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Yang-Mills (YM) theory and QCD are known to be renormalizable, but not ultraviolet (UV) finite, order
by order, in perturbation theory. It is a fundamental question whether YM theory or QCD is UV finite, or
only renormalizable, order by order, in the large-N ’t Hooft or Veneziano expansions. We demonstrate that
the renormalization group (RG) and asymptotic freedom imply that in ’t Hooft large-N expansion the
S matrix in YM theory is UV finite, while in both ’t Hooft and Veneziano large-N expansions, the S matrix
in confining massless QCD is renormalizable but not UV finite. By the same argument, the large-N N ¼ 1

supersymmetry (SUSY) YM S matrix is UV finite as well. Besides, we demonstrate that, in both ’t Hooft
and Veneziano large-N expansions, the correlators of local gauge-invariant operators, as opposed to the
S matrix, are renormalizable but, in general, not UV finite, either in YM theory and N ¼ 1 SUSY YM
theory or a fortiori in massless QCD. Moreover, we compute explicitly the counterterms that arise from
renormalizing the ’t Hooft and Veneziano expansions by deriving in confining massless QCD-like theories
a low-energy theorem of the Novikov-Shifman-Vainshtein-Zakharov type that relates the log derivative
with respect to the gauge coupling of a k-point correlator, or the log derivative with respect to the RG-
invariant scale, to a (kþ 1)-point correlator with the insertion of TrF2 at zero momentum. Finally, we argue
that similar results hold in the large-N limit of a vast class of confining massive QCD-like theories,
provided a renormalization scheme exists—as, for example, MS—in which the beta function is not
dependent on the masses. Specifically, in both ’t Hooft and Veneziano large-N expansions, the S matrix in
confining massive QCD and massive N ¼ 1 SUSY QCD is renormalizable but not UV finite.
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I. INTRODUCTION

SUðNÞ Yang-Mills (YM) theory and SUðNÞ QCD with
Nf quark flavors are known to be renormalizable but not
UV finite in perturbation theory. It is a fundamental
question that has not been considered previously whether
their large-N ’t Hooft or Veneziano expansions (Sec. II)
enjoy better UV properties nonperturbatively, perhaps
limited only to the large-N S matrix, once the lowest 1

N
order has been made finite by renormalization, as defined in
Secs. III and IV. Answering this question sets the strongest
constraints on the solution, which is yet to come, of large-N
YM theory and QCD. The first main result of this paper is
that the renormalization group (RG) and asymptotic free-
dom (AF) imply that, in the ’t Hooft expansion, the large-N
YM S matrix is UV finite, while in both ’t Hooft and
Veneziano expansions, the large-N S matrix in confining
massless QCD1 is renormalizable but not UV finite
(Sec. III): in the ’t Hooft expansion due to log divergences

of meson loops (Sec. II) starting from the order of Nf

N , and in
the Veneziano expansion due to log-log divergences of
“overlapping" meson-glueball loops (Sec. II) starting from
the order of Nf

N3. By the same argument, the large-N N ¼ 1

supersymmetry (SUSY) YM S matrix is UV finite as well.
Correlators (Sec. IV), as opposed to the Smatrix, turn out to
be renormalizable but log-log divergent in general, in
addition to the possible divergences of the S matrix in
the aforementioned large-N expansions, but at the lowest
order, even in large-N YM and N ¼ 1 SUSY YM theory.
The second main result is a low-energy theorem (Sec. V) of
the Novikov-Shifman-Vainshtein-Zakharov (NSVZ) type
in confining massless QCD-like theories2 that allows us to
compute explicitly the lowest-order large-N counterterms
implied by the RG and AF, as opposed to perturbation
theory. Finally, we argue that similar results hold (Sec. VI)
for the large-N S matrix in a vast class of confining QCD-
like theories with massive matter fields, provided that a
renormalization scheme exists in which the beta function is
not dependent on the masses. MS is an example of such a
scheme. In addition, the asymptotic results in Sec. IV also
extend to the correlators of the massive theory, provided
that the massless limit of the massive theory exists
smoothly.

*marco.bochicchio@roma1.infn.it
1By massless QCD, we mean QCD with massless quarks.

2By QCD-like theory, we mean a confining asymptotically free
gauge theory admitting the large-N ’t Hooft or Veneziano limits.
We call such a theory massive if its matter fields are massive, and
massless if a choice of parameters exists for which the theory is
massless at all orders in perturbation theory.
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II. LARGE-N’T HOOFT AND VENEZIANO
EXPANSIONS

We recall briefly the ’t Hooft [1] and Veneziano [2]
expansions in large-N YM theory and QCD with Nf quark
flavors. Nonperturbatively, the ’t Hooft large-N limit is
defined by computing the QCD functional integral in a
neighborhood of N ¼ ∞, with the ’t Hooft gauge coupling
g2 ¼ g2YMN and Nf fixed. The corresponding perturbative

expansion, once expressed in terms of g2, can be reorgan-
ized in such a way that each power of 1

N contains the
contribution of an infinite series in g2 [1,2]. The lowest-
order contribution in powers of 1

N to connected correlators
of local single-trace gauge-invariant operators GiðxiÞ and of
quark bilinearsMiðxiÞ, both normalized in such a way that
the two-point correlators are on the order of 1, turns out to
be on the order of

hG1ðx1ÞG2ðx2Þ � � �GnðxnÞiconn ∼ N2−n; hM1ðx1ÞM2ðx2Þ � � �MkðxkÞiconn ∼ N1−k
2

hG1ðx1ÞG2ðx2Þ � � �GnðxnÞM1ðx1ÞM2ðx2Þ � � �MkðxkÞiconn ∼ N1−n−k
2: ð1Þ

This is the ’t Hooft planar theory, which perturbatively
sums Feynman graphs triangulating, respectively, a sphere
with n punctures, a disk with k punctures on the boundary,
and a disk with k punctures on the boundary and n
punctures in the interior. The punctured disk arises in
the ’t Hooft large-N expansion from Feynman diagrams
whose boundary is exactly one quark loop. Higher-order
contributions correspond to summing the Feynman graphs
triangulating orientable Riemann surfaces with a smaller
fixed Euler characteristic. They correct additively ’t Hooft
planar theory with a weight Nχ , where χ ¼ 2 − 2g − h −
n − k

2
is the Euler characteristic of an orientable Riemann

surface of genus g (i.e., a sphere with g handles), with h
holes (or boundaries), n punctures in the interior, and k
punctures on the boundary of some hole that the Feynman
graphs triangulate. Nonperturbatively, a handle is inter-
preted as a glueball loop, and a hole as a meson loop [1,2].
On the contrary, nonperturbatively, the Veneziano large-N
limit is defined by computing the QCD functional integral
in a neighborhood of N ¼ ∞, with g2 and Nf

N fixed. Since

factors of the ratio Nf

N , which is kept fixed and considered on
the order of 1, may arise perturbatively only from quark
loops, the Veneziano large-N expansion contains perturba-
tively already at the lowest order Feynman graphs that
triangulate a punctured sphere or a punctured disk with any
number of holes, i.e., it contains the sum of all the Riemann
surfaces that are geometrically planar. This is the Veneziano
planar theory. Higher orders contain higher-genus Riemann
surfaces.

III. LARGE-N YMANDMASSLESS QCD SMATRIX

We assume that YM theory and QCD have been
regularized in a way that we leave undefined, introducing
a common cutoff scale Λ, both perturbatively, in the
large-N expansion, and nonperturbatively. The details of
the regularization do not matter for our arguments.
Perturbatively, pure YM theory and massless QCD need
only gauge-coupling renormalization in the classical action
in order to get a finite large-Λ limit since, in massless QCD,

there is no quark-mass renormalization because chiral
symmetry is exact in perturbation theory. In addition,
local gauge-invariant operators also need, in general,
multiplicative renormalizations, associated with the
anomalous dimensions of the operators, in order to make
their correlators finite. However, multiplicative renormali-
zations must cancel in the S matrix because of the
Lehmann-Symanzik-Zimmermann reduction formulas
since the S matrix cannot depend on the choice of
interpolating fields for a given asymptotic state in the
external lines [3]. Therefore, only gauge-coupling renorm-
alization is necessary in the YM and the massless QCD
S matrix, but nonperturbatively according to the RG,3

because, otherwise, every physical mass scale in the
S matrix is set to zero. Indeed, nonperturbatively gauge-
coupling renormalization is equivalent to make finite
and (asymptotically) constant the RG-invariant scale:

ΛRG ¼ constΛ expð− 1
2β0g2

Þðβ0g2Þ
− β1
2β2

0ð1þ � � �Þ, uniformly

in a neighborhood of Λ ¼ ∞ and g ¼ 0, where the dots
represent an asymptotic series in g2 of renormalization-
scheme dependent terms that obviously vanish as g → 0.
The overall constant is scheme dependent as well.
Moreover, RG requires that every physical mass scale of
the theory is proportional to ΛRG. Therefore, the UV
finiteness of the large-N S matrix is equivalent to the
existence of a renormalization scheme for g in which the
large-N expansion of ΛRG is finite because, if the S matrix
is divergent, its divergences ought to be reabsorbed into a
divergent redefinition of ΛRG, which is the only parameter
of the Smatrix both in large-N YM theory and in confining
massless QCD. This is decided as follows. Firstly, we

3We assume that the aforementioned theories actually exist
mathematically and are renormalizable, that the 1

N expansion
is at least asymptotic, and that the standard RG is actually
asymptotic in the UV to the exact result because of AF. Though
these statements are universally believed, no rigorous mathemati-
cal construction of YM theory or of QCD—or of their large-N
limits—presently exists, let alone a mathematically rigorous
proof of these statements.
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consider the ’t Hooft expansion in large-N YM theory. In
this case, β0 ¼ βP0 ¼ 1

ð4πÞ2
11
3
, β1 ¼ βP1 ¼ 1

ð4πÞ4
34
3
, where the

superscriptP stands for ’t Hooft planar theory. Now, both in
the ’t Hoof planar theory and to all the 1

N orders, the
first-two coefficients of the beta function β0, β1 get
contributions only from ’t Hooft planar diagrams. This
implies that, in large-N YM theory, the 1

N expansion of ΛYM

is, in fact, finite [4], as the nonplanar 1
N corrections

occurring in the dots or in the const contribute only, at
most, a finite change of renormalization scheme to
the ’t Hooft planar RG-invariant scale, ΛP

YM ¼

constΛ expð− 1
2βP

0
g2ÞðβP0 g2Þ

−
βP
1

2βP2
0 ð1þ � � �Þ. Thus, all glueball

loops in the Smatrix of large-N YM theory are UV finite in
the ’t Hooft expansion around the planar theory once the
planar theory has been made finite by the gauge-coupling

renormalization implicit in the finiteness of ΛP
YM [4]. A

similar argument implies that, in the ’t Hooft expansion,
the large-N N ¼ 1 SUSY YM S matrix is UV finite
as well. The ’t Hooft expansion of large-N massless
QCD is deeply different. In this case, β0 ¼ βP0 þ
βNP
0 ¼ 1

ð4πÞ2
11
3
− 1

ð4πÞ2
2
3

Nf

N and β1 ¼ βP1 þ βNP
1 ¼ 1

ð4πÞ4
34
3
−

1
ð4πÞ4 ð133 − 1

N2Þ Nf

N , where the superscript NP stands for

non–’t Hooft planar theory. Since quark-loop contributions
are on the order of 1

N, the first coefficient of the beta
function, βP0 , gets an additive non–’t Hooft planar 1

N

correction, βNP
0 ¼ − 1

ð4πÞ2
2
3

Nf

N . As a consequence, it is

impossible to find a renormalization scheme for g that
makes ΛQCD finite in the ’t Hooft planar theory and at the
next order of the 1

N expansion at the same time, as the
following computation shows [4]:

ΛQCD ∼ Λ exp

 
−

1

2βP0 ð1þ βNP
0

βP
0

Þg2

!
∼ Λ exp

�
−

1

2βP0 g
2

� 
1þ

βNP
0

βP
0

2βP0 g
2

!
∼ ΛP

QCD

�
1þ βNP

0

βP0
log

�
Λ

ΛP
QCD

��
: ð2Þ

The symbol ∼ means asymptotic equality in a sense
specified by the context, up to perhaps a nonzero constant
overall factor. The equalities in Eq. (2) hold asymptotically,
uniformly for any large finite Λ and small g even before
planar renormalization, without needing to actually take the
limits Λ → ∞, g → 0, as they are obtained expressing g
identically in terms of ΛP

QCD, which is the new free
parameter of the planar theory, in the last asymptotic
equality. The log divergence in Eq. (2) occurs precisely
because of the AF of the planar theory. In Sec. V we will
compute explicitly the large-N counterterm due to the
renormalization of ΛP

QCD, which turns out to agree exactly,
within leading-log accuracy, with the perturbative counter-
term due to quark loops. Indeed, were ΛP

QCD to get only a
finite renormalization, the complete large-N QCD and the
’t Hooft planar theory would have the same β0, which is
false. Hence, as ΛQCD is the only physical mass scale,
glueball and meson masses receive 1

N log-divergent self-
energy corrections proportional to the one of ΛQCD, which
can arise only from a log divergence of the meson loops.
This is a physical fact that characterizes the meson
interactions in the UV, reflecting the corresponding
perturbative quark interactions in the UV. Therefore, the
’t Hooft expansion of the QCD S matrix, though renorma-
lizable, starting from the order of Nf

N , is log divergent due to
log divergences of the meson loops. The chances of
finiteness would seem more promising in the Veneziano
expansion. In this case, β0 ¼ βVP0 ¼ 1

ð4πÞ2
11
3
− 1

ð4πÞ2
2
3

Nf

N and

β1 ¼ βVP1 þ βNVP
1 , with βVP1 ¼ 1

ð4πÞ4 ð343 − 13
3

Nf

N Þ and

βNVP
1 ¼ 1

ð4πÞ4
Nf

N3, where the superscripts, VP and NVP,

stand for Veneziano planar theory and non-Veneziano
planar theory. Since the Veneziano planar theory already
contains all quark loops, the first coefficient of the
Veneziano planar beta function and of the complete beta
function coincide. Thus, there is no log divergence in the
expansion of ΛQCD. Yet, in the Veneziano expansion as
well, it is impossible to find a renormalization scheme for g
in which both ΛVP

QCD and its 1
N corrections are finite at the

same time because of log-log divergences starting from the
order of Nf

N3 due to overlapping glueball-meson loops, as
the following computation shows:

ΛQCD ∼ Λ exp

�
−

1

2β0g2

�
ðg2Þ−

βVP
1

2β2
0 ðg2Þ−

βNVP
1

2β2
0

∼ ΛVP
QCD

�
1þ βNVP

1

2β20
log log

�
Λ

ΛVP
QCD

��
: ð3Þ

Thus, the large-N Veneziano expansion of the S matrix in
confining4 massless QCD is not UV finite as well. In
any case, both the ’t Hooft and Veneziano expansions
of the S matrix are renormalizable, as the aforementioned

4In fact, Eq. (3) may be valid only for Nf

N and g in a certain
neighborhood of 0. Indeed, it is believed that there is a critical
value of Nf

N and of g at which massless QCD becomes exactly
conformal because of an infrared zero of the beta function, where
ΛQCD may vanish due to the infrared zero. Similar considerations
may apply to other massless QCD-like theories.

THE LARGE-N YANG-MILLS S MATRIX IS … PHYSICAL REVIEW D 95, 054010 (2017)

054010-3



divergences are reabsorbed order by order in the 1
N

expansions by a redefinition of ΛQCD.

IV. LARGE-N YM AND MASSLESS
QCD CORRELATORS

The asymptotic structure of the two-point correlators
of (Hermitian) operators of spin s and mass dimension

D in the 1
N expansions is obtained by dividing the

renormalized correlators by the multiplicative renorm-
alization factor in the complete massless QCD-like

theory [5,6] ðg2ðΛÞg2ðμÞÞ
γ0
β0 to get the bare correlators, and

by multiplying by the same factor in the planar theory
because of planar renormalization (the superscript P
stands for P or VP):

hOðsÞðxÞOðsÞð0Þiconn ∼
PðsÞðxαx Þ
x2D

�
g2ðΛÞ
g2ðμÞ

�γP
0

βP
0

�
g2ðxÞ
g2ðΛÞ

�γ0
β0 ¼ PðsÞðxαx Þ

x2D

�
g2ðΛÞ
g2ðμÞ

�γP
0

βP
0

�
g2ðxÞ
g2ðΛÞ

�γP
0

βP
0

�
g2ðxÞ
g2ðΛÞ

�γ0
β0
−
γP
0

βP
0

∼ hOðsÞðxÞOðsÞð0ÞiP
�
1þ

�
γ0
β0

−
γP0
βP0

�
log

g2ðxÞ
g2ðΛÞ

�

∼ hOðsÞðxÞOðsÞð0ÞiP
 
1þ

�
γ0
β0

−
γP0
βP0

�
log

logð Λ2

Λ2
QCD

Þ
logð 1

x2Λ2
QCD

Þ

!
; ð4Þ

where PðsÞðxαx Þ is the spin projector in the coordinate representation in the conformal limit. Thus, the expansion of the
correlators around the planar theory has, in general, log-log divergences due to the 1

N corrections to the anomalous
dimensions. Remarkably, the correlator of TrF2 [5,6],

hTrF2ðxÞTrF2ð0Þiconn ∼
1

x8

�
g4ðxÞ
g4ðμÞ

�
∼

1

x8

 
1

β0 logð 1
x2Λ2

QCD
Þ

 
1 −

β1
β20

log logð 1
x2Λ2

QCD
Þ

logð 1
x2Λ2

QCD
Þ

!!
2

; ð5Þ

has no such log-log corrections since γ0 ¼ 2β0 for TrF2, both in the complete theory and in the planar theory, and thus the
change of the anomalous dimension is always compensated for by the change of the beta function. Hence, the only
renormalization in Eq. (5) is due to the 1

N expansion of ΛQCD described in Sec. III.

V. LARGE-N MASSLESS QCD COUNTERTERMS FROM A LOW-ENERGY THEOREM,
AS OPPOSED TO PERTURBATION THEORY

A new version of a NSVZ low-energy theorem [7] is obtained as follows. For a set of operators Oi, deriving

hO1 � � �Oii ¼ Z−1
Z

O1 � � �Oie
− N
2g2

R
TrF2ðxÞd4xþ��� ð6Þ

with respect to − 1
g2, we get a NSVZ low-energy theorem:

∂hO1 � � �Oii
∂ log g ¼ N

g2

Z
hO1 � � �OiTrF2ðxÞi − hO1 � � �OiihTrF2ðxÞid4x: ð7Þ

Since, nonperturbatively, in massless QCD-like theories the only parameter is ΛQCD, we can trade g for ΛQCD on the lhs.

Hence, ∂hO1���Oii
∂ð− 1

g2
Þ ¼ ∂hO1���Oii∂ΛQCD

∂ΛQCD

∂ð− 1

g2
Þ, with ð ∂

∂ logΛ þ βðgÞ ∂
∂gÞΛQCD ¼ 0 and βðgÞ ¼ −β0g3 − β1g5 þ � � �:

∂hO1 � � �Oii
∂ logΛQCD

¼ −
NβðgÞ
g3

Z
hO1 � � �OiTrF2ðxÞi − hO1 � � �OiihTrF2ðxÞid4x: ð8Þ

Now we specialize to multiplicatively renormalized operators in the planar theory, Oi ¼ TrF2, in such a way that the only

source of divergences is the renormalization of ΛQCD [see below Eq. (5)], as NβðgÞ
g3 TrF2ðxÞ is, in fact, RG invariant. Since the

divergent part of the correlator at the lowest 1
N order is ½hTrF2 � � �TrF2iNP �div ¼ ∂hTrF2���TrF2iP

∂ΛQCD
ΛNP
QCD, where NP stands for
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NP or NVP, with ΛNP
QCD ¼ βNP

0

βP
0

ΛP
QCD logð Λ

ΛP
QCD

Þ þ � � � and ΛNVP
QCD ¼ βNVP

1

2β2
0

ΛVP
QCD log logð Λ

ΛVP
QCD

Þ þ � � �, the new low-energy

theorem follows from Eq. (8):

½hTrF2 � � �TrF2iNP�div ¼
NβPðgÞΛNP

QCD

g3ΛP
QCD

Z
hTrF2 � � �TrF2iPhTrF2ðxÞiP − hTrF2 � � �TrF2TrF2ðxÞiPd4x: ð9Þ

Thus, the divergence in the correlator arises, up to finite
corrections, from the divergent counterterm in the action:

−
βP
0
NΛNP

QCD

ΛP
QCD

R
TrF2ðxÞ. In the ’t Hooft expansion, including in

Eq. (2) the contributions from β1, we get −
βP
0
NΛNP

QCD

ΛP
QCD

¼
−N½βNP

0 logð Λ
ΛP
QCD

Þ þ 1
2βP

0

ðβNP
1 − βNP

0

βP
1

βP
0

Þ log logð Λ
ΛP
QCD

Þ� ¼
1

ð4πÞ2
2
3
Nf logð Λ

ΛP
QCD

Þ þ � � �, which coincides exactly, within
the leading-log accuracy, with the perturbative counterterm
arising from the quark loops.

VI. S MATRIX IN LARGE-N MASSIVE
QCD-LIKE THEORIES

Wemay wonder whether the results for massless theories
described in Secs. III, IV, and V also apply to confining
massive QCD-like theories, particularly to the large-N limit
of massive QCD. Introducing mass scales may involve
extra renormalizations associated with the mass parameters.
However, supposing that the further parameters have been
already renormalized, we may ask whether the large-N
expansion of the massive theory may get milder UV
divergences than the massless one. The simple answer is
negative, provided a renormalization scheme exists in
which the beta function is not dependent on the masses,
as is appropriate for the UV-complete massive theory, as
opposed to the “low-energy” effective theory at scales
much smaller than the masses. In such a scheme, the
renormalization of ΛQCD goes through exactly as in the
massless theory, as described in Secs. III, IV, and V. An
example is the MS scheme in massive QCD-like theories.
Specifically, the large-N massive QCD S matrix is renor-
malizable but not UV finite, as it is not its massless limit.
Moreover, both the ’t Hooft and Veneziano expansions of
the N ¼ 1 SUSY massive QCD S matrix in the confining/
Higgs phase [8] are renormalizable but not UV finite
because the first-two coefficients of the beta function, β0 ¼
1

ð4πÞ2 3 −
1

ð4πÞ2
Nf

N and β1 ¼ 1
ð4πÞ4 6 −

1
ð4πÞ4 ð4 − 2

N2Þ Nf

N , imply

that βNP
0 ¼ − 1

ð4πÞ2
Nf

N and βNVP
1 ¼ 2

ð4πÞ4
Nf

N3. Another question

regards what happens when regularizing and renormalizing
a QCD-like theory by embedding into an UV finite
theory. For example, this is feasible concretely for

N ¼ 1 SUSY QCD with 1 ≤ Nf ≤ N and for N ¼ 1

SUSY YM theory by embedding into a suitable finite
N ¼ 2 SUSY theory [9] containing massive multiplets on
the order of M that act as regulators, and that may
eventually be decoupled in the limit M → ∞, in order to
recover the original theory [9]. In this respect, the
Veneziano limit of massive N ¼ 1 SUSY QCD with 1 ≤
Nf ≤ N is particularly interesting since, in this case, both
the Veneziano planar theory and the next orders in the
large-N expansion of the regularizing N ¼ 2 theory are
UV finite. In this case, the UV finiteness depends only on
the vanishing of β0 [9] and on the soft breaking of the
N ¼ 2 SUSY by the massive multiplets [9]. However,
being asymptotically conformal in the deep UV, the
regularizing N ¼ 2 theory is not N ¼ 1 SUSY QCD,
which instead is asymptotically free, which means that the
conformal behavior is corrected, in general, in the corre-
lators by fractional powers of logs, according to Eq. (4).
Thus, despite the finiteness of the N ¼ 2 theory, what we
want really to discover is the gauge-coupling renormaliza-
tion of its N ¼ 1 “low-energy limit” in the Veneziano
expansion as the massM of the regulator multiplets goes to
infinity. This is again the original question that we
have already answered above, as the only difference is
that the effective cutoff of the regularized N ¼ 1 theory is
now on the order of M instead of Λ. Hence, though the
regularized massive N ¼ 1 SUSY QCD S matrix is finite
for a finite M, it is UV divergent in the Veneziano
expansion as M → ∞. Finally, we should add that the
asymptotic estimates for the correlators in the massless
theory in Sec. IV apply without modification to massive
QCD-like theories—provided that the massless limit exists
smoothly—since, in this case, the leading UV asymptotics
of the correlators is not dependent on the masses. Yet, some
modification may possibly arise in massive N ¼ 1 SUSY
QCD with 1 ≤ Nf < N because the massless limit in the
correlators may not necessarily be smooth, as the massless
limit for certain SUSY meson one-point correlators is
divergent [8].
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