupling among mesons
|

XYZ. The effects of the p meson excitations can be taken
into account through the following replacement,

V2m; 1 V2 o1
s = e [BW,(W2) o+ B, BW,, (W2)],
gp DP(WZ) gpﬂﬂ1+ﬂp[ ﬂ( )+ﬁp P( H

(14)

where

2

! : (15)
ms —W? —im,I,(W?)

m

BW,(W?) =

with BW,(0) = 1 and $3, encodes the strength of the p’ =
p(1450) meson contribution. The p — zz coupling is
denoted g,,, and BW, (X*), BW, (X?), and BW,,(X?)
are defined in analogy to BW,(W?).

Note that all the amplitudes in Egs. (10) to (13) are of
O(k) in agreement with Low’s theorem. All of them
correspond to contributions to the vector current, except
Eq. (12), which is due to the axial-vector current.

The MDM leads to the following form factors:

. 9p=pnY9pn~ 9p~wr o gpfaf}/gafﬂfﬂ

UMDM —iC. |- PP NIy 14 P-Po 4 / ny pO-(PO 4 k) 4 0 0 :|’ (16)

: "L D,l(p+k)? D, [(po + k)?] D, [(p + po)’]
vlz\/[DM —iCc [ 9 p=nY9p=rny P(P + k) _ 9p~wr Jony P-Po gﬂiaaygﬂaﬂfﬂ :| (17)

"ID,[(p + k)?] D, [(po + k)?] D4 [(p + Po)’]
Yoy

MOM _ o | JpemndetaTy | 18

ST, k7 "
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o= icy [l ()

AV _ ¢, {%} (po+ k)W, (20)

APV (21)

a}iPM — 0, (22)
MDM allv[DM

N P N >

In the above equations the shorthand notation Cy(W?) =
V2m3% /[gxDx(W?)] has been used.

C. Determination of the relevant couplings

The coupling constants required in MDM are defined in
Egs. (5)—(9). Comparisons of the calculated and measured
rates allows us to determine the relevant coupling con-
stants, assuming they are real and positive as indicated in
the following.

(i) We canusethe z= — (p, a;) v, decays to extract the

(i)

(iif)

(axial-)vector weak coupling constants defined as
indicated before. We use the decay width for
T - X,

Iz~ - v,X")
_ G%’|Vud|2M_§(

= e & (M2 — M%)?(M? + 2M3%).

(24)

For the a,(1260) we assume BR(z™ — ajv,) =
0.1861 +0.0013 [4]. Similarly, we can extract g,
from 7= — p~v, decays; instead, we compare the
measured value of the p® — #+#~ decay width
with

L(p° - ¢+¢7)
4 (a2 2m?
=— (=) (1 +=L )\ /M —4m2. (25
3<gp><+M2v> v dme (23)

We extract the coupling constants gyp, from the
V¥ — y*(s)P(t) decays, using the decay width

2
_ |gVP7| (

(V- Py =
967 M5,

M3 —M3)3.  (26)

This expression, together with T'(p/w — z/ny) [4],
allows us to determine four of the required coupling
constants.

In order to fix the pa;z coupling we consider the

decay amplitude M = ig,, (7 $Guq = TaS, )i 13

TABLE I
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Our fitted values of the coupling parameters. Those

involving a photon are given multiplied by the unit of electric

charge.

Coupling constant

Fitted value

9p 5.0+£0.1
G, 743 +0.03
Gomy (4.80 +0.16) x 10~! GeV~!
Yopn (7.9+0.3) GeV~!
Gunyy (136 4 0.06) x 10! GeV~!
€Gpny (2.19£0.12) x 10~! GeV~!
Ypar (11] iOS) GeV~!
Gaypr (3.9+1.0) GeV~!
€Gpayy (924 1.6) x 1072 GeV~!
Gagm (22+£0.9) GeV
Gty (4.01 +0.13) x 107! GeV-!
Gty (130 £ 0.08) x 10! GeV~!
Yoot (6.6 +0.2) GeV~!
gaoﬂn’/guoﬂn <0.1
for ai(r,n,,) = p*(s,n,)(t) decays. This gives the
decay rate
T(a; — pr)
_ 9paal? (M2, M2, m2) + 6M2M2 ]
- 967TM2] aps /)9m7r Pt a;

x A2 (M2, M2, m2), (27)
where A(a, b, ¢) is the ordinary Killén’s function.
According to the PDG [4] a; — pz decays make up
61.5% [39] of the total decay width of a,(1260),
which we take as I, = (475+175) MeV [4].
Using isospin symmetry to relate the two decay
modes of charged a; mesons leads us to the result in
Table 1.

(iv) The following partial widths of the a;(980) meson,
T(ag = yy) = a2 (28)
2z
g = ) = 29020 g ), (29
ap> "> Mz )
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can be used to extract the required coupling con-
stants involving the @, meson. Neither of these
individual a, decay rates have been measured
separately. Instead, measurements of their product
have been reported by several groups with good
agreement among them. The average value reported
in PDG [4] is

['(ay — 7n)
r

ao

I'(ay = yr) x = (0.2179%) keV.  (30)
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We can extract the product of coupling constants of
the a, by comparing the previous equations and
using I',, = (75.6 £ 1.61{]7) MeV [40] for the total
decay width.

(v) The coupling g,,, was fixed using the relation

G® .
Gporn = % [sin @y, + v/2rcos 6y], (31)

where G¥(G°) is the SU(3) invariant coupling of
one pseudoscalar meson with two octets (one
octet and one singlet) of vector mesons, and
r=G"/G8. Using the rates of V — Py decays
and assuming ideal @ — ¢ mixing, Oy = tan‘l(ﬁ),

one gets G® = (1.052 4-0.032) x 1072 MeV~! and
r=1.088 £ 0.018 [41].

(vi) The following MDM relations between strong and
electromagnetic couplings,

9p 9p

Gpon =~ Ipnr> Gaopy = =, Yaorr> (32)

can be used to extract other relevant coupling
constants.

(vii) Finally for the decays involving the 1’ meson, the
couplings Gy o> Ypprts Yon'y» a0d gy, need to be
determined. By employing the above formulas, it is
straightforward to obtain the last two from the
measured I'(y' — wy) and ['(' — py) decays [4].
Gppy 18 fixed in terms of g,., in analogy to
Eq. (32). It is not possible to determine g, ., €asily,
because the involved masses forbid all possible one-
to-two body decays. However, according to [18],
Gagmn LYGagmy- We Will take g, 2/ Gagmy < 0.1 as a
conservative estimate.

In Table I we show the values of the coupling constants
obtained using the above procedure. The errors are propa-
gated from the experimental ones by adding them in
quadrature. In Sec. VA we will present the MDM pre-
dictions for the 7~ — 7~ 5")yv, decays using these inputs.

IV. RESONANCE CHIRAL LAGRANGIAN
PREDICTION

A. Theoretical framework

Chiral perturbation theory (yPT) [42] is the quantum
effective field theory dual to QCD at very low energies
[E <M, with M, the mass of the p(770) state]. Therefore
it provides an adequate description of semileptonic tau
decays, albeit for low invariant masses of the meson system
in the low multiplicity modes only [43]. Even in this
situation, however, it only covers a small window of the
available phase space in tau decays. A phenomenological
approach to tackle this problem is to restore to the use of
chiral Lagrangians extended by including the lightest
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resonances as active fields, the so-called resonance chiral
Lagrangians (RyL) [44]. An advantage of this setting is that
it reduces to the y PT results in the chiral limit, extending
the applicability of the theory to GeV energies. This is done
without assuming any symmetry related to the resonance
dynamics (like for instance, hidden local symmetry; see,
e.g., [45]) and ensuring that the Green functions and
related form factors of RyL comply with their known
asymptotic suppression in QCD [46]. Then, the RyL bridge
between these two known limits of QCD on both energy
ends: the chiral and perturbative regimes of the strong
interaction. Extending the energy range of yPT to larger
energies implies that its perturbative expansion (in powers
of the ratio of momenta and masses of the pseudo
Goldstone bosons over the chiral symmetry breaking
scale, A, ~GeV) breaks down in the resonance region.
Subsequently, RyL face the problem of finding a suitable
expansion parameter to build a perturbative expansion
upon. A successful candidate is the inverse of the number
of colors of the QCD gauge group in the limit where this is
taken to be large [47]. Remarkably, when this setting is
applied to meson physics it agrees well both at the
qualitative and quantitative levels with the related phenom-
enology [48] (see also Refs. [49], where the extension of
RyL beyond the leading order in 1/N has been studied).
In the following we recall the building blocks of the RyL
and present the operators relevant for our computation.

The light-quark (¢ = u, d, s) sector of QCD exhibits—in
the approximate limit of massless quarks—a global
SU3), ® SU(3); symmetry: the chiral symmetry of
low-energy QCD in which the left- and right-handed quark
components are transformed separately in (three-)flavor
space. This symmetry is, nevertheless, not seen in the
spectrum, where states belonging to flavor multiplets of
opposite parity differ noticeably in mass [for instance,
a,(1260) vs p(770)]. Consequently, the chiral symmetry of
the QCD Lagrangian must be realized in the Nambu-
Goldstone boson way and only the vector subgroup
SU(3), of the chiral group is a symmetry of the QCD
vacuum so that the meson multiplets fill irreps of SU(3)y,.
The pattern of spontaneous symmetry breakdown is
SU3), ® SU(3)g —» SU(3), and the breaking of the
SU(3), generators should result in eight Goldstone bosons.
These are in fact pseudo Goldstone bosons (as a conse-
quence of the explicit breaking of the chiral symmetry by
the small m, values) to be identified with the lightest
multiplet of pseudoscalar mesons. We discuss the para-
metrization of the corresponding fields in the following.

The coset space SU(3), ® SU(3)x — SU(3), is con-
veniently parametrized by [50]

) =ew{ o}, (33)

where [we include the generator of U(1) as the zeroth Gell-
Mann matrix]
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7"+ Cyn+C "

7 z K+
e P —71'0+C\q/l;+cq/7]/ KO (34)
K~ I_(O —Cs’? + Cs'n/

and F ~ F, ~92.2 MeV is the pion decay constant in the
chiral limit. In Eq. (34) we have considered the n —#
mixing in the two-angle mixing scheme [which is con-
sistent with the large-N, limit of QCD [51] in which
SU3)y ® U(1),, becomes U(3),] and worked in the
quark-flavor basis [52]. Within this setting, the mixing
parameters are

cos 60 V/2sin 68
Cq b
V3 cos 98 —0y)

\/_ cos 98 sin 90

C,
! 3005(98—00 ( fo
C = (\/§ cos 90 sin 98)
' V3 cos 98 —0y) /3 fo
C, = (cos s V/2sin 00> (35)
3 005(98 —6y)
with [52]

Oy = (-212+1.6)°, 6 =
fs=(126+0.04)F,  fo=

(=92 4+ 1.7)°,
(1.17 £0.03)F.  (36)

As stated above, resonances are included without assum-
ing any gauge symmetry related to their dynamics, and only
U(3) flavor symmetry is used to write

2o | o + o+
ﬁ—k\/%—i—\/% P K
Vi = P % 7§+% K*°
— 70 —2wg @o
K K % TV

(37)

The antisymmetric tensor formalism for spin-1 fields has
been employed in Eq. (37). It turns out to be more
convenient than the Proca formalism in this context, since
upon integration of the resonance fields, the O(p*)
couplings of the even-intrinsic parity yP7T Lagrangian
are saturated by these resonance contributions.”
Consequently, such a next-to-leading order chiral

"Particularly, they turn out to be saturated by the spin-1
resonance contributions. In this sense vector meson dominance
[53] emerges as a result of the analysis and not as an a priori
assumption.

PHYSICAL REVIEW D 95, 054015 (2017)

Lagrangian in the normal parity sector is not included in
our computations to avoid double counting [44].

The flavor states @ and wg are related to the physical
®(782) and ¢(1020) particles by a rotation given by their
mixing angle 6y :

0 in@
(wg) _ ( co.s v sin V><¢> 8
@0/ —sinfy cosfy @),

with 0y = tan‘l(%) in the ideal mixing scheme that we

will follow. As a consequence of this precise value for
the 6y, all possible contributions with intermediate
exchanges of ¢(1020) resonance to the (vector) form
factors vanish.

The introduction of axial-vector resonances (A,,) is
performed analogously. Spin-0 resonances (S and P) share
the same flavor content as V,, and A, as well [ie,
concerning the SU(2) triplets, we will have the corre-
spondences  a((980) <> z(1300) <> p(770) <> a,(1260)
for the S, P, V, and A states, respectively].

In addition to the fields corresponding to pseudo
Goldstone bosons and resonances, it iS convenient to
add external Hermitian matrix fields s, p, v,, and a,,
transforming locally under the chiral group (as scalar,
pseudoscalar, vector, and axial-vector, respectively).
These are coupled to the quark currents in order to provide
a way of computing the corresponding Green functions of
quark currents.

With these fields and external sources, the RyL is built
including resonance fields and the following basic covar-
iant tensors [42,50]:

u, = u; = i{u*(()ﬂ —ir,

Ju—u(d, —if,)u'},

v =u'yu' £uytu,

Y =uFu" £ u' Fu,

hy =V, +Vou,. (39)

In Eq. (39), y =2By(s+ip) includes the scalar and
pseudoscalar external sources. The low-energy constant
By is related to the quark condensate in the chiral limit by
means of (0|g'¢/|0) = —ByF?5". (Axial-)vector and
left/right sources are related by ¥ =3 (r* + ¢*) and
a' =1 (r* — &), respectively. Fi*, correspond to the usual

field-strength tensors:
FY = o0y =o'y —ily*y],  y=1£,r (40)

The covariant derivative entering the last of Egs. (39) is
given by
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with the chiral connection
U o
r, zi{u'(aﬂ—lrﬂ)u—l—u(ﬁﬂ—zfﬂ)u oo (42)

With these building blocks, the RyL Lagrangian is built
by including the most general set of chiral-invariant
operators that also respect Lorentz, P, and C invariance,
together with Hermiticity. Schematically, the operators
are

off < HR,»R}...;("(@)>, (43)
[

where (...) stands for a trace in flavor space and y"(®) is a
chiral tensor of O(p") in the chiral counting made up by
combining the chiral tensors that appear in Egs. (39).
[I;; RiR)... includes i(j,...) copies of resonance mul-
tiplets of type R;(;. ) (S, P, V, and A, since here we are
restricting ourselves to the lowest-lying states for given
quantum numbers).

The construction of our Lagrangian will be driven by
the Nc — oo limit of large-N- QCD. In general, terms
with a single trace are leading order in N, while
every additional trace brings in a 1 /N suppression factor
(see, however, Appendix A of Refs. [54,55]). We will
start with the pseudo Goldstone boson Lagrangian, which
is

o(p? o(p*
‘CPGb = ‘C)(f%)" ) + ‘C)([E?‘EVZW’ (44)

where the first (second) term belongs to the even-
intrinsic (odd-intrinsic) parity sector and O(p") indicates
the order in the chiral expansion. We note that EZE’T’4) in
the even-intrinsic parity sector must not be included
in £P°? to avoid double counting, as explained before.
The lowest-order Lagrangian in the chiral expansion
is

o _ F?
Copp) = (wu, +2). (45)

ﬁfzggﬁv)vzw corresponds to the Wess-Zumino-Witten chiral
anomaly functional [56] Z[U,v,a], which can be read
from Ref. [55] (using U = u?).

For the terms with resonances, we start with those
derived in Refs. [44]. “Kinetic” terms (they also include

PHYSICAL REVIEW D 95, 054015 (2017)

interactions, via the covariant derivative) for resonances
R =2Z, O, of order O(N), are

1
[’llfin = - <v#0/wva0ay> + ZM%)<0;4UOW>

+

N = DN =

(VPZV,Z) — %M%(ZZ), (46)

where Z and O are resonances of spin 0 (Z = S, P) and 1
0=V, A), res.pectively.8 The interaction terms linear
in resonance fields that—upon their integration out—
contribute to the low-energy constants of the yPT
Lagrangian at O(p*) were also derived in Refs. [44].
These are

L8 = cqlSuty) + en(Sgs) + idy(Py_) + % (P)(r)

174 " .GV v lA v
+— [’v +i1— K/,,u”u —I——Aw’i .
2\/§< /lf+> \/§< y2 > 2\/§< !f >

(47)

The last two operators on the first line involving pseudo-
scalar resonances do not play any role in our study9 because
they couple the pseudoscalar resonances to spin-0 sources
instead of to the weak V — A current.

Resonant operators contributing at O(p®) in the chiral
expansion (in the low-energy limit) were studied system-
atically in Refs. [54] and [55] for the even- and odd-
intrinsic parity sectors, respectively. We will be discussing
those entering our study of 7= — 77 5)yv, decays in the
following.

We will consider first the even-intrinsic parity
sector and start with the operators containing one
resonance field. There, only one of the operators involving
a scalar resonance matters to our analysis: Ofs =
(SfYf1uw) [54], while again no operators including
pseudoscalar resonances contribute (in either intrinsic
parity sector).

The corresponding Lagrangian with one vector reso-
nance field was derived in Ref. [54]:

22
Ll => woy, (48)

i=1

with the operators

*We will neglect the interaction with tensor resonances since
the;/ are rather weak [57]. See, however, Ref. [58].

Although it may seem that the operator with coefficient d,,, is
suppressed with respect to the others in Eq. (47) because of its
additional trace, this is not the case since it is enhanced due to 7’
exchange [55].
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O = i(V ' ugu®u®),

OV i ;w{” wugut}),

OY = i{V,u ') gap.

OV = ’<V Im T)gaﬂ,

OV = iV uly u”),

Of = (V{1 uuy}),

Ofs = (Vi (0 fuq + ugfiut)),
Olvs (Vi (ugtd 5 + [ ug)),
Olv7 (Vi [Vaf™, u),

19 =iV H LR RG],
OY, = iV, V Ve (uu?)),

Two-resonance operators that conserve intrinsic parity
are discussed in the following. We begin with the basis of
operators for vertices with one V and one A resonance and a
pseudoscalar meson [59] (here denoted as P in the operator
indexes, like in the quoted reference) in the normal parity
sector. This is

LYAF = iﬂioi/AP’ (50)
i=1
where the operators are
OIVAP = (v Aulr-).
Opap = i([V* ,Aval ),
= i([V'V . A ug),
OVap = i{[V Vi, Aglut),
VAP = i([V*V . A" uy). (51)

There is only one relevant operator with both a V and an
S field, 03Y = ({S.V,, } /"), with coupling 23" [54].

Finally, we include the relevant operators with two V
resonances in this even-intrinsic parity sector [54]:

18

LY =3 "oy, (52)
i=1
where
O = (V, VP,
OV = (V,uitViiu,).
OV = (Vo V**u'u,),
0V = (Vo V*u,ut),
OV = (V,u(u* V¥ ug + ugV*"u®)),
OVV <V;wV” Z+>
07" =iV V S ) 9" (53)

PHYSICAL REVIEW D 95, 054015 (2017)
O = i(V uuuuy),
OY = iV, {u, uu,)),
O = (V, {f* 7).
OF = iV, {z.. '),

Ol = (Viulu'. Vir]),

O = (Vo fu),

Ofy = (Vi (u f% + fPuut)),

016 - i< ﬂl/[vllf— ,”a]>’

Ofg = i{V,u [Vaf2", u]),

020 = ( uu[f*—w,}(—]f

022 = < ;wvavaf T> (49)

|

Next we turn to the odd-intrinsic parity sector, where the
two terms involving a scalar and an axial-vector resonance
[55] are

0 SA _
OSA

/waﬁ'<[Alw’ S}fiﬂ%

;waﬂ< U[S’ uauﬂ]>' (54)

In this intrinsic parity sector, operators with only vector
resonances and sources and at most one pseudoscalar
(again denoted as P in the naming of the operators) were

derived in Ref. [60]:

LYo = 7 ;Ia Oyp + idaO%P’ (55)
a=1"V a=1
where the operators are

O}/JP = ﬂypa<{ww fpa}v u >
OVJP = ;wpa<{V He fpa}v u’),
OVJP = ;wpo'<{v ff})(—>’
OA\‘/JP = yupn<VW[f’m )(+]>
OVsp = upe({VaV". [ u),
O%1p = €ups ({VaVF f77 T u),
OVsp = Eups ({VIVH, 1 uy): (56)
OVVP gﬂypa<{VWv Vpa}va”6>v
OVVP = i’gﬂupo‘<{vﬂy VPrly ),
Ovvp = Eupe({Va V", VP ),
OVyp = Eupo ({VIVI VP hu,). (57)

In our case, however, we will not only need odd-
intrinsic parity couplings of a V resonance, a J source,
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and a pseudo Goldstone, but also such vertices with two v —d w4

)

ot = (A0,
Oh 0 = i(ar (Vg _ ).
0143)””(1/} = (A"[r, “a”ﬁD’

)

)

)

The operators in Eq. (56) can be written in terms of those
in Eq. (59). This yields the following identities among the

corresponding couplings [61]:

O )b = i(Am { £ . }),
0?5 pvoff <A/w{Vaf/io" u0}>?
Ol = (A {V,f2 u}). (62)

pseudoscalars.10 In this case, as warned in Ref. [60], the set Ko = %’ Q= 8 +dy,
{0¢,,}]_, is no longer a basis'' and one needs to Vg Vg
use the operator basis with a V resonance derived in 30 A
i c
Ref. [55], i.e., —2Myk! = Myk! = Myx) = ?6’
MVKV 7CI—C2—C5+C6+C7
n= )
2
[Vodd _ guap Koy, 58 MoV — L= =¢Cs + Ce — C7
Z pvap (58) VK2 ) )
—C) + Ceg
I’lfM\/K'Y3 = T B
cy+4c3—c
with the operators Myk{, = =23 % 43 ‘,
MVK'YS = ¢y, MVK'YG = ¢+ C7,
MvKY7 = —Cs + Cq. (60)
(OVywab = (Ve (h*uub — wPu,h®)),
(OYywep = (Vi (u, heu — uPheou,)), The analogoqs Lagrangian- to Eq. .(58) involving an A
v B o  rao resonance [55] is the last missing piece needed for our
(Ol = iV (ugtt 1 = h*ulu,)), computations. This is
Oyl = i([vi, Vg JuP).
(O;/);waﬁ _ l<V””[f(1ﬂ, Ui ]>’ LA0dd — 8ﬂmﬂZKA(’)l s (61)
(OY el = (VR (fulu, — u uP £20)),
(O¥)uuaﬁ _ Z<Vﬂu( o_fgou/f _ uﬁf‘i"ug)>, with the operators
(OY ) = (Vo (o, — P, ), P
Of/ pvoff VY a, p (O?yl ’= <A} [u uﬂ Holt D
( 9) < {)( u-u }> (051)/41/0:/} — <Aﬂy[u u uﬁ u D’
(OYO)MWI/} <V Z M/}> pvaf nv a ﬁo
(O, et = (i { L, fho) o ol
v = v ’ 9pos vay . v a}
(Ot — ({1 1o}y (O = itam (s, uu,),
O Yot — syw g g’"” (Ot = ifar(fu, b b0 o)),
(OS) ; - l< f+ i}(ﬂ(—% (O.g)yua/)’ _ i(A’“’( u/’u —u uﬂf )>,
wafp — j(yuvf £ Ly b, va : v ac ac
Eolfi z l; [{f; . J? (OB = LA (o0 = P f00,)),
He = l Vﬂy f{i ’X 4 va, v QAo
e (OR) = ({2 1)),
P = (VIIVE U’ua vy : v £a
(O = VAV ) (O = (A f) ).
uvaff uv
(017) <V {V U }> (O?O pvaf l'<A;wua> <V/})(_>’
(O = (Vi) (59) (
(
(
(
(
(

lOObViously, in this case J has opposite parity than in the case

with one pseudo Goldstone boson, since both vertices are of odd- . N .
intrinsic parity. We recall that the basis for odd-intrinsic parity operators

" An analogous comment applies to Eq. (50), as pointed outin ~ With two vector resonances and a pseudoscalar meson was
Ref. [59]. given in Eq. (55).
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B. Short-distance QCD constraints
on the RyL couplings

We have discussed in the previous section how sym-
metry determines the structure of the operators in the RyL,
though it leaves, however, the corresponding couplings
undetermined (as in y PT or any other effective field theory
with a corresponding fundamental theory in the strongly
coupled regime). It was soon observed [44,62] that
demanding that the Green functions (and related form
factors) computed in the meson theory match their known
asymptotic behavior according to the operator product
expansion [63] of QCD relates some of the RyL couplings
and thus increases the predictive power of the theory. We
will quote in the following the results of this program that
are interesting to our study.

In the odd-intrinsic parity sector, the analysis of the
three-point VVP Green function and associated form
factors yields [55,60,61]

My (2kY, + 4k\y + Kjg — k7) = 4¢3 + ¢ =0,

My 2k}, + kY = 2c);) = ¢ —ca+¢5 =0,

NcMy
- MVK¥7 = C5—C6 = m,
\%4
F?2  N:M?
8K¥V:d1+8d2:ﬁ_&47[72};;’
|4 |4
Ne M3,
Ry
32vV2Fyd,ktY
1+%:0,
F% = 3F2. (63)

It is remarkable that the last of Egs. (63) involves couplings
belonging to the even-intrinsic parity RyL, despite the fact
that it was obtained while demanding consistency to the
high-energy constraints derived in the odd-intrinsic parity
sector [55,60,61,64—67]. Let us also mention that the short-
distance QCD constraint K‘g =0 [55] forbids a diagram
similar to the third one in Fig. 6, where this time the
coupling to the current would conserve intrinsic parity (it
would be thus a contribution to the axial-vector form
factors, since a; — n~ 7 belongs to the unnatural intrinsic
parity sector).'> Another relevant short-distance constraint
in the odd-intrinsic parity sector that is derived from the
study of the VAS Green function [55] is i =0.
Interestingly, this same analysis also yields the relation
Ky = 2k\s, where k) does not enter the relations (60). Other
high-energy constraints derived in the quoted study are not
relevant to our computation.

“For completeness we quote the corresponding operator,
05 = wap (1S ")),

PHYSICAL REVIEW D 95, 054015 (2017)
T T

n XR—= n

v Y

FIG. 3. Contributions from the Wess-Zumino-Witten functional
[56] to 7= — znyv, decays. The cross circle indicates the
insertion of the charged weak current.

In the even-intrinsic parity sector, the study of VAP and
SPP Green functions and their form factors allowed to
derive the following restrictions [54,69,70],

’VEL(%—/% +l—4+/15> __”

v2 2 2V2F,Gy

v (-5 on) R
/105—%<4/1, +ﬂz+%“+ﬂs) :A/Zﬂ’
KfAE%’ (64)

supplemented by F, G, = F2, F, = \/2F,and F\, = \/3F
(this one in accord with the result found in the odd-intrinsic
parity sector) [44,62,71]. Since A3, = 0 = 4}, [54], we will
not consider the contribution of the corresponding oper-
ators. The well-known relation ¢,c,, = F?/4 [72] arising in
the study of the strangeness-changing scalar form factors
will also be employed.

Although not all the operators appearing in Sec. IVA do
actually contribute to the considered decays, the number of
asymptotic relations looks too small compared to the
number of free couplings to allow a meaningful general
phenomenological study of the 7= — 7 5)yv, decays
within RyL. Also there is not enough phenomenological
information on the couplings of Egs. (59) and (62), for
instance. Due to that we will first consider only the
diagrams with at most one resonance and then comment
on the possible extension to include two-resonance dia-
grams in Sec. V B.

C. Form factors according to resonance
chiral Lagrangians

The relevant Feynman diagrams are shown in
Figs. 3-5." Figure 3 corresponds to the model-independent
contribution given by the chiral U(1) anomaly, fixed by

13Foulr—point functions have been studied in Ref. [68].
“Recall that only diagrams that do not violate G-parity are
considered.
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FIG. 4. One-resonance exchange contributions from the RyL to the axial-vector form factors of the 7~ — z~nyv, decays. Vertices

involving resonances are highlighted with a thick dot.

FIG. 5.
involving resonances are highlighted with a thick dot.

-
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Ul n

Two-resonance exchange contributions from the RyL to the axial-vector form factors of the 7~ — 77 nyv, decays. Vertices

FIG. 6. One-resonance exchange contributions from the RyL to the vector form factors of the 7~ — 7~ 5yv, decays. Vertices involving

resonances are highlighted with a thick dot.

QCD.15 The left-hand diagram is the purely local contri-
bution while, in the one on the right, the Wess-Zumino-
Witten functional provides the zznyy vertex (and all
hadronic information corresponding to the coupling of
the pion to the axial-vector current is encoded in the pion
decay constant). The anomalous vertices violate intrinsic
parity, as these two diagrams do. Figures 47 are, on the
contrary, model dependent. Figures 4 and 5 (6 and 7)
correspond to the one- and two-resonance mediated
contributions to the axial-vector (vector) form factors in
Egs. (1)-(4), respectively.

As a general fact, the axial-vector form factors in
radiative tau decays to two pseudoscalars violate intrinsic

5We note that this contribution is absent in the MDM
approach.

parity as it can be checked for all contributing diagrams in
Figs. 4 and 5. The last vertex in all diagrams in the first line
of Fig. 4 is of odd-intrinsic parity (as also happens with the
second diagram in the second line of this figure). In the first
and third diagrams of the second line of Fig. 4, intrinsic
parity is violated in the coupling to the weak (and thus
axial-vector) current. The odd-intrinsic parity violating
vertices appearing in the diagrams in Fig. 5 are p° — y,
a* —ajyn (a" stands for the axial-vector current),
ay = 7 n, and ay = agy.

We note that the first two diagrams of Fig. 6 contain only
odd-intrinsic parity violating vertices, while the last three
diagrams in this figure contain only even-intrinsic parity
vertices in such a way that intrinsic parity is not violated in
either of them (as it corresponds to the vector form factors).
Similarly, in Fig. 7, the first, second, and fourth diagrams
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FIG. 7.
resonances are highlighted with a thick dot.

contain two intrinsic parity violating vertices and the
third and fifth diagram contain only even-intrinsic parity
vertices. Thus, again intrinsic parity is conserved in these
diagrams as well.

Using the RyL introduced in Sec. IV, it is straightfor-
ward to verify that all three diagrams involving the #’
resonance vanish (in Figs. 4 and 5). Also the last diagram of
Fig. 6 is null but all other diagrams in Figs. 3 to 7 contribute
nontrivially to the considered 7~ — 7~ 5)yv, decays. Since
the left-handed weak current has both vector and axial-
vector components, one could expect to have two different
contributions per given topology, with intrinsic parity
conserving and violating coupling to the weak charged
current, respectively. However, we point out that by using
the Lagrangian introduced in Sec. IV A, this only happens
for the last diagrams in Figs. 4 and 6. In our computation
we have neglected subleading contributions in the chiral
counting; namely, the coupling to the weak current in the
second diagram of Fig. 4 receives contributions from the
piece of the Lagrangian in Eq. (47). Correspondingly, we
are not considering the contributions given by the
Lagrangian in Eq. (48), which are suppressed by one
chiral order.

Comparing the RyL diagrams in Figs. 3 to 7 with the
MDM diagrams in Fig. 1, we see first that the model-
independent contribution of both diagrams in Fig. 3 (axial-
form factors at lowest order in the chiral expansion) is not
included in the MDM approach. Among the 13 contribu-
tions in Figs. 4 and 5 (which are subleading in the chiral
regime) only one is considered in the MDM' (the first
diagram in Fig. 5). Finally, ten diagrams appear in Figs. 6
and 7, but only three of them (those including the vertices
p—w—m, p—ayg—y, and p—p—n) enter the MDM
description.

We would like to make a final comment regarding gauge
invariance before quoting our form factor results using
RyL. It can be checked that the contribution of 04, to the
third diagram in Fig. 4 is not gauge invariant by itself.
However, for this particular operator, the cancellation of
gauge-dependent pieces involves the diagrams with radi-
ation off the a; and off the weak vertex in Figs. 4 and 5. As
a result of this mechanism, we note the presence of
D, (W?) and D, [(p + k)?] factors and the absence of

"*The diagram with the pion pole also appears in Fig. 2, but it
is neglected.
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Two-resonance exchange contributions from the Ry L to the vector form factors of the 7~ — 7z~ 5yv, decays. Vertices involving

D, [(p + po)?] terms in the corresponding contributions to
the axial-vector form factors."”

For convenience, we will quote the individual contribu-
tions to each form factor figure by figure (following the
order of the diagrams in a given figure). We will start with
the axial-vector form factors. The diagrams in Fig. 3 give

a;l(PT
o

PT _ NcC, PT
! 6272 F?’ 3

which is a model-independent result coming from the QCD
anomaly.

The contribution of the remaining diagrams (Figs. 4
and 5 for the axial-vector form factors and 6 and 7 for the
vector form factors) is collected in Appendix B. The
corresponding off-shell width of meson resonances used
in our numerical analysis can be found in Appendix C. We
will discuss in the next section if further insight can be
gained on the RyL couplings values restoring to phenom-
enology and using the expected scaling of the low-energy
constants of the yPT Lagrangian.

D. Phenomenological estimation of RyL couplings

Although the relations in Sec. IV B only reduce the
number of unknowns in Egs. (65) and (B1)—(B19), some of
the remaining free couplings can still be estimated phe-
nomenologically. The high-energy constraint c,c,, = F>/4
leaves either ¢, or ¢, independent. We will use c¢; =
(19.8729) MeV [18]. In this way all relevant couplings in
Eq. (47) have been determined.

/1]95 is the only leading operator contributing to ay — yy.
From T['(ay — yy) = (0.30 £0.10) keV = %< 73 1752
we can estimate [45| = (1.6 £0.3) x 1072 GeV~'. We
note that the coupling relevant for the a; — ag — y vertex,
k14, is fixed by a short-distance constraint in Egs. (64).

We turn now to the 4; couplings in Eq. (50). Short-
distance constraints leave two such couplings undeter-
mined. The three combinations of them that are predicted
by high-energy conditions have the following numerical
values:

"We note that, among the O% operators, only O, couples to
7). This vertex does not contribute to the corresponding
nonradiative decays because at least an additional independent
momentum is needed for a nonvanishing contraction with the
Levi-Civita symbol.

054015-14



= = )2~ v,y DECAYS AS ...

A ~04, A ~0.04, Ag~0.12. (66)
The same linear combination of A, and A5 enters all
couplings in Eq. (66). Therefore we can take one them
as independent (4, for us). We will choose as the other
independent coupling A,, which enters all couplings in
Eq. (66). A conservative estimate would be |1,| ~|14] <0.4,
to which we will stick in our numerical analysis.
According to Ref. [54] the A couplings can be estimated
from the expected scaling of the next-to-next-to-leading
order low-energy constants of the y PT Lagrangian (we also
employ short-distance QCD constraints on the RyL cou-
plings to write the following expression conveniently) as

\4 RM%/ -1
7} ~3CE=Y ~0.05 Gev, (67)

that can be considered an upper bound on |1! | because the
employed relation CR ~ m is linked to LK~ ﬁfv
5 x 1073, which is basically the size of L& and |L%| but
clearly larger than the remaining eight LX [44,73]. There is
not that much information on the values of the C (see,
however, Ref. [74]). We will take |4)| < 0.04 GeV~! for
the variation of these couplings (i =6, 11, 12, 13, 14, 15 are
relevant to our analysis), although it may be expected that
only one or two of them (if any) are close to that (upper)
My R
2F2 i
CR. This sets a reasonable upper bound

limit. Proceeding similarly we can estimate 4" ~
22

and A5¥ ~ /2 %

|25V| ~ |AYY] < 0.1 that we will assume in the numerics.

We discuss next the values of the ¢; (k!) couplings in
Egs. (55) and (58). Equations (63) predict the vanishing of
two linear combinations of c¢;’s. The numerical value for
the predicted ¢4 — ¢5 is —0.017. There are some determi-
nations of c3. It was estimated (although with a sign
ambiguity) by studying 7~ — gz 7'y, decays [27].
Taking into account the determinations by Chen et al.
[75-77] as well, we will use ¢3 = 0.00779%. ¢, was first
determined by studying o(eTe”™ — KKz) in Ref. [29],
although with a value yielding inconsistent results for the
7~ — K~ yv, branching ratio [65]. We will take the deter-
mination ¢, = —0.0024 £ 0.0006 [76] as the most reliable
one. Two other independent ¢; combinations appear in our
form factors. We will take them as c¢s and ¢y, whose
modulus we will vary in the range [0, 0.03]. Using Egs. (60)
to relate the ¢; and k! couplings, we can find reasonable
guesses on the latter from |c;| < 0.03. Thus, we will take
kY| <0.04 GeV~! for their variation.

There is very little information on the /' couplings. As a
reasonable estimate we will make them vary in the same
interval as the 47 and «! couplings.

The numerical values of the two d; couplings (VVP
operators) that were determined in Eq. (63) are d; + 8d, ~
0.15 and d; ~ —0.11. d, has been determined jointly with

PHYSICAL REVIEW D 95, 054015 (2017)

c3 (discussed above). According to the quoted references
we will employ d, = 0.08 +0.08. Then only d; would
remain free. Given the previous values for the other d;’s we
will assume |dy| < 0.15.

We will discuss in the next section the phenomenology
of t~ — 7 n")yw, decays, focusing on the background they
constitute to the searches for SCCs in their corresponding
nonradiative decays. We will start by discussing the
simplified case of the MDM, according to Egs. (16), to
turn next to the RyL prediction corresponding to Egs. (65)
and (B1)-(B19).

V.7 - 3"z v,y AS BACKGROUND IN THE
SEARCHES FOR 7~ — 5)zv,

A. Meson dominance predictions

We will get our MDM predictions on the 7= — y") 7~ v,y
decays by varying the couplings appearing in Table I within a
one-sigma range assuming a Gaussian distribution for them.
Lacking any information on their correlations, we will take
them as independent, which would (conservatively) increase
the statistical error of our predictions. All other inputs are set
to PDG values [4], taking into account the corresponding
errors. For the decay mode with an 7 meson we need to
replace the couplings g,,,,,» Gany> Gppy» A0 gy DY those in the
last four rows of Table I. For our phenomenological analysis
we will be mainly concerned in examining the backgrounds
that the 7~ — #)z~ v,y constitute in the search for SCCs in
the corresponding nonradiative processes, with branching
fractions of the order of 1.7 x 107> (y mode) and [10~7, 107]
(7' channel) [16]. We will first plot the predicted branching
ratios when sampling these ten parameters within one-sigma
uncertainties (using normal distributions). This information
is collected in Fig. 8. In the left panel we can see the result of
taking 100 points in the parameter space scan, while 1000
points were used to obtain the figure on the right-hand side.
The corresponding mean and standard deviation of both data
samples’ branching ratios are (1+1)x 107> (100 points)
and (1.1 £0.3) x 107> (1000 points). We do not assign
a theory error to these values, since our only purpose
is to have a simple estimate to compare with the RyL
predictions in Sec. V B (whose systematic uncertainty will
be discussed).

For the previously simulated 100 data points we have
obtained their spectra for both the z7# invariant mass (left)
and the photon energy (right). In the first (second) case 200
(500) points constitute the spectra for every simulated point
in the sampled parameter space. The corresponding normal-
ized spectra (the differential decay distributions are divided
by the tau full width) are plotted in Fig. 9. Although the
(normalized) spectra in m,, tend to peak around 1.15-
1.35 GeV, there is no marked dynamics responsible for that.
The dependence on E, shown in the right-hand plot turns out
to be essential for getting rid of these backgrounds in related
SCC searches. Indeed, while photon spectra are peaked at
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FIG. 9. Normalized spectra of the = — yz~v,y decays according to MDM.

low energies in IB contributions, this is not the case for the
SD ones. In our case IB has a negligible impact on the
considered decay rate because it is doubly suppressed by
G-parity violation and by a factor a. (See also our
Appendix A, giving more details about these features.)
Thus, the relevant photon emission in 7~ — 1)z~ v,y decays
exhibits a soft dependence on E, which vanishes smoothly at
both energy ends. Consequently, one can envisage that
cutting out photons above a certain energy value will allow
us to reduce drastically this background in SCC searches.
In Fig. 10 we show the effect of cutting photons above
100 MeV (left) and 50 MeV (right). It is fair to acknowl-
edge that 50 MeV can be a too aggressive cut for Belle-II,
because the typical calorimeter activity will be considerably
larger than at BABAR/Belle. As far as we know, 100 MeV
represents a perfectly feasible cut. It is seen that even for
this cut, v~ — na~v,y decays are suppressed to a level
where they do not affect the search for the corresponding
nonradiative decay channel. The corresponding branching

fractions’ upper bounds (obtained with a larger simulation
sample, not shown in the figure) are < 0.6 x 1077 (cut for
E, > 100 MeV) and < 0.7 x 107 (for E, > 50 MeV). In
any case this would be at least 2 orders of magnitude
smaller than the associated nonradiative decay. We will see
in Sec. V B if these expectations, based on naive MDM,
hold in a more elaborated treatment of strong interactions in
the chiral and resonance regions. It is noteworthy that no
peak associated to the a((980) resonance exchange is
appreciated in our spectra.

Now we turn to the predictions of MDM for the partner
7~ — n'm v,y decays. We will proceed analogously as for
the # meson channel. We first plot the branching ratio for
100 (1000) normally sampled points in the parameter space
in Fig. 11. The corresponding mean branching fractions are
~6 x 1078 [(0.8 - 0.8) x 107"], where the error is again
only statistical and reducible.

For the previously simulated 100 data points we have
obtained their spectra for both the 777 invariant mass (left)
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(a) 100 normally sampled points in the MDM
parameter space are plotted.

FIG. 11.

and the photon energy (right). In the first (second) case 200
(500) points constitute the spectra for every simulated point
in the sampled parameter space. The corresponding nor-
malized spectra (the differential decay distributions are
divided by the tau full width) are plotted in Fig. 12. Again
no hint of the underlying dynamics is seen and cutting
medium- and high-energy photons appears promising to
eliminate this background. Since the phase space does not
allow for on-shell @, exchanges, no possible related
substructure can arise.'®

Finally, in Fig. 13 we present the decreased normalized
decay rates, resulting from cutting photons above 100 MeV
(left) and 50 MeV (right). The corresponding branching
fractions are <0.2 x 107 and <0.3 x 107, respectively

"®We are neglecting excited resonance contributions, which
specifically forbid any trace of the ay(1450) meson in this
approach.
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Predictions for the BR(z~ — #/z"v,y) depending on the simulation sample size.

(obtained with the 1000 data point samples not shown in
the figure), at least a factor 50 smaller than their nonradiative
counterparts, a feature that needs to be confronted to the
results using Ry L presented in the next section. We also note
that in MDM the bulk of the contribution to the branching
ratio comes from the last diagram in the last line of Fig. 1.
Neglecting all other diagrams one gets ~80% of the branching
ratio only from this diagram in the 7 meson decay mode, while
the #' channel is essentially saturated by this contribution.

B. RyL predictions

As we noted in Sec. III, the MDM form factors are
obtained from two-resonance mediated diagrams only.
In the RyL framework one has, in addition to the chiral
(anomalous) contribution, one- and two-resonance medi-
ated diagrams. Along this section we will be comparing the
results obtained with/without the two-resonance exchange
diagrams. Comparison of both will show that the main
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features of these decays are already captured without
including the two-resonance contributions.

After normally sampling 100 points in the parameter
space, the resulting branching ratio is (1.0 & 0.2) x 1074,
which is plotted in Fig. 14(a) (the error is only statistical).
This one can be reduced by enlarging the simulation, but
then the systematic theory error would saturate the total
uncertainty. In particular, with 1000 data points we find
(0.98 £0.15) x 107#, as the mean and standard deviation
of the sample. If, based on the large-N. expansion, we
assign a 1 /N error at the amplitude level, a 1/N2 error in
branching fractions would become comparable to the
previous statistical error. Still, our conservative educated
guess on this branching ratio uncertainty would be
~0.22 x 107, accounting for a possible larger (double)
theory error. In this way we quote (0.98 +0.27) x 107 as
our predicted branching fraction for this decay channel
when all (chiral and one- and two-resonance mediated)
contributions are included. This result is an order of
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(b) When cutting photons with £, > 50 MeV.

BR(7™ — nnv,y) represented as a function of the photon energy cut.

magnitude larger than the MDM prediction. Part of it
could be due to a statistical artifact caused by the sizable
probability of having a significant number of couplings
with magnitude outside the one-sigma error range, given
the large number of couplings that are normally sampled in
order to get our predictions. However, according to our
previous simulations [78] where RyL couplings were
sampled uniformly within the one-sigma interval (with
zero probability of lying outside of it), the different
dynamics of the MDM approach and of the RyL have a
similarly important effect in explaining this difference. We
compare the results corresponding to Fig. 14(a) (including
two-resonance mediated contributions) to the case
where these are neglected [Fig. 14(b)]. The predicted
branching ratios do not vary much. Our previously quoted
branching fraction, (0.98 +0.27) x 1074, is reduced to
(0.65 +0.17) x 107, where both numbers were obtained
from the 1000 data point simulations and the errors are
dominated by the theory uncertainty.
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In Figs. 15(a) and 15(b) we plot the normalized spectra in
m,,, and E,,, with 200 and 500 data points, respectively. In this
case, as opposed to the MDM description, the spectra
change appreciably depending on the precise values of
the Lagrangian couplings [see Fig. 16(a) in [78] for illus-
tration]. In Fig. 15(a) we see that the maximum of the spectra
is distributed with significant probability in the 1.15—
1.35 GeV range, in agreement with the MDM prediction.
The analysis of the photon energy spectrum [in Fig. 15(b)]
also confirms that, as suggested by the MDM analysis, it
seems possible to suppress the bulk of this mode decay rate by
cutting photons with energies above some 100 GeV. These
features stay basically the same when neglecting the two-
resonance mediated contributions. In agreement with the
MDM prediction, there is no signature of the a((980) meson
in the #z invariant mass distribution. Since, as in the MDM
approach, we are disregarding excited meson multiplets, no
possible trace of the ay(1450) meson can resultin Ry L either.
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Predictions for the 7~ — nz~v,y decays’ branching ratios: 100 normally sampled points in the RyL parameter space are

In Fig. 16 we present the simulated branching fractions
when photons above 100 MeV are indeed cut (left plot),
yielding (0.44 £ 0.06) x 107>, If it was possible to cut
above 50 MeV photons, the branching ratio would shrink to
(0.67 +0.28) x 107 (right plot). Again, the quoted stat-
istical errors have been obtained from the 1000 data point
sample, not shown in the figure. Vetoing photons with
E > 100 MeV should be able to reduce the number of
background events to a fourth of the nonradiative decay,
which should allow for a first detection of the = — 7z~ v,y
decays (supplemented by a phase-space discriminator, if
needed).

This conclusion does not change when we neglect the
contributions from two-resonance mediated diagrams. The
branching ratios obtained when cutting photons with £, >
50(100) MeV change from the previous values (0.44 +
0.06) x 107> [(0.6740.28)x107%] to (0.3040.04)x 107>
[(0.45 4+ 0.16) x 107°].
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Normalized spectra of the 7~ — nz~v,y decays according to RyL.
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FIG. 17. Predictions for the 7= — 5’7~ v,y decays’ branching ratios: 100 normally sampled points in the Ry L parameter space are plotted.

In Fig. 17 we show the plot analogous to Fig. 14, but for
the  mode. Using 100 sample data points, the predicted
mean branching fraction is (0.9 & 0.4) x 1075, which is
larger than the nonradiative decay. Once again, this feature
remains when neglecting the two-resonance contributions,
yielding (0.7 4-0.3) x 1075, If we now enlarge our sam-
pling to 1000 data points, our uncertainties become theory
dominated. The corresponding results are (0.84 + 0.06) x
107> (all contributions) and (0.65 # 0.05) x 107% (without
two-resonance contributions). As we noted for the z
channel, the results of RyL are noticeably larger than those
of MDM (typically 2 orders of magnitude for the #'
channel). We again understand partly this discrepancy
from the fact that, having so many parameters normally
sampled for RyL, it becomes rather probable to have
enough of them outside the one-sigma error band so as
to increase substantially the predictions for the observables.
In the #' channel, however, most of this difference comes
from the richer dynamics of RyL with respect to MDM, as

confirmed by our earlier simulations [78]. We compare the
results corresponding to Fig. 17(a) (all contributions
included) to the case where the two-resonance contribu-
tions are neglected [Fig. 17(b)]. The predicted branching
ratios remain basically constant, as just quoted.

In Fig. 18 we show the normalized spectra of the 7~ —
n'm v,y decays versus the meson system invariant mass
[Fig. 18(a)] and the photon energy [Fig. 18(b)], with 200 and
500 data points, respectively. In this case for the #/ 7 invariant
mass distribution, a maximum is expected in the region
1.30-1.45 GeV. The photon energy spectra suggest an
O(100) MeV cut on E, that we consider in the following.
Again, we point out that the spectra change only very mildly
when neglecting the two-resonant contributions.

The branching ratio into the z~#'yv, decay channel,
when cutting photons above 100 MeV, is (0.9+0.2) x 1075.
It is reduced to (1.5+1.5) x 1077 when the cut is
established from 50 MeV on. These results are depicted
in Fig. 19. We recall that the systematic errors have been
obtained from the 1000 point data sample, not shown in the
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FIG. 18. Normalized spectra of the 7~ — /7~ v,y decays according to RyL.
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FIG. 19. BR(z™ — nn v,y) as a function of the photon energy cut.

figure. We could reduce the errors by an extended sampling
but this is not needed. It is already evident that if the
corresponding nonradiative decay has a branching fraction
which is close to the minimum of the predicted interval,
then one would be required to use the different event
topology of the three- and four-body decays to get rid
of this background, which again looks feasible in the
Belle-II environment (even if the branching ratio lies close
to the predicted upper limit, using this additional informa-
tion would be needed). Once more, these conclusions
also apply when the two-resonance contributions are
included, because the previous numbers barely change to
(0.740.2) x 107 and (1 4 1) x 1077, respectively.

VI. CONCLUSIONS AND OUTLOOK

Induced SCCs remain as yet undetected suppressed
effects within the SM. In nuclear physics, the difficulty
in splitting their signatures from ordinary conserved vector

current violation makes semileptonic tau decays at Belle-II
the most promising arena for their discovery in an era of
precision tau physics [79], where eventual departures of the
corresponding rates from the expectations coming from G-
parity violation may signal new physics providing genuine
SCCs. Actually, current upper limits [4] on SCC searches
lie close to the expected predictions according to isospin
violating effects in the SM. With this motivation in mind, a
number of theory papers and experimental analyses have
been conducted in recent years in an effort that promises to
continue with the start of Belle-II data taking.

In this paper, we point out for the first time the
importance of the 7~ — 77 5")u,y decays as backgrounds
in these searches. Within the framework of resonance chiral
Lagrangians, we have found that their corresponding
branching ratios are comparable to those of the non-
radiative decays (in agreement with the expectations from
G-parity violation as compared to electromagnetic sup-
pression). Our main conclusion is that cutting photons
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TABLEII. The main conclusions of our analysis: our predicted branching ratios for the 7~ — 7z~ #)yv, decays and the corresponding
results when the cut £, > 100 MeV is applied. We also compare the latter results to the prediction for the corresponding nonradiative
decay (SCC signal) according to Ref. [16] and conclude if this cut is able to get rid of the corresponding background in SCC searches.

SCC background BR (no cuts)

BR (ES" > 100 MeV)

BR SCC signal Background rejection

T >Ny,
T oy,

(1.0£0.3) x 10~
(0.8+£0.2) x 1073

(0.4 +0.1) x 1075
(0.9 +0.3) x 107

~1.7 %107 Yes
[10-7,107¢] No

above a realistic energy E, 2 100 MeV [leaving small

windows for detecting 7° and ) decays involving pho-
tons] should get rid of this background in the searches for
SCCs in v~ — n~nv, decays. On the other hand, given the
theory errors in predicting BR(z~ — 77 #v,), it is unclear if
a feasible cut on photon energy will be able to eliminate this
background. In that case, however, rejection appears
possible, taking advantage of the different kinematics of
the three- (signal) and four-body (background) decays. Our
most important results are summarized in Table II.

It is also interesting to note our finding that, within the
Ry L frame, a simplified description of these decays neglect-
ing the two-resonance mediated contributions is a good
approximation for branching ratios and decay spectra,
which will ease the coding of the corresponding form
factors in the Monte Carlo generators. Finally, in 77 —
z~nyv, decays, we do not find any signature corresponding
to the a((980) meson in the #z invariant mass distribution.
Therefore, an observation of such structure in the corre-
sponding nonradiative decay would be in accord with the
prediction of Ref. [15] and disagree with the one in Ref. [16].
On the contrary, the sharp peak predicted in the same
spectrum at ~1.4 GeV [16] should be a distinctive feature of
a dynamically generated scalar resonance prominent con-
tribution in the 7~ — z 775y, decays, testable with early data.
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APPENDIX A: INNER BREMSSTRAHLUNG
CONTRIBUTIONS

In this appendix we check that inner bremsstrahlung
contributions can indeed be neglected in our study. As we
argued in the Introduction, radiation off the external lines
will be doubly suppressed: by a (as it corresponds to the y

emission) and by G-parity violation (as it happens with the
nonradiative decay). Of course, this will no longer be true if
photons with extremely low energy are considered because
of the well-known infrared singularity (see for example
Sec. VII of Ref. [80]). In order to study this question a
threshold energy for photon detection (Eg,) needs to be
specified. We consider that 10 MeV is a realistic value for it
in a B-factory. In this way, photons with E, < Ey, will not
be resolved and will be included in the nonradiative decay
rate (inclusive in low-energy photons). We want to quantify
the impact of detected inner bremsstrahlung photons in the
radiative decay rates.

According to Low’s theorem, the expansion of the
radiative amplitude at low photon energies (E, ~ k) reads

A
M, =—+ B+ O(k),

- (A1)

where A and B are given in terms of the nonradiative
amplitude, M. In fact, one has

P. .
M, = -eMo(Fe-22) 4

(A2)

In the previous equation, P(p) are the momenta of the
charged particles 77 (z~) and only the coupling to the
electric charge is given [higher electromagnetic multipoles
and O(k") terms are to be understood in “..” and are
neglected since they will be subleading in the infrared
limit]. In this approximation, one can estimate the leading
Low contribution to the radiative decay as (a bar over the
matrix element stands for a sum over polarizations)

e p-el|?
k p-k

_ _ p.

ypols

, (A3)

where |M0|2 has to be evaluated using the kinematics of
the radiative decay.

Using the M, worked out in Ref. [16], we have
evaluated the leading Low contribution—as given by
Eq. (A3)—to the radiative decay rates. The corresponding
spectra (n and 7' decay modes) are given in Fig. 20
The respective branching ratios (for E, > 10 MeV)
are ~2.5x 1078 and ~4.6 x 1072, respectively. This
suppression is larger than could be expected according
only to the @ and isospin suppressions mentioned at the
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beginning. The additional suppression comes from the fact
that the scalar form factors are very peaked around
Mo, ~ 1.4 GeV [16], which dilutes the effect of the % -
”—'z | factor increasing for low photon energies. Moreover,
in the case of the ' decay channel, the vector form factor is
also very suppressed, as the p(770) contribution is below
the kinematical threshold for the 'z~ form factor. As a
result of this, we see the characteristic damping of the
inner-bremsstrahlung spectra corresponding to a very
smooth variation of the integrated effect of the meson
form factors.

4C

~ F’Mym2D, [q(po + k)?] - pol(F

—2¢7Gy)) - ;(

1R _
a;

+ m2((¢7 + c1a56)Fy

1
—2¢7(Fy —2Gy)(k- po)* + 3 5

+ 16¢3m2(G

4F 4
F2D,[(p + po + k)]
+ 2mz (2K — Ky + 24, 4 K4y) +

+

C,(—(k8 + kg + K5k - po + 2mz(k, +2(x§ + 1)) +
_2\/_Kécs< %

o (k16 (2K - p+ mZ) + K (2(k - po + p - po) + my)

+ (=264 + 4} + k3 +kd — k5 + k)P - po)

4F
~FnE D, [(p+ o " T PE

— (k5 +2x§ + i) (k- po +my + p - po)
+V2¢,02m3 -
+ Cy(p - po(—m3, (<5 + i) +
+ iy (k4 + 26 + s = Kfg)) —
+ k- po((k5 + Kis) (=mg, + 2k - p +mz) +

vV — 2Gv)k * p(465k ° p() + 2(

ma(m3((2(8¢3 + ¢5 + ¢7) + cias6) Fy

(=34 + 4K + k8 + k) + 1 — 264 —

= 2mz (264 + Ky + 26y + k) + \/5(2"3 + x)
m2) (=24 (=m2, + 2k - p +m2+ p- po)

PHYSICAL REVIEW D 95, 054015 (2017)

APPENDIX B: FORM FACTOR RESULTS
ACCORDING TO RESONANCE CHIRAL
LAGRANGIANS

In this appendix we include the different contributions
to the (axial-)vector form factors obtained using RyL.
Only the anomalous contribution was included in
Sec. IV C. Here we explicitly quote the analytic expressions
for the model-dependent (resonance mediated) contribu-
tions to these form factors following the order in the
figures. We start with Fig. 4, giving rise to a;X, , 5, in RyL
[Egs. (B1)—-(B4)]:

v —2Gy)(—(8¢3 + 2¢5 + 3¢7)m; 4 8cymyi +2(cs + ¢7)p - po)

C5 — 4C3)m% - (2C5 + C1256)m/2, + 8C3m721)

- 4(46‘3 + Cs + C7)Gv)

v = Fy) = (2(cs + ¢7) = cias6)P - Po(Fy —2Gy))
+ (4¢3 + ¢5 + ¢7)mi — 4esm3)(Fy —2Gy)(p - po —

my))
(=Cy(=(k§ + K5 — 1§ 4 Kl) (k- p +mz) =

7 K?s)l’ “ Po)
my (k4 — Kk§ — kg — K + 26 + )
2my) + V2(2k5 — k) C,(2m% — m2))

CS (2m%( - m%))

_"?017 “ Do)

(k5 + Kils = k) (2k - p + mz) + 2mz (25 + Ky + 26y + &)
(4mz (kg + ki) + my (k5 + &fs)) (m
(k5 + 25 + Kils = 2&{)p - po) +
n 2V2C,(2my — mz)(x]; + Kf5)

@ —2k-p—m;)
("4 + 2’<§‘ + K’i‘s - 2’</1‘6)(P : Po)z))

_AFyC, (2V2C,(2my — my)x;
Fzm% C
— (kg + &g+ 2KY; + kg —

—mpky — ma (k) + 2(—k}

q

+ m(kY — kY +Ky) —

+p-po(k) + Ky +xy —4kl —k) — k¥ —«ky)

C
2k7)k - po + (=i + K5 — kY + &7 +K]7)k - p
+ k1o + 2(xf; + K7y +kl5)))

mi(kY + kY + Kk + Y +ky) —mi(kf + Ky + 2k}, + Kl —

— (k) + &Y + &Y + k¢ + &Y +xy)k- po

- 2m72r(_KX + 2"5 + "Yo + 2(’<Y3 + ’<Y4 + "Ys + "Ys))

Ki7) + P - poky

= o388+ 36 4 4 = 2 =) ).
where cjy56 = ¢; — ¢, — ¢5 + 2¢ was used. Its value is fixed by Egs. (63).
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FIG. 20. The normalized photon spectra of the leading Low contributions to the BR(z~ — 3")z~v,y).

4Cq(FV —2GV)

~ F2Mym2D,[(py + k)]
4F 4

F2D, [(p + po + k)?]

(4 = K = ke = i+ 20§ + ) + (=26 + 4+ K k= K+ kg)p - po) + 2V 2K C(my — 2m3))

4F 4

T Fm2 D, (p+ k)7

+Co(p - pol=m3, (k5 +Ks) + (i + Kils = &) (2k - p 4 m7) + 2mz (2K4 + ey + 21 + ki)

+ (1 + 264+ iels = Kl)) = (4mz (g + k) + miy(§ + i) (3, =2k - p = m3)

+ k- po((k§ + 2k + ks = 2k) p - po — (k4 + kfs) (m2, = 2k - p —m2)) + (k4 + 2§ + ks = 2c4) (P - Po)?))

AFyCy (2V2C,(2mg — m)(k}s + «y)
Fzm% C

1R _
a

(c7k - po + (4¢3 + ¢s + ¢7)my — 4esmz)(=2k - py — my + my)

+ (Cy(—(kd + K 4 K8k - po + 2m (i, + 2(k + 4,))

(V2C,(2m% — m2)(2x4 (m3, — 2k - p — m2) — (24 +x)p - Po)

= (k} + &Y + &5 +Kg +x7 + )k po— myk}
q

— 2mz (=K + 2y 4 Kfy + 2(xf3 4+ Ky ks kYg)) = my (kY + &Y + K¢ + kY A+ k)

+p-polk) + Ky + kY —4xY — k! — & —KS)) (B2)

2

16Gy C m
R = Y4 ]|:_(C1256+803)_

a
S FPPMy[m2 +2(k-p+k-po+ p-po)D,l(po+ k)
N 4F,
Fzmnga] [(p + Po + k)z]
4F,
F*m D, [(p + k)?]

—2m2(2k4 + Ky + 2Ky + k) + V2(24 + k) C(2mE — m2))

4FyC,
Fzmlz,

2” + cras6k - po + 4cym;

(K?O(\/ECY(2m%< - mlzr) - 2m72rcq) - mil (K? + Ké - Ké\ + K?6)Cq)

+ (Cy(ifg(mi, + 2k - po +my +2p - po) — (k5 + 2&§ + i) (k - po + my + p - po)

_'_

3k} — 3Ky + 3ky — Kl + Ky —K§), (B3)
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4C,(Fy —2Gy) s
IR _ q 2k - 2 4 2 _ 2 PN 2
a, FZMvng,)[(po e (cs5 +¢7)(2k - po + my) + 4c3(my — my) + | —cs — ¢ + > )

4F,C,
TFD, [(p + po TR T 72+ 26 s k)
4F 4

~F D, [(p 5 17 Callo(may + 2k po iy 2 - po) = (65 + 265+ xis) (k- po +m + p - po)
—2m3 (26§ + iy + 2cfy + xfy)) + V20265 + k) Cy(2mg = m2) = Cy (g = 26¢) (3, = 2k - p — m3))
_4FyC,

2202
m;

(2k] — 4Ky + 6Ky — 2k} — 2Ky + 2K\, — K| — K}7).- (B4)

The two-resonance mediated contributions to the axial-vector form factors, corresponding to Fig. 5, are given in the
following:

P 8F,C,
! F?Mym?ZD, [(p + po + k)*|D,[(po + k)?]

X (—2\/5(/( - p)? <% (2¢5 + c1ps6)m3 — cs(m3 + 2k - pg) + 4c3(m} — m,%))ﬂ”

= ((es + c7)m3 + k- pocy — 4cs(m + m3))(m2 = m2 + 2k - po)(=2V2(k - p+ p - po)A" — 2m2(24 + A2)
+ (my + 2k - po)de) — %k - p(=4V2p - po(8csml — com? + (¢ — crase)m3) A"

+2¢5(4A4(k - po)? + (my — m3)(mgds = 2mz (24, + 4,)))

= 8cs(my — my) (2(24) + Ao)myz — mydy + my(As = 225)) + Crosemy(2(24) + Ar)mz + my(d3 = A4 = 225))
+ 2k - po(4V2p - pocs A" + 2¢5((2m2 — m2)Adg — 2m2(24) + Ap)) + 8c3((44) + Ag)m2 + m2h; — 2m2Ay)
+ Cros6mp (A3 — As — 245))) + p - po(des(mz 4 my)(2(24 + o)mz — myds + p - po(22 — Ay — 24s))

— (54 ¢7) (=424 (k - po)? = mi(=2(24) + Ay)mz + mydy + p - po(—242 + A4 + 245))))

+ k- po((=ciasedsmi —4p - po(cs + ¢7))m3

+ P po(=4V2p - poles + c7) A" + 4(=des + cs5 + c7)mily + 8mi(—(=des + ¢s + 7)) = c3l4))

— mj(crase(4Aimz + p - po(As — A — 225)) +2p - po((cs + ¢7)As + 4e3(A3 = 2(As + 45)))))

1
- mf,(—\/i(p - Po)*(2(cs + ¢7) — cias6) A" + 4m; <§ (8c3 + 01256)’"% - 403’”721)’11

1
+ Emizz(Q’p - po(Crase — 2(¢s5 4 ¢7)) A + (8¢5 + C1256>m1% — 8c3m2)A3)

1
+P-Po <§mr2](2(c5 +¢7)A4 + Cras6(ds — Ay — 245) + 8c3(A3 — 2(As + 45)))

X (<c5 oo - CI§S6>,11 +es(Ay — 2@)))))

SFACinSA(Cdp “Po+ m72zcm)
F?D,[(p + po+ k)*IDy,[(p + po)?]’

(B3)
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8F,C,

asf = — (c7k - po + (c5 + c7)m2 — des(m2 + m2))(2k - pg + m2 — m?)
2 PPMymZD, [(p + po + K)2ID,[(po + k)2 T T T T o
X (A4(2k - po + my) = 2v22"k - p = 2(244 + Ap)m% = 2v2p - o)
ARG eap po -+ micy) 56
F?D,[(p + po + k)*IDy, (P + po)?]
42F,C, (X + A7)
alk = — 1 2(8¢3 + Ciase)k - Po + (8¢5 + Clasg)m2 — 8cym2), B7
3 FZMVDal [(p+p0+k)2]Dp[(p0+k)2]( ( 3 1256)k * Po ( 3 1256) 7 3 ) ( )
8F,C 1
a2k = — 474 <— 2)y — A3)m2(cas6(2k - po + m2) + 8c3(m2 — m2
4 F2Mvm,2,Dal[(p+p0+k)2]D,,[(p0+k)2] 2( 2 3) ,( 1256( Po ;1) 3( n )

1
- 2V22"k - P(‘(Cs + ¢7)(2k - po + my) + des(my + mz) + 5(2(6’5 +¢q) - 61256)m/2)>

+ 2k - po((C5 + c7)(ﬂ4(m/2, - Zm%) + 2(2].1 + Az)m%) + 4C3(2/14m3, + (A4 - 4/11)"’!,2[) + 2\/5(6’5 + C7)p . p()/l”)

—4(cs + c7)Aa(k - po)* = (des(my + mz) = (cs + c7)my)(=Agmy + 2241 + Ay)mz + (24 — Ay = 245)p - po)
— m(Aq(4es(my + mz) = (5 + cq)my) + (2(cs + ¢7) = C1a56) (241 + Ao)mz + V2(2(cs + ¢1) = ciase) p - pod”)).
(B8)

We will display separately the contributions from the last diagram in the first line of Fig. 5, due to the length of the
corresponding expressions.

aW’*(aI)ﬂ—ﬂr’ (W)=~
1

=t 28FV 2
F2mg,m;Dq,[(p + k)?]
+ 16k - pC mimydiiy — 8C mam? myAikh — 2miC my midky + 2k - pC mg m ;
—4(k- p)*Cympdoks + 2mzk - pCymidrih + 2k - pCymZ mpdss — 4(k - p)>C mydsih —2mik - pComydaicy
+ 4k - pCym2 miisky — 8(k - p)*C,midski — 4mik - pC, miisky + 8C,m2piksdy + 8k - pC mimaxg
— 8C, m2m2 m2ki Ay + 32m2C mikgAy + 64k - pCymixh Ay + 16V 2miComixh A + 32V 2k - pComiih A,
— 32V2m2Cymymixhy — 64\ 2k - pComymixydy — 32C miim? k42 — 167/2Cmbm2 ki,
+ 32V2C,mymim? k4, + 8k - pCymikigdy + 4V2k - pComiiody — 8V2k - pComimixtyd
- 8Cqm;4,mgle0/11 - 4\/§Csmim31’<?0/11 + 8\/§Csm%(m%rmc211 ot + 8Cqm;4rm%’<'14011 + 4\/§C5mf;m%ld{‘0/11
— 8V2C mymimliiyAy + 32miC mikt Ay + 64k - pCymixi Ay — 32C mim2 ki Ay + 8k - pC mikya,
- 8Cqmﬁmgll<f2/11 + 8Cqm§m% AL+ 8m,2,Cqm,2rm%K‘i‘5/11 + 16k - qum,ZTm%K‘[‘S/h — 8Cqm%m31m,%lc’1‘5/11
—4C,mapiigh — 8(k - p)2C makieh — 4mak - pC mikicA + 4maC mimg kA + 8k - pC mam? ki

— 4m3C mimiiody — 12k - pC mamiihy + 4C mamg mykiedy — 4k - pC,pixady — 4maC m? miks

(8mzC mimia k4

=N

/121(’34 + 2p4 Cqmzl’i,ZK?

=N
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—4(k - p)2Cymikida = 8V2p  Comirgly + 16V 2(k - p)Comirgly — 8v/2mk - pComirsda + 8p* Comiici i
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+ Sﬂm%Csm%mglKéﬂz —8v2k - pCsm%(mZIKg‘ﬂz - Sm%Cqm,z,mﬁlkéﬂz + 8k - qum,z,mZIK’g/Iz
— 4V 2m2Cym2m2 k4 2y + 4V2k - pCymim? ks + 4V2(k - p)?Cimiiciyly — 4(k - p)*Cymkiod
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+4V2k - pComymliKiody — 4k - pCymimixtydy — 2V 2k - pCom2miicoly + 8p*C m2xt 4y
16(K - )PCymK Ao + 82K - pCymK Ay — Sm2C 22, iy 2o + 8K - pCym2ni2 ety 2y — 4(k - p)2Comiyis
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+ 8k - pC,mam? kfAq — 2(k - p)>C miktyAy + 2k - pC mam? kiyAq — 2k - pC mimixi,ay
+ 2k - pC m2 mixtsdy — 4(k - p)>C micisAy — 2m2k - pC mixisiy + k - pC,plicicAs — 2(k - p)>C m kA4
—mzk - pCymy Kjghy — k- pCymi, myricds + 3(k - p)*Cymurighs + mzk - pCymurighs + 2(k - p)*Cykichy
MRk pC Rl — Ak pC, ks + 4k - pCym ks — (k- pRComikias + 32V3(k - p)2Cmidds
+16V2m2k - pCym¥xfds — 32(k - p)>C m2kyAs — 16m2k - pC,m2xhAs — 16v/2(k - p)>Cym2x4 s
— 8V2mk - pCymixlds — 1672k - pComim? k425 + 16k - pC m2m? 425 + 8v/2k - pCom2m? x4 As
+4V2(k - p)2Cymiyrihs — 4(k - p)2C mixiyhs — 2v/2(k - p)>Cmixtods — 4v2k - pCamEm? ks
+ 4k - pC,m2m2 kfds + 2V 2k - pComim2 kighs + 4v2k - pComEmitods — 4k - pC m2m2ryis
—2V2k - pCymimiyds — 32(k - p)>C mixi As — 16m2k - pCmixi s + 16k - pC,m2m2 k4 As
—4(k- p)*C mixtyhs + 4k - pCymam? ktyAs — 4k - pComzmaxthds + 4k - pC,mg mykisds — 8(k - p)*C mykisAs
—4mzk - pComikisas + 2k - pCypiicichs — 4(k - p)>Coymg Kighs = 2mzk - pCymg kishs — 2k - pCymyg, mykis
+6(k - p)*Cymykighs + 2mzk - pCymixichs + 4(k - p)*Cyxighs + 2mz (k - p)*Cynighs
—2(k- Po)ch(’<§1 - K?G)(A"/Ilmgl +2(mz = p-po)ha = k- p(24 +22s))

2 po(VEC, (2, — m2) (22 — w3, + 2K~ pY + (m2 — m2, + k- Py,
+Cq((m72z - m%, + 2k - P)((mfzz - m% —k-p)la—k-p(ly+ 2/15))’@ —2(k- P)z"?/lz - 2’"%’”317@32 - 2m;2zm$’<§32
+ 2mg mykg Ay — 4k - pmykgdy + pUrisdy = 2(k - p)PKisdy — mamg kisdy + k- pmg kA, — mamyKisd
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+ mglm%’d?sb —2k- sz%"?s’b +mzk - pisly + pUKighy + 4(k - p)righy + mzzrmgl"l?é'b —2k- szzzl’c?sflz
+ mimiktedy — mg makiedy 4 3k - pmkiedy 4 3mak - prigly + 2ma(2(mz — mi + 2k - p)AKs — 2m3 kg A
+ 2mpKg Ay + 2miKisAy — 2mG kKisAy + 2m kA — 2mako Ay — 2maKd Ay + 2m k4 Ay — maKiody + md KA
= 2mzxi Ay + 2mg 1 Jo — maydy + mi, kA + k- p(2A4kg + Aiish = 2xehs — 4KkG A — Kpda — AKty Ay — Ky 0))
— (k- p)*kg Ay + k- pmg gy — k- pmggdy = 2(k - p)iisis + k- pmg kisAy — mzk - prisis + (k- p)icfehs
— k- pm? kiAy + k- pmixiody — 2(k - p)?kfAs + 2k - pmd k§As — 2k - pmixgAs —A(k - p)icisAs
+ 2k - pm2 kisAs — 2m2k - prisis + 2(k - p)*ciAs — 2k - pm ki As + 2k - pmiiiAs))
+ k- po(V2C,(2mk — m2)(4dym +2(m% — p - po)da — k- p(As + 24s))cf
+ Cq(z(mlzr —mg 42k p)((mz —k-p—p-po)ly—k- p(hy +245))K5 = 8ma(xfy + xiy) 4y — 4(k - p)ig s
+8(p - po) K Ar — Amamg kgl + 4p - pomi kg Ay — Amzmihdy — 4k - pmuii Ay + 4p - pomgkgdy — 8mzp - pokgds
— 4k - pp - pokg Ao + 2p*Klshy — 4k - p)Prisdy — 2mzmg kA, + 2k - pmg kisAy + 2p - pomg kA
+ 2m2k - prfsidy — 2mip - porisdy — 4k - pp - pokisha + 2p*icdy +4(k - p)iehr — 8(p - po)*Kicha
+ 4m%m§lk’{‘6/12 —4p - pomglk‘l“(,/{z + 2m%m,2,1<’,*6/12 + 4k - pm,%lc’%/lz —-2p- pom,%K‘f‘f)/lz + 4mZk - K6l
+6m2p - pokteha — 2(k - p)*if Ay + 2k - pm2 k§ Ay + 2k - pp - pokg Ay — 4(k - p)kisAy + 2k - pm2 KfsAy
—2mzk - PK?5/14 =2k szzz,K?f,M +k- Pm:%"?f,h —mzk- P’fﬁs}m —2k-pp- POK?6/14 —4(k- P)ZK?/ls
+ 4k - pmg kgAs + 4k - pp - pokgds — 8(k - p)*iisAs + 4k - pmg kisAs — 4mzk - prisis — 4k - pmZ Kigls
+ 2k - pmgkigls — 2mzk - picighs — 4k - pp - pokieds
+ 2ma(4(m3 — m% + 2k - p)AKs + 2(—m2 k5 + 2mikisAy + mikicA — mikied — 2m3 (kg + ks — ki) A
= mzkyda + P - po(=2A1kg + 2K + (K + ki) A0)) + k- p(4Aig + Bils Ay + (ki + &) (44 + 245)))))).

W™= (a7 =7 (00 ="y
a

. 8F,
P 2D, [(p 7 07

+AC,mzxly + Cymils — Cymyrcis + k- poCy(is + Kjs) + p - poCy(i + ks = 95)) (242 + Ay + 245) (k- p)?
+ (=8p - poCymzdiks — 8C mimidks — 2p - poC miy Aorh — 2C,ma m2dsx4 + 4p - poC, mialyich
+4(p - po)*Cyakh — p - poCyma Ay — Cym miigky —2p - poC,ym? Asiy — 2C, m3% miAsiy
— 32C, mikg A — 16V2C,mii Ay + 32V2Cmym2iidy — 32C ;misxii Ay — 8p - poC mxishy
— 8C, mimaKisAy + 8p - poC micih + 8C mimixtcAy + 4C, pikids + 8p - poCymiksdy +4(p - po)*Cykala
—16V2p - poCymyxldy + 16p - poC,mixily + 8V2p - poComih iy + 8V2Cmym? kildy — 8C mam? k41,
— 4V2Cm2m2 K34y — 4V2p - poCymiiioly +4p - poCymixiyly + 2V 2p - poCymaxiyly — 4v2Cmymixholy
+4C,mimKiody + 2V 2Cmemikiy Ay + 16p - poC mixi dy — 8C, mim? 114y + 4p - poC makisly
+4C, mimic iy = 2p - poCyml Kishy — 2C,m3% mixisdy + 4p - poC mikisis +4(p - po)*C Kishr — 2C, piKteh
+4p - poCym2 Kihs — 6p - poCymiKicis + 2C, pid iy + 4p - poCymixads + 2(p - po)>Cykiia
+ 420 mym? kgdy — 4C mEim2 ki Ay — 2V 2C,mem? ki Ay — 2V/2p - poCymyiods + 2p - poCymikioha

(2(C mics — 4\/§me%<1<§‘ +4C,mix) + 2\/_2‘Csm,2,l<’3

n
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+V2p - poCymkiohs — Zﬁcsm%m% Yohs + 2C mzmyictoAy + ﬁCsm%M%K?oM — 4C mzmg Kt Ay

+2p - poCymzkiyhy + 2C,mamuxiydy — p - poCyme, kishs — Cymg mikishy — Cypikigha = 3p - poCymiriha
—2(p - po)>Cyighs +4C, piiis + 8p - poCymiids + 4(p - po)>Coxhds + 8V2C,mym?2 x4 s

—8C,mam} Kk§As — 4\/§C5m,2,m§11<3/15 —4V2p - poComiictyhs + 4p - poC, maxiyds + 2V2p - poCymiiliyis

- 4\/§C5m%<m$lc‘?oﬂ5 + 4Cqm,2[m% lods + 2\/§C3m,2,m%1<‘?0/15 - 8Cqm%mfllk‘j‘125 +4p - pOCqm%K?Z/IS

+ 4Cqm%mgk?2/15 -2p- Pocqm%zlk?slls - 2Cqm§1m%1<f5/15 - 2qué‘)l<‘i‘6/15 —6p- pGCm%K‘i‘(,/ls —4(p- Po)ch"%ﬂs
+ m,zz(—4\/§Csm%<K§‘ +4C,mzeg + 2\/§C5m,2,1<’3 +A4C,mixf, + Cymy (k5 + Kis = Kg) + P - PoC, (15 + Kis — Kjg))
X (22 4 Ag + 245) + k- poC,(=8mZAikf — 2m2 Aokh — md A4xh — 2m2 Aski — 8m2i\sAy + 4mixi Ay

= 2mg Kk = AmiKiehs + 2myky g — mg, Kishy — 2micichy + dmigds — 2mg, ks As — Amikighs

+ mz (K5 + Kfs) (24 + A4 + 245) +2p - po(220Kk5 + 254 + 252, + KAy — Kigha + 26§ A5 — 2icls)) )k - p
+2(2p- Pocqmzzrm?zlﬁl@ + 2Cqm,2,m§1m$/111c§‘ -(p- Po)chmglﬂzkg - P Pocqmzlm%z@ - 4Cqm72rPg’<§/11
—4(p - po)>Cymixidy — 8p - poC mimikady + 8C mim? kgdy + 4vV/2C,mim? k41,

— 8V2Cmym2m2 kA — 4p - poCymiriody — 2V2p - poComiioh +4V2p - poComim2ioh

— 4C mymkiod) — 2\/§C5mim%]¢?0/11 + 4\/§Csm%(m;2zm;%’<?o/11 + 8C mamg i Ay — 4p - poCymarizdy

— 4C mymgityAy + 2p - poCymamg kisAy + 2C,mamg mukisdy 4+ 2C mz pixicA 4+ 4(p - po)*C mzkishy

+6p - poCymzmyrichy = 2(p - po)*Cqmi ki = 2p - poCymi murido = 2(p - po)*Cymarida = 2(p - po)*Cyki s
+ 4\/519 : poCsm%(miKéﬂz —4p- pGCm%mﬁ,Kéﬂz - 2\/517 : Pocsm%mglkéﬂz + 2\/5(19 : Po)zcsm%(’allo/{z

= 2(p - po)>Cymiicioha = V2(p - po)? Comiitydy +2V2p - poCymim? kol = 2p - poCymim? ki

= V2p - poComzm? kioda = 4p - poComim? k2 = 2(p - po)*Cymiiiydy = 2p - poCymimi Kyl

= (P Po)*Cymi K5k = p - poCymi, myxisly + 2(p - po)*Cymi Kighy + p - poCyme, myKishs

+ (P po)*Cymyrighy +2(p - po)*Cyrighs +2(k - po)*p - poCylKis — 1) 2

+ m(Cy(i§ + is + K6)Aa(p - po)? + (2V2C (m2 = 2mi Ao + Cymi (k4 + )

+ Cy(mz, Aokl + mz(=221645 = 26541 + 2Khy + 452, + 4k 42))) P - Po

— 2m3(2V2C, (m}; = 2mi )iy + 4C,m (4 + ki) + Cymy (5 + s = xg)) )

+ k- po(Cy(p - polis + K5 + Kig) Ao = 2mz (k5 + Kfs) Ay )mz + 2C mz (k5 + Kfs)mg, + 2my (ks — k%))

+4(p - po)?Cylifs = k)Aa + p - po(V2C,(2m% — m2) iy + Cym (i — 268) A

§Cy(2(2hkd — 2rleh + (il + K — 2, (b + 26+ iy — 2k} ))) (89)
W= (a7 )n—a~(p*)n—z"rn 8Fy
a, ! = +F2m31szal CEE (2C,m3 miioKs — 2maC midyih — 4k - pCymiiaKs + 8Cqu, o

+4V2Cmixi A — 8V 2C,mym2kih + 8C mixihAy — 4C,mem? KAy — 4C,mimiKich
+ 4C ;m2 ki — 4k - pCym2kidy + 8V 2m2Comykidy + 16V2k - pComykidy
— 8m2C mikdy — 16k - pC mikily — 4V2m2Cimixdly — 8V 2k - pCmih,
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W= (a) =7~ (PO—="yn 16Fy

ay

— 8V2C mym? k3 ly + 8C mam? kaldy + 4V 2Cm2m3 k41, + 4V 2k - pComyxily

— 4k - pC m2iidy — 2V 2k - pCym2iydy — 4V2Cmym? Kdy + 4C,m2m2 Kds

+ 2\/§C3m,2,m§11<*1‘0/12 - 8m%Cqm%K*1‘1/12 — 16k - qum,er‘?lﬂg + 8Cqm,2£m§11<‘{‘1/12

— 4k - pC maxtydy + 4C,maml ki, + 2C, m3 mikisiy — 2miC mixis A,

— 4k - qum%K‘?S/IZ - Zm%Cqmgllc‘%/lz —2k- qumglx‘?é/lz - 2Cqm1211m%1<‘?6/12

+ 2k - pCymiitshy +4(k - pg)*Cylig = kg)Ar +4(p - po)*Cyi§ — ifg)da — 2k - pCymyicg Ay

+2V2k - pCmiriyhy — 2k - pCymiitydy — V2k - pComitydy — 2k - pCymikihdy + k- pCym? ki y

+ k- pCymiishy — 4k - pCymiids + 42k - pCmiriyds — 4k - pC mixiyds — 2v/2k - pComirty s

— 4k - qum%K‘i‘ZAS + 2k - qumEIK‘]‘\G/IS + 2k - qum%K‘?()/% + 8Cqm,2,m%1(§‘/11

+2p - po(Cy(=(mz — mg, + 2k - p)aokh + 2mg kg 2y + 2mukgdy = 2k - prgdy — makishy + myg Kishy

— 2k - pKifsAy — mixic Ay — 2m3 ki — mito Ay 4+ 2ma (24, k5 — 26 A + (kg + k1) Aa) — k- pr§As + k- prigAs
— 2k - prfls + 2k - priis) — V2C,(2mYy — m2)kioda) + 2k - po(C,(=(m2 — m2, + 2k - p) it

+ 2mg kg Ay + 2mgkg Ay — 2k - pg Ay 4 4p - pokgdy — makisdy + mg Kisly — 2k - prisiy

— maKighy = 2mg Kighy — myKighs = 4p - pokighy + 2mz 241k — 2K6h + (Ko + K5)4)

— k- prfis + k- prefhy — 2k - s + 2k - prelgds) = V2C,(2mk — m2)ifoha)), (B10)

- +F2m2 ng [(p + k)z] (Cq(_(p : po)mglﬂﬂk? + m%rm%ﬂ'ZKSA - mglmig/’{ZKSA + 2k - pm%/’iﬂk?
a a

+mzp - polaky + 2k pp - podaky +4(k - p)*kgda = 2(p - po)’k§Aa — 2k - pmi kidy
-2p- PomglK‘é‘ﬂz - 2m§1m%1<§‘/12 -2p- Pom%’f‘é‘/lz + 2m72rk : Pk‘éuz - P PomglK?sflz

+ mgmikisdy — mg mukisdy + 2k - pmykishy + mzp - pokishy + 2k - pp - poxisi

+2(p - po)*Kighy + mamg kgl + 2k - pmg klely + 2p - pomg, Kighy 4 mg myKisl,

+ p - pomgkighy + mzp - poKighy + 2k - pp - pokisla = 2(k - po)* (kg — ki)

+ k- po((mz —mg, + 2k - p)i§ — 2mg kg — 2myxg + makls — mg, i + 2k - pKis + mzx'lg
+2mg kg + myKis + 2k - pclg —4p - po(kg — Kig)) Ay — 2mz(2(myz — mg, + 2k - p)xga,

= (2(mz —mg, + 2k p)x§ — mg, kg — p - poKi + 2mzxty — 2mg k) + 4k - pry — mg kf
— P pokty — k- po(kfy + k1)) A) + 2(k - p) kg Ay — k- pmi kg Ay + mzk - pgiy

+4(k - p)kiis — 2k - pm2 k§ds + 2m2k - piiis) — V2C,(2mF — m2)(2(m2

—mg, + 2k p)§ = (m& + k- po+ p - po)Kip)a)- (B11)
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We turn now to the vector factors, with the one-resonance exchange contributions (Fig. 6) listed next:

IR _

L)

1R _

U3

1R _

4v2¢,
SFQM%,m%D/,[(p +k)?]
+ P po(8(es + ¢7)(2c3my — (2¢3 + ¢s5 4 c7)mz) 4 (4(cs 4 ¢7)* + clys6)m))
+4(cs + cq)mz(my = mz)((cs + ¢7) (k- po + my) + ez (mz — my))
= 16(cs + c7) (k- p)*((cs + ¢7)(k - po + my + p - po) + 43 (mz — my))

+ p - po(—8c3(m? — m;%)((cl%ﬁ —2(cs + 07))””/% + 2(cs 4 ¢7)mZ) + (4(cs + ¢7)?

4v2C,

+
3F2M%/m%)Dw[(p0 + k)Z]

+ cty56)mamy — 4(cs + ¢7)?my))

+des(my —mz)) —m?2 ((cs6(8cs + 3ciase)my + 16¢3(cs + c7)mz)k - po + 2¢1,56(k - po)* + 64c

n
8VAC,

(cmz + cap - Po)
3F2D,[(p + po)’]

+ C1a56(8¢3 + C1as6)myy — 64c3my)) —

2C,Fy
3F2m2

w

4v2¢,

- 3PMYmD,[(p + k)]

(=(4Y3 = Ay = A5) (k- po + m2 4 p - po) +4m2A{ +2p - po(A}; +4},)),

+ crasemz(8csmy + (cias6 — 8¢3)m2))) — 16¢53(cs + ¢7)(mE — mi)k - p(2k - p + m2))

16V2C, (

3F2MIm2D,[(po + k)7 \ 2

1
—=k- po(p- po(8(cs+ c7)(4csmi — (2¢5 + ¢5 + ¢7)

2
my

(2k - p(4(cs + C7)(m% —=2m2)((cs + ¢7) (k- po + m%) +4cy(mi —m

)

+ (4(cs 4 ¢7)? + ctse)md) — 4(4ey — 5 — c7)ma(=2(2¢5 + 5 4 ¢7)my + (cs5 + c7)mZ, + 4csm3))

+ (es +cr)k - p((es 4 ¢7)(2k - po + my) + des(my — m3))(2k - po + my — mg)

1
+4(cs + c7) (k- po)*((cs + c7)(mE: + p - po) —4csm?) +—m2(16c3m2((cs + c7)(m3 +2p - py) — 4c3m3)

4

— my(4((cs 4 ¢7)* = 16¢3)mz + (cTps6 + 8¢3C1256 + 4(c5 4 ¢7)(4c3 + ¢5 +¢7))p - po))

+ (4cymz — (4cy + cs 4 ¢7)my) (desmzp - po — my((cs + ¢7)(mz + p - py) — 4C3m721))>

8V2C, A 2C,Fy
3F2D [(Pq+15po)2] (emmy + cap - po) =3 o (=(As = Aty = 45) (k- po +my + p - po)
ao w

+4mzAg +2p - po(Al; + 1)),

4v2¢,
" T 3FPPM2m2D,[(p + k)7
v, (P

— cias6)my + (c1y56 + 8¢3(2(cs + €7) — cas6))ma + 2(4es — ¢5)(2¢5 — 2¢6 + C1a56)P - Do)

16v/2C
3F2M%/m2D [(;0 T k)z] (CS + C7)((C5 + C7)(2k *Po + mrzl) + 4C3(m% - mzzr))(Zk “Po+ er/ —m
2C,Fy
- 3Fgm2 (’% - /1}/4 - ﬂYs)’

054015-31
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@

(16c3mZk - po((cs + ¢7)(2k - po + mrzl)

2,22
anmn

(m%(—((3c%256m% —8c3(2(cs + ¢7) + Crasg) (M2 — m%))k P4 2¢h5(k - p)?

(16¢3(cs + ¢7)(m2 —m3) (2k - p + m2) — m2(2ctys6k - p — 8c3(2(cy + 4c3 + ¢7)

)
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vt =~ 2172 4;/§Cq 2
3F Mvmpr[(p + k) ]

4v2¢,

3P MmD,[(po + k)?]

4(cs 4+ ¢7)*(2k - p +m2)(2k - p — m3 + m2)

(m2(c1as6(c1as6(2k - po + mj) + 8cym?) — 16¢5(cs + c7)m3)

C,Fy
> (A3 = Afy = 45). (B15)

2
+16¢3m2((cs5 + ¢7)(2k - po + m%) + 4c3(m% -m2))) + ﬁ
Finally, we will give the two-resonance mediated contributions to the vector form factors (Fig. 7) [Egs. (B16)—-(B19)]:

= SR T 7] kP28 Sl
+ mz(=(16¢3d3 + (2(cs + ¢7) + c1as6)d1a)) + 2(2(cs + ¢7) + c1a56)d3p - Po) + 4cias6ds(k - po)?
+ (8csmz — (8¢5 + case)my) (dipmyz = 2d3(my; + p - po))) + 2dsk - p(mg,((2(cs + ¢7) + c1as6)k - Po
+ (8¢3 + c1os6)my — 8camy) + 2k - po(des(my — my) = (s + ¢7)(2k - po + my)))
— 2k po(2d3p - po — diamz)((cs + ¢7)(2k - po + my) + 4c3(my; — m3)))
8F,C,
~ 3FMym2D,[(p + po + k21D, [(p + k)%
—16p - P0C7d2mfz -2p- P005d3mi -2p- PoC7d3m§z -2p- P005d4m§‘z -2p- P007d4m§‘z

—16¢5d,m8 + 16¢csdym2m? + 16c,dym2mt — 16p - pocsd,m?
52ty »

+16p - pOCSdZm?)mgz + 16p - p0c7d2mf,m,2, -8p- p001256d2m?)m72z +2p- P005d3m§m;2z
+2p- p0c7d3m§m,2, -2p- P001256d3m/2;m;2z +2p- p0c5d4m§m,2, +2p- Poc7d4m%m;2r
—4(p - po)*esdymi — 16¢,dymS — 4(p - po)esdymi +4(p - po)esdsml 4+ 4(p - po)*esdyms
—2(p - po)ciasedsmy — 8(k - p)*(cs + ¢7)((=ds + dy + dyp)my + (k- po + p - po)(ds + dy)
+ 8dy(mz —my)) + 2k - po((cs + c7)(ds + da)(my; — mz)mz + p - pods((2(cs + ¢7) = c1os6)m;
—2(cs + ¢7)mz)) — my(2(cs 4 ¢7)(8dy + dy — dy — dyo)mz(m} — m3) — p - po(8dsy — dy)(2(cs + ¢7)m;
+ (c1256 — 2(c5 4 ¢7))m3)) 4+ 4k - p(=2(cs5 + ¢7)d5(p - po)* + (((¢5 + ¢7 = c1256)d5
+ (¢5 + c7)ds)my + (c5 + ¢7)((8dy — dip)my — 2(4dy + ds + dy)m3))p - po
— (c5+ ¢7)(8dym; 4 (=8dy — d5 + dy + dyp)my) (2mz — my) — k- po(cs + ¢7)(2p - pods
n SFVCq/lgv
3F?D,[(p + po + k)*1Dg, [(p + Po)’]

+ (dy + dy) (2mz — m3)))) (cap - Po + cum3)

16F,C
~ 5 3 2V 1 5 (k- p(2((cs + c7)k - po + (cs5 + c7)m$ + 4ey(md — m%))(mzzz(dl +8d, + ds + 2d,)
3F MVmpme/J[(p + k) }

— d4m%) + p- p0(205 (m,z,(dl + 8d2 + d3 + 2d4) — d4m,2)) + 2c7d1m,2, + 16c7d2m,2,

+ C]256d3m5 + 2C7d3m,21 + 8C3d4<m% - m,%) - 2C7d4m5 + 4C7d4m,2,))

+ mz(mz —mp)(dy +8dy + ds + da)((cs + 1)k - po + (c5 + c7)my + des(mz — my))

1
+ Ep . p0(8c3(m,2, - m%)(m,z,(dl + Sdz + d3 + d4) - (d3 + d4)m%) + m,ZT(ZCS(m,z, - m% (dl + 8d2 + d3 + d4)

+ 2¢7(mz — my)(dy + 8ds + ds + dy) + c1p56(—(dy + 8dy))m3))

+4dy (k- p)*((cs + c7)k - po — 4c3m% + c5m% + c7m% +4c3m; + (cs+¢7)p - po))

N V2F}C,
3F?mymgD,[(p + po + k)?]

+4m2ayY +4p - po(AYY + V), (B16)

(2k - po 4 my +m; 4 2p - po) (A3 + AN 4+ 223V) (k- po + mj + p - po)
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where di, = d; + 8d, is fixed by the short-distance constraints (63).

_ 8FyC,
3F*Mym,D,[(p + po+k)*|D,[(po+k)?]
+64p - pocsdymemz —16p - pocsdyme,mz +8p - pocdsmgmz —8p - pocsdamymz —8p - 190036112”1{”’"2

v3R = (8csdym2my —8cydym2my +8cyd ym2my —8p - pocsdimi

—2p - pocsdiymymz + p- pociosedinmegmz +8p - pocs(din —8dy)mg,mz —2p - poes(dys —8dy)mzm
+16(p- po)csdsmz —2(4c3+cs+c7)(p- po(ds +dy) — (ds - d4+d12> 2y +4(p- po)? Csdzm
+4(p- po)?crdsmg, =2(p- po)*crosedsmy, +8(k- po)*(cs +¢7)((ds —dy+dyp)mz = p- po(ds +dy))
+2my(=2(4c3 + cs+¢7)ds(p- po)* + (((¢5+ ¢7)dyp +4e3(ds +dy+dyp) )mz 4 ((=4e3 + ¢s 4 ¢ = C1a56) d3
+ (4e3+ s+ cq)dy)mg,) p- po— (ds = dy + dyp)mi (desmy + (4ez 4 ¢s +c7)mg))
+4k- po(=2(cs+c7)d5(p-po)* + (((¢s+¢7— crase)ds + (¢s+ ¢7)dy)my +4es3(ds + dy) (ms — my)
+ (cs+¢7)(diamz —2(dy +dy)my)) p - po+ (dy — dy + dya)mz (4es(my —mz) + (cs + ¢7) (2m; —m3)))
+2k- p(=4(cs+c7)(ds +dy) (k- po)* +2((ds +dy) (4eymz —2(2¢3 + ¢s5 + c7)my + (¢s5 -+ ¢7)my)
—2p-polcs+e7)ds)k- po+(ds +da)(desmy = (des + cs 4 cq)my) (my — m3)
+ P pods(8czmy =2(4es + cs +cq)my + (2(cs +¢7) = cias6)ma)))
8F,C,
3F?Mym2D,[(p+ po+k)2|D,[(p+ k)]
+ (d12 —8dy)my; +8dymz)) + k- p(m(2(2(cs + ¢7) + cias6)ds (k- po+ p - po) — (2(cs +¢7) + C1256) (8dy — dyp)m
+2mz(4(2(cs +¢7) + cias6)da +3¢1056d5)) = 2(c5 + c7)mz (2d5 (k- po+ p - po) + (d12 — 8da)my; +8dymy3))
+ crasemmizny (2ds (k- po+mz + p - po) + (di; —8dy)my +8dymy))
8F,C, 23"
3F2D,[(p+ po+k)?1D4, [(P+ Po
8F,C,
3F2Mvmzm3,Dp[(p+k)2]
+ crasgmzmy (dy +8dy = 2d3)) +mz (dy +8dy)my (¢ 1as6mz — 8c3(mz —my))
V2F3C
3F*mami,D [(p+po+k)]
X (2k- po+my +my+2p- po) (Y + 4V +22V) (k- p+mz+ p- po) +4mzAy¥ +4p - po(4)Y +243V)),

(4(k- p)*(ciasedsmi — (cs +¢7)(2d5 (k- po+ p - po)

+

)2] (Cdp “Po+ Cmmlzr)

(k- p(8cs(mz—m})(mi(dy +8dy +dy+dy) + (d3 — dy)m3)

+2(k- p)2(8c3dy(m2 —m2) = c1o56dsm2)) +

(B17)
= 2 Oy Clds — 62114) 2
3F*MymgD,[(p + po + k)*|D,[(po + k)°]

. 16F,C,
3F*MymiD,[(p + po + k)’1D,[(p + k)]
—2(cs 4 c7) (k- po+ p - po)) + (2(cs + ¢7) = c1256) (8 — dya)myy + 2mz(4(cras6 — 2(c5 + ¢7))dy + C1a56d3))

(4c3(m% —m3) — (cs + ¢5)(2k - pg + m}))(mZ, — mj — 2k - py)

2
—p(2d3(01256(2k p+k-po+p-po)
2

Hles - en)2ke po4 m2)Qas(k poct p-po) + (di = 8 ) + 8 )
8F,C,
3F2MVmpma) [(p + k) }
+crasema(—(dy + 8dy))mj + 2k - p(ciasedsmy; + 8cydy(myz — my)))
V2F}C

- 3F*m; me [(p + po + k)z]

(863(”’12 - mn)( (dl -+ 8d2 + d3 + d4) (d3 + d4)m[2,)

(WY + A0V +227V)(2k - po + m} 4+ m3 +2p - py), (B18)
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16FyC,(ds — dy)

2R —
Y3 MymgD,[(p + po + K)*ID,[(po + k)]

PHYSICAL REVIEW D 95, 054015 (2017)

1
<§ ma (4cisedsk - po + 2(c1as6 — 2(cs + ¢7))d3k - p

+2(8cs + 01256)613”1% — 16c3d3m3 + 2¢sdiymE + 2c7dyoms — crasediami + 2(ciase — 2(¢s + ¢7))dsp - po)

+ (2ds(k - p+ p - po) — diamz)((cs + ¢7)(2k - po + my) + 4es3(my; — m},)))

B 16FyC,(cs + ¢7)(d3 — dy)
3F*Mym2D,[(p + po + k)*ID,[(p + k)?]
N 16FyC,(cs + c7)
3F*Mymimg,D,[(p + k)?]
V2F}C,
T3F D, (p + po + )]

APPENDIX C: OFF-SHELL WIDTH
OF MESON RESONANCES

For completeness we explain in this appendix the
expressions that we have used for the off-shell width of
meson resonances relevant to our study. The p(770) width
is basically driven by chiral perturbation theory results,

sM 3/2
I(6) = ot [o22(6)0(s = 4

+ %ai(/z(sw(s _ 4m%()} , (1)

where op(s) =1/1 — 4"%% and we note that the definition

of the vector meson width is independent of the realization
of the spin-1 fields [81]. Given the narrow character of the
@(782) resonance the off-shellness of its width can be
neglected. A similar comment would apply to the ¢(1020)
meson, although it does not contribute to the considered
processes in the ideal-mixing scheme for the @ — ¢ mesons
that we are following.

(WYY + Y +20V)(2k - po + m2 4+ m% +2p - py).

(2k - p +mz)(2k - p — m} + m%)

(=2k - p +mj —mZ)(m3(d, + 8dy + d3 + dy) + 2d4k - p)

(B19)

The a,(1260) meson energy-dependent width was derived in
Ref. [29] by applying the Cutkosky rules to the analytical
results for the form factors into the 37 [29] and K K channels
[66] that are the main contributions to this width. Since its
computation requires the time-consuming numerical calcu-
lation of the corresponding correlator over phase space, we
computed I', (s) at 800 values of s and use linear interpo-
lation to obtain the width function at intermediate values.

Finally, the a;(980) meson is also needed as an input in
the analyses. We have used the functional dependence
advocated in Eqgs. (19) and (20) of Ref. [16] which take into
account the main absorptive parts given by the 75, KK, and
71 cuts. The very low-energy (G-parity violating) zz cut
has been neglected.

We point out that we are considering only the imaginary
parts of the meson-meson loop functions giving rise to the
resonance widths. On the contrary, we are disregarding the
corresponding real parts. Although this procedure violates
analyticity at next-to-next-to-leading order in the chiral
expansion, the numerical impact of this violation is
negligible (see, e.g., Ref. [82]) and, for simplicity, we take
this simplified approach in our study.
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