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The representation of the wave functions of the nucleon resonances within a relativistic framework is a
complex task. In a nonrelativistic framework the orthogonality between states can be imposed naturally. In
a relativistic generalization, however, the derivation of the orthogonality condition between states can be
problematic, particularly when the states have different masses. In this work we study the Nð1520Þ and
Nð1535Þ states using a relativistic framework. We considered wave functions derived in previous works,
but impose the orthogonality between the nucleon and resonance states using the properties of the nucleon,
ignoring the difference of masses between the states (semirelativistic approximation). The Nð1520Þ and
Nð1535Þ wave functions are then defined without any adjustable parameters and are used to make
predictions for the valence quark contributions to the transition form factors. The predictions compare well
with the data particularly for high momentum transfer, where the dominance of the quark degrees of
freedom is expected.
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I. INTRODUCTION

In the last century we learned that hadrons, including the
nucleon (N) and the nucleon excitations (N�), are not
pointlike particles and have their own internal structure.
The structure of those states is the result of the internal
constituents, quarks and gluons, and the interactions ruled
by quantum chromodynamics (QCD). In the last decades
experimental facilities such as Jefferson Lab (JLab), MAMI
(Mainz) and MIT-Bates have accumulated information
(data) about the electromagnetic structure of the nucleon
resonances, parametrized in terms of structure form factors
for masses up to 3 GeV [1,2].
Several theoretical models have been proposed to inter-

pret the nucleon resonance spectrum and the information
associated with its internal structure [1–3]. Different
models provide different parametrizations of the internal
structure in terms of the effective degrees of freedom. Some
of the more successful models are the constituent quark
models based on nonrelativistic kinematics like the Karl-
Isgur model [3,4] and the light front quark models (LFQM)
defined in the infinite momentum frame [5–7]. In those
extreme cases, nonrelativistic models or LFQM, the kin-
ematics is simplified. In general, however, the transition
between the nonrelativistic and relativistic regimes is not a
trivial task.
In this work we discuss the γ�N → N� transition form

factors for resonances N� with negative parity. The defi-
nition of the wave functions of the nucleon (mass MN) and
a nucleon excitation (mass MR), in terms of the internal
quark degrees of freedom, can be done first in the rest frame
of the particle, and extended later for a moving frame using
a Lorentz transformation. In a nonrelativistic framework the

mass and energy of the state are not relevant for the
definition of the states. Moreover, the orthogonality
between the nucleon and the resonance N� is ensured,
since the wave functions are independent of their masses.
To understand the complexity of the generalization of the
orthogonality condition from a nonrelativistic framework to
a relativistic framework, we consider the example of charge
operator, J0, for a transition between the nucleon (N) and a
spin 1=2 negative parity state (R). The projection of J0 in
the nucleon and N� states at zero square momentum
transfer (q2 ¼ 0) is proportional to the overlap between
wave functions. One can show that in a relativistic
framework the overlap is proportional to ūRγ5uN [8]. In
a framework where we can neglect the mass difference
between the states,1 we obtain ūRγ5uN ¼ 0, for the case
where N and R have the same momentum (q2 ¼ 0). We
then conclude that in the nonrelativistic limit the orthogon-
ality between states is naturally ensured. In a relativistic
framework the imposition of the orthogonality condition is
more complex, since the nucleon and the resonance R
cannot be at rest in the same frame, and the boost changes
the properties of the states. As a consequence, states that are
orthogonal when the mass difference can be neglected may
not be orthogonal when the mass difference is taken into
account.
The problem of how to define a wave function of a

nucleon excitation that generalizes the nonrelativistic
structure of the state and is also orthogonal to the nucleon

1The nonrelativistic limit can also be defined as the equal mass
limit (MR ¼ MN) or as the heavy baryon limit, when the terms on
ðMR −MNÞ=MN can be neglected.
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was already discussed in the context of the covariant
spectator quark model for the negative parity resonances
Nð1520Þ and Nð1535Þ [8–10]. The solution at the time was
to define the radial wave functions for the N� states in order
to ensure the orthogonality with the nucleon state. The
price to pay was the introduction of a new momentum scale
parameter in the radial wave functions, to be determined by
the phenomenology.
In this work we discuss an alternative approach. Instead

of focusing on the necessity of imposing the orthogonality
between states, we assume that the mass difference is not
the more relevant factor and treat the two states as different
states with the same mass, M, defined by the average
M ¼ 1

2
ðMN þMRÞ. We then consider wave functions of

states with the same mass. We call this approximation the
semirelativistic approximation, since it keeps the features
of the nonrelativistic regime (no mass dependence) and
preserves the covariance of the states.
The great advantage of the previous assumption is that,

as explained in detail later, one can relate the radial wave
function of the resonance Rwith the radial wave function of
the nucleon, increasing the predictive power of the model.
We use the semirelativistic approximation to calculate
transition form factors for the resonances Nð1520Þ and
Nð1535Þ. The calculation of the helicity amplitudes is more
problematic since their relation with the form factors
depends on the nucleon and resonance physical masses.
Later on, we discuss how to calculate the helicity ampli-
tudes using the form factors defined in the equal mass limit.
In this work we show that the results from the

semirelativistic approximation compare well with
γ�N → Nð1520Þ and γ�N → Nð1535Þ form factor data
[11–17], particularly for large square momentum trans-
fer (Q2 ¼ −q2). At low Q2, the agreement is not so
good, since the meson cloud contributions are expected
to be important and even dominant in some transitions
[1,2,18–21].
This article is organized as follows: In Sec. II, we discuss

the orthogonality between states and explain how the
orthogonality can be imposed in a relativistic framework.
In Sec. III, we present the formalism associated with the
γ�N → Nð1520Þ and γ�N → Nð1535Þ transitions, and the
relations between electromagnetic currents, helicity ampli-
tudes and electromagnetic form factors. Next, in Sec. IV,
we discuss the covariant spectator quark model and present
the model predictions for the transitions under study. The
results of the semirelativistic approximation are discussed
in Sec. V. Outlook and conclusions are presented in
Sec. VI.

II. ORTHOGONALITY AND RELATIVITY

We discuss now the orthogonality between the nucleon
and a nucleon excitation R. Since they represent different
systems they should be represented by orthogonal wave
functions, ΨN and ΨR, respectively. In a quark-diquark

model one can express those wave functions as ΨNðP; kÞ
and ΨRðP; kÞ, where P and k are respectively the baryon
and the diquark momenta (P − k is the momentum of the
single quark). For simplicity we ignore the indices asso-
ciated with the angular momentum, the parity, and the spin
and isospin projections.
In a nonrelativistic framework, the orthogonality

between the wave functions is ensured when the overlap
between the two wave functions vanishes in the limit where
both particles have zero three-momentum, P ¼ 0, which
can be represented, ignoring the isospin effect for now, by
the condition

X
Γ

Z
k
Ψ†

RðP̄; kÞΨNðP̄; kÞ ¼ 0: ð2:1Þ

In the previous equation Γ is a diquark polarization index
and P̄ ¼ ðM; 0Þ is the nucleon and Rmomenta (P̄ is used to
label P in the limitQ2 ¼ 0). The integral symbol represents
the covariant integration over the diquark momentum. The
mass/energy component was introduced to facilitate the
relativistic generalization, but it is irrelevant for the present
discussion, since in the nonrelativistic limit the wave
functions are defined only in terms of the three-momentum.
It is important to note that in Eq. (2.1) the functions are
defined for the zero three-momentum transfer (jqj ¼ 0),
since both states wave the same three-momentum P ¼ 0. In
a covariant language we can write Q2 ¼ −jqj2 ¼ 0, since
we assumed that the energy is irrelevant for transitions
at jqj2 ¼ 0.
The question now is how to generalize the condition

(2.1), defined for Q2 ¼ 0, to the relativistic case, particu-
larly for the unequal mass case. In the context of the
covariant spectator quark model [22–24], the problem
was already discussed for several baryon systems
[8,9,25–27]. In that formalism the relativistic generalization
of Eq. (2.1) is

X
Γ

Z
k
Ψ†

RðP̄þ; kÞΨNðP̄−; kÞ ¼ 0; ð2:2Þ

where P̄þ and P̄− represent the resonance R and the
nucleon momenta, respectively, in the case Q2 ¼ 0.
Taking for instance the R rest frame, one has, assuming
that the momentum transfer q is along the z-axis,

P̄þ ¼ ðMR; 0; 0; 0Þ;
P̄− ¼ ðEN; 0; 0;−jqjÞ; ð2:3Þ

where EN ¼ M2
RþM2

N
2MR

and jqj ¼ M2
R−M

2
N

2MR
.

From the previous relations we conclude that in the case
Q2 ¼ 0, we cannot haveR andN at rest at the same time (in
the same frame) unless MR ¼ MN . Thus, in the conditions
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of Eqs. (2.3), the resonance R is at rest, but the nucleon is
not at rest (jqj ≠ 0).
The discussion about the orthogonality between states

that are not defined in the same rest frame is more complex,
and has consequences in the calculation of the transition
form factors in the limit Q2 ¼ 0. We can illustrate the
problem looking for the magnetic form factor GM for
the γ�N → Nð1520Þ transition. As discussed in Refs. [9],
the orthogonality condition implies that GMð0Þ ∝ IRð0Þ,
where IRðQ2Þ is a integral defined by the overlap between
the nucleon and R radial wave functions (the details can be
found in Refs. [9]). Since the orthogonality condition
between states is equivalent to IRð0Þ ¼ 0 [9], one obtains
GMð0Þ ¼ 0, in contradiction with the experimental result
GMð0Þ ¼ −0.393� 0.044 [11].
In the framework of the covariant spectator quark model,

we can prove that the orthogonality condition (2.2) for the
states R ¼ Nð1520Þ, Nð1535Þ is equivalent to [8,9]

IRð0Þ≡
Z
k

kz
jkjψRðP̄þ; kÞψNðP̄−; kÞ ¼ 0; ð2:4Þ

where ψR and ψN are radial wave functions from R and N,
respectively and real functions of ðP̄� − kÞ2. The integral
IRð0Þ is defined in Eq. (2.4) at the R rest frame, by
simplicity. The general expression can be found in
Refs. [8,9].
In Sec. IV, we present the results for the γ�N → Nð1520Þ

and γ�N → Nð1535Þ form factors and the connection with
the helicity amplitudes within the covariant spectator
quark model.
For the γ�N → Nð1520Þ transition, one has three inde-

pendent form factors Gi (i ¼ 1, 2, 3), with the form [9]

GiðQ2Þ ∝ IRðQ2Þ
jqj ; ð2:5Þ

when Q2 → 0. In the case IRðQ2Þ
jqj → const, one has finite

contributions for the transverse amplitudes, A1=2ð0Þ and
A3=2ð0Þ, consistently with the data.
As for the γ�N → Nð1535Þ transition, we conclude that

the two independent form factors F�
i (i ¼ 1, 2) can be

represented as [8]

F�
i ðQ2Þ ∝ IRðQ2Þ; ð2:6Þ

when Q2 → 0. In addition, it can be shown that IR ∝ jqj
when the nucleon and the Nð1535Þ states are described by
the same radial wave function [8]. As a consequence of
Eq. (2.6), one obtains F�

1ð0Þ ¼ 0, automatically in the
limit jqj → 0.
The problem associated with the results from the γ�N →

Nð1520Þ and γ�N → Nð1535Þ form factors given by
Eqs. (2.5) and (2.6) is that they are finite only in the case

jqj → 0 when Q2 ¼ 0, which is inconsistent with

jqj ¼ M2
R−M

2
N

2MR
≠ 0, unless MR ¼ MN .

In previous works [8,9], we developed models that
violate the orthogonality condition (2.4) as for the γ�N →
Nð1535Þ transition [8], or are consistent with the ortho-
gonality condition, but failed to describe the lowQ2 data, as
for the γ�N → Nð1535Þ transition [9].
In the present work, we consider an alternative approach

that tries to achieve two goals. On the one hand we want to
keep the nice analytic properties of the form factors in the
case MR ¼ MN , which are spoiled in the relativistic gen-
eralization of the wave function in the case MR ≠ MN . On
the other hand,wewant to describe the experimental helicity
amplitudes, which are defined only in the case MR ≠ MN .
With those two ideas in mind we consider the following
approximation: we assume that both states, the nucleon and
the resonance R, are states with the same mass, given by the
average between the two physical masses

M ¼ 1

2
ðMR þMNÞ: ð2:7Þ

With this choice, the orthogonality condition (2.4) is
automatically ensured if ψR is defined as ψN . In that case
the productψRðP̄þ; kÞψNðP̄−; kÞ is symmetric in the angular
variables when jqj ¼ 0; as a consequence the integral in kz
vanishes.
Since this approximation mimics the nonrelativistic

regime when the mass difference is ignored, we refer to
this approximation as the semirelativistic approximation.
A nice consequence of the semirelativistic approach is

that, since the R states are defined using the radial wave
function of the nucleon (ψN), there are no adjustable
parameters in the model. Therefore, the results of the
present model are true predictions that can be compared
with the experimental data.

III. FORMALISM

In this section, we present the general definitions of the
γ�N → R helicity amplitudes at the final state (R) rest
frame. Following the notation of previous works we use
P− for the initial state (nucleon) and Pþ for the final state
(R). The momentum transfer is then q ¼ Pþ − P−. We use
also Q2 ¼ −q2, which we relabel as the square momentum
transfer. The transition current operator is represented by
Jμ, and is defined in units of the proton charge e. The
explicit form of Jμ depends of the N and R states. To
express the projection of Jμ in the states R andN we use the
matrix element

JμNR ≡ hRjJμjNi: ð3:1Þ

Next, we present the general definition of the helicity
amplitudes which are valid for any final state resonance
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with spin 1=2 or 3=2. Afterwards, we consider in particular
the γ�N → Nð1520Þ and γ�N → Nð1535Þ transitions, and
present the explicit expressions for the current and tran-
sition form factors.
Along this work we use a common notation for the two

transitions. The meaning of the index R, as in the function
IR discussed previously, depends on the transition under
study. We use also

τ ¼ Q2

ðMR þMNÞ2
; ð3:2Þ

for both transitions.

A. Helicity amplitudes

The electromagnetic transition γ�N → R, where R is a
state with angular momentum J ¼ 1

2
; 3
2
with positive or

negative parity (JP ¼ 1
2
�; 3

2
�), is characterized by the

helicity amplitudes, functions of Q2, and defined at the
R rest frame by [1]

A3=2 ¼
ffiffiffiffiffiffiffiffi
2πα

K

r �
R; S0z ¼ þ 3

2

����εþ · J

����N; Sz ¼ þ 1

2

�
; ð3:3Þ

A1=2 ¼
ffiffiffiffiffiffiffiffi
2πα

K

r �
R; S0z ¼ þ 1

2

����εþ · J

����N; Sz ¼ −
1

2

�
; ð3:4Þ

S1=2 ¼
ffiffiffiffiffiffiffiffi
2πα

K

r �
R; S0z ¼ þ 1

2

����ε0 · J
����N; Sz ¼ þ 1

2

� jqj
Q

:

ð3:5Þ

In the previous equations S0z (Sz) is the final (initial) spin
projection, q is the photon three-momentum in the R rest
frame,Q ¼

ffiffiffiffiffiffi
Q2

p
, εμλ (λ ¼ 0,�1) is the photon polarization

vector, α≃ 1=137 is the fine-structure constant and

K ¼ M2
R−M

2

2MR
. The amplitude A3=2 is defined only for J ¼

3
2
resonances.
At the R rest frame the magnitude of the photon three-

momentum is jqj, and reads

jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þQ2

−
p
2MR

; ð3:6Þ

where Q2
� ¼ ðMR �MNÞ2 þQ2. Note that when Q2 ¼ 0,

one has K ¼ jqj ¼ M2
R−M

2
N

2MR
, as mentioned above.

B. γ�N → Nð1520Þ transition
Because Nð1520Þ is a JP ¼ 3

2
− state, the γ�N →

Nð1520Þ transition current can be represented as [1,9]

JμNR ¼ ūβðPþÞΓβμuðP−Þ; ð3:7Þ

where uβ, u are, respectively, the Rarita-Schwinger and
Dirac spinors. The operator Γβμ has the general Lorentz
structure

Γβμ ¼ G1qβγμ þ G2qβPμ þG3qβqμ −G4gβμ; ð3:8Þ

where P ¼ 1
2
ðPþ þ P−Þ. The functions Gi (i ¼ 1; ::; 4) are

form factor functions that depend on Q2, but only three of
them are independent. From current conservation [9,28] we
conclude that

G4 ¼ ðMR −MNÞG1 þ
1

2
ðM2

R −M2
NÞG2 −Q2G3: ð3:9Þ

Another useful combination of the form factors Gi (i ¼ 1,
2, 3) is

gC ¼ 4MRG1 þ ð3M2
R þM2

N þQ2ÞG2

þ 2ðM2
R −M2

N −Q2ÞG3: ð3:10Þ

Using the previous form factors we can express the
γ�N → Nð1520Þ helicity amplitudes defined by Eqs. (3.3)–
(3.5) as [1,9]

A1=2 ¼ 2AR

�
G4 − ½ðMR −MNÞ2 þQ2� G1

MR

�
; ð3:11Þ

A3=2 ¼ 2
ffiffiffi
3

p
ARG4; ð3:12Þ

S1=2 ¼ −
1ffiffiffi
2

p jqj
MR

ARgC; ð3:13Þ

where AR ¼ e
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

þ
6MNMRK

q
.

For a discussion about the convenience of the combi-
nation of form factors G1, G4, gC, see Refs. [9].
An alternative representation of the γ�N → Nð1520Þ

structure is the so-called electromagnetic multipole form
factors: the magnetic dipole (GM), and the electric (GE) and
Coulomb (GC) quadrupoles. Those form factors can be
represented as [1,9]

GM ¼ −R½ðMR −MNÞ2 þQ2� G1

MR
; ð3:14Þ

GE ¼ −R
�
4G4 − ½ðMR −MNÞ2 þQ2� G1

MR

�
; ð3:15Þ

GC ¼ −RgC; ð3:16Þ

where R ¼ 1ffiffi
6

p MN
MR−MN

.
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C. γ�N → Nð1535Þ transition
We consider now the resonance Nð1535Þ which is a

JP ¼ 1
2
− state. The γ�N → Nð1535Þ transition current can

be represented as [1,8,29,30]

JμNR ¼ ūR

�
F�
1

	
γμ −

qqμ

q2



þ F�

2

iσμνqν
MR þMN

�
γ5u; ð3:17Þ

where F�
i (i ¼ 1, 2) define the transition form factors and

uR, u are Dirac spinors associated with the R and the
nucleon states, respectively. The analytic properties of the
current (3.17) imply that F�

1ð0Þ ¼ 0 [8].
The helicity amplitudes can be expressed in terms of the

form factors using [1,8,31,32]

A1=2 ¼ 2AR

�
F�
1 þ

MR −MN

MR þMN
F�
2

�
; ð3:18Þ

S1=2 ¼ −
ffiffiffi
2

p
ARðMR þMNÞ

jqj
Q2

×

�
MR −MN

MR þMN
F�
1 − τF�

2

�
; ð3:19Þ

where AR ¼ e
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

þ
MNMRK

q
.

We discuss next the results of the covariant spectator
quark model for the transitions under discussion.

IV. COVARIANT SPECTATOR QUARK MODEL

The covariant spectator quark model is derived from the
formalism of the covariant spectator theory [33]. In the
model, a baryon B is described as a three-constituent-quark
system, where one quark is free to interact with the
electromagnetic fields and the other quarks are on mass
shell. Integrating over the on-mass-shell momenta, one can
represent the quark pair as an on-mass-shell diquark with
effective mass mD, and the baryon as a quark-diquark
system [2,22–24]. The structure of the baryon is then
expressed by a transition vertex between the three-quark
bound state and a quark-diquark state that describes
effectively the confinement [22,24].
The baryon wave function ΨBðP; kÞ is derived from the

transition vertex as a function of the baryon momentum P
and the diquark momentum k, taking into account the
properties of the baryon B, such as the spin and flavor. The
wave functions are not determined by a dynamical equation
but are instead built from the baryon internal symmetries,
with the shape determined directly by experimental or
lattice data for some ground state systems [2,22,34,35]. The
wave functions of the nucleon, Nð1520Þ and Nð1535Þ, are
discussed in Refs. [8,9,22].
The covariant spectator quark model was already applied

to the nucleon [22,23,36–38], several nucleon resonances

[8–10,25,27], Δ resonances [10,34,35,39–42], and other
transitions between baryon states [24,30,43–45].
When the baryon wave functions are represented in

terms of the single quark and quark-pair states, one can
write the transition current in a relativistic impulse approxi-
mation as [22–24]

JμNR ¼ 3
X
Γ

Z
k
Ψ̄RðPþ; kÞjμqΨNðP−; kÞ; ð4:1Þ

where jμq is the quark current operator and Γ labels the
scalar diquark and vectorial diquark (projections Λ ¼ 0,�)
polarizations. The factor 3 takes account of the contribu-
tions of all the quark pairs by symmetry. The integration
symbol represents the covariant integration for the diquark
on-shell state

R
k ≡

R
d3k

ð2πÞ3ð2EDÞ, with ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
p

.

The quark current operator can be written in terms of the
Dirac (j1) and Pauli (j2) quark form factors [22,24],

jμq ¼ j1

	
γμ −

qqμ

q2



þ j2

iσμνqν
2MN

: ð4:2Þ

The inclusion of the term − qqμ

q2 associated with the Dirac

component in inelastic reactions is equivalent to the Landau
prescription for the current Jμ [46–48]. The term restores
current conservation, but does not affect the results for the
observables [46].
In the SUð2Þ-flavor sector we can decompose (i ¼ 1, 2)

ji ¼
1

6
fiþ þ 1

2
fi−τ3; ð4:3Þ

where fi�ðQ2Þ are quark electromagnetic form factors, and
normalized according to f1�ð0Þ ¼ 1 and f2�ð0Þ ¼ κ�
(quark isoscalar/isovector anomalous magnetic moment).
The quark electromagnetic form factors are written in

terms of a vector meson dominance parametrization that
simulates effectively the constituent quark internal structure
due to the interactions with gluons and quark-antiquark
polarization effects [22]. The quark electromagnetic current
was calibrated previously by the nucleon and decuplet
baryon data [22,24], and was also tested in the lattice
regime for the nucleon elastic reaction as well as for the
γ�N → Δ transition [24,35,41,43]. Details can be found in
Refs. [22,24,25,27].
In the calculation of the transition current it is convenient

to define the symmetric (S) and antisymmetric (A) projec-
tions of the isospin states (i ¼ 1, 2)

jSi ¼
1

6
fiþ þ 1

2
fi−τ3; ð4:4Þ

jAi ¼ 1

6
fiþ −

1

6
fi−τ3: ð4:5Þ

The normalization of the states is imposed for B ¼ N, R,
through the condition [8,9]
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X
Γ

Z
k
Ψ̄BðP̄; kÞð3j1Þγ0ΨBðP̄; kÞ ¼ eN; ð4:6Þ

where P̄ ¼ ðMB; 0; 0; 0Þ is the momentum at the rest frame;
eN ¼ 1

2
ð1þ τ3Þ is the nucleon charge. In the previous

equation ð3j1Þγ0 is the quark charge operator, with
j1 ¼ j1ð0Þ. Assumed in Eq. (4.6) is the normalization of
the radial wave function

R
k jψBðP̄; kÞj2 ¼ 1.

The radial wave functions ψB (B ¼ N, R) are represented
in terms of the dimensionless variable [22]

χ ¼ ðMB −mDÞ2 − ðP − kÞ2
MBmD

; ð4:7Þ

as

ψBðP; kÞ ¼
N0

mDðβ1 þ χÞðβ2 þ χÞ ; ð4:8Þ

where N0 is a normalization constant and the parameters
β1 ¼ 0.049 and β2 ¼ 0.717 were determined by the model
for the nucleon with a fit to the nucleon electromagnetic
form factor data [22]. The relative sign of N0 for the
resonances Nð1520Þ, Nð1535Þ is determined by the sign of
the transition form factors [8,9]. With the inclusion of the
factor 1=mD in the definition of the radial wave function
(4.8), the diquark mass dependence scales out of the
integration (k → k=mD) and the form factors became
independent of mD [22,24].
The orthogonality condition between the nucleon and R

wave functions, now generalized with the effect of the
isospin, is [8,9]

X
Γ

Z
k
Ψ̄RðP̄þ; kÞð3j1Þγ0ΨNðP̄−; kÞ ¼ 0: ð4:9Þ

From the previous expression we can derive the orthogon-
ality condition for the radial wave functions, given by
Eq. (2.4) [8,9].
For the calculation of the transition form factors it is

convenient to define the overlap integral between the radial
wave functions IRðQ2Þ as

IRðQ2Þ ¼
Z
k

kz
jkjψRðPþ; kÞψNðP−; kÞ: ð4:10Þ

The previous integral is calculated at the R rest frame,
where the integrate function is simplified. The function
IRðQ2Þ defines, however, an invariant integral that can be
calculated in any frame. The discussion associated with the
general form of the integral can be found in Refs. [8,9]. In
the limitQ2 ¼ 0, we recover the form of IRð0Þ presented in
Eq. (2.4). As discussed in Sec. II, one has IRð0Þ ¼ 0, when
ψR is defined as ψN (ψR ≡ ψN) and MR ¼ MN .

A. γ�N → Nð1520Þ form factors

The expressions for the γ�N → Nð1520Þ transition form
factors are [9]

G1 ¼ −
3

2
ffiffiffi
2

p jqj

×

�	
jA1 þ 1

3
jS1



þMR þMN

2MN

	
jA2 þ 1

3
jS2


�
IR;

ð4:11Þ

G2 ¼
3

2
ffiffiffi
2

p
MN jqj

;

×

�
jA2 þ 1

3

1 − 3τ

1þ τ
jS2 þ

4

3

2MN

MR þMN

1

1þ τ
jS1

�
IR;

ð4:12Þ

G3 ¼ −
3

2
ffiffiffi
2

p jqj
MR −MN

Q2

×

�
jA1 þ 1

3

τ − 3

1þ τ
jS1 þ

4

3

MR þMN

2MN

τ

1þ τ
jS2

�
IR;

ð4:13Þ

where τ is defined by Eq. (3.2).
Comparative with Refs. [9] we take the limit where the

mixture angle θD is given by cos θD ≃ 1 (in most of the
models cos θD ≃ 0.99 [49]).
When we calculate G4 using (3.9), we obtain

G4 ¼ 0: ð4:14Þ

Thus, in the covariant spectator quark model one has,
according to Eqs. (3.12), (3.14) and (3.15), A3=2 ≡ 0 and
GE ≡ −GM [9].
For the following discussion we note that the form

factors Gi (i ¼ 1, 2, 3) given by Eqs. (4.11)–(4.13) are

proportional to the factor IRðQ2Þ
jqj .

The results (4.11)–(4.13) were derived in Refs. [9]. In that
work ψR was parametrized in order to describe the large Q2

data (small meson cloud effects) and the orthogonality
condition, IRð0Þ ¼ 0. As a consequence the valence quark
contributions for the form factors GM, GE and the amplitude
A1=2 vanishes at Q2 ¼ 0. This feature changes in the
semirelativistic approximation, as we show later.
Another interesting property of the model is that the

results for the form factors Gi imply that A3=2 ¼ 0 for all
values of Q2, in contradiction with the available exper-
imental data. Our interpretation of this result is that the
main contribution for the amplitude A3=2 comes from the
meson cloud effects. This assumption is consistent with
the results presented in the literature. Most of the quark
models predict only small contributions for the amplitude
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A3=2 (about 1=3 of the empirical data) [50–54], although
there are exceptions [5]. A more detailed discussion can be
found in Refs. [9,10]. Estimates of the meson cloud
contributions from the EBAC coupled-channel reaction
model also support the idea that the meson cloud is the
dominant effect in A3=2 [19].

B. γ�N → Nð1535Þ form factors

The expressions for the γ�N → Nð1535Þ transition form
factors are [9]

F�
1ðQ2Þ ¼ 1

2
ð3jS1 þ jA1 ÞIR; ð4:15Þ

F�
2ðQ2Þ ¼ −

1

2
ð3jS2 − jA2 Þ

MR þMN

2MN
IR: ð4:16Þ

In Ref. [8], we presented a model with IRð0Þ ≠ 0.
The consequence of IRð0Þ ≠ 0 is that the nucleon and
the resonance Nð1535Þ are not orthogonal. The results
presented in Ref. [8] were based on an approximated
orthogonality, and are valid only for large Q2 (Q2 ≫ K2≃
0.2 GeV2). In the present work, within the semirelativistic
approximation, the orthogonality is exact.

V. RESULTS IN THE SEMIRELATIVISTIC
APPROXIMATION

We present now the results of the semirelativistic
approximation for the γ�N → Nð1520Þ and the γ�N →
Nð1535Þ transition form factors and respective helicity
amplitudes.
The numerical results are compared to the data from

CLAS single pion production [12], CLAS double pion
production [13,14], MAID [15,16] and Particle Data Group
(PDG) (Q2 ¼ 0) [11]. For the γ�N → Nð1535Þ transition
we also present results from JLab/Hall C [17] for the
amplitude A1=2.

A. γ�N → Nð1520Þ transition
The elementary form factors Gi (i ¼ 1, 2, 3) for the

γ�N → Nð1520Þ transition, determined by the covariant
spectator quark model, are expressed by Eqs. (4.11)–(4.13).
Using those expressions for Gi we can evaluate the helicity
amplitudes A1=2, A3=2, S1=2 and the multipole form factors
GM, GE and GC.
In the semirelativistic approximation we evaluate G1,

G2, G3, in the limit MR ¼ MN , using

MR þMN

2MN
→ 1; ð5:1Þ

jqj → Q
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
; ð5:2Þ

and replacing also MN → M in G2. Special care is
necessary for the function G3, since it includes a factor

ðMR −MNÞ=Q2. There is therefore the possibility of a
singularity at Q2 ¼ 0. This singularity is only apparent as
we explain next.
We start noticing that G3 appears only in the function gC

given by Eq. (3.10), which can be expressed, in the limit
MR ¼ MN , as

gC ¼ 4MG1 þ ð4M2 þQ2ÞG2 − 2Q2G3: ð5:3Þ

Since the factor 1=Q2 in G3 is canceled by the factor
Q2, the limit MR ¼ MN can be performed, obtaining
Q2G3 → 0.
Note also that in G4, we can drop the term Q2G3. We

then conclude that in the limit MR ¼ MN all terms in G4

vanish [see Eq. (3.9)].
We recall, from the previous section, that the form

factors Gi are proportional to IRðQ2Þ
jqj . Since IRðQ2Þ ∝ jqj

near Q2 ¼ 0, when N and R are defined by the same radial
wave function [8], in the approximation MR ¼ MN , we
ensure the orthogonality between the nucleon and reso-
nance states, IRð0Þ ¼ 0, and obtain also finite results at
Q2 ¼ 0 (IRð0Þ=jqj ≠ 0).
To calculate the helicity amplitudes and the form factors

GM, GE and GC in the semirelativistic approximation, we
use the relations (3.11)–(3.13) and (3.14)–(3.16), respec-
tively, including as input the functions Gi (i ¼ 1, 2, 3), G4,
gC determined in the limit MR ¼ MN .
The conversion between G1, G4, gC into helicity ampli-

tudes and multipole form factors using coefficients depen-
dent on the physical masses MR and MN is necessary,
because the helicity amplitudes and GM, GE and GC are
strictly defined only in the case MR ≠ MN . At the end we
present also the results in the extreme limit, when we ignore
all mass differences, except for the factors AR or R. It is
worth mentioning that the extreme limit is just a theoretical
exercise, since as discussed later, it changes the properties
of the multipole form factors and helicity amplitudes near
Q2 ¼ 0.

1. Comparison with the data

The results of the semirelativistic approach (thick solid
line) for the helicity amplitudes are present in Fig. 1. The
CLAS data [12–14] are represented by the full circles. For a
cleaner comparison, we replace the MAID data by the
MAID parametrization of the data [16] (thin solid line).
Notice the deviation between the MAID and the CLAS data
for the amplitudes A1=2 and S1=2. It is interesting to see in
the figure that the semirelativistic approximation describes
very well the CLAS amplitudes A1=2 and S1=2 for
Q2 > 1 GeV2. As for the A3=2, as discussed already, the
model predicts A3=2 ≡ 0.
The corresponding results for the form factors GM, GE

and GC are presented in Fig. 2, with the same labeling. The
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differences between the CLAS and MAID data are
obvious for GM and GC. It is interesting to note in this
case that, although the semirelativistic approximation fails
to describe the GE data at low Q2, it approaches the data
for Q2 > 3 GeV2.
Overall the agreement is remarkable between the model

and the CLAS form factor data for intermediate and large
Q2. Except for A3=2, this comment is also valid for the
helicity amplitudes. We recall that the large Q2 behavior is
a prediction of the model since no parameters are included
for the resonance R. The radial wave function associated
with the resonance R uses the parameters of the nucleon
radial wave function (same momentum distribution).

In both analysis, helicity amplitudes or multipole form
factors, the semirelativistic approach deviates from the
CLAS data for small Q2. Although our calculations are
restricted to the limit MR ¼ MN , we can still assume that
the main reason for the deviation at small Q2 is due to the
absence of the meson cloud effects in our formalism, since
the meson cloud effects can be significant for some
resonances at low Q2.
In the graphs for A1=2 and GM one can see that the

semirelativistic approximation is very close to the data,
particularly for Q2 > 1 GeV2. We then conclude that those
functions are dominated by valence quark effects (small
meson cloud contributions).
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FIG. 1. Results of the γ�N → Nð1520Þ helicity amplitudes given
by the semirelativistic approximation (thick solid line). The semi-
relativistic approximation includes only the effect of the valence
quark core. Data are from PDG [11] (full squares) and CLAS
[12–14] (full circles). The thin solid line represents the fit to the
MAIDdata [16].The extreme limit is represented by the dashed line.
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FIG. 2. Results of the γ�N → Nð1520Þ form factors given
by the semirelativistic approximation (thick solid line). The semi-
relativistic approximation includes only the effect of the valence
quark core. Data are from PDG [11] (full squares) and CLAS
[12–14] (full circles). The thin solid line represents the fit to the
MAIDdata [16].The extreme limit is represented by the dashed line.
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Our results for GE are in strong disagreement with the
experimental data. This result suggests that the form factor
GE may have significant contributions from the meson
cloud, in order to cover the gap between the model and the
empirical data. Recall that a similar effect was already
observed for the amplitude A3=2. The conclusion that GE is
dominated by meson cloud effects is one of the more
important results of the present work. The results for GE
and the connection with A3=2 are discussed in more detail at
the end of the section.

2. Extreme limit

In order to study in more detail the result of the approxi-
mation MR ¼ MN , we consider at last the extreme limit,
where we take also the MR ¼ MN limit in the form factor
coefficients of Eqs. (3.11)–(3.13) and (3.14)–(3.16). The
results are presented in Figs. 1 and 2 by the dashed line. In that
case we use Q2

− ¼ Q2, and replace also jqj → Q
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
in

S1=2. For GC there is no difference between the semirelativ-
istic approximation and the extreme limit. As a consequence
of the extreme limit, the functions A1=2, S1=2, GE and GM

vanish at Q2 ¼ 0. The form factor GC does not vanish at
Q2 ¼ 0, because the factor jqj cancels theQ → 0dependence
of S1=2 (since GC ∝ S1=2=jqj). One concludes then that the
extreme limitmodifies the behavior of the helicity amplitudes
and multipole form factors at low Q2, particularly near
Q2 ¼ 0, and is in contradiction with the data [nonzero results
for A1=2ð0Þ, S1=2ð0Þ, GEð0Þ and GMð0Þ]. For that reason the
extreme limit should be seen as a theoretical exercise thatmay
differ from the physical case. It is nevertheless interesting to
note that the extreme limit is close to theCLAS data at lowQ2

for the amplitudes A1=2 and S1=2.

B. γ�N → Nð1535Þ transition
We present now the results of the semirelativistic

approximation for the γ�N → Nð1535Þ transition. We start
with the discussion of the transition form factors; later we
discuss the helicity amplitudes.
The available data for the A1=2 and S1=2 amplitudes cover

the region Q2 ¼ 0�4.2 GeV2 [11,12,15,16]. The large Q2

data for A1=2 come from Ref. [17] with Q2 ¼ 5.8,
7.0 GeV2, and were extracted under the assumption that
the S1=2 contribution for the cross section is negligible.
Therefore, in the conversion from helicity amplitudes to
transition form factors, we use S1=2 ¼ 0.
In Ref. [29] it was suggested that in the region

Q2 > 2 GeV2 the amplitudes are related by S1=2 ¼
−

ffiffiffiffiffiffi
1þτ

p ffiffi
2

p M2
R−M

2
N

2MRQ
A1=2. One can then use the relation to

estimate the expected value for S1=2 according to the values
A1=2 from Ref. [17] for large Q2. In the following we use
the solid triangles for the original result (S1=2 ¼ 0) and the
empty triangles for the asymptotic estimate.

1. Form factors

We start with the γ�N → Nð1535Þ results for the form
factors F�

1 and F�
2. In the calculation of the overlap integral

IRðQ2Þ, we use the replacement of MR;MN → M. In the
calculation of the form factors we consider in addition
the replacement MRþMN

2MN
→ 1, in the expression for F�

2. In the

semirelativistic approach, since F�
i ðQ2Þ ∝ IRðQ2Þ and

IRð0Þ ¼ 0, one has F�
1ð0Þ ¼ 0, and F�

2ð0Þ ¼ 0. The first
result is consistent with the data (by construction). The
second result is an approximation of our model, since the
experimental value is F�

2ð0Þ ¼ 0.83� 0.28 [11].
The results for the form factors are presented in Fig. 3

and are compared with the data from CLAS, MAID and
JLab/Hall C [12,15–17] for Q2 > 0.
In Fig. 3, one can note for F�

1 the good agreement
between the model (solid line) and the data (CLAS and
MAID) for Q2 > 2 GeV2. As for F�

2, we conclude as in the
previous work [8] that the model predictions for F�

2 are not
in agreement with the data (difference of sign between the
model and the data).
Our interpretation of the results for F�

2 is that the
difference between the model and data is due to the meson
cloud effects, not included in our framework. In that case
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FIG. 3. Results for the γ�N → Nð1535Þ transition form factors
given by the semirelativistic approximation (thick solid line). The
semirelativistic approximation includes only the effect of the
valence quark core. Data are from CLAS [12] (full circles),
MAID [15,16] (full squares), and JLab/Hall C [17] (triangles).
Out of the range is the PDG result F�

2ð0Þ ¼ 0.83� 0.28 [11].
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we expect significant meson cloud contributions for F�
2.

Our hypothesis is corroborated by explicit calculations of
meson cloud effects based on the unitary chiral model,
where the baryons states are represented by bare cores
dressed by mesons [30,55]. As for F�

1 the model describes
very well the experimental data except for the region
Q2 < 1.5 GeV2. This result suggests that the missing effect
in F�

1 for small Q2 may also be due to the meson cloud
contributions. For larger values of Q2, the meson cloud
effects are smaller and the form factor F�

1 is dominated by
valence quark effects, as expected.

2. Helicity amplitudes

In the case of the γ�N → Nð1535Þ transition there is
no simple procedure to calculate the helicity amplitudes
using our results in the semirelativistic approximation
(limit MR ¼ MN), since in the calculation of the helicity
amplitudes (3.18) and (3.19) the mass difference is crucial.
If we use MR ¼ MN in A1=2, we suppress the contribution
from F�

2, and A1=2 is determined exclusively by F�
1. If we

useMR ¼ MN in S1=2, we remove the effect of F�
1, the more

relevant form factor.
Our first conclusion then is that the semirelativistic

approximation to the γ�N → Nð1535Þ transition is better
for the form factors than for the helicity amplitudes.
To compare our estimates in the semirelativistic appro-

ach we need to consider additional simplifications. We
consider the two following cases:

(i) Model A (or valence quark model)
It is defined by the semirelativistic approach to the

form factors with no further constraints. Since no
explicit meson cloud effects are included, the model
is expected to fail the description of the data at low
Q2. It may happen, however, that the model is
comparable with other estimates of the bare core.

(ii) Model B (or high Q2 model)
It is defined by the condition F�

2 ¼ 0, combined
with the result of the model for F�

1. Since the result
F�
2 ¼ 0 holds only for high Q2, the model is

expected to be good only for large values of Q2.
In both cases we use the original definition of amplitudes

(3.18) and (3.19). In the analysis we discuss also the effect
of the replacement jqj → Q

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
in the amplitude S1=2

given by Eq. (3.19). With the previous correction, S1=2
became

S1=2 ¼
ffiffiffi
2

p
ARðMR þMNÞð1þ τÞ

×

�
MR −MN

MR þMN

F�
1

jqj − τ
F�
2

jqj
�
; ð5:4Þ

where F�
i

jqj (i ¼ 1, 2) are well-defined functions atQ2 ¼ 0, as
discussed already. With the form (5.4) the divergence in
1=Q2 of S1=2 is avoided and S1=2ð0Þ becomes finite.

The results for the amplitudes are presented in Fig. 4 for
the model A, and in Fig. 5 for the model B. In the figures,
we include the data from Ref. [17] forQ2 > 5 GeV2. In the
case of S1=2, we include also the estimate from Ref. [29], as
discussed earlier (empty triangles). In the graphs for S1=2
the thick lines represent the original result for the ampli-
tude, given by Eq. (3.19) and the thin line the redefinition
(5.4). In the last case, S1=2ð0Þ is finite, although it is not
shown in the graph.
In Fig. 4, we compare the valence quark model

(model A) with the physical data (PDG, CLAS, MAID
and JLab/Hall C). In the graph for S1=2 one can notice the
significant disagreement between the model and the data.
The model strongly underestimates the data, particularly
for small values of Q2. Since the model A is based on
valence quark contributions, the deviation from the
physical data may be an indication of the large meson
cloud effect expected for the amplitude S1=2. As for the
amplitude A1=2 it may be a surprise to see that the model
is so close to the physical data, since the model fails
to describe the F�

2 data (see Fig. 3). This result is a
consequence of the difference between model and data for
the form factors F�

1 and F�
2, for Q

2 < 2 GeV2, combined
with the difference of sign between F�

1 and F�
2, in the

calculation of A1=2 given by Eq. (3.18). The closeness
between the model A and the A1=2 data for small Q2

may be interpreted as a coincidence due to the results
observed for the form factors (the model cannot describe
simultaneously the form factors F�

1, F�
2 in the region

Q2 < 2 GeV2). As for large Q2 the closeness between
model and data is expectable due to the predicted falloff
of the meson cloud contributions, and also due to the
smaller impact of F�

2 in A1=2 [see Eq. (3.18)].
The model A may be useful in the future to compare with

lattice QCD simulations with large pion masses (small
meson cloud effects) and other estimates of the baryon core
effects such as the ones performed by the EBAC/Argonne-
Osaka model [18,19,56] In future works one may also use
the difference between our estimate of the bare core and a
parametrization of the data to extract the contributions of
the meson cloud.
In Fig. 5, we compare the high Q2 model (model B)

directly with the data. Since the result F�
2 ¼ 0 is observed

only for Q2 > 1.5 GeV2, we represent the lines differently
below (dotted line) and above (solid line) that point. For
Q2 > 1.5 GeV2 the agreement between the model and the
physical data is clear (CLAS, MAID and JLab/Hall C) for
both amplitudes. In the graph for S1=2 the results from
Eq. (3.19), which diverge at Q2 ¼ 0 (thick line), are closer
to the data than the result from Eq. (5.4) (thin line), and are
finite atQ2 ¼ 0. Both estimates are very close to the data in
the region of interest (Q2 > 1.5 GeV2).
The closeness between the model B and the data for

Q2 > 1.5 GeV2 is very interesting and calls for additional
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experimental studies, in order to test the hypothesis F�
2 ¼ 0

in more detail. Also noticeable is the agreement between
the model and the estimate of the S1=2 amplitude from
Ref. [29] (empty triangles) using the data from JLab/Hall
C [17]. To clarify this point, new data or a reanalysis of old
data using the Rosenbluth separation method (that allows
the separation of different components of the measured
cross section) may be very helpful.

C. Discussion

In the previous sections, we improved the results of the
covariant spectator quark model from Refs. [8,9] using the
semirelativistic approximation. The orthogonality between
states is ensured and the analytic results are consistent with
the lowQ2 data. In particular, we obtain nonzero results for
A1=2, GM, GE at Q2 ¼ 0 in the γ�N → Nð1520Þ transition,
and preserve the result F�

1ð0Þ ¼ 0 for the γ�N → Nð1535Þ
transition.
Compared to the models from Refs. [8,9], where the

estimate of the valence quark contributions for the form
factors were good only for large Q2, we present more
reliable estimates for the low Q2 region, although derived
under the assumption thatMR ≃MN . An accurate estimate

of the valence quark contributions in the low Q2 regime is
very important, since it can be used to estimate the meson
cloud contributions based on a parametrization of the form
factor data. A parametrization of the valence quark con-
tributions can also be very useful to compare with lattice
simulations with large pion masses (suppression of meson
cloud effects) and other estimates of the bare core
contributions.
Our results for the γ�N → Nð1520Þ transition are in good

agreement with the intermediate and large Q2 data
(Q2 > 1 GeV2). The exceptions are the amplitude A3=2,
for which the spectator quark model predicts zero con-
tributions, and the form factor GE.
The experimental results (with meson cloud) and the

estimates of bare core effects, such as the one based on the
semirelativistic approximation (without meson cloud) for
GE, can be understood in the case where A3=2 is mainly a
consequence of the meson cloud effects and A1=2 is
dominated by valence quark effects (small meson cloud
contributions). The relations between the meson cloud
(index mc) contributions from the helicity amplitudes
and form factors can be represented as [1,9]
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FIG. 5. Results for the γ�N → Nð1535Þ helicity amplitudes
given by the model B (thick solid line). Model B is valid for large
Q2 (see the description in the main text). The thin solid line is the
result of Eq. (5.4). The dots represent the functions for
Q2 < 1.5 GeV2. Data are from PDG (empty squares) [11], CLAS
[12] (full circles), MAID [15,16] (full squares), and Jlab/Hall C
[17] (triangles).
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FIG. 4. Results for the γ�N → Nð1535Þ helicity amplitudes
given by the model A (thick dashed line). Model A is based in the
valence quark effects (see the description in the main text). The
thin dashed line is the result of Eq. (5.4). Data are from PDG
(empty square) [11], CLAS [12] (full circles), MAID [15,16] (full
squares), and JLab/Hall C [17] (triangles).
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Amc
1=2 ¼

1

4F
ð3Gmc

M − Gmc
E Þ; ð5:5Þ

Amc
3=2 ¼ −

ffiffiffi
3

p

4F
ðGmc

M þGmc
E Þ; ð5:6Þ

where F ¼ R=ð2ARÞ is a function of Q2 [9]. When
jAmc

3=2j ≫ jAmc
1=2j, we can conclude that

Gmc
E ¼ −

Fffiffiffi
3

p Amc
3=2; Gmc

M ¼ 1

3
Gmc

E : ð5:7Þ

Thus, in the case where the meson cloud contributions are
large for A3=2 and small for A1=2,GE has larger meson cloud
contributions, proportional to Amc

3=2, and GM has smaller
meson cloud contributions (about one third of the con-
tribution for GE). Those results are compatible with the
results of Figs. 1 and 2 for A1=2 and GM. It is worth
mentioning that the dominance of the meson cloud effects
in the amplitude A3=2 was already observed in some EBAC
calculations [19]. Indications of the large meson cloud
contributions for A3=2 came also from quark models where,
as mentioned, the valence quarks contribute only with a
small fraction of the experimental values [50–54].
Our results for the γ�N → Nð1535Þ for F�

1 are
compatible with the experimental data in the region
Q2 > 1.5 GeV2, and differ in sign for F�

2. We can interpret
those results as a manifestation of the absence of meson
cloud effects, particularly for F�

2. For the γ
�N → Nð1535Þ

transition the semirelativistic approximation with MR ¼
MN is unappropriated for the calculation of the helicity
amplitudes. One can use, however, two simple approx-
imations: one based on the valence quark contributions
(model A), and another that is valid for large Q2, and
compares well with the data (model B, with F�

2 ¼ 0).
Overall, we conclude that we have a good description of

the valence quark content of the Nð1520Þ and Nð1525Þ
systems, since we describe very well the large Q2 data.
Estimates of the valence quark contributions to the form

factors can by performed using dynamical coupled-channel
reaction models like the DMT [15,57], and the EBAC/
Argonne-Osaka model [18,19,56]. Those models take into
account the meson and photon coupling with the baryon
cores and can be used to estimate the effect of the bare core,
when the meson cloud effects are removed, or the effect of
the meson cloud, when the bare core effect is subtracted
[18–20].
The EBAC model has been in the past applied to the

analysis of the CLAS data from Refs. [58–61], including
γ�p → πþn and γ�p → π0p data, and used to calculate the
bare contributions for the γ�N → Nð1520Þ and γ�N →
Nð1535Þ transition form factors [19]. At the time the
analysis was restricted toQ2 ¼ 0.4 GeV2. It was concluded
that the analysis of the γ�p → πþn data [58] can differ

significantly from the combined analysis of the γ�p → πþn
and γ�p → π0p data [58–61].
We then expect that in the near future combined

analysis of the γ�p → πþn and γ�p → π0p data will
become available for a wide range of Q2, in order to test
our estimates of the valence quark contributions for the
γ�N → Nð1520Þ and γ�N → Nð1535Þ transition form
factors.

VI. OUTLOOK AND CONCLUSIONS

In this work we present a new method to calculate the
γ�N → R transition form factors, where R is a negative
parity resonance, within the covariant spectator quark
model. The method is named as the semirelativistic
approximation, since the nucleon and resonance wave
functions are defined both for the massM ¼ 1

2
ðMN þMRÞ.

In the semirelativistic approximation the properties of
the nonrelativistic limit of the states, in particular the
orthogonality between those wave functions and the
nucleon wave function, are preserved, but the formalism
is still covariant. The wave functions of the R states are
defined using the same parametrization for the radial wave
functions as for the nucleon.
We use analytic results from previous works and

apply the semirelativistic approximation to the cases
R ¼ Nð1520Þ, Nð1535Þ. Within the approximation we
calculate the valence quark contributions for the transition
form factors and helicity amplitudes. Since the wave
functions of those states are defined in terms of the
parametrization for the nucleon, the method provides
predictions for the transition form factors and helicity
amplitudes.
In general, our estimates based exclusively on the

valence quark degrees of freedom are in excellent agree-
ment with the results for the form factors in the region
Q2 > 2 GeV2, where we expect very small contributions
from the meson cloud. We then conclude that we have a
good description of the valence quark content of the
nucleon, Nð1520Þ and Nð1535Þ systems. Our valence
quark parametrizations can be compared in a near future
with the bare contributions estimated from the combined
analysis of the γ�p → π0p and γ�p → πþn data, and with
lattice QCD simulations.
The semirelativistic approximation is more appropriated

for the form factors than for the helicity amplitudes. The
calculation of the helicity amplitudes must be done with
some care, since it depends critically on the mass differ-
ence, particularly in the γ�N → Nð1535Þ case. For the
γ�N → Nð1520Þ transition we obtained a very good
description of the helicity amplitudes for Q2 > 1 GeV2.
The amplitude A3=2 is the exception, since this amplitude is
expected to be dominated by meson cloud effects. As for
the γ�N → Nð1535Þ transition, we present parametrizations
of the amplitudes valid for large Q2.
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From our study, we can conclude that the Nð1520Þ and
Nð1535Þ resonances are very interesting physical systems.
The transition form factors associated with the Nð1520Þ
and Nð1535Þ resonances are in general dominated by the
valence quark effects with a few exceptions. The electric
form factorGE in the γ�N → Nð1520Þ transition is strongly
dominated by meson cloud contributions. There is also
evidence that the form factors F�

1 and F�
2 in the γ�N →

Nð1535Þ transition have important meson cloud contribu-
tions. The effect on F�

2 was discussed already in the
literature.
To summarize, we present parametrizations for the

γ�N → Nð1520Þ and γ�N → Nð1535Þ transition form fac-
tors and respective helicity amplitudes that are consistent
with the available data in the regime of Q2 ¼ 2–7 GeV2.

Our predictions may be tested in the future JLab 12-GeV
upgrade up to 12 GeV2 [62]. Of particular interest is the
test of our high Q2 model for the γ�N → Nð1535Þ
transition (with F�

2 ¼ 0), which predicts the relation

between amplitudes, S1=2 ¼ −
ffiffiffiffiffiffi
1þτ

p ffiffi
2

p M2
R−M

2
N

2MRQ
A1=2 [29] and

was until now tested only up to Q2 ¼ 4.2 GeV2 by the
CLAS and MAID data [12,15,16].
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