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The crucial parameter in the current Monte Carlo models of high energy hadron-hadron interaction is the
transverse momentum cutoff pT0 for parton-parton interactions, which slowly grows with energy and
regularizes the cross section. This modification of the collinear factorization formula goes beyond the
leading power, and thus a natural question arises if such a cutoff can be extracted from a formalism that
takes into account power corrections. In this work, we consider the high energy factorization (HEF) valid at
small x and a new model, based on a similar principle to HEF, which in addition has a limit respecting the
Dokshitzer-Dyakonov-Troyan formula for the dijet momentum disbalance spectrum. The minijet cross
section and its suppression are then analyzed in two ways. First, we study minijets directly in the low-pT

region and demonstrate that higher twist corrections do generate suppression of the inclusive jet production
cross section though these effects are not leading to the increase of the cutoff with incident energy. Second,
we consider hard inclusive dijet production where multiparton interactions (MPIs) with minijets produce
power corrections. We introduce an observable constructed from the differential cross section in the ratio τ
of dijet disbalance to the average dijet pT and demonstrate that the τ > 1 region is sensitive to the cutoff pT0

in the MPI minijet models. The energy dependence of the cutoff is reflected in the energy dependence of the
bimodality coefficient b of the τ distribution. We compare b calculated from PYTHIA, where one can
conveniently control MPIs by the program parameters, and HEF for a few unintegrated gluon distributions
(UGDs). We find that the energy dependence of b is very sensitive to the particular choice of UGD and in
some models it resembles predictions of the Monte Carlo models.
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I. INTRODUCTION

The rise of the total cross section in hadron-hadron
collisions with energy is driven by minijets, i.e., jets with
relatively low transverse momenta pT , of the order of a few
GeV. From the QCD point of view, this growth is attributed
to the rise of the parton density inside a hadron with a
decreasing value of longitudinal momentum x [or increas-
ing center of mass (CM) energy of the collision]. At leading
order (LO) the colliding partons (mostly gluons at high
energies) produce two final state partons and give rise to
two jets. The problem is, however, that the resulting QCD
expression is divergent when pT → 0. This is, of course,
not a paradox, but simply the very low pT region is out of
the applicability of the formalism operating on partons (i.e.,
collinear factorization theorem [1]; see Sec. II A). Thus one
has to introduce a cutoff, pTmin, above which the formula
makes sense [2]. This is the starting point for so-called
minijet models and models including multiparton inter-
actions (MPIs), which are at the heart of modern event
generators such as PYTHIA [3] or HERWIG++ [4]. The basic
idea is that since the minijet cross section σminijetðpTminÞ
can easily exceed the total cross section σtot (for low values
of pTmin), the ratio σminijet=σND, with σND being a non-
diffractive inelastic component of the total cross section,
gives an average number of hard binary collisions per
event, i.e., MPI events [5]. The pTmin is a free parameter of
the model. Typically, one does not implement the sharp

cutoff but rather a smooth transition regulated by another
parameter pT0. Comparison of the models with MPI with
the data indicates that hadron production at small impact
parameters grows in these models too fast with an increase
of

ffiffiffi
S

p
. Also the cross section of the interaction at large

impact parameters grows faster than indicated by the data
on the profile function of the pp interaction leading to a
cross section much larger than the experimental one [6,7].
The typical resolution is to let the pT0 parameter be energy
dependent pT0 ¼ pT0ðSÞ, slowly growing with S.
We see that there are two general features of the minijet

models: (i) an existence of a scale pT0 above which
perturbative collinear factorization applies and (ii) the
MPI-type events. Let us note that in a typical minijet
model these features are related in the sense that the MPI
models require the property (i), which in turn, by itself,
can be viewed as a consequence of color confinement [5]
and is independent of MPIs. However, at the LHC energies
one needs a cutoff on the scale of 3 GeV that is growing
with S, making it unlikely that the cutoff could be a solely
nonperturbative effect. On the other hand, the MPIs
become a separate branch of high energy physics, not
necessarily related to minijets. For example, one of the
typical direct MPI signals is expected to be a four-jet hard
event with back-to-back dijets [8]. On the theory side the
MPI physics is a very complicated subject and most often is
restricted to the double parton scattering (DPS); see [9] for
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a comprehensive review. So far no proof exists of the QCD
factorization theorem for DPS, although recently progress
has been made toward the proof of DPS in the double Drell-
Yan process [10].
In this work we have undertaken an attempt to under-

stand the origin of the cutoff and the low pT suppression
within the perturbative QCD. As we will discuss later, the
application of the cutoff to the collinear factorization
formula extends it beyond the leading power. Thus, any
approach that aims to explain the cutoff has to incorporate
higher twists. Non-negligible power corrections may be
generated by large transverse momenta of incoming partons
entering the hard collision, as compared to the hard scale
of the process. These features are naturally incorporated in
the high energy factorization (HEF) (or kT factorization)
approaches [11–15]. There, the transverse momentum of
the dijet pair is no longer zero, but equals the sum of the
transverse momenta of the incoming off-shell gluons. The
distribution of these gluons in longitudinal and transverse
momenta is given by so-called unintegrated gluon distri-
bution (UGD). Thus, in principle, the cutoff on the jet pT is
related to the behavior of UGDs in transverse momentum
which, in the low x limit, is given by the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) equation [16–18] or some BFKL-
type evolution. Furthermore, the gluon emissions with
small transverse momenta are suppressed by the
Sudakov form factor. In fact, for some UGD models
[19,20] the transverse momentum of the gluons is gen-
erated by the Sudakov form factor and the standard
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution. This is somewhat similar to the soft gluon resum-
mation [21] technique which was used in [22,23] to build
an eikonal minijet model that does not require a cutoff (but
it is suitable only for the total cross section).
The strategy for our paper is as follows. Using the HEF

for inclusive dijet production we shall perform two inde-
pendent studies of the pT cutoff:
Study 1.A direct study, where we calculate the pT spectrum
for pT ≳ 2 GeV, see if there is a suppression, and deter-
mine its energy dependence.
Study 2. An indirect study, where we analyze the hard dijet
production with pT ≳ 25 GeV and look for an observable
that is sensitive to power corrections that would come from
MPIs in minijet models.
As for Study 1, the issue of a direct access to the pT

cutoff within an approach involving an internal kT is
actually known in the literature. In [24] it was shown that
indeed such an approach can produce pT suppression,
which has roughly the correct energy dependence. There is,
however, an important difference to our Study 1. We use
HEF of [12–15], which factorizes the cross section into
UGD, and a genuine 2 → 2 off-shell hard process that
extends the collinear minijet formula beyond the leading
power. In [24] the minijet production was considered in the
sense of a chain of emissions that does not have a hard

2 → 2 process. It is rather suitable for constructing a
showerlike Monte Carlo program [25] that can be used
to study particle production [26]. More precisely, in [24]
the authors considered a modification of the Catani-
Ciafaloni-Fiorani-Marchesini (CCFM) [27–29] evolution,
the so-called linked dipole chain model [30], in which any
emission in the chain can contribute a minijet (the emis-
sions are unordered in transverse momenta, and thus
following this logic any subcollision in the chain can be
considered as “hard”). On the contrary, in HEF, we require
that the large enough hard scale is present that distinguishes
the hard 2 → 2 process from the chain of remaining
emissions. Since this hard scale is identified with the jet
pT , the two directly emitted partons should actually be
considered as hard jets, not the minijets. In the first
approximation hard jets are produced back-to-back and
described by the leading power collinear approach, which
does not feature any suppression factor. We will see this
feature in our calculations when we compute the pT spectra
in the small pT region from HEF. That is, we will find no
suppression in the pT spectra of the type present in the
minijet models. Nonetheless, it does not mean that there are
no minijets in HEF. In fact, HEF takes into account
additional emissions visible as the jet imbalance, and thus
as power corrections.
The above motivates Study 2, which concentrates on

the indirect access to minijets in HEF. We introduce an
observable related to the dijet imbalance KT , which is
sensitive to minijets. Specifically, we shall consider the
cross section differential in the ratio τ, of KT to the dijet
average pT . We will check actual sensitivity of this
observable on minijets, in particular on pT0 cutoff, using
PYTHIA, and then we shall compare them to similar
calculations in HEF models. Next, we introduce a bimo-
dality coefficient that characterizes the τ spectrum. We
observe that the energy dependence of this coefficient is
very sensitive to the particular minijet model. We will see
that some of the UGDs used in HEF give energy depend-
ence similar to the one coming from the minijet models in
PYTHIA. This would then indirectly confirm the statement
from [24], but in a way that can be confirmed experimen-
tally when such an observable is measured.
Our work is organized as follows. In Sec. II we

systematically review the theory behind minijets. First,
in Sec. II A we review the collinear factorization for the
minijet production and then, in Sec. II B, we describe in
detail how the cutoff is introduced. In Sec. II C we review
the HEF and discuss its relevance to the minijet cross
section. In particular, we shall explain that the leading twist
limit of HEF does not reproduce the result of Dokshitzer-
Dyakonov-Troyan (DDT) [31] for the dijet momentum
disbalance. Therefore, in Sec. II D we construct a model
similar to HEF but having the DDT limit. In the following
sections we will turn to numerical simulations. First, in
Sec. III we shall describe in some detail the process under
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consideration, kinematic cuts, etc., in order to unambigu-
ously define the observables. Later, in Sec. IV we will
analyze the inclusive dijet spectra in the low pT region in
order to see whether the suppression is produced in HEF
and the DDT-based model we constructed in Sec. II D
(Study 1). Finally, in Sec. V we will turn to hard inclusive
dijets and study the minijets as a power correction
(Study 2). We will summarize and make our conclusions
in Sec. VI.

II. MINIJETS IN SELECTED APPROACHES

A. Collinear factorization and
soft gluon resummation

The starting point for a typical minijet model is the
collinear factorization formula, which, however, has to be
modified. In this introductory section we review this issue
in a more quantitative way.
The QCD collinear factorization theorem (see, e.g., [1]

for a review) expresses the cross section for hard dijet
production as

σ2jet ¼
X
a;b

Z
dxA
xA

dxB
xB

dσ̂abðxA; xB; μ2Þfa=AðxA; μ2Þ

× fb=BðxB; μ2Þ þO
�
μ20
μ2

�
; ð1Þ

where fa=A, fb=B are integrated parton distribution func-
tions (PDFs) for a parton a, b inside a hadron A, B, and
dσ̂ab is a partonic, fully differential, cross section that can
be calculated order by order in perturbation theory. In
general the partons a, b can be quarks and gluons,
including heavy quarks. The phase space cuts necessary
to define a jet cross section (i.e., a suitable jet algorithm)
are hidden inside the partonic cross section. The hard scale
μ is the largest scale in the problem and is typically taken
to be the average transverse momentum of the jets,
PT ¼ ðj~pT1j þ j~pT2jÞ=2. The remainder, i.e., the higher
“twist” corrections in (1) are suppressed by the powers of
the ratio μ20=μ

2, where μ0 is the largest of some other scales
present in the problem, e.g., heavy quark masses and dijet
disbalance.
Since the purpose of this work is to study minijets, let us

restrict to the semihard jets having transverse momenta
pT ≳ 2 GeV. In addition, we are interested in the total CM
energies being much larger than this scale. For such a
regime the factorization theorem (1) starts to fail. Two
major sources for this are various large logs (containing
ratios of very different scales) and power corrections that
are no longer small.
Certainly, formula (1) would be perfectly valid for fixed

s and μ2 → ∞, but obviously this is not the case for
minijets. To illustrate the problems more quantitatively,
let us consider a cross section (1) as a function of the

disbalance between the jets, K2
T , when μ20 ≪ K2

T ≪ μ2. To
leading logarithmic accuracy it is given by the formula
due to Dokshitzer-Dyakonov-Troyan, the so-called “DDT
formula”1 [31],

dσ2jet
dK2

T
¼

X
a;b;c;d

Z
dxA
xA

dxB
xB

dσ̂ab→cdðxA; xB; μ2Þ

×
∂

∂K2
T
ffa=HðxA;K2

TÞTaðK2
T; μ

2Þfb=HðxB;K2
TÞ

× TbðK2
T; μ

2ÞTcðK2
T; μ

2ÞTdðK2
T; μ

2Þg þO
�
K2

T

μ2

�
;

ð2Þ

where Taðμ21; μ22Þ is a “Sudakov” form factor for a parton a
(for the original Sudakov form factor in QED see [32]).
It can be thought of as a probability for the parton a to
evolve between the scales μ1 and μ2 without any resolvable
emissions. We shall give the explicit formula later [see
Sec. II D, Eq. (33)]; for now let us just mention that

Taðμ2; μ2Þ ¼ 1; Taðμ20; μ2Þ ⋍ 0; μ ≫ μ0; ð3Þ

for μ0 being the lowest scale in our problem. Let us remark
that the relevant DDT formula in [31] was actually derived
for a production of hadrons in hadron-hadron collision, and
thus it contained fragmentation functions which accom-
panied the form factors Tc, Td in (2). For the purpose of
this paper we have adjusted that formula for dijets by
setting the fragmentation functions to be the delta func-
tions. Let us note that due to the listed properties of the
Sudakov form factors, this formula reduces to (1) when
integrated over the jet disbalance KT . Since the appearance
of the DDT formula a lot of effort has been put into
improving the accuracy of perturbative predictions for such
semi-inclusive observables. In particular, the so-called
transverse momentum dependent (TMD) factorization
theorem has been established for certain processes [1].
We shall discuss these at the end of this section, and for the
purpose of the present discussion we shall stick to the
leading-log formula (2).
In case of minijets, formula (2) loses its accuracy as now

KT can easily be of the order of μ (which is the average pT
of the jets). This can be seen by inspecting the derivative in
(2) as a function of KT , for example, in the pure gluonic
channel,

1More precisely, the notion “DDT formula” refers to the
factorization formula for the transverse distribution of the
Drell-Yan pairs in hadron-hadron collision. Its generalization
for decorrelation of a dihadron system in hadron-hadron collision
was given in [31]. In the present work we use the term “DDT
formula” for the latter.
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Gðx; K2
T; μ

2Þ ¼ ∂
∂K2

T
ff2g=Hðx;K2

TÞT4
gðK2

T; μ
2Þg: ð4Þ

This distribution is plotted in Fig. 1 as a function of KT for
fixed μ ¼ PT ¼ 2.5 GeV and μ ¼ 300 GeV, and two
values of x [note that for simplicity we have used the
same values of x entering both PDFs in (4)]. In this
presentation we use the leading order GRV98 PDF set
[33] (we explain the reason for using this PDF set in
Sec. III). We see that the characteristicKT , let us call itKT0,
generated by the density G is large when compared to the
average PT of minijets so that KT0=PT ∼Oð1Þ (left plot in
Fig. 1; KT0 may be defined, for example, as the value for
which the distribution has a maximum, although the
median would probably be a more realistic estimate).
For comparison, we plot the same distribution for hard
jets (right plot in Fig. 1) with μ ¼ 300 GeV. For the
latter, the ratio KT0=PT becomes much smaller than the
unity and the situation improves with increasing scale. To
summarize, the power corrections cannot be neglected for
minijets, and one has to necessarily venture beyond leading
“twist” to account for minijets. Let us remember that the
formula (2) is a more “exclusive” version of (1) and the
condition that we can neglect the power corrections is
actually a condition necessary to obtain (1) when the
integral over KT is performed.
There is yet another source of errors in the DDT formula,

namely the subleading logs. Actually, in its original
formulation the DDT formula was written for processes
with only two hadrons such as the Drell-Yan process [34].
Assuming strong ordering in the transverse momenta of
emitted gluons, one obtains a formula similar to (2) but
with two Sudakov form factors instead of four (and, of
course, with an appropriate hard partonic cross section
relevant to the Drell-Yan process). However, the strong
ordering in transverse momenta for the soft gluons is a too

strong assumption and gives a nonphysical suppression in
the low KT limit. The improved approach for Drell-Yan
pairs was proposed in [21,35,36], which resums the soft
gluons (thus the approach is often called the “soft gluon
resummation”) using the impact parameter space conjugate
to transverse momenta. As a result, one finds a flat
distribution at small KT rather than an exponentially
suppressed cross section. There exists a more general
approach, the so-called TMD factorization (see, e.g.,
[1]). It is a rigorous factorization theorem of QCD and
is valid to leading power in the hard scale. It is important to
note that this theorem is valid for processes with at most
two hadrons. Thus the most complicated processes are the
Drell-Yan process [37] and semi-inclusive deep inelastic
scattering [38]. The theorem is violated when more hadrons
are present [39], and thus it fails, for example, for jet
production in hadron-hadron collision. However, although
the TMD factorization is not a strict leading-power theorem
holding to all orders in αs, it has been shown in [40] that it
holds to next-to-logarithmic accuracy for the latter case.
Before discussing the power corrections to (2) let us

make some general comments. The twist corrections to
deep inelastic structure functions, i.e., the corrections
Oð1=Q2Þ with Q2 being the photon virtuality, were studied
a long time ago in the context of the operator product
expansion (OPE) [41] and using Feynman diagrams [42].
While OPE is very general, it becomes very complicated
for more exclusive processes (see, e.g., [43] and [44]). As
for jet production in hadron-hadron collisions, no higher
twist factorization exists (see also a discussion of power
corrections coming from heavy quarks at the end of this
subsection). On the other hand, there are approaches that
take into account all power corrections of a certain class. At
very large energies the logs of the form log ð1=xÞ, where x
is a fraction of a hadron longitudinal momentum carried by
the parton, become large and can be resummed by means of

FIG. 1. The density G entering the DDT formula for two different values of x and two fixed values of μ ¼ PT ¼ 2.5 GeV (left) and
300 GeV (right). The PDF set used here was GRV98 [33].
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the BFKL equation. Let us note, however, that it is often
arguable whether such logs should be resummed at cur-
rently achievable energies, as most of the observables
measured at LHC can be explained using collinear factori-
zation supplemented by the DGLAP-type parton showers.
Nevertheless, the BFKL formulation leads to HEF, which
as mentioned in the Introduction resums the power cor-
rections of the form KT=μ. We shall describe HEF in more
detail in Sec. II C.
For completeness let us discuss a special case when

KT ≫ μ. For the case of the Drell-Yan process this
kinematic region was studied in [45,46], before the DDT
formula was established. The corrections of this type can be
obtained calculating explicitly additional emission by
means of the 2 → 3 process, away from the singular (soft
and/or collinear) region. In particular, the HEF partially
recovers this perturbative limit for certain UGDs.
Finally, let us make some comments on the power cor-

rections coming from the heavyquarkmasses.Actually, they
can be explicitly taken into account in the hard cross section,
order by order. The problem is, however, that by doing so the
cross section becomes infrared unsafe for large pT ; i.e., we
shall encounter logsof the type log ðP2

T=m
2
QÞwheremQ is the

mass of a heavy quark Q. This problem can typically be
addressed by the so-called general-mass scheme, which
supplements the hard cross section with proper subtraction
terms (see [47] for a general proof and [48] for a formulation
for jets in deep inelastic scattering at next to leading order).
However, for jets in hadron-hadron collisions there is a
problem with the cancellation of soft singularities when
incoming lines are massive [49], and thus the power
corrections are unlikely to be controlled using the general-
mass schemes.We shall ignore all these complications as we
will be focused on pure gluonic contributions, which should
dominate at high energies.

B. Singularity pT → 0 and soft cutoff

In this section we shall discuss in detail the concept of
the soft transverse momentum cutoff. We shall restrict our
considerations to gluons only. This is done for two major
reasons. First, the gluons dominate at high energies, and this
is sufficient to illustrate all the effects we analyze in the paper
(we do not aim to give any predictions or comparisons with
data). Second, later on we shall make comparisons across
models including HEF, which is basically restricted only to
gluons dominating at high energies. In principle one could
consider off-shell quarks, but the subject is still poorly
developed and would unnecessarily complicate our study
(see [50,51] for selected recent results).
Let us start by writing the LO contribution to (1). We

parametrize the momenta of hadrons as

pμ
A ¼

ffiffiffi
S
2

r
nμþ; pμ

B ¼
ffiffiffi
S
2

r
nμ−; ð5Þ

where n� ¼ ð1; 0; 0;�1Þ and S ¼ 2pA · pB is the CM
energy squared. The kinematics of the hard subprocess
gðkAÞgðkBÞ → gðp1Þgðp2Þ is

kμA ¼ xAp
μ
A; kμB ¼ xBp

μ
B; ð6Þ

pμ
1 ¼ z1p

μ
A þ −p2

T1

z1S
pμ
B þ pμ

T1;

pμ
2 ¼ z2p

μ
A þ −p2

T2

z2S
pμ
B þ pμ

T2; ð7Þ

with momentum conservation kA þ kB ¼ p1 þ p2.
Obviously z1, z2 are directly related to rapidities y1;2 in
the following way:

z1;2 ¼
j~pT1;2jffiffiffi

S
p ey1;2 ; ð8Þ

with p2
T1;2 ¼ −j~pT1;2j2. Because of the transverse momen-

tum conservation, both outgoing jets have exactly the same
transverse momentum j~pT1j ¼ j~pT2j. In what follows we
shall simply use notation j~pT1;2j≡ pT for brevity. In the
above kinematics, the cross section can be calculated as

σ2jet ¼
1

16π

Z
dp2

T

p4
T

Z
z1dz1z2dz2
ðz1 þ z2Þ4

fg=Hðz1 þ z2; μ2Þ

× fg=H

�
p2
T

S
z1 þ z2
z1z2

; μ2
�
1

2
jM̄j2gg→ggðz1; z2Þ; ð9Þ

where the amplitude squared and averaged/summed over
spin and color reads

jM̄j2gg→ggðz1; z2Þ ¼ g4
9

2

ðz21 þ z1z2 þ z22Þ3
z21z

2
2ðz1 þ z2Þ2

: ð10Þ

Typically, as the hard scale μ one chooses the pT of the jets.
From (9) we see that the cross section diverges as

dσ2jet
dp2

T
∼
α2sðp2

TÞ
p4
T

: ð11Þ

In the pioneering work [5] the MPI model was con-
structed with σ2jet modified to remove this singularity by
defining

σ02jet ¼
Z

dσ2jet
dp2

T

p4
T

ðp2
T þ p2

T0ðSÞÞ2
α2sðp2

T þ p2
T0ðSÞÞ

α2sðp2
TÞ

; ð12Þ

where pT0ðSÞ is the model parameter we have briefly
discussed in the Introduction. For example, in version 8.1
of PYTHIA it is defined as
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pT0ðSÞ ¼ 2.28

� ffiffiffi
S

p

7 TeV

�0.215

GeV ð13Þ

for standard PYTHIA settings (including predetermined PDF
sets to be used by default). Let us mention that the MPI
model and the entire event generation procedure in PYTHIA

is very complex, much more than the simple Eq. (12).
Nevertheless Eq. (12) constitutes one of the core building
blocks of this powerful program.
The pT spectrum of minijets dσ02jet=dp

2
T within the

presented model should exhibit a strong suppression for
small pT , slowly growing with energy. It is interesting to
ask if such a suppression could be directly observed.
Putting this question aside, we will simply calculate (see
Sec. IV) the inclusive dijet production in the small pT
region using PYTHIA and compare with the minijet spec-
trum dσ02jet=dp

2
T . There are a few interesting features of this

calculation [thought to be more realistic than (12)], which
will be discussed later.

C. High energy factorization

Let us now discuss how the power corrections in (2) can
be taken into account in kT factorization (we use the terms
“high energy factorization” and “kT factorization” inter-
changeably in the present work, although both terms have
different origins).
In kT factorization the cross section is calculated as a

convolution of so-called UGDs and an off-shell matrix
element. UGDs depend not only on longitudinal momen-
tum fractions x but also on the transverse momenta kT of
the gluons—a feature neglected in the collinear factoriza-
tion due to the power counting. For the first time kT
factorization was used in [11] for inclusive jet production at
high energies using basically the 2 → 1 process g�g� → g.
Let us note that the 2 → 1 process does not exist when the
incoming partons are on-shell and collinear, but it appears

at lowest order in the kT factorization approach. Later, a
similar idea (originally called HEF) was used to compute
heavy quark production [12–15] by means of a gauge
invariant matrix element for g�g� → QQ̄, which was
extracted from the Green function utilizing suitable eikonal
projectors. The UGDs were assumed to undergo BFKL
evolution. A natural step forward was to adopt the HEF to
account for jet production processes at high energy. Thus,
the HEF has been extended to all channels [52], including
gluons. At small x the forward jets are especially interest-
ing. They can be treated in a limiting case of HEF, where
one of the gluons becomes on-shell [53–55]. In this
approximation, this gluon is treated as a “large-x” gluon
and is assigned a standard collinear PDF. In the color glass
condensate (CGC) approach [56] a similar idea was used to
study forward particle production in saturation domain and
exists under the name of the “hybrid” formalism [57]. In
fact, the hybrid version of HEF can be derived from CGC in
the so-called dilute limit (i.e., the case when the parton
density of the target hadron is not large) [58,59]. Several
observables relevant for LHC have been calculated within
the hybrid HEF; see Refs. [51,60–63]. In the present work
we are not concerned with forward jets; thus we shall not
use the hybrid version of HEF, but the original one with two
off-shell incoming particles.
The factorization formula for HEF reads (including only

gluons)

dσAB→gg ¼
Z

d2kTA

Z
dxA
xA

Z
d2kTB

Z
dxB
xB

× F g�=AðxA; kTA; μÞF g�=BðxB; kTB; μÞ
× dσ̂g�g�→ggðxA; xB; kTA; kTB; μÞ; ð14Þ

where F g�=A, F g�=B are UGDs for hadrons A, B and
dσ̂g�g�→gg is the partonic cross section buildup from the
gauge invariant g�g� → gg amplitude [Fig. 2(a)]. The

(a)

(b)

FIG. 2. (a) Schematic representation of the factorization formula (14). (b) The hard gauge invariant tree level off-shell process
expressed in terms of a matrix element of straight infinite Wilson lines, with the slopes being pA (top) and pB (bottom). The blue
blob on the right-hand side denotes a standard QCD contribution with four and triple gluon vertices. Only planar (color-ordered)
diagrams are shown.
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momenta of the off-shell gluons have the following form
relevant to the high energy approximation:

kA ≃ xApA þ kTA; kB ≃ xBpB þ kTB: ð15Þ

The off-shell partonic cross section is defined by a
reduction of Green’s function, where the off-shell legs
kA and kB are contracted with eikonal projectors propor-
tional to pμ

A and pμ
B. Unlike the g

�g� → qq̄ amplitude used
in the original HEF, the gluonic off-shell hard process
cannot be calculated just from the standard Feynman
diagrams in a gauge invariant way. There are a number
of ways this can be done in consistency with the high
energy approximation used to define the hard process. First,
one can include the bremsstrahlung from the lines to which
the hard process is attached. At high energies those lines
are eikonal. Such an idea was used in [52] to calculate
g�g� → gg, and later in [64] a general method for helicity
amplitudes as well as the numerical algorithm for any
number of partons was developed. Second, in the approxi-
mation used to derive (14) the gauge invariant amplitude for
g�g� → gg is equivalent to Lipatov’s vertex RRPP [65,66]
in the quasi-multi-Regge kinematics. A more general
approach is to consider the matrix element of straight
infinite Wilson line operators with the polarization of the
off-shell gluon identified as the Wilson line slope [67]. This
method can also be used beyond the high energy approxi-
mation [68,69]. Finally, a method generalizing the Britto-

Cachazo-Feng-Witten recursion [70,71] to the off-shell
case is also available [72,73]. Although the Lagrangian
method of [65] is the most general, in practical computa-
tions, especially for multiple external legs, the other
mentioned methods are more efficient. For the hybrid
version of (14) a very efficient method of calculating
helicity amplitudes for g�g → g � � � g was found in [74].
Some other applications and different ways of calculating
g�g� → gg were given, e.g., in [52,75]. Moreover, many
other studies have been done using kT factorization; see, for
example, [51,76–81].
The partonic cross section in (14) is defined as

dσ̂g�g�→gg ¼
1

2xAxBS
1

2
jM̄j2g�g�→ggdPS; ð16Þ

where dPS is the two-particle phase space while jM̄j2g�g�→gg

is the amplitude squared for the gauge invariant off-shell
process discussed above. Using the method of [67] it can be
calculated as follows. First, the amplitude is decomposed
into the color-ordered amplitudes [82]. For the one par-
ticular ordering of the external lines the color-ordered
amplitude is given by the planar diagrams displayed in
Fig. 2(b) in the Feynman gauge. The double lines on the top
and the bottom correspond to the Wilson line propagators.
Calculation of these diagrams (with proper normalization)
gives the following result for the square of the amplitude:

jAj2ðkA; p1; p2; kBÞ ¼ −
g4

s2t2t̄1t̄2

1

k2TAk
2
TB

fk2TAtt̄2½k2TAðk2TBss̄þ tt̄1ū21Þ þ 2t̄1ū1W� þ k2TBtt̄1½k2TBðk2TAss̄þ tt̄2ū22Þ þ 2t̄2ū2W�

þ k2TAk
2
TBt½tðs2s̄2 þ 2t̄1t̄2ū1ū2Þ þ ss̄ðs̄2t − 4t̄1t̄2ðs̄þ t̄1 þ t̄2 − tÞÞ� þ t̄1 t̄2W2g; ð17Þ

where

W ¼ ½sðs̄tþ t̄1 t̄2Þ − s̄tðs̄þ t̄1 þ t̄2 − tÞ�: ð18Þ

Above we have used abbreviations k2TA;B ≡ j~kTA;Bj2. The
standard and auxiliary Mandelstam invariants read

s ¼ ðkA þ kBÞ2; t ¼ ðkA − p1Þ2; u ¼ ðkA − p2Þ2;
ð19Þ

s̄ ¼ ðxApA þ xBpBÞ2; t̄1;2 ¼ ðxApA − p1;2Þ2;
ū1;2 ¼ ðxBpB − p1;2Þ2: ð20Þ

They satisfy sþ tþ u ¼ −k2A − k2B and s̄þ t̄1;2 þ ū1;2 ¼ 0.
The order of arguments in (17) corresponds to the order of
the external legs [see Fig. 2(b)]. The color dressed amplitude
is obtained by summing over all noncyclic permutations
of the external legs [minus equivalent permutations

due to the relations such as jAj2ðkA; p1; p2; kBÞ ¼
jAj2ðkB; p2; p1; kAÞ],

jM̄j2g�g�→gg ¼
1

ð2πÞ2
N2

c

ðN2
c − 1Þ 2½jAj2ðkA; p1; p2; kBÞ

þ jAj2ðkA; p2; p1; kBÞ
þ jAj2ðkA; p1; kB; p2Þ�: ð21Þ

The factor 1=ð2πÞ2 constitutes the helicity average for
the off-shell gluons as their “polarization” vectors can
be thought of to be “continuous.” It is because one can
show that these polarizations are kμTA=kTA and kμTB=kTB,
which depend on the transverse angle spanning between
0 and 2π.
Using the same kinematics as for the collinear case [but

now with (15) for initial states] we can write the cross
section as
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dσAB→gg ¼
1

32π2

Z
d2~kTAd2~kTB

Z
dp2

Tdϕ

½z1ð~pT − ~KTÞ2 þ z2p2
T �2

×
Z

z1dz1z2dz2
ðz1 þ z2Þ2

F g�=Aðz1 þ z2; kTA;μÞ

×F g�=B

�
1

z2S
ð~pT − ~KTÞ2 þ

1

z1S
p2
T; kTB;μ

�

×
1

2
jM̄j2g�g�→ggðz1; z2; ~kTA; ~kTB;μÞ; ð22Þ

where

~KT ¼ ~kTA þ ~kTB: ð23Þ

The invariants in (17) can easily be expressed in terms
of integration variables in (22). Comparing this with the
collinear expression (9) we see that the singularity p2

T → 0
can be potentially regularized by a nonzeroKT . Let us note,
however, that KT can be zero even if kTA, kTB generated in
UGDs are nonzero. In fact, because of the transverse
momentum conservation whenever the jets are back to
back, KT ¼ 0 and the singularity p2

T → 0 remains bare. For
nonzero kTA, kTB the KT depends on the relative orientation

of the vectors ~kTA, ~kTB. Since UGDs do not generally
depend on angles, the only correlations can be hidden
inside the matrix element. Moreover, expression (22) has to
be integrated over transverse variables to be actually
compared with the collinear expression. We shall later
perform a detailed numerical study and see whether the
modification of the 1=p4

T factor due to KT can produce a
cutoff similar to minijet models. This in principle would be
possible, as one can check that the median of the transverse
momenta given by UGDs grows with a decrease of x.
Anticipating the result, however, let us recall that actually
(22) should be used in the hard scattering regime, that is,
for μ ∼ pT large. This can also be understood by realizing
that the main contribution to jM̄j2g�g�→gg comes from the
collinear region. In fact, it can be shown that

Z
2π

0

dα1
2π

dα2
2π

jM̄j2g�g�→ggðz1; z2; ~kTA; ~kTB; μÞ

¼ jM̄j2gg→ggðz1; z2; μÞ þO
�
kTA
μ

�
þO

�
kTB
μ

�

þO
�
kTAkTB
μ2

�
; ð24Þ

where α1, α2 are the angles on the transverse plane of the

vectors ~kTA, ~kTB and the first term on the right-hand side is
the collinear matrix element. By using the above expression
and expanding in powers of kT=μ one can find systemati-
cally the power expansion of the cross section. The UGDs
are typically peaked for small values of kTA, kTB, and thus
the collinear contribution is the dominant one (the leading

power contribution). Therefore one should expect that the
applicability of (22) is in the high pT domain.
Let us now make a few comments about the HEF. The

first comment concerns the collinear limit of (22). One
would expect that for large pT the cross section dσ=dpT
calculated converges to the collinear one (9). Performing
the expansion (24) and retaining the first collinear con-
tribution only we are left with integrals in (22) of the type

Z
k2Tmax

dk2TAF g�=AðxA; kTA; μÞ≡ fðkTmaxÞ
g=A ðxA; μÞ; ð25Þ

where kTmax is the upper bound on kT which in practice is
constrained by the grid size of the UGDs or specific

kinematic cuts. The point is that the function fðkTmaxÞ
g=A is

in general not exactly a collinear gluon PDF, which is
defined as

fg=AðxA; μÞ ¼ fðμÞg=AðxA; μÞ: ð26Þ

Thus, we will overshoot the collinear result if the hard
scale μ is not too large and the UGDs do not fall very
rapidly with kT . In other words, the convergence to the
collinear result for finite μ is rather weak. The remedy
could be to set kTmax ¼ μ, but this is not an inherent part of
the HEF. Let us illustrate the above with a concrete and
practical example. According to the Kimber-Martin-Ryskin
(KMR) prescription [19,20] (actually its commonly used
simplified form), an UGD can be constructed from a
collinear PDF as follows:

F g�=Hðx; kT; μÞ ¼
∂
∂k2T ½fg=Hðx; kTÞTgðkT; μÞ�; ð27Þ

where Tg is the Sudakov form factor. We see that the kTmax

has to be equal to μ in order to recover fg=H upon
integration over kT.
To address another possible issue of HEF, let us consider

the cross section as a function of the jet disbalance KT ,
dσ=dKT . It can be calculated within HEF using (22). Let us
now find the collinear limit of dσ=dKT . It is easy to see that
it will not converge to the DDT formula (2). This is not
necessarily a problem, as the natural domains of appli-
cability of the HEF formula and DDT are very different.
Nevertheless, it would be interesting to have a formula that
includes subleading powers of KT while possessing the
leading twist limit given by (2). We shall construct such a
formula in the next subsection.
Finally, let us mention that in practical applications it is

convenient to use Monte Carlo programs to generate
various observables for jets, instead of using the formulas
as, e.g., (22). Thus in our study we use an implementation
of HEF in a computer program [83] that relies on the FOAM

adaptive Monte Carlo program [84]. It allows one to
generate partonic events (“weighted” or “unweighted”),
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store them, and make further analysis in a convenient way.
No parton shower or hadronization is done in the current
version. Let us, however, mention that the kT dependence
of gluon distributions acts much like the initial state parton
shower (see, e.g., [61,85]).

D. Extension of DDT beyond leading power

To make our analysis as complete as possible, we will
now construct a version of HEF that in the leading power
limit reduces to the DDT formula (2) for the dijet
disbalance spectrum. The goal of doing this is to use a
broad spectrum of models with internal gluon kT . In HEF

described in the previous subsection the kT dependent
UGDs take into account two ladders of initial state
emissions for each colliding hadron; it is most transparent
when UGDs are considered within the KMR approach (27)
[see Fig. 3]. There are no final state emission ladders in
HEF, while the DDT formula (2) has one ladder attached to
each leg of the hard process, including the final state lines
[Fig. 3] [31]. Of course, the DDT formula is the leading
twist expression, in contrast to HEF. Below, we shall
construct a HEF-based model that has a similar philosophy
to the DDT but includes power corrections.
Let us first write (2) as

dσ2jet
dK2

T
¼ 2

Z
dxA
xA

dxB
xB

dσ̂gg→ggðxA; xB; μ2Þ
� ∂
∂K2

T
½fg=AðxA;K2

TÞTgðK2
T; μ

2Þ�fg=BðxB;K2
TÞT3

gðK2
T; μ

2Þ

þ fg=AðxA;K2
TÞfg=BðxB;K2

TÞT3
gðK2

T; μ
2Þ ∂
∂K2

T
TgðK2

T; μ
2Þ
�
; ð28Þ

where we have used the symmetry with respect to exchange
of hadrons A ↔ B (this gives a factor of 2). Building upon
the above formula and using (27) we now define

dσðIDDTÞ2jet

dK2
T

¼ dσðISÞ2jet

dK2
T
þ dσðFSÞ2jet

dK2
T
; ð29Þ

where the “initial state” contribution is

dσðISÞ2jet ¼ 2

Z
dxA
xA

dxB
xB

Z
d2KTdσ̂g�g→ggðxA; xB; ~KT ; μ

2Þ

× F g�=AðxA; KT; μÞfg=BðxB; K2
TÞT3

gðK2
T; μ

2Þ;
ð30Þ

while the “final state” contribution is

dσðFSÞ2jet ¼2

Z
dxA
xA

dxB
xB

Z
d2KTdσ̂gg→gg� ðxA;xB; ~KT ;μ

2Þ

×fg=AðxA;K2
TÞfg=BðxB;K2

TÞT3
gðK2

T;μ
2ÞT gðK2

T;μ
2Þ:
ð31Þ

We have defined the final state transverse momentum
distribution as

T gðK2
T; μ

2Þ ¼ ∂
∂K2

T
TgðK2

T; μ
2Þ: ð32Þ

The Sudakov form factor we use is given by the following
formula [31]:

Tgðk2T; μ2Þ ¼ exp
�
−
Z

μ2

k2T

dp2
T

p2
T

Z
1

Δ
dz

αsðp2
TÞ

2π
½ð1 − zÞ

× Pggðz;ΔÞ þ NfPqgðzÞ�
�
; ð33Þ

where

Pggðz;ΔÞ ¼ 2CA

�
z

1 − zþ Δ
þ 1 − z

z
þ zð1 − zÞ

�
; ð34Þ

PqgðzÞ ¼
1

2
ðz2 þ ð1 − zÞ2Þ: ð35Þ

The cutoff parameter Δ is taken to be Δ ¼ k2T=μ
2. We

note that there are various forms of the cutoff parameter in
the literature; see, for example, [19]. The partonic cross
section dσ̂g�g→gg is calculated in the exact same way as in
the hybrid HEF described before, taking into account the
gauge invariant off-shell amplitude with only one leg being
off-shell,

dσ̂g�g→gg ¼
1

2xAxBS
1

2
jM̄j2g�g→ggdPS; ð36Þ

where jM̄j2g�g→gg was calculated, for instance, in [53], and
using helicity amplitudes in [74]. It reads

jM̄j2g�g→gg ¼
g4

2π

N2
c

N2
c − 1

ðs̄4 þ t̄41 þ ū41Þðss̄þ tt̄1 þ uū1Þ
ss̄tt̄1uū1

;

ð37Þ

with the invariants defined in (19) and (20), but now
kTA ≡ KT . In the above form the on-shell limit is visible
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right away: when KT → 0 we have s̄ → s, t̄1 → t, ū1 → u,
and we get the known collinear result.
The partonic cross section with final state off-shell

dσ̂gg→gg� is a new construction and to our knowledge does
not exist in the literature. It is constructed from the gauge
invariant off-shell amplitude with the final state particle
taken off-shell,

dσ̂gg→gg� ¼
1

2xAxBS
1

2
jM̄j2gg→gg�dPSðK2

TÞ; ð38Þ

where dPSðK2
TÞ is the two-particle phase space to produce a

spacelike state with mass K2
T . Let us now explain how the

amplitude jM̄j2gg→gg� is calculated, as it differs from the
standard way the HEF amplitudes are obtained.
First consider the kinematics involved in (31); see

Fig. 4(a). The idea is that first the two states are produced:
an on-shell gluon p2 and the off-shell one with momentum
~p1, ~p2

1 ¼ −K2
T . Next, this off-shell dressed gluon under-

goes emissions described by T g defined in (32) and
becomes on-shell p1 ¼ ~p1 þ KT , p2

1 ¼ 0. The first stage
happens via the off-shell gauge invariant process
gðkAÞgðkBÞ → g�ð ~p1Þgðp2Þ calculated from diagrams
depicted in Fig. 4(b) according to the prescription of
[67]. As the Wilson line slope we take here the momentum
p1 (not the eikonal vectors pA;B, as it was the case for
HEF), so that

~p1 · p1 ¼ 0; KT · p1 ¼ 0: ð39Þ

The result reads

jM̄j2gg→gg� ¼
g4

2

N2
c

N2
c − 1

ð~s4 þ ~t4 þ ~u4Þðs~sþ t~tþ u ~uÞ
s~st~tu ~u

:

ð40Þ

It looks basically the same as (37) but now

~s¼ðp2þp1Þ2; ~t¼ðxApA−p1Þ2; ~u¼ðxBpB−p1Þ2;
ð41Þ

s¼ðp2þ ~p1Þ2; t¼ðxApA− ~p1Þ2; u¼ðxBpB− ~p1Þ2:
ð42Þ

The above final state contribution differs from the
standard approach adapted in the event generators. In the
latter, the on-shell gg → gg process is augmented with
the final state splitting g → gg with probability related to
the Sudakov form factor. Formally, the splitting is purely
collinear, as the transverse momenta are integrated over.
This part of the generation is purely perturbative based on
the timelike DGLAP evolution. Then, the true exclusive
kinematics has to be reconstructed/modeled. In the case of
the present model, the final state line is spacelike, with
explicit (nonintegrated) off-shellness. Note that since this
final state does not split into on-shell partons, the fact it is
spacelike is perfectly valid.

(a)

(b)

FIG. 3. (a) In HEF with the KMR prescription (27) the kT of initial state gluons on both sides is produced by the gluon PDF and the
Sudakov form factor. (b) In the leading twist DDT formula of Eq. (2) one ladder of emissions is associated with each leg of the hard
process.
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It is important to mention that, by construction, the
maximal allowed value ofKT isKTmax ¼ μ. It is easy to see
that then, in the leading power approximation, we recover
both the collinear result (1) and the DDT formula (2). In
what follows we shall abbreviate the new model as IDDT
(an “improved DDT”).
We have implemented the IDDT approach in a computer

program [83], and in Fig. 5 we show the results of the
consistency checks we have performed (for a detailed
description of the setup and cuts see the next section).
First, we compare the leading power limit of the IDDTwith
the collinear result for the pT spectrum. We see [Fig. 5(a)]
that they match ideally. We also show separately the
contributions from the initial state (30) and final state
cross sections. Next, we compare the spectrum in the jet
disbalanceKT with the one obtained from the DDT formula
[Fig. 5(b)] and find a perfect agreement. Thus we have
gained exactly the properties we wanted; that is, the
formula (29) has the collinear and the DDT limits at
leading power.

In the end, let us stress that the above construction is a
model of higher twists, not a strict QCD derivation. We
have neglected all the details concerning factorization and
higher order corrections. Our aim was to catch certain
properties such a formula should have in order to study
their effect on minijets.

III. SETUP FOR NUMERICAL STUDIES

Before presenting the detailed numerical results of the
different minijet formulations, we shall first define the
observable we are going to calculate as well as the kinematic
cuts and details of the setups of the Monte Carlo programs.
The LO collinear jet formula (1) or (12) describes the

production of exactly two jets. In more realistic simulations
we deal with multiparton configurations, and a more careful
definition of a two-jet cross section is needed. This concerns
simulations using both PYTHIA and Monte Carlo implemen-
tation of HEF or IDDT. In the following, we will consider an
inclusive dijet cross section with jets reconstructed using the

(a)

(b)

FIG. 4. (a) Momentum assignment in the final state contribution to (29); the final state momentum ~p1 is off-shell. (b) Diagrams
contributing to the gauge invariant final state off-shell process; the Wilson line slope is given by the vector p1 so that ~p1 · p1 ¼ 0.

(a) (b)

FIG. 5. (a) The leading power limit of the IDDT formula (29) for jet pT spectrum in comparison with the LO collinear factorization.
We see that it has the correct collinear limit as the solid line (IDDT) is on the top of the dotted line (collinear). We show also final state
and initial state contributions of IDDT. (b) The same as (a) but for the spectrum of jet disbalance and in comparison with the DDT
formula.
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anti-kT algorithm with certain pTmin and R ¼ 0.5 (if not
stated otherwise). We require at least two jets to be above
pTmin. We tag the two hardest jets, but we do not order them
in their pT ; thus the spectra for both jets are identical. We
require both jets to fit within the ½−4; 4� rapidity window.
We shall use three approaches: (i) PYTHIA, (ii) HEF as

described in Sec. II C, and (iii) IDDT as constructed in
Sec. II D. For reference we sometimes also use the pure
collinear formula (9). The approaches (i), (ii), and (iii) will
be used in the direct study of minijets in Sec. IV, while the
indirect minijet study shall utilize models (i) and (ii).
The PYTHIA generator has two disjoint modules: “soft

QCD” and “hard QCD.” The first one is used when all
produced particles have transverse momenta around or
slightly above the pT0 cutoff. The second is suitable for
high-pT particles. From the point of view of the minijet
model, they differ by the fact that in the hard QCD module
the hardest binary collision does not have the suppression
factor as in (12).
Whenever we use PYTHIA, we use some nonstandard

settings in order to make clean comparisons. First, we use
only the gluonic channel. Second, we use LO GRV98 [33]
PDFs with matching LO αs. The reason we use GRV98
instead of some more up-to-date sets is that we will
compare PYTHIA calculations to HEF with KMR in the
low pT region. This requires that the PDF used to construct
KMR has to be defined for a small enough scale, smaller
than 1 GeV. As of today, this requirement is satisfied only
by the GRV98 distribution.
Above are the generic settings. The other settings

concerning MPIs or parton showers and hadronization will
be determined when necessary. In the description of the
plots we shall use the following abbreviations: PS for final
state and initial state parton showers and HAD for
hadronization. To comply with the minijet formula we
choose the hard scale to be the average pT of jets.
In our analysis within HEF we will use several UGDs:

(i) The KMR gluon distribution [19,20] given by (27) based
on the GRV98 collinear PDF. Note that this is actually a
prescription of DDT; the genuine KMR prescription is
much more complicated, but traditionally (27) functions as
KMR in the literature. (ii) The Kwiecinski-Martin-Stasto
(KMS) [86] gluon distribution that supplements the BFKL
equation with the DGLAP corrections. More precisely it
incorporates the kinematic constraint to maintain the
energy conservation and the nonsingular parts of the
gluon-gluon splitting function. This gluon distribution
has been fitted to HERA F2 data in [87], and we will call
this set KMS-HERA. In [88] fits have been performed to
the jet LHC data (using, however, only the gluonic part of
the KMS equation). We shall call this set KMS-LHC in
what follows. (iii) The CCFM equation [27–29] taken from
[89] and based on the computer code [90]. We note that
various CCFM sets differ from each other, and thus we are
not making any conclusions regarding CCFM from our

work. The important point of the CCFM equation is that it
encodes both the BFKL and the DGLAP limits through the
angular ordering constraint. A very important difference
between KMS and CCFM evolution equations is that KMS
does not depend on the hard scale of the process. We shall
see that this feature is important for jet studies. Similar to
CCFM, the KMR approach does encode the hard scale
dependence through the Sudakov form factor. In fact, in a
certain limit the CCFM gluon distribution can be reduced to
the one of KMR [91].
All numerical simulations for HEF are performed using

the extension of the C++ program [83] briefly described at
the end of Sec. II C.

IV. DIRECT STUDY OF MINIJET SUPPRESSION

In the present section we directly study pT spectra of
minijets, i.e., inclusive dijets with pT ≳ 2 GeV using
PYTHIA and HEF/IDDT in the small pT region. In particu-
lar, we will check whether the internal gluon kT can give a
jet suppression compliant with the minijet formula (12). We
have already anticipated the result: the main contribution in
HEF/IDDT at low pT comes from the collinear region of
small kT , which does not have the suppression factor built
in. We shall check this through numerical analysis of the pT
spectra.
Before we explore the HEF, let us ask a question how the

suppression of the minijet spectrum looks in a realistic
model that implements it. To this end we use the soft QCD
module of PYTHIA suitable for small pT and calculate the
inclusive dijet spectra as described in Sec. III. The result is
presented in Fig. 6. First, we indeed see a big suppression
of the spectrum, which means that every binary collision in

FIG. 6. The suppression of minijet pT spectrum compared to
the LO collinear factorization calculated with PYTHIA using soft
QCD simulation with parton shower and with/without hadroni-
zation. The minijet model of Eq. (12) is also shown. The
enhancement of the spectra with respect to the collinear factori-
zation vanishes for sufficiently large pTs.
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the small pT region is suppressed—this is the feature of the
soft QCD module of PYTHIA; in the hard QCD module
the hardest binary collision is not suppressed (see also the
discussion below). The suppression produced in PYTHIA is
much bigger than the one following from the naive
dσ02jet=dpT spectrum of Eq. (12). This is because in the
soft QCD module of PYTHIA the suppression is modeled by
the Sudakov-like form factor, where (12) enters the
Sudakov-like exponent. The suppression growing with
the CM energy is clearly visible. Second, we observe an
enhancement of the spectrum at moderate pT as compared
to the naive dσ02jet=dpT spectrum. This feature does survive
the hadronization, as seen in the figure. We shall come back
to this enhancement later and discuss it in more detail.
Now we do the same for HEF and IDDT models. Here

we are interested in a suppression with respect to the LO
collinear factorization so we have to use the consistent
gluon distributions. Thus we use the KMR based on
GRV98 in HEF, and we use the GRV98 itself in collinear
factorization. We show the results in Fig. 7. First, we see
that the direct suppression of the spectrum due to the
internal gluon kT is very small compared to the minijet
model (the top plot has the same horizontal scale as Fig. 6,
while in the bottom plot we zoom the low-pT region).
Second, the suppression has the opposite energy depend-
ence than (13); i.e., it becomes weaker when the energy is
higher. This feature is present in both models HEF and
IDDT and is qualitatively the same. Interestingly, the
spectra for HEF (but not for IDDT) show an enhancement
at moderate values of pT relative to the collinear curves,
similar to the one discussed above in PYTHIA. This
enhancement comes from the power corrections and
vanishes for sufficiently high pT . It is now interesting to
compare this calculation to a similar calculation made with
PYTHIAwith the hard QCD module with and without MPIs.
Obviously, the hard QCD cannot formally be used in the
low-pT region, but technically it can be done, and this
sheds some light on the interpretation of the results from
Fig. 7. Namely, in the hard QCD module the hard process
does not have any pT regularization factor, and we expect
the results to exhibit similar behavior to Fig. 7. We show
these results in Fig. 8. By comparing them to Fig. 7 (in
particular the bottom plots) we see that, qualitatively, the
behavior is very similar, meaning that indeed the hard
process in HEF (or IDDT) does not have the suppression of
the kind (12). We also see that PYTHIAwith MPIs shows the
same enhancement as HEF curves. This means that MPIs
generate power corrections that are visible in the inclusive
dijet spectra. We note that the enhancement vanishes for
sufficiently large pT as required by the Abramovsky-
Gribov-Kancheli cutting rules [92].
The similarity of the HEF spectra and PYTHIA with the

hard QCD module and MPI suggests that the power
corrections in HEF may imitate MPIs in certain circum-
stances. The power corrections in HEF come from the tails

in the transverse momentum of the UGDs. Actually, one
can think of a collision within HEF as “multiple collisions”
weighted by a distribution of internal transverse momen-
tum. This distribution is peaked at a small transverse
momentum; thus the collinear contribution (one of the
multiple collision bundle) is dominant (the leading power
contribution), and it is not suppressed. Further “collisions”
for larger internal transverse momenta are less important as
the internal transverse momentum distribution falls off
quickly. However, those subleading power corrections may
exhibit different energy behavior. We shall investigate this
point in the next section.

V. INDIRECT STUDY OF MINIJETS

In the previous section we saw that the internal kT
flowing into the hard process as in HEF/IDDT approaches
does not give the suppression of dijet production compliant
with the minijet model (12). This is simply because the
off-shell 2 → 2 hard process is dominated by the leading

(a)

(b)

FIG. 7. (a) The same as in Fig. 6 but for HEF and IDDT
approaches. (b) The zoom into the low-pT region of the top plot.
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power contribution for which the effect of internal gluon kT
is small. Thus, the next question we ask is about the relation
of power corrections created in a minijet model with MPIs
and power corrections rendered in HEF. We stress that we
consider here inclusive dijet production at relatively small
transverse momenta. The spectra for very large pT would
not be affected by MPIs.
To support the above statement that a minijet model with

MPI can generate similar corrections to HEF, let us again
look at the pT spectra. We can see from Figs. 7 and 8 that
within HEF and PYTHIAwith MPIs there is an enhancement
for larger pT’s compared to the collinear result. Both IDDT
and PYTHIA without MPIs do not have this feature. The
reason for the IDDT model to be quickly convergent to the
collinear result is because, by construction, we do not allow
KT to be bigger than the hard scale μ. On the contrary, in
HEF KT may be anything allowed by the jet kinematics.

Thus we may draw a conclusion that both MPI corrections
to the hard process in PYTHIA and power corrections in HEF
may have similar components. In this section we will study
this point. Because IDDT does not allow for sizable power
corrections, we will not consider it in this section anymore.
First we take a closer look at the direct comparison of

Figs. 7 and 8 for certain CM energy, say
ffiffiffi
S

p ¼ 14 TeV
[Fig. 9(a)]. We see that for larger pT’s both PYTHIA with
MPIs and HEF start to exhibit indeed a similar enhance-
ment compared to the collinear result, but further in pT the
PYTHIA spectrum converges to the collinear one while HEF
converges much more slowly. We calculate also the spectra
of the dijet momentum disbalance KT [Fig. 9(b)]. We see
that the MPIs in the PYTHIA model produce a higher tail of
the KT spectrum, which in addition is close to the one from
HEF. These calculations are interesting, but as discussed
before they are extrapolated beyond the natural domain of
the applicability of the models used; both PYTHIA with the
hard QCD module and HEF require rather high pT to be
present. Let us remember that we used PYTHIAwith the hard
QCD module in order to enforce the statement that HEF is
dominated by the hard process that does not have the
suppression.
Thus we make another set of calculations, now requiring

pT > 25 GeV to get rid of the range in pT that normally
would be strongly suppressed. This is the domain of
applicability of both PYTHIA hard QCD and HEF. The
results are presented in Figs. 9(c) and 9(d). As for the pT
spectrum, the situation does not change compared to the
smaller pT cut. For the disbalanceKT spectrum, we see that
at first the HEF tail drops below PYTHIAwith MPI, but later
it again rises toward the model with MPIs. The IDDT
model has a similar (unphysical) low-KT behavior as the
genuine DDTobtained from (2). It is important to stress that
in HEF we have been using the KMR based on the GRV98
gluon distribution so far, and the features discussed above
will be different for different UGDs. Similarly, the shape of
the PYTHIA’s enhancement will depend on the MPI model
parameters, in particular on the pT0 parameter, as we will
see below.
To better access the power corrections and study their

energy dependence, we propose the following observable.
We investigate a differential cross section for inclusive
dijets in the following variable:

τ ¼ KT

μ
¼ 2KT

pT1 þ pT2
: ð43Þ

It can be thought as being a measure of the “twist content”
in the approach. That is, the small τ ∼ 0 corresponds to the
leading power, while the τ > 1 region is sensitive to higher
power corrections. We expect that in HEF wewill observe a
sizable contribution to the τ > 1 region. On the other hand,
in the PYTHIA generator the small momentum disbalance is
generated by the parton shower, but it does not give a

(a)

(b)

FIG. 8. (a) The same as in Fig. 6 but using PYTHIA with the
hard QCD module. It formally is not applicable for low-pT , but
we use it on purpose to compare with HEF in this region (see
the main text for details). (b) The zoom into the low-pT region
of the top plot.
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significant contribution to τ > 1. However, we expect that
for τ > 1 the contribution of MPIs should be visible,
because almost uncorrelated partons originating in different
hard collisions can produce very disbalanced jets. We shall
come back to this later in this section.
We will be concerned with the shape of the τ

distribution only. Since various UGDs often have differ-
ent normalizations we shall divide the differential cross
sections by the total cross section. We shall investigate
this observable within the different approaches with a
known minijet implementation for various pT0 settings
(we mean PYTHIA here) and HEF.
In Fig. 10 we show the results for the CM energy range

7–30 TeV calculated in PYTHIA for a few choices of the
parameters in the parametrization of pT0ðSÞ. Namely, we
consider the following scenarios: (a) no MPI interactions,
(b) constant pT0 ¼ 2.28 GeV, (c) the standard implemen-
tation given by (13), and (d) the choice (13) with the
exponent taken to be around twice as big. In Fig. 11 we
compare these scenarios for two fixed energies 14 TeVand

30 TeV. In a similar manner we calculate the spectra in τ
using HEF in Fig. 12. We use the following UGDs
described in Sec. III: (a) KMR based on GRV98, (b) the
CCFM, (C) the KMS-HERA, and (d) the KMS-LHC.
Let us discuss first the spectra obtained from PYTHIA. We

see that the distributions have a bimodal character; i.e., they
have two peaks, one close to τ ¼ 0 and the second close to
τ ¼ 2. The second peak (at large τ) is much weaker than the
leading peak, and its strength depends on the amount of
MPIs present in the model: the more MPIs the stronger
the second peak. This is seen when comparing the plots
without the suppression of minijets [Fig. 10(b)], throughout
the increasing suppression [Figs. 10(c) and 10(d)], up to the
“infinite” suppression [i.e., no MPIs, Fig. 10(a)]. This is
even more visible from Fig. 11 where we compare these
models for fixed energies. Let us note that there is a peak
close to τ ¼ 2 even if there are no MPIs. There are two
types of events contributing to this region in that case.
(i) Events due to the final state parton shower, where the
emitted parton happens to be hard and emitted at an angle

(a) (b)

(c) (d)

FIG. 9. Comparison of the pT spectra (left column) from various approaches and the spectrum of the dijet disbalance KT (right
column). The top row is for actual minijets, i.e., pT > 2 GeV, while the bottom row is for pT > 25 GeV.
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(a) (b)

(c) (d)

FIG. 10. Spectra of the variable τ ¼ 2KT=ðpT1 þ pT2Þ in PYTHIAwith parton showers, with no hadronization, and with several choices
of MPI model parameters. (a) MPI is switched off, (b) the pT0ðSÞ ¼ const, (c) the standard choice of (13), and (d) the choice (13) but
with the exponent approximately as twice as big.

(a) (b)

FIG. 11. Similar to Fig. 10 but here we compare calculations with different MPI model parameters and fixed CM energy: (a) 14 TeV,
and (b) 30 TeV.
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large enough to be reconstructed as a separate jet; this jet is
then tagged together with the “mother” jet. (ii) Events due
to the initial state parton shower and accompanying beam
remnant reconstruction. We have checked that the events
involving the initial state parton shower seem to happen
more often than the final state splitting scenario. Naturally,
these contributions depend on the jet algorithm. In case the
MPIs are added, the second peak is enhanced relative to the
first one, because now also (almost) uncorrelated partons
may be clustered into jets that are tagged.
To investigate the energy dependence of the second peak,

we shall use the bimodality coefficient defined as

b ¼ γ2 þ 1

κ
; ð44Þ

where the skewness γ and the kurtosis κ are defined as

γ ¼ μ3
σ3

; κ ¼ μ4
σ4

; ð45Þ

with μn being the nth central moment and σ the standard
deviation. We calculate b as a function of energy in
Fig. 13(a). We see that the bimodality coefficient reflects
(to some extent) the energy dependence of the minijets
contribution. When there are no MPIs, the coefficient is
perfectly linear with energy. When we switch on MPIs, b
jumps to a higher value, and then the increase is dictated by
the amount of suppression of minijets. Thus we may
conclude, that the bimodality coefficient of the normalized
spectra in τ is a reasonable measure of the minijet
contribution as a function of energy when a hard process
is present.
Let us now turn to HEF and make a similar analysis.

First we calculate the spectra in τ shown in Fig. 12.
Interestingly, we see that these spectra also feature the
bimodal character. There is no explicit parton shower in
HEF; however, the transverse momentum dependent
gluons with exact off-shell kinematics render an equivalent
of the initial state parton shower (see, e.g., [61,85]). As we
discussed for the PYTHIA case, the initial state shower

(a) (b)

(c) (d)

FIG. 12. Spectra of the variable τ ¼ 2KT=ðpT1 þ pT2Þ in HEF with various UGDs: (a) KMR with GRV98, (b) the CCFM, (c) the
KMS-HERA, and (d) the KMS-LHC.
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contributes significantly to this region. We saw, however,
that this contribution alone has different energy dependence
than when MPIs are added. It will thus be interesting to
study the energy dependence of the second peak in HEF
and compare it with PYTHIA. The results for the τ
distribution are shown in Fig. 12. We see that KMR with
GRV98 [Fig. 12(a)] produce superficially similar spectra to
those of PYTHIA with MPIs. The CCFM [Fig. 12(b)] looks
flatter with the second peak only very slowly varying with
energy. The KMS distribution that does not have the hard
scale evolution (i.e., the Sudakov resummation) produces
very different shapes. They are much more peaked near
τ ¼ 0 [Figs. 12(c) and 12(d)]. Spectra for both versions of
KMS also differ considerably with respect to the second
peak. To compare the energy evolution of the second peak,
let us now extract the bimodality coefficient from these
spectra. The result is presented in Fig. 13(b). First, we see
that the normalizations vary significantly for different
models. This is because the normalization is sensitive to
the first peak, which is different across models. Second,
looking at the energy dependence, we see that the KMR
with GRV98 has a similar (but not the same) tendency
to PYTHIA with MPIs and the suppression parameter
pT0ðSÞ ¼ const. The rise with energy is slightly slower,
but not as slow as the model (13). It is better seen in Fig. 14
where we collect the PYTHIA results with only extreme
settings for clarity and some of the HEF results. In this plot
we normalize the bimodality coefficient by its value at
7 TeV to compare the energy dependence. The conclusion
from this plot is as follows. The HEF can render power
corrections that definitely can show similar energy evolu-
tion to the one from MPIs in the event generator [due to the
evolution of pTðSÞ]. Here it is satisfied by KMR and KMS-
HERA UGDs. It seems, however, that the energy depend-
ence they give flattens earlier than PYTHIA minijet models.
The initial rise is also more rapid.

There are several comments in order. First, the bimo-
dality coefficient from PYTHIA models depends on the jet
radius R as does the calculated τ distribution for large τ. It is
clear that by decreasing the jet radius we will reconstruct
more jets that will eventually start to balance each other.
This sensitivity of large τ to R is a natural feature. In this
regime the dijets are accompanied by a large “underlying
event” activity. From LHC data [93] it is known that the
underlying event observables are sensitive to R. The
sensitivity mechanism of the τ distribution on R will
become clearer from the discussion below. The second
comment concerns the chosen rapidity coverage, namely
jηj < 4. In PYTHIA without MPIs the recoiling system for
large τ most probably consists from a hard jet (or jets) that
lie outside the chosen rapidity window. Thus one may

(a) (b)

FIG. 13. The bimodality coefficient defined in (44) for various approaches as a function of energy. (a) PYTHIA with different minijet
suppression, and (b) HEF with various UGDs.

FIG. 14. Comparison of energy dependence of the bimodality
coefficient normalized to the value at 7 TeV for some of the
curves from Figs. 13(a) and 13(b).
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wonder how the results depend on the rapidity coverage. We
verified that there is no change in τ distributions (both with
and without MPIs) for the rapidity window widths between
jηj < 2 and jηj < 5. In HEF the dijet imbalance is produced
by the emissions that are hidden in the kT dependent UGDs.
The standard small-x evolution equations do not order
emissions in kT , and thus the large imbalance can be caused
by either several softer emissions or one very hard emission.
By definition, these are unresolved, untagged, emissions.
Moreover, they are further away in rapidity than the hard
process. In evolution equations that mix the evolution in hard
scale and x the situation is more complicated, but there is
always a possibility to have a harder jet outside the
acceptance. Clearly, the detailed structure of the recoiling
system cannot be fully explored by solely studying the
inclusive quantity like the production of two dijets. While
PYTHIA being the full event generator can provide such
information, it is impossible to resolve these emissions on
the level of inclusive HEF factorization used in this work.

To answer this question, a full event generator based on the
HEF factorization with unordered emissions (in kT) and
exact energy momentum conservation would be needed.
Therefore, further detailed studies of this contribution are
necessary.
To see more directly how the large KT disbalance can be

created due to MPIs, we display in Fig. 15 several events in
ðϕ; η; pTÞ space obtained from PYTHIAwith MPI and parton
showers. We have traced the origin of the final state
particles that later form the jets; particles originating in
different hard collisions are denoted using different colors.
The resulting jets are displayed as cones with radius
R ¼ 0.5. The two top plots present two events with a
small disbalance relative to the hard scale (small τ). We see
that the jets are reconstructed from the particles originating
in the same hard collision. The bottom plots show two
events that contribute to a large disbalance to hard scale
ratio τ, and thus to power corrections. We see that the
leading jets are reconstructed from final state partons

FIG. 15. Events in ðϕ; η; pTÞ space from PYTHIAwhere the final state particles and their MPI origins are shown. Particles originating in
various hard processes (above a certain pT threshold) are denoted using different colors. The reconstructed leading jets are symbolically
represented by cylinders with radius 0.5. The beam remnants are also displayed. (a), (b) The top row represents events with small relative
momentum disbalance τ (relative to the hard scale). (c), (d) The bottom row represents events where the relative disbalance τ is large. We
see that the leading jets originate from different subprocesses here.
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originating from different hard collisions. Moreover, we see
that a mixture of partons from different hard collisions may
enter a jet.
Let us now make some comments on the energy

dependence of the power corrections from UGDs other
than KMR, that is, undergoing the BFKL evolution and its
extensions. From Fig. 14 it seems that they give much
weaker energy dependence than the Sudakov-based KMR
approach. In particular, the CCFM gluon distribution gives
the behavior of power corrections as if there were no MPIs.
This is interesting and may be connected to the particular
way the emissions are ordered; namely, it is less probable in
CCFM to emit a hard gluon far away in rapidity. Let us
stress, however, that different CCFM sets differ consid-
erably depending on the particular implementation (we are
not concerned in comparing various CCFM distributions in
this paper). Moreover, all BFKL-based gluons have been
fitted to experimental data on the structure functions in
deep inelastic scattering. This process is dominated by
small kT , and thus the large kT tails of these distributions
are burdened with rather sizable errors. It is thus important
to keep in mind these restrictions.

VI. SUMMARY AND CONCLUSIONS

Our work can be summarized as follows. We have
performed a comprehensive analysis of the minijet cross
section and its crucial component—the pT cutoff. Despite
the fact that in event generators minijets are described
by the collinear formula, the kinematic domain ventures out
of the leading power approximation. Therefore we
attempted to explain the cutoff using various forms of
kT factorization for inclusive dijet production: the HEF
with two off-shell gluons in the initial state and an
extension of the Dokshitzer-Dyakonov-Troyan formula
beyond the leading power (IDDT). Both approaches
involve UGD, which inject nonzero transverse momentum
into the hard process, and thus there is a potential
mechanism for a dynamical cutoff on small pT .
We have performed two analyses: (i) direct calculations

of pT spectra in the low-pT region (pT > 2 GeV) to see if
the cutoff is generated, and (ii) calculations for relatively
hard inclusive dijets with pT > 25 GeV and analysis of
subleading effects in a search for patterns of minijets.
As far as the direct study (i) is concerned we find that the

suppression that is generated is small and has a “kinematic”
origin and thus the opposite energy dependence than in the
MC models. It is, in fact, something one should expect as
the leading contribution to the cross section in HEF/IDDT
with the 2 → 2 hard process comes from the very small
internal transverse momenta. The results are similar to the
ones obtained from PYTHIA when the hard QCD block
is used.
In the study (ii) we use a differential cross section in a

variable τ defined to be the ratio of dijet disbalance to the
average pT . We observe that when it is calculated in PYTHIA

with MPIs, it has a bimodal character with one bump
located close to τ ∼ 0 and the second bump (much smaller)
located close to τ ∼ 2. The second bump is sensitive to the
pT cutoff in the MPI model. The same observable calcu-
lated within HEF reveals a similar feature. We investigated
the energy dependence of the bimodality coefficient b,
which characterizes the relative magnitude of the two
peaks. We find that the energy dependence of b calculated
from PYTHIA resembles the energy evolution of the pT
cutoff in the MPI model. Thus by studying b in HEF we
could obtain information about minijets constituting emis-
sions that lead to the dijet disbalance. We found that the
UGD constructed according to the prescription which uses
the collinear gluon PDF and the Sudakov form factor
(proposed by Kimber, Martin, and Ryskin and before that
indirectly by Diakonov, Dokshitzer, and Troyan) produces
minijets which are only slightly suppressed with CM
energy (for large energies). The UGDs with an explicit
BFKL kernel present give stronger suppression. None of
the models recovers exactly the minijet suppression from
the PYTHIA event generator.
Let us stress that we did not intend to compare PYTHIA

and HEF. Conversely, we have used PYTHIA to give a
possible interpretation to power corrections present in the
HEF approach. The latter is by definition an inclusive
formulation, and certain effects are hidden or, broadly
speaking, parametrized by the kT dependent gluon distri-
butions. One has to keep in mind that this was done
neglecting the details of the recoil system present outside
the acceptance region.
We note that while it is practically impossible to measure

the minijets directly, where by “directly” we mean a
measurement of pT spectrum around pT ∼ 2 GeV with
reconstructed jets (although charged particle jets could be
possible), our study (ii) is feasible with the current detectors
operating at the LHC. This could supplement the measure-
ments of an underlying event (e.g., [94]) as a main source of
restricting MPI model parameters [95].
In the present work we did not discuss the gluon

saturation [11] issues. It is clear that at some point for
very high energies the nonlinear effects in the gluon density
should come into play, especially at small pT . In a naive
study, where one would just use UGD with a nonlinear
evolution of the Balitsky-Kovchegov type [96,97], the
situation would not change significantly, unless a large
saturation scaleQs ∼ pT is used. The point is, however, that
the HEF is not correct in the saturation domain and a more
complicated approach involving several UGDs is needed
[59,98]. Whether such improved factorization can generate
a sizable cutoff with the right energy dependence is still
open, especially since the problem with the cutoff persists
for large impact parameters where gluon densities are not
too large [6,7].
One of the important practical outcomes of the present

work is the observation that the naive mixing HEF and
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double parton scattering mechanism can lead to the double
counting. The latter is based on the leading twist factori-
zation, and using it by simply replacing the collinear
expressions by kT factorized expressions may double count
in the region sensitive to the large gluon transverse
momenta. Whether this happens depends on the particular
evolution used for the unintegrated gluon distribution.
In other words, we have demonstrated that the HEF can

imitate the MPIs effect in the region of the large relative dijet
momentum imbalance, depending on the choice of the
unintegrated gluon distributions. We did this via numeric
simulations of relevant observables in both approaches and

comparing them. It would be interesting to do a detailed
analytical study of power corrections in both approaches.
This is beyond the present work and is left for a future study.
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