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We study the η and η0 distribution amplitudes (DAs) in the context of a nonlocal SUð3ÞL ⊗ SUð3ÞR
chiral quark model. The corresponding Lagrangian allows us to reproduce the phenomenological values of
pseudoscalar meson masses and decay constants, as well as the momentum dependence of the quark
propagator arising from lattice calculations. It is found that the obtained DAs have two symmetric maxima,
which arise from new contributions generated by the nonlocal character of the interactions. These DAs
are then applied to the calculation of the η-γ and η0-γ transition form factors. Implications of our
results regarding higher twist corrections and/or contributions to the transition form factors originated by
gluon-gluon components in the η and η0 mesons are discussed.
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I. INTRODUCTION

In the last years, experiments carried out in B factories
have provided a large amount of data for a great variety of
processes [1]. Among them, measurements of exclusive
meson production, in particular, eþe− → Meþe− and
eþe− → Mγ reactions, where M ¼ π; η; η0, have provided
information about the photon-to-pseudoscalar meson tran-
sition form factors (TFFs), FMγðQ2Þ, in the spacelike and
timelike momentum transfer regions, respectively. High
virtuality data for the pion-γ TFF have been obtained by
both BABAR [2] and BELLE [3] Collaborations, while
BABAR has also measured the eta- and eta prime-γ TFFs [4].
These data have to be added to those previously reported by
the CLEO Collaboration [5] for π-γ, η-γ and η0-γ TFFs, as
well as those obtained by the L3 Collaboration [6] for the
η0-γ TFF and by the CELLO Collaboration [7] for the
π-γ TFF.
The new experimental results have led to an intense

theoretical work. In fact, from QCD it is seen that the M-γ
TFFs can be computed in terms of quark and gluon
distribution amplitudes (DAs). Moreover, one can determine
the corresponding asymptoticQ2 → ∞ limits, which turn out
to be model-independent quantities [8,9]. In the case of the
π-γ TFF, the new results—especially those from the BABAR
Collaboration—indicate that FπγðQ2Þ grows with Q2, pre-
sumably crossing the asymptotic QCD limit. The implica-
tions of this exciting result have been widely discussed in the
last few years (see [10–19] and references therein). On the
other hand, being less controversial, η-γ and η0-γ TFFs have
received less theoretical attention. Phenomenological studies

have been carried out in Refs. [20–25], analyzing the flavor
mixing and the gluon content of η and η0 mesons. Other
approaches have been followed in Refs. [26,27], where the
TFFs are analyzed in a model-independent way through the
usage of rational Padé approximants, in Ref. [28], where
the anomaly sum rule is used, and in Ref. [29], where a
formalism based on a chiral effective theory with two octet
resonances is considered. Regarding quark model
approaches, calculations have been carried out within the
light-front quark model [30] and, for the η-γ TFF, within the
Nambu–Jona-Lasinio (NJL) model [31].
In a recent paper [13] we have studied the π-γ TFF in the

framework of a two-flavor version of a nonlocal NJL
(nlNJL) quark model. We extend here our analysis to the
case of η-γ and η0-γ TFFs considering a SU(3) flavor version
of this nonlocal effective approach [32,33], which represents
an improvement over the local NJL model. In fact, non-
locality arises naturally in quantum field theory when the
interactions involve large coupling constants. It can be seen
that nonlocal form factors regularize themodel in such away
that anomalies are preserved and charges are properly
quantized, and there is no need to introduce extra cutoffs.
Moreover, our formalism ensures the preservation of fun-
damental symmetries (chiral, Poincaré and local electro-
magnetic gauge invariances), which guarantee the proper
normalization of the quarkDAs. These types ofmodels have
also been considered in order to analyze the light-by-light
contribution to the anomalous magnetic moment of the
muon [34]. In addition, a previous study of the π-γ TFF
within a nonlocal effective theory, namely, the instanton
liquid model, has been carried out in Ref. [35].

PHYSICAL REVIEW D 95, 054006 (2017)

2470-0010=2017=95(5)=054006(19) 054006-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.95.054006
http://dx.doi.org/10.1103/PhysRevD.95.054006
http://dx.doi.org/10.1103/PhysRevD.95.054006
http://dx.doi.org/10.1103/PhysRevD.95.054006


The quark propagator is taken as one of the main
ingredients of our model, the reason being that lattice
QCD (LQCD) calculations allow us to obtain information
on this quantity directly from the fundamental QCD theory.
These calculations lead to a definite momentum depend-
ence for both the quark mass and the quark wave function
renormalization [36,37]. Our model represents, in fact, the
minimal framework that allows us to incorporate the
corresponding full momentum dependence by choosing
adequate nonlocal form factors [38–40]. On the other hand,
as it is usual in quark models, our nlNJL model neglects the
explicit presence of gluons when describing the mesonic
states, which are driven by their quark content. Thus, the η
and η0 states involve a qq̄ octet state (as in the case of the π
meson) and a qq̄ flavor singlet state. However, one can also
build up a singlet state from two gluons, and the qq̄ flavor
singlet components in η and η0 mesons will actually become
mixed with the gg component by the Q2 evolution,
inducing a two-gluon contribution at the leading-twist
order. Consequently, whereas the π meson state is described
in the TFF calculation by a single DA, for the η-η0 sector
one needs in general three different DAs, two of them
corresponding to the quark component and one to the gluon
component.
One of our objectives will be to analyze the effect of this

gluon component. If we remain faithful to the philosophy
of quark models, the latter has to be neglected. In that case
octet and singlet states evolve in a similar way, and we can
perform theQ2 evolution at next-to-leading order (NLO) to
obtain the virtuality dependence of the TFFs. The quark
DAs provide the dominant twist-2 contribution to the
M-γ TFFs, and corrections to this leading order can be
introduced by considering contributions that carry extra
powers of 1=Q2 (we include here 1=Q4 and 1=Q6 terms).
Therefore, in this scheme we will fix the quark DAs as well
as two free parameters (coefficients of the subleading
terms) in the M-γ TFFs. Alternatively, we can assume that
gluons are present already at low virtuality, which repre-
sents an additional ingredient to our model. In this second
approach we will fit the lowest Gegenbauer coefficients of
the gluon DA using the experimental data.
The present paper is organized as follows. In Sec. II we

develop our formalism: (A) we describe the connection
between M-γ TFFs and quark DAs, (B) we present the
model Lagrangian and quote our analytical results for the
quark DAs, and (C) we discuss the virtuality dependence of
the DAs through the evolution equations. In Sec. III we
show and discuss the numerical results for the quark DAs
obtained within our model for π, η and η0 mesons. In
Sec. IVA we analyze the results obtained for the η-γ and
η0-γ TFFs neglecting the presence of gluons. We also show
that if we assume that no gluons are present at low
virtuality, the evolution equations do not generate a
significant presence of gluons at higher Q2 values. Then
in Sec. IV B we analyze the effect of the presence of gluons

at low virtuality on the description of the η-γ and η0-γ TFFs.
Finally, in Sec. V we present our conclusions. Details
of the calculations, including some relevant analytical
expressions, can be found in Appendixes A and B.

II. FORMALISM

A. Theoretical framework

The transition form factors for the processes M → γγ�,
M ¼ η; η0, at large virtualityQ2 are basically determined by

the quark and gluon distribution amplitudes ΦðqÞ
M and ϕðgÞ

M .
At the leading order in powers of 1=Q2 one has

Q2FMγðQ2Þ¼
Z

1

0

dx
1

2
Tqq̄ðx;Q2;μ2ÞΦðqÞ

M ðx;μ2Þ

þ
Z

1

0

dx
1

2
Tggðx;Q2;μ2Þ 4

3
ffiffiffi
3

p f0Mϕ
ðgÞ
M ðx;μ2Þ;

ð1Þ

where f0M is a weak decay constant and Tqq̄, Tgg are the
amplitudes of the parton level subprocesses qq̄ → γγ�,
gg → γγ� evaluated at next-to-leading order in perturbative
QCD. These are given by [23,41,42]

Tqq̄ðx;Q2;μ2Þ ¼ 1

x

�
1þCF

αsðμÞ
4π

�
ln2x−

x lnx
1− x

− 9

þ ð3þ 2 lnxÞ lnQ
2

μ2

��
þ ðx→ 1− xÞ;

Tggðx;Q2;μ2Þ ¼ CF
αsðμÞ
4π

2 lnx
ð1− xÞ2

�
3−

1

x
−
1

2
lnx− ln

Q2

μ2

�

− ðx→ 1− xÞ; ð2Þ

where CF ¼ 4=3 is a color group factor. As usual, we will
choose the scale μ2 ¼ Q2, removing lnðQ2=μ2Þ terms.

The function ΦðqÞ
M ðx; μ2Þ in Eq. (1) is given by a combi-

nation of quark DAs, which carry the soft, nonperturbative
contributions to the form factor. When studying the evolu-
tion of both quark and gluon DAs it is convenient to write
the operators using the SUð3ÞF Gell-Mann matrices λi,
i ¼ 1;…8, plus λ0 ¼ ffiffiffiffiffiffiffiffi

2=3
p

I, while to calculate the quark
DAs within quark models it is usually preferable to choose a
flavor basis. Thus we define the matrix λl ¼ ð ffiffiffi

2
p

λ0 þ λ8Þ=ffiffiffi
3

p ¼ diagð1; 1; 0Þ, which is the identity in the ðu; dÞ flavor
subspace, and λs ¼ diagð0; 0; ffiffiffi

2
p Þ ¼ ðλ0 − ffiffiffi

2
p

λ8Þ= ffiffiffi
3

p
. In

these two bases ΦðqÞ
M ðx; μ2Þ is written as

ΦðqÞ
M ðx; μ2Þ ¼ 4

3
ffiffiffi
3

p f0Mϕ
ðq0Þ
M ðx; μ2Þ þ

ffiffiffi
2

p

3
ffiffiffi
3

p f8Mϕ
ðq8Þ
M ðx; μ2Þ

¼ 5
ffiffiffi
2

p

9
flMϕ

ðqlÞ
M ðx; μ2Þ þ 2

9
fsMϕ

ðqsÞ
M ðx; μ2Þ; ð3Þ
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where the quark DAs are given by

ϕðqiÞ
M ðxÞ ¼ −

iffiffiffi
2

p
fiM

Z þ∞

−∞

dz−

2π
eiP

þz−ðx−1
2
Þ

×
D
0
���ψ̄�− z

2

	
γþγ5λiψ

�z
2

	���ME���
zþ¼~zT¼0

; ð4Þ

with i ¼ 0, 8 or i ¼ l; s, depending on the basis choice. We
use here light-front spacetime coordinates x� ¼ ðx0 � x3Þ=ffiffiffi
2

p
, ~xT ¼ ðx1; x2Þ. The meson weak decay constants fiM are

defined by

fiM ¼ 1

i
ffiffiffi
2

p
Pþ h0jψ̄ð0Þγþγ5λiψð0ÞjMi; ð5Þ

thus it is easy to see that the quark DAs satisfy the sum rule

Z
1

0

dxϕðqiÞ
M ðxÞ ¼ 1 ð6Þ

for any scale μ. Moreover, the quark DAs are symmetric
under the change x → ð1 − xÞ. Finally, the gluon DA in
Eq. (1) is given by

ϕðgÞ
M ðxÞ ¼ 2ffiffiffi

3
p

f0M

1

Pþ

Z þ∞

−∞

dz−

2π
eiP

þz−ðx−1
2
Þnμnν

×
D
0
���Gμα

�
−
z
2

	
~Gν
α

�z
2

	���PE���
zþ¼~zT¼0

; ð7Þ

where Gμν is the gluon field strength tensor and ~Gμν ¼
1
2
ϵμναβGαβ. Notice that ϕðgÞ

M ðxÞ is antisymmetric under the
change x → ð1 − xÞ, hence

Z
1

0

dxϕðgÞ
M ðxÞ ¼ 0;

and there is no natural way to normalize the gluon DA. The
prefactor present in Eq. (7) is just a convention, and other
definitions can be found in the literature (see the discussion in
Ref. [23]). A change in this prefactor can be compensated
through a factor into the integrand in the second term
of Eq. (1).
In the case of the π → γγ� TFF the situation is simpler,

since there is no singlet contribution. One has

Q2FπγðQ2Þ ¼
ffiffiffi
2

p

3
fπ

Z
1

0

dx
1

2
Tqq̄ðx;Q2; μ2Þϕπðx; μ2Þ;

ð8Þ

where the pion DA is given by

ϕπðxÞ ¼
−iffiffiffi
2

p
fπ

Z þ∞

−∞

dz−

2π

× eiP
þz−ðx−1

2
Þ
D
0
���ψ̄�− z

2

	
γþγ5λ3ψ

�z
2

	���πE���
zþ¼~zT¼0

:

ð9Þ

Our formalism can also be extended to the case
in which the two photons are off shell, the corre-
sponding expressions being closely related to those
quoted above. For instance, for the process π →
γ�ðq1Þγ�ðq2Þ, instead of the result in Eq. (8) one
would have [43–46]

Fπγ�γ� ðQ2; q2Þ ¼
ffiffiffi
2

p

3
fπ

Z
1

0

dxT ðx;Q2; q2; μ2Þϕπðx; μ2Þ;

ð10Þ

where ϕπðx; μ2Þ is the pion DA defined in Eq. (9),
and the function T ðx;Q2; q2; μ2Þ can be expanded in
powers of αsðμ2Þ as

T ðx;Q2; q2; μ2Þ ¼ 1

2

�
1

Q2xþ q2ð1 − xÞ þ ðx → 1 − xÞ
�

þ αsðμ2Þ
4π

T 1ðx;Q2; q2; μ2Þ þ � � � :
ð11Þ

In the limit q2 → 0, T ðx;Q2; q2; μ2Þ reduces to
Tqq̄ðx;Q2; μ2Þ=ð2Q2Þ.

B. Neutral pseudoscalar meson distribution
amplitudes in a nonlocal NJL model

We consider here the meson DAs within a nlNJL
model. The corresponding Euclidean effective action, in
the case of SUð3ÞF flavor symmetry, is given by [33]

SE ¼
Z

d4x

�
ψ̄ðxÞð−i∂ þ m̂ÞψðxÞ

−
G
2
½jSaðxÞjSaðxÞ þ jPa ðxÞjPa ðxÞ þ jrðxÞjrðxÞ�

−
H
4
Aabc½jSaðxÞjSbðxÞjScðxÞ − 3jSaðxÞjPb ðxÞjPc ðxÞ�

�
;

ð12Þ

where ψðxÞ is the SUð3ÞF fermion triplet ψ ¼ ðu d sÞT , and
m̂ ¼ diagðmu;md;msÞ is the current quark mass matrix.
We will work in the isospin symmetry limit, assuming
mu ¼ md. The model includes flavor mixing through the ’t
Hooft-like term driven by H, where the constants Aabc are
defined by
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Aabc ¼
1

3!
ϵijkϵmnlðλaÞimðλbÞjnðλcÞkl; ð13Þ

with a ¼ 0;…; 8. The fermion currents are given by

jsaðxÞ ¼
Z

d4zGðzÞψ̄


xþ z

2

�
λaψ



x −

z
2

�
;

jpaðxÞ ¼
Z

d4zGðzÞψ̄


xþ z

2

�
{λaγ5ψ



x −

z
2

�
;

jrðxÞ ¼
Z

d4zF ðzÞψ̄


xþ z

2

�
{∂↔
2κ

ψ



x −

z
2

�
; ð14Þ

where the functions GðzÞ and F ðzÞ are covariant form
factors responsible for the nonlocal character of the
interactions. Notice that the relative weight of the inter-
action driven by jrðxÞ, which leads to quark wave function
renormalization, is controlled by the parameter κ. In the
mean field approximation (MFA), which will be used here
in what follows, the quark propagator for each flavor
f ¼ u, d, s can be expressed as

SfðpÞ ¼
ZðpÞ

−pþMfðpÞ
; ð15Þ

where MfðpÞ and ZðpÞ stand for momentum-dependent
effective mass and wave function renormalization (WFR),
respectively. One has [33]

MfðpÞ ¼ ZðpÞ½mf þ σ̄fgðpÞ�; ZðpÞ ¼
�
1−

ζ̄

κ
fðpÞ

�−1
;

ð16Þ

where gðpÞ and fðpÞ are Fourier transforms of GðzÞ and
F ðzÞ, while σ̄f and ζ̄ are mean field values of scalar fields
associated with the corresponding currents in Eq. (14).
Details of the procedure carried out to obtain these
quantities are given in Appendix A.
The momentum dependence of the interaction form

factors can be now obtained from lattice QCD results.
Following the analysis in Ref. [37], the effective mass
MuðpÞ can be written as

MuðpÞ ¼ mu þ αmfmðpÞ; ð17Þ

where

fmðpÞ ¼ 1=½1þ ðp2=Λ2
0Þα�; ð18Þ

with α ¼ 3=2. From Eqs. (16) one has then αm ¼
ðmuζ̄=κ þ σ̄uÞ=ð1 − ζ̄=κÞ. For the wave function renorm-
alization we use the parametrization [38,40]

ZðpÞ ¼ 1 − αzfzðpÞ; ð19Þ

where

fzðpÞ ¼ 1=ð1þ p2=Λ2
1Þ5=2: ð20Þ

Here the new parameter αz is given by αz ¼ −ζ̄=ðκ − ζ̄Þ.
The functions fðpÞ and gðpÞ can be now easily obtained
from Eqs. (16)–(20). As shown in Refs. [38,40], for an
adequate choice of parameters these functional forms can
reproduce very well the momentum dependence of quark
mass and WFR obtained in lattice calculations. We com-
plete the model parameter fixing by taking as phenomeno-
logical inputs the values the of the pion, kaon and η0 masses
and the pion weak decay constant [33]. The resulting model
parameters are given in Table I.
Given this effective model for the strong interactions at

low energies, one can explicitly evaluate the quark DAs
from Eq. (4). Since the amplitude involves a bilocal axial
vector current, one should introduce into the effective
action in Eq. (12) a coupling to an external axial gauge
fieldAa

μ. For a local theory this can be done just through the
replacement

∂μ → ∂μ þ iγ5λaAa
μðyÞ: ð21Þ

In the case of the above-described nonlocal model, how-
ever, the situation is more complicated since the inclusion
of gauge interactions implies a change not only in the
kinetic piece of the Lagrangian but also in the nonlocal
currents appearing in the interaction terms. If x and z denote
the space variables in the definitions of the nonlocal
currents [see Eq. (14)], one has

ψðx − z=2Þ → Wðx; x − z=2Þψðx − z=2Þ;
ψ†ðxþ z=2Þ → ψ†ðxþ z=2ÞWðxþ z=2; xÞ: ð22Þ

Here the function Wðs; tÞ is defined by

Wðs; tÞ ¼ P exp

�
i
Z

t

s
drμγ5λaAa

μðrÞ
�
; ð23Þ

where r runs over an arbitrary path connecting s with t.
This procedure has been analyzed in detail within nlNJL

models, in particular regarding the calculation of the
pseudoscalar meson decay constants [32,38,47]; see
Eq. (5). The situation is similar for the case of the bilocal
axial current in the definition of the meson DA. In fact, the
basic physical idea beyond the factorization of the meson
TFF into hard and soft contributions is that for high Q2 the

TABLE I. Model parameters.

mu
(MeV)

ms
(MeV) GΛ2

0 −HΛ5
0 κ=Λ0

Λ0

(GeV)
Λ1

(GeV)

2.6 64.9 16.65 202.8 10.34 0.795 1.510
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struck quark loses its high momentum before being able to
interact with the remaining quarks and gluons of the hadron
(Q2 ∼ 1 GeV2 implies a time scale of the order of 10−24 s).
Therefore, the nonlocal interaction does not see the struck
quark but only the quarks in the hadron before and after the
photon absorption-emission process. This can be effec-
tively implemented by introducing an external fictitious
probe carrying the adequate quantum numbers, which in
our case is a gauge axial field (a similar situation has been
studied in the case of the pion parton distribution see
Refs. [38,39]). Thus, the axial vertex in Eq. (4) will become
dressed by the nonlocal interaction, irrespective of whether
the quark current is a local or a bilocal one (as in this case).
The steps to be followed in the explicit calculation

of the quark DA within the nlNJL model are detailed in
Appendix A. We quote here the resulting expression. In the
flavor basis (i.e. qi ¼ ql; qs) we have

ϕðqiÞ
M ðxÞ ¼ 2

ffiffiffi
2

p
NcgMqq

fiM

Z þ∞

−∞
dw

Z
d2kT
ð2πÞ4 Fiðw; x; kTÞ;

ð24Þ
where gMqq stands for an effective quark-meson coupling
constant [see Eq. (A10) in Appendix A] and the integration
variables are related to the meson and quark Euclidean
four-momentum P and k, respectively. Considering the
light-front variables in the frame where the transverse

component ~PT vanishes, the invariants k2 and k · P can
be written in terms of the variables w and kT as

k2 ¼ −iw


x −

1

2

�
þm2

M



x −

1

2

�
2

þ k2T; k · P ¼ −i
w
2
:

It is convenient to separate the integrand in Eq. (24) into
two pieces,

Fiðw; x; kTÞ ¼ Fð1Þ
i ðw; x; kTÞ þ Fð2Þ

i ðw; x; kTÞ: ð25Þ
The explicit expressions for these functions are

Fð1Þ
i ðw; x; kTÞ ¼

gðkÞ
2

ZðkþÞZðk−Þ
DiðkþÞDiðk−Þ

�
1

ZðkþÞ
þ 1

Zðk−Þ
�

× ½ð1 − xÞMiðkþÞ þ xMiðk−Þ�; ð26Þ
Fð2Þ
i ðw; x; kTÞ

¼ gðkÞ ZðkþÞZðk−Þ
DiðkþÞDiðk−Þ

f½kþ · k− þMiðkþÞMiðk−Þ�νð1Þi

− k · ½kþMiðk−Þ − k−MiðkþÞ�νð2Þg −
MiðkÞZðkÞ
DiðkÞσ̄i

νð1Þi ;

ð27Þ
where Ml ¼ Mu ¼ Md and σ̄l ¼ σ̄u ¼ σ̄d. We have
defined k� ¼ k� P=2 and DiðkÞ ¼ k2 þMiðkÞ2, while

the functions νð1Þi and νð2Þ in Fð2Þ
i are given by

νð1Þi ¼ ðx − 1
2
Þ

k · P

�
MiðkþÞ
ZðkþÞ

þMiðk−Þ
Zðk−Þ

− 2
MiðkÞ
ZðkÞ þm2

Mσ̄iα
−
g

�

þ σ̄iα
−
g ;

νð2Þ ¼ ðx − 1
2
Þ

k · P

�
1

Zðk−Þ
−

1

ZðkþÞ
þm2

M ζ̄α
þ
f

�
þ ζ̄αþf : ð28Þ

Here α−g and αþf depend in general on the integration path in
Eq. (23). For a straight line path one has

α−g ¼
Z

1

0

dλ
λ

2
g0ðk − λP=2Þ −

Z
0

−1
dλ

λ

2
g0ðk − λP=2Þ;

αþf ¼
Z

1

−1
dλ

λ

2
f0ðk − λP=2Þ; ð29Þ

where g0ðkÞ≡ dgðkÞ=dk2, and the same for f0ðkÞ.
It is important to mention that, even when our effective

model leads to an adequate phenomenological pattern
for low energy meson phenomenology, there are some
differences between model predictions and phenomeno-
logical values of the η and η0 decay constants (see Table XII
in Appendix A). In our numerical calculations, when
evaluating the η and η0 DAs from Eq. (24) we will take
the values of fiM arising from our model, in order to
guarantee the proper normalization condition Eq. (6). On
the other hand, we will use the phenomenological values
for flM or fiM when evaluating the flavor mixing leading to
the quark DAs, Eq. (3). This can be justified by taking into
account the fπ factors in Eqs. (8) and (9). The fπ coefficient
in Eq. (8) can be connected with the asymptotic limit
Q2 → ∞, which is model independent [8,9], whereas the
integral in Eq. (9) does depend on the hadronic model
through the pion DA. In fact, the factor 1=fπ in this
equation guarantees the proper normalization of the DA.
Therefore, in order to fulfill both the asymptotic limit
condition and the DA normalization it is necessary to take
the phenomenological value of fπ in Eq. (8) and the value
of fπ given by the hadronic model in Eq. (9). In the case of
the η and η0 mesons, the role of Eq. (8) is played by Eq. (1)

[with ΦðqÞ
M ðx; μ2Þ given by Eq. (3)], whereas Eq. (9) should

be replaced by Eq. (4). In our model we will fix the
parameters so as to reproduce the phenomenological value
of fπ , but we do not have the freedom to get at the same
time an exact reproduction of the phenomenological values
of fη and fη0 . Thus, in our numerical calculations we are
forced to use the phenomenological values of fη and fη0 in
Eq. (3) and the values of the decay constants given by the
model in Eq. (4).

C. Distribution amplitude evolution

Let us analyze the evolution of the DAs with the energy
scale. First, notice that QCD evolution equations mix the
qq̄ singlet flavor component with the gg component in η
and η0 DAs. Consequently, after obtaining the low energy
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qq̄ flavor DAs ϕðqiÞ
M , i ¼ l; s, from the effective quark

model, it is convenient to change to the octet and singlet
DAs

ϕðq8Þ
M ðxÞ ¼ 1ffiffiffi

3
p

f8M
½flMϕðqlÞ

M ðxÞ −
ffiffiffi
2

p
fsMϕ

ðqsÞ
M ðxÞ�;

ϕðq0Þ
M ðxÞ ¼ 1ffiffiffi

3
p

f0M
½

ffiffiffi
2

p
flMϕ

ðqlÞ
M ðxÞ þ fsMϕ

ðqsÞ
M ðxÞ�: ð30Þ

Once the latter are known at a given μ0 scale, their
evolution up to a higher scale μ can be obtained from
perturbative QCD. In order to study this evolution it is
convenient to expand the DAs in a series of Gegenbauer
polynomials:

ϕðqiÞ
M ðx; μÞ ¼ 6xð1 − xÞ

X
n¼0;2;4;…

aðqiÞMn ðμÞC3=2
n ð2x − 1Þ;

ϕðgÞ
M ðx; μÞ ¼ x2ð1 − xÞ2

X
n¼2;4;…

aðgÞMnðμÞC5=2
n−1ð2x − 1Þ; ð31Þ

where i ¼ 0, 8, and we have now explicitly denoted
the μ dependence of the DAs. Notice that only n-even
terms contribute to the sums, due to the symmetric
(antisymmetric) behavior of the quark DAs (gluon DA)
under the replacement x ↔ 1 − x. Moreover, since

ϕðqiÞ
M ðx; μÞ (i ¼ 0, 8) satisfy the sum rule Eq. (6), the first

coefficients aðq0ÞM0 ðμÞ and aðq8ÞM0 ðμÞ have to be equal to 1 for
any value of μ. Thus, all the information from the meson
effective model is included in the remaining coefficients

aðqiÞMn ðμÞ and aðgÞMnðμÞ, with n ¼ 2; 4;….
From the orthogonality relations satisfied by the

Gegenbauer polynomials one can obtain the coefficients
at the μ0 scale, namely

aðqiÞMn ðμ0Þ¼
2ð2nþ3Þ

3ðnþ1Þðnþ2Þ
Z

1

0

dxC3=2
n ð2x−1ÞϕðqiÞ

M ðx;μ0Þ;

ð32Þ

aðgÞMnðμ0Þ ¼
144ð2nþ 5Þ

ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þ
×
Z

1

0

dxC5=2
n ð2x − 1ÞϕðgÞ

M ðx; μ0Þ: ð33Þ

Notice that Eq. (32) holds either if one is working in the
flavor basis (i ¼ l; s) or in the SUð3ÞF basis (i ¼ 0, 8). At
the LO the Gegenbauer polynomials are eigenfunctions of
the evolution kernel; therefore aMn coefficients of differ-
ent order n do not mix with each other [24]. On the other
hand, as stated, QCD evolution equations mix the gluon
and singlet quark components for n ≥ 2. The evolution of
these coefficients up to a scale μ is given by (see
Refs. [23,24])

aðq0ÞMn ðμÞ ¼ aðþÞ
Mnðμ0Þ



αsðμ0Þ
αsðμÞ

�
γðþÞ
n =β0

þ ρð−Þn að−ÞMnðμ0Þ


αsðμ0Þ
αsðμÞ

�
γð−Þn =β0

;

aðgÞMnðμÞ ¼ ρðþÞ
n aðþÞ

Mnðμ0Þ


αsðμ0Þ
αsðμÞ

�
γðþÞ
n =β0

þ að−ÞMnðμ0Þ


αsðμ0Þ
αsðμÞ

�
γð−Þn =β0

: ð34Þ

Here β0 ¼ 11 − 2nf=3, nf being the number of active
flavors at the scale of the process (in our case we take

nf ¼ 4), and γð�Þ
n are the eigenvalues of the anomalous

dimension matrix γn. These are given by

γð�Þ
n ¼ 1

2

h
γqqn þ γggn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγqqn − γggn Þ2 þ 4γqgn γgqn

q i
; ð35Þ

where the (LO) matrix elements of γn read

γqqn ¼ CF

�
3þ 2

ðnþ 1Þðnþ 2Þ − 4
Xnþ1

i¼1

1

i

�
;

γqgn ¼ CF
nðnþ 3Þ

3ðnþ 1Þðnþ 2Þ ; γgqn ¼ 36

ðnþ 1Þðnþ 2Þ ;

γggn ¼ β0 þ Nc

�
8

ðnþ 1Þðnþ 2Þ − 4
Xnþ1

i¼1

1

i

�
: ð36Þ

The coefficients ρðþÞ
n and ρð−Þn , which weight the presence

of quarks in the gluon DA and gluons in the singlet quark
DA, respectively, are given by

ρðþÞ
n ¼ 6

γgqn

γðþÞ
n − γggn

;

ρð−Þn ¼ 1

6

γqgn

γð−Þn − γqqn
: ð37Þ

Finally, the evolution of the strong coupling constant αs at
the LO is given by

αsðμÞ ¼
4π

β0 lnðμ2=Λ2Þ ; ð38Þ

with Λ ¼ 0.224 GeV.
In Table II we quote the values of the anomalous

dimensions for the first values of n. Already for n ¼ 2 it
is seen that γðþÞ and γð−Þ are close to γqq and γgg,
respectively, and the differences become even smaller for
larger n. The numerical values for ρð�Þ and the product

ρðþÞ
n ρð−Þn for the first values of n are given in Table III.

In the case of the distribution amplitude ϕðq8Þ
M , at the LO

the evolution is just governed by the anomalous dimension
γqqn . One has
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aðq8ÞMn ðμÞ ¼ aðq8ÞMn ðμ0Þ


αsðμ0Þ
αsðμÞ

�
γqqn =β0

: ð39Þ

We will also take into account the effect of NLO
corrections to the DAs. In general, at the NLO the evolution

equations for different coefficients aðqiÞMn get mixed, and the
pattern becomes more complicated. We will consider the
NLO evolution for the octet component (see discussion in
the next section). The corresponding coefficients evolve
according to [48]

aðq8ÞMn
NLOðμÞ¼aðq8ÞMn ðμ0ÞENLO

n ðμ;μ0Þ

þαsðμÞ
4π

Xn−2
k¼0

aðq8ÞMk ðμ0Þ


αsðμ0Þ
αsðμÞ

�
γqqk =β0

dknðμ;μ0Þ:

ð40Þ

Explicit expressions for the renormalization factors
ENLO
n ðμ; μ0Þ, as well as for the off-diagonal mixing coef-

ficients dknðμ; μ0Þ in the MS scheme are collected in

Appendix B. Usually the calculation of a few coefficients

aðqiÞMn ðμÞ has been considered to be sufficient to get a good
estimate of the πDA at the scale μ from Eq. (31). However,
as will be shown in the next section, this does not hold in
general but only when μ > μ0, for large enough values
of μ0.

III. DISTRIBUTION AMPLITUDES AND
TRANSITION FORM FACTORS IN THE

NONLOCAL NJL MODEL

A. Quark DAs

From the numerical evaluation of the integrals in
Eq. (24) one can obtain the quark DAs for π, η and η0
mesons within the above-described three-flavor nlNJL
model. The corresponding curves are displayed in
Fig. 1, where for comparison we also include the asymp-
totic limit ϕasymðxÞ ¼ 6xð1 − xÞ. As stated in the previous
section, our calculations have been performed in Euclidean
space. The consistency of our procedure has been discussed
in Ref. [13], where the pion DA and TFF are analyzed

TABLE II. Numerical values of the first γð�Þ
n , γqqn and γggn coefficients, and asymptotic values.

n 2 4 6 8 10 Asymptotic form

γðþÞ
n −5.379 −8.040 −9.759 −11.046 −12.078 − 16

3
ln n

γð−Þn −11.84 −18.32 −22.37 −25.36 −27.73 −12 ln n
γqqn −5.556 −8.089 −9.781 −11.06 −12.09 − 16

3
ln n

γggn −11.67 −18.27 −22.35 −25.35 −27.72 −12 ln n

TABLE III. Numerical values of the first ρð�Þ
n coefficients, and asymptotic values.

n 2 4 6 8 10 Asymptotic form

ρðþÞ
n 2.8627 0.7041 0.3063 0.1678 0.1045 162=ð5n2 ln nÞ

ρð−Þn −0.0098 −0.0068 −0.0057 −0.0051 −0.0047 −1=ð90 ln nÞ
ρðþÞ
n ρð−Þn −0.0281 −0.0048 −0.0017 −0.0008 −0.0005 −9=ð25n2 ln2 nÞ

FIG. 1. Quark distribution amplitudes for the π, η and η0 mesons. Left panel: π DA, ϕπðxÞ. Central panel: η DAs, ϕðqlÞ
η ðxÞ (solid line)

and ϕðqsÞ
η ðxÞ (dashed line). Right panel: η0 DAs, ϕðqlÞ

η0 ðxÞ (solid line) and ϕðqsÞ
η0 ðxÞ (dashed line). The dotted lines correspond in all cases to

the asymptotic limit ϕasymðxÞ ¼ 6xð1 − xÞ.
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within a two-flavor version of the model. Our main test in
this sense is the verification that the sum rule Eq. (6) is
satisfied. In the case of η and η0 mesons, however, the
stringency of this test becomes weakened owing to the
numerical uncertainties in the calculations. In fact, when
computing the integrals in Eq. (24) one has to take into
account that the functions Fiðw; x; kTÞ show cuts in the
complex w plane that require a deformation of the inte-
gration paths (see e.g. the discussion in Appendix B of
Ref. [49]). In addition, depending on the value of x these
functions have poles that also need to be compensated
numerically. The normalization of quark DAs obtained
from our calculations in the present model are 1.0004 for

ϕπðxÞ, 0.9989 and 0.9753 for ϕðqlÞ
η ðxÞ and ϕðqsÞ

η ðxÞ, res-
pectively, and 1.027 and 0.870 for ϕðqlÞ

η0 ðxÞ and ϕðqsÞ
η0 ðxÞ,

respectively. It is worth mentioning that the effect of poles
and cuts gets increased for higher quark and meson masses;
therefore numerical uncertainties are particularly large in
the case of the s quark DA in the η0 meson, where we find
the largest departure from the normalization condition (the
effect of the error in the determination of the η0 DAs is
discussed above). All quark DAs shown in Fig. 1 have been
renormalized so that they satisfy the sum rule.
When using a quark model to describe the deep

structure of hadrons it is crucial to establish the chosen
scale μ0 that will be associated with the results provided
by the model. In our case the scale should be the same
as that used in lattice calculations, since we have taken
into account lattice results in order to fix the shape of the
form factors in the quark propagators. Thus, from
Ref. [36] we take μ0 ¼ 3 GeV, which is a rather large
value in comparison with the scale μ0 ∼ 0.5–1 GeV
usually adopted in quark model calculations.
In the left panel of Fig. 1 we show the pion DA. Our

result is pretty similar to that obtained within the two-flavor
nonlocal NJL model studied in Ref. [13]. Notice that
this might not have been the case, since the change from

a two-flavor model to the present three-flavor model
implies a refitting of all model parameters. By looking
at the DAs in Fig. 1 it is seen that in all cases the curves
have two symmetric maxima. This is also shown by the π
DAs calculated in Refs. [50,51], albeit in our case the two
maxima are much closer to x ¼ 0.5. In fact, in the nlNJL

model this feature arises from the term Fð2Þ
i ðw; x; kTÞ [see

Eqs. (25)–(27)], which is a genuine nonlocal contribution.
Now, by comparing the curves in the different panels of
Fig. 1 one can see the effect of meson and quark masses in
the behavior of the DAs. As expected, the π DA at μ0 ¼
3 GeV is relatively close to the asymptotic limit
ϕasymðxÞ ¼ 6xð1 − xÞ. This also holds for the u (or d)

quark DA in the case of the ηmeson, ϕðqlÞ
η ðxÞ, while for the

strange quark DA ϕðqsÞ
η ðxÞ the deviation from ϕasymðxÞ is

more appreciable. Finally, in the case of the η0 meson (right

panel in Fig. 1), both ϕðqlÞ
η0 ðxÞ and ϕðqsÞ

η0 ðxÞ lie far from the
asymptotic limit. Another important feature, common to all
obtained DAs, is that they go to zero rather fast near the
points x ¼ 0 and x ¼ 1, supporting the idea of suppression
of the kinematic end points [52,53]. We also point out that,
although we concentrate here on the results obtained within
the nlNJL model taking the nonlocal form factors in
Eqs. (17)–(20), the two-maxima shape of the DAs is also
obtained from other model parametrizations.
Let us consider the QCD evolution of the DAs. We recall

that we are working within a quark model in which there is
no gluon content. Moreover, according to the numerical

values of the ρð�Þ
n coefficients in Table III (which measure

the degree of mixing between quark and gluon components
of the DAs in the evolution equations) we can assume
the contribution of gluons to be negligible at any μ scale.
Thus it is possible to use just the octet evolution formulas
for all quark DAs. In Tables IV–VI we quote the first
coefficients of the Gegenbauer expansion obtained from the
quark DAs at μ0 ¼ 3 GeV in the flavor basis, together with

TABLE V. Coefficients aðqlÞηn and aðqsÞηn obtained within the nlNJL model at μ0 ¼ 3 GeV, and their values after
evolving down to μ ¼ 1 GeV at NLO.

n 2 4 6 8 10 12

aðqlÞηn ð3 GeVÞ −0.0538 −0.0263 0.0049 −0.0071 0.0033 −0.0049
aðqlÞηn ð1 GeVÞ (NLO) −0.0778 −0.0540 0.0077 −0.0194 0.0071 −0.0152
aðqsÞηn ð3 GeVÞ −0.1185 −0.0577 0.0538 −0.0248 0.0012 0.0023

aðqsÞηn ð1 GeVÞ (NLO) −0.1785 −0.1168 0.1151 −0.0619 0.0016 0.0054

TABLE IV. Coefficients aπn obtained within the nlNJL model at μ0 ¼ 3 GeV, and their values after evolving
down to μ ¼ 1 GeV at NLO.

n 2 4 6 8 10 12

aπnð3 GeVÞ −0.0183 −0.0324 0.0048 −0.0090 0.0049 −0.0067
aπnð1 GeVÞ (NLO) −0.0225 −0.0646 0.0075 −0.0242 0.0114 −0.0205
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the corresponding values after evolving down to μ ¼
1 GeV at NLO. Notice that, in general, it is found that

the absolute values of the expansion coefficients aðqiÞMn
decrease rather slowly with n at this low scale; hence
our approach would lack reliability for values of μ beyond a
lower limit of about 1 GeV.
Our results for the case of the η meson can be compared

with those obtained within the (local) Nambu–Jona-Lasinio
model in Ref. [31], where only the ηmeson case is analyzed,
since the η0 turns out to be unbounded. It is seen that the
shapes of the η DAs are quite different from those obtained
in the present model, showing only one central maximum
(we recall that the origin of the two-maxima behavior shown
in Fig. 1 arises from the purely nonlocal contribution). As
expected, the differences in the shapes are translated to the
coefficients of the Gegenbauer expansion: the first coef-

ficients obtained in Ref. [31] read aðqlÞη2 ¼ 0.134, aðqlÞη4 ¼
0.352, aðqsÞη2 ¼ 0.377 and aðqsÞη4 ¼ 0.245.

B. TFFs without gluons

In this subsection we present the results obtained within
our approach for the pseudoscalar meson-γ TFFs. In fact,
we have modified the expression on the right-hand side of
Eq. (1) by adding subleading terms in an expansion in
inverse powers ofQ2. This procedure has been already used
in Refs. [13,15,31,54] in order to account for contributions
coming e.g. from higher twist operators. Here we propose
to include two terms in this expansion. In addition, let us
neglect for now the gluon contribution to the TTFs. This is
consistent with a description of mesons within the nlNJL,
which has no gluon content. We have in this way

Q2FMγðQ2Þ ¼
Z

1

0

dx
1

2
Tqq̄ðx;Q2; μ2ÞΦðqÞ

M ðx; μ2Þ

þ c
Q2

þ d
Q4

: ð41Þ

In accordance with our approximation of neglecting gluon
contributions, we will use octet evolution for the whole

quark DAs ΦðqÞ
M ðx; μ2Þ.

Our results for theM-γ TFFs, whereM ¼ π, η and η0, are
shown in Fig. 2. The curves have been obtained by
calculating the corresponding DAs at NLO, using the octet
evolution given by Eq. (40). In all cases solid lines
correspond to the evaluation of the TFFs under the
assumption of no higher twist corrections, i.e. taking
c ¼ d ¼ 0, while dashed lines are obtained from
Eq. (41) by fitting c and d to the experimental data. In
the case of the π-γ and η-γ TFFs we have considered all
world data, i.e. those obtained by CELLO, CLEO, BABAR
and Belle Collaborations for the π-γ TFF and those from
CLEO and BABAR for the η-γ TFF. On the other hand, for
the η0-γ TFF we have considered only the data from CLEO
and BABAR, in view of the large errors in the determination
of Q2 values shown by L3 results (which are also included
in the figure). The dotted lines in the graphs correspond to
the LO asymptotic Q2 → ∞ limits for the TFFs in QCD,
namely

Q2FAsymLO
Mγ ðQ2Þ

¼
� ffiffiffi

2
p

fπ M¼π

ð ffiffiffi
2

p
f8Mþ4f0MÞ=

ffiffiffi
3

p ¼ð5 ffiffiffi
2

p
flMþ2fsMÞ=3 M¼η;η0

:

ð42Þ

Finally, the short-dashed curves correspond to what we call
the “asymptotic behavior” obtained from Eq. (41) by taking
c ¼ d ¼ 0, the parton level amplitudes Tqq̄ at the NLO, and

the asymptotic form of the DAs, ΦðqÞ
M ðxÞ ¼ ϕasymðxÞ ¼

6xð1 − xÞ. One has [8,41]

Q2FAsymNLO
Mγ ðQ2Þ ¼



1 − 5

αsðQ2Þ
3π

�
½Q2FAsymLO

Mγ ðQ2Þ�:

ð43Þ

In Table VII we quote the values of c and d arising from
our fits, together with the number of experimental data
considered in each case and the corresponding χ2 values.
For comparison we also include the χ2 obtained when we
take c ¼ d ¼ 0. By looking at the χ2 values it is seen that
the introduction of higher twist corrections through the c

TABLE VI. Coefficients aðqlÞη0n and aðqsÞη0n obtained within the nlNJL model at μ0 ¼ 3 GeV, and their values after
evolving down to μ ¼ 1 GeV at NLO.

n 2 4 6 8 10 12

aðqlÞη0n ð3 GeVÞ 0.1156 −0.0789 −0.0341 0.0023 0.0201 −0.0061

aðqlÞη0n ð1 GeVÞ (NLO) 0.1860 −0.1509 −0.0799 0.0019 0.0520 −0.0182

aðqsÞη0n ð3 GeVÞ −0.1343 −0.0568 0.0632 −0.0334 0.0010 0.0104

aðqsÞη0n ð1 GeVÞ (NLO) −0.2031 −0.1155 0.1360 −0.0829 0.0008 0.0291
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and d terms leads to a significant improvement in the
theoretical description of the data for both the π-γ and η0-γ
TFFs, while the improvement is not so important in the case
of the η-γ TFF. In this regard, notice that the better quality
of the fits is basically dominated by the description of the
low virtuality region (which has less impact in the case of

the η0-γ TFF owing to the wide dispersion of the data). In
fact, by comparing the solid and dashed curves in the figure
we observe that in the case of the π-γ and η-γ TFFs the
differences are ruled by the behaviors at Q2 ≲ 3 GeV2,
while for the η0-γ TFF there is a more steady deviation
which covers a region up to Q2 ∼ 10 GeV2. Moreover,
from Table VII it is seen that the signs of c and d are the
same for π-γ and η-γ TFFs, whereas they are opposite to
those obtained from the fit to η0-γ TFF data. This could be
related with the octet character of the π and the prevailingly
octet character of the η, which contrast with the mostly
singlet character of the η0.
Now, while higher twist effects influence the low Q2

region of the TFFs, it is interesting to analyze the high
virtuality region from the point of view of QCD, comparing
our results with the asymptotic QCD behavior and the
asymptotic limit of the TFFs. From the graphs in Fig. 2 it is
seen that in all cases the introduction of NLO corrections to
the parton level subprocess amplitudes Tqq̄ (while keeping
the asymptotic limit for the DAs) has a negative contribu-
tion to the TFFs. In addition, it is seen that in all cases the
results obtained within the nlNJL model approximate
experimental data from below.
Let us comment separately on the situation for each

meson. In the case of the pion, the experimental data seem
to cross the asymptotic limit at someQ2 value between ∼10
and 20 GeV2; hence the NLO corrections go in the wrong
direction. This is a well-known problem that we have
already discussed in the context of the two-flavor version of
the nlNJL model in Ref. [13]. In fact, the puzzling pion data
can be described by some models based on flat DAs and
some cutoff in the parton amplitudes [15,54,55].
In the case of the η-γ TFF, even if experimental data for

Q2 > 10 GeV2 seem to follow the asymptotic behavior, the
trend of the data shows that it is not unlikely that the TFF
crosses the QCD asymptotic limit for higherQ2 [31]. In any
case, according to present experimental results, it can be
said that our model provides a good description of the TFF.
Finally, for the η0-γ TFF the experimental data lie clearly

below the asymptotic behavior, and quite far from the
asymptotic QCD limit. Once again the results obtained
within the nlNJL model are shown to be in good agreement
with the data. Given the uncertainty in the numerical
calculations for the η0 DA discussed in the previous
subsection, we have studied in this case the stability of

FIG. 2. Theoretical π-γ, η-γ and η0-γ transition form factors and
experimental results from CELLO, CLEO, BABAR, Belle and L3
Collaborations. Solid lines correspond to the case c ¼ d ¼ 0,
while dashed lines correspond to the values of c and d in
Table VII. Short-dashed lines show the NLO asymptotic QCD
behavior (see text), and dotted lines indicate the QCD asymptotic
limits. In the case of the η0-γ TFF, the gray region corresponds to a
change in aðqiÞη0n coefficients within a range of 15%. Notice that in

all graphs we have used a logarithmic scale for Q2.

TABLE VII. Fitted values of c and d for the π-, η- and η0-γ
TFFs. n stands for the number of experimental data points in each
case. In the last column we quote the value of χ2 corresponding to
the choice c ¼ d ¼ 0.

Meson c (GeV3) d (GeV5) n χ2=n χ2=n (c ¼ d ¼ 0)

π 0.130 −0.234 50 3.9 6.9
η 0.064 −0.159 30 0.76 1.3
η0 −0.075 0.049 40 0.88 2.5
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our results against some variation in the coefficients of the
Gegenbauer expansion of the quark DAs. In order to get an
estimation of the error we have considered the η0-γ TFF for

c ¼ d ¼ 0, allowing for a change in aðqiÞη0n coefficients
(n ≥ 2) within a 15% range. The corresponding range
obtained for the TFF is shown by the small gray area in
Fig. 2. In general we can state that this error does not affect
qualitatively our results, especially taking into account that
the uncertainty gets reduced for larger values of the
virtuality, and that even at values of Q2 of the order of a
few GeV2 the gray band is still narrow in comparison with
experimental errors. In the case of the π-γ and η-γ TFFs we
estimate the numerical uncertainties to lie below the 3%
level; hence they can be safely ignored.

IV. THE EFFECT OF GLUONS

In this section we discuss the possible effect of the
presence of gluon components in the DAs. According to the
discussion in Sec. II C, it is natural to carry out our analyses
using the octet-singlet basis for the quark distribution
amplitudes. At any scale μ, we can use Eqs. (30) to obtain
the octet and singlet quark DAs from the flavor ones, and
analogous expressions can be written for the coefficients
of the Gegenbauer expansion. Let us assume that we know
the flavor DAs or, equivalently, the coefficients of the
Gegenbauer expansion at some scale μ̄0. For the octet and
singlet Gegenbauer coefficients we have

aðq8ÞMn ðμ̄0Þ ¼
1ffiffiffi
3

p
f8M

½flMaðqlÞMn ðμ̄0Þ −
ffiffiffi
2

p
fsMa

ðqsÞ
Mn ðμ̄0Þ�;

aðq0ÞMn ðμ̄0Þ ¼
1ffiffiffi
3

p
f0M

½
ffiffiffi
2

p
flMa

ðqlÞ
Mn ðμ̄0Þ þ fsMa

ðqsÞ
Mn ðμ̄0Þ�: ð44Þ

At LO, the evolution from μ̄0 up to a higher scale μ is
obtained from Eqs. (39) and (34). In particular, for quark
singlet and gluon coefficients one has

aðþÞ
Mnðμ̄0Þ ¼

aðq0ÞMn ðμ̄0Þ − ρð−Þn aðgÞMnðμ̄0Þ
1 − ρð−Þn ρðþÞ

n

;

að−ÞMnðμ̄0Þ ¼
aðgÞMnðμ̄0Þ − ρðþÞ

n aðq0ÞMn ðμ̄0Þ
1 − ρð−Þn ρðþÞ

n

; ð45Þ

hence

aðq0ÞMn ðμÞ ¼
1

1 − ρð−Þn ρðþÞ
n

��

αsðμ̄0Þ
αsðμÞ

�
γðþÞ
n =β0

− ρðþÞ
n ρð−Þn



αsðμ̄0Þ
αsðμÞ

�
γð−Þn =β0

�
aðq0ÞMn ðμ̄0Þ

− ρð−Þn

�

αsðμ̄0Þ
αsðμÞ

�
γðþÞ
n =β0

−


αsðμ̄0Þ
αsðμÞ

�
γð−Þn =β0

�

× aðgÞMnðμ̄0Þ
�
; ð46Þ

aðgÞMnðμÞ ¼
1

1 − ρð−Þn ρðþÞ
n

�
ρðþÞ
n

�

αsðμ̄0Þ
αsðμÞ

�
γðþÞ
n =β0

−


αsðμ̄0Þ
αsðμÞ

�
γð−Þn =β0

�
aðq0ÞMn ðμ̄0Þ

þ
�


αsðμ̄0Þ
αsðμÞ

�
γð−Þn =β0

− ρðþÞ
n ρð−Þn



αsðμ̄0Þ
αsðμÞ

�
γðþÞ
n =β0

�

× aðgÞMnðμ̄0Þ
�
: ð47Þ

In fact, to the order we are working, we should compute
the NLO evolution of the DAs. At NLO the evolution of

aðqiÞMn ðμÞ coefficients for different order n become mixed, as
one can see from Eq. (40) for the case of octet components.
However, the impact of NLO corrections to the evolution of
these coefficients is not significant in comparison with
the corresponding corrections for the subprocess ampli-
tudes Tqq̄ and Tgg given in Eqs. (2). Indeed, the most
important effect on the DAs when going from LO to NLO
evolution comes from the change in the strong coupling
constant, αsðμÞ. Thus we adopt the following prescription:
we consider the NLO corrections for Tqq̄ðx;Q2; μ2Þ and
Tggðx;Q2; μ2Þ [given by Eqs. (2)] together with Eqs. (39)
and (46)–(47) for the evolution of the octet and singlet DAs,
respectively. In all these equations we take the NLO
running equations for the strong coupling constant αs
given by Eq. (B2) in Appendix B. In order to test the
validity of this prescription, let us study the case of the octet
DAs. In Tables VIII, IX and X we quote the values of the

coefficients aπn, a
ðq8Þ
ηn and aðq8Þη0n , respectively, evolved from

μ ¼ 3 GeV to μ ¼ 1 GeV at LO [i.e., using Eqs. (39) and
(B1)], at NLO [i.e., using Eqs. (40) and (B2)], and within

TABLE VIII. Coefficients aπnðμÞ obtained within the nlNJL quark model at μ ¼ 3 GeV and their evolution down
to μ ¼ 1 GeV at LO, at NLO and using the mixed approximation.

n 2 4 6 8 10 12

aπnð3 GeVÞ −0.0183 −0.0324 0.0048 −0.0090 0.0049 −0.0067
aπnð1 GeVÞ (LO) −0.0264 −0.0552 0.0091 −0.0187 0.0109 −0.0158
aπnð1 GeVÞ (NLO) −0.0225 −0.0646 0.0075 −0.0242 0.0114 −0.0205
aπnð1 GeVÞ (mixed) −0.0284 −0.0614 0.0103 −0.0216 0.0127 −0.0187

η-γ AND η0-γ TRANSITION … PHYSICAL REVIEW D 95, 054006 (2017)

054006-11



the above-described “mixed” approximation, which means
to take the LO evolution equation (39) for the coefficients
and the NLO evolution equation (B2) for αs. From the
values in the tables one can conclude that the “mixed”
approximation can be used to estimate NLO calculations
with reasonably good accuracy.
We consider here two different ways of estimating the

effect of gluons in the DAs. Our first analysis is based on the
fact that in general one assumes that the scale at which
standard quark models—with no gluon content—can be
used to describe hadron physics lies around μ ∼ 0.5–1 GeV.
Thus, we evolve the quark DAs obtained within the nlNJL
from our input scale μ0 ¼ 3 GeV to a lower energy scale,
whichwe choose to be μ̄0 ¼ 0.5 GeV, and at this lower scale
we impose the condition of no gluons. Then, for higher
values of μ, we allow gluon contributions to be generated
through the evolution equations, which mix quark singlet
and gluon components of the DAs. For the second analysis,
once again we proceed by using the nlNJL quark model

parametrization in order to calculate the coefficients aðqiÞMn
(M ¼ η; η0) of the Gegenbauer expansion of the DAs at the
scale μ0 ¼ 3 GeV. Now, for n ≤ n̄, where n̄ is some chosen
value of n, we also include nonzero gluon coefficients

aðgÞMnðμ0Þ, and use Eqs. (46) and (47), with μ̄0 ¼ μ0, to evolve
quark and gluon coefficients to any other scale. Thevalues of

the gluon coefficients aðgÞMnðμ0Þ are then determined from a fit
to the experimental data for the TFFs. For the remaining
coefficients (those of order n > n̄) we proceed in the same
way as in the first analysis. The consistency of this approach
can be tested by analyzing the stability of the results against
changes in the chosen value of n̄. Notice that this second
analysis leads to the presence of gluons at low virtuality,

which is compatible with models that include a glueball
component for the description of the η-η0 mixing [56].

A. First analysis

Let us analyze the numerical results obtained for the
effect of gluon contributions according to the first analysis
proposed above. As stated, we take into account the fact
that usually quark models do not include gluons at their
scale of validity μ̄0; therefore we can obtain the coefficients

aðq0ÞMn and aðgÞMn at any scale μ from Eqs. (46) and (47) by

imposing aðgÞMnðμ̄0Þ ¼ 0. Moreover, from Tables II and III it

is seen that the values of the ρðþÞ
n ρð−Þn coefficients are small

and the γðþÞ
n anomalous dimensions are close to γqq. Hence

we can assume that the mixing with gluons will have small

influence on the singlet coefficients aðq0ÞMn ðμÞ. On the other

hand, since the values of ρðþÞ
n for low n are not negligible,

the first gluon coefficients aðgÞMnðμÞ of the Gegenbauer
expansion could give some appreciable contribution to η
and η0 DAs.
As discussed in Sec. II B, we input the shape of quark

propagators at the scale μ0 ¼ 3 GeV from lattice QCD
calculations. In order to connect theDAs at this scale to those
at the lower scale μ̄0 that we use as the starting point for the
QCD evolution we need some approximation. We use here
octet evolution; i.e., we begin by considering the calculated
DAs at μ0 ¼ 3 GeV shown in Fig. 1, and evolve them down
to μ̄0 ¼ 0.5 GeV assuming no gluon components. Then,
starting from the μ̄0 scalewe use the evolution equations (46)
and (47) to obtain the singlet quark and gluonDAs (the latter
generated by the mixing in the evolution) at any μ. Thus at
the scale μ̄0 ¼ 0.5 GeV we have

TABLE IX. Coefficients aðq8Þηn ðμÞ obtained within the nlNJL quark model at μ ¼ 3 GeV and their evolution down
to μ ¼ 1 GeV at LO, at NLO and using the mixed approximation.

n 2 4 6 8 10 12

aðq8Þηn ð3 GeVÞ −0.0911 −0.0444 0.0331 −0.0173 0.0021 −0.0008
aðq8Þηn ð1 GeVÞ (LO) −0.1315 −0.0758 0.0631 −0.0358 0.0046 −0.0018
aðq8Þηn ð1 GeVÞ (NLO) −0.1357 −0.0902 0.0695 −0.0439 0.0039 −0.0033
aðq8Þηn ð1 GeVÞ (mixed) −0.1413 −0.0842 0.0716 −0.0414 0.0054 −0.0022

TABLE X. Coefficients aðq8Þη0n ðμÞ obtained within the nlNJL quark model at μ ¼ 3 GeV and their evolution down
to μ ¼ 1 GeV at LO, at NLO and using the mixed approximation.

n 2 4 6 8 10 12

aðq8Þη0n ð3 GeVÞ −0.4317 −0.0305 0.1791 −0.0759 −0.0217 0.0301

aðq8Þη0n ð1 GeVÞ (LO) −0.6232 −0.0520 0.3418 −0.1577 −0.0483 0.0708

aðq8Þη0n ð1 GeVÞ (NLO) −0.6661 −0.0733 0.3930 −0.1839 −0.0601 0.0854

aðq8Þη0n ð1 GeVÞ (mixed) −0.6698 −0.0577 0.3881 −0.1821 −0.0566 0.0837
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aðgÞMnð0.5 GeVÞ ¼ 0;

aðq0ÞMn ð0.5 GeVÞ ¼ ~aðq0ÞMn ð3 GeVÞ
�
αsð3 GeVÞ
αsð0.5 GeVÞ

�
γqqn =β0

;

ð48Þ

where

~aðq0ÞMn ð3 GeVÞ

¼ 1ffiffiffi
3

p
f0M

½
ffiffiffi
2

p
flMa

ðqlÞ
Mn ð3 GeVÞ þ fsMa

ðqsÞ
Mn ð3 GeVÞ�:

ð49Þ

The values for the first coefficients aðqlÞMn ð3 GeVÞ and

aðqsÞMn ð3 GeVÞ for M ¼ η and M ¼ η0 are those quoted in
Tables Vand VI. Notice than when evolving back from μ ¼
μ̄0 to μ ¼ 3 GeVusing the evolution equations (46) and (47)

in general we will obtain a result for aðq0ÞMn ð3 GeVÞ different
from the input value ~aðq0ÞMn ð3 GeVÞ. However, since the

anomalous dimensions γðþÞ
n are close to γqqn (see Table II),

one expects the differences to be small for all n.
In Table XI we quote the first coefficients of the

Gegenbauer expansion for the quark singlet and gluon

DAs at μ ¼ 1 GeV. As expected from the values of ρðþÞ
n in

Table III, it is seen that the coefficients of the gluon DA

decrease rapidly with n. The small value of aðq0Þη0n for n ¼ 2

arises from a cancellation in the rhs of Eq. (49), which

reduces significantly the value of ~aðq0ÞMn ð3 GeVÞ.
From our calculations we find that the effect of gluon

contributions to the TFFs within this approximation is
negligible. In the case of the η-γ TFF, the comparison with
experimental data for c ¼ d ¼ 0 leads to χ2=n ¼ 1.33, to
be compared with the value of 1.30 obtained in absence of
gluons (see Table VII). The corresponding curve differs
slightly from that plotted in Fig. 2 (central panel, solid line).
For the η0-γ TFF the influence of gluons in this approxi-
mation is also imperceptible. The comparison with the data
leads to χ2=n ¼ 2.9, somewhat above the value of 2.5

quoted in Table VII, whereas the corresponding curve lies
within the uncertainty range indicated by the gray region in
the lower panel of Fig. 2.

B. Second analysis

As stated above, in this second analysis we allow for

the presence of nonzero gluon coefficients aðgÞηn , a
ðgÞ
η0n at

a low μ scale for n ≤ n̄, where n̄ is some chosen value
of n, and we determine the values of these coefficients
by fitting to the experimental data for the η-γ and η0-γ
TFFs. For the coefficients aðq0ÞMn and aðgÞMn, with n > n̄, we
proceed as in the first analysis. We consider here the
cases n̄ ¼ 2 and n̄ ¼ 4, comparing the corresponding
numerical results to get an estimation of the stability of
the approach.
Let us first take n̄ ¼ 2. In this case we take the

coefficients aðq0ÞMn and aðgÞMn for n ≥ 4 to be the same as
those calculated in the previous analysis; therefore the
corresponding values at μ ¼ 1 GeV can be read from

Table XI. For the first Gegenbauer coefficients aðq0Þη2 and

aðq0Þη02 , at the scale μ0 ¼ 3 GeVwe use the input provided by

Eq. (44) with μ̄0 ¼ μ0, taking the values of aðqlÞM2 ð3 GeVÞ
and aðqsÞM2 ð3 GeVÞ for M ¼ η; η0 from Tables V and VI. On

the other hand, the first gluon coefficients aðgÞη2 and aðgÞη02 at
the scale μ0 ¼ 3 GeV are taken as free parameters to be
determined from fits to the η-γ and η0-γ TFF experimental
data, respectively. The theoretical values for the TFFs are

obtained by evolving the coefficients aðq0ÞM2 and aðgÞM2 to any
scale through the above-described “mixed” evolution
approximation. Finally we proceed in a similar way, taking

now n̄ ¼ 4. Namely, for n ≥ 6 we use the same aðq0ÞMn and

aðgÞMn coefficients as in the first analysis, we obtain

aðq0ÞM2 ð3 GeVÞ and aðq0ÞM4 ð3 GeVÞ from Eq. (44) with μ̄0 ¼
μ0 for n ¼ 2 and n ¼ 4, respectively, and we determine

aðgÞM2ð3 GeVÞ and aðgÞM4ð3 GeVÞ from fits to the experimental
data for the η-γ and η0-γ TFFs.
To discuss our results we quote not only the values

of the coefficients aðq0ÞMn and aðgÞMn obtained at the input
scale μ0 ¼ 3 GeV but also the corresponding values after
the evolution down to 1 GeV, as is commonly done in the
literature. This is especially relevant in this case, since the
effect of gluon contributions to the TFFs is more relevant at
low virtuality, say Q2 ≲ 3 GeV2. Let us start by analyzing
the results for the η meson. From the n̄ ¼ 2 fit we obtain

aðgÞη2 ð3 GeVÞ ¼ 2.66, with χ2=ðnumber of pointsÞ ¼ 1.30,

while from the n̄ ¼ 4 fit we get aðgÞη2 ð3 GeVÞ ¼ −109

and aðgÞη4 ð3 GeVÞ ¼ 65.5, with χ2=ðnumber of pointsÞ ¼
0.71. The comparison is more feasible when we evolve
the coefficients down to μ ¼ 1 GeV:

TABLE XI. Coefficients aðq0ÞMn ðμÞ and aðgÞMnðμÞ (M ¼ η; η0)
evolved from μ0 ¼ 0.5 GeV to μ ¼ 1 GeV according to our first
analysis of gluon contributions.

n 2 4 6 8 10 12

aðq0Þηn ð1 GeVÞ 0.182 0.107 −0.268 0.094 0.022 −0.066

aðgÞηn ð1 GeVÞ 0.342 0.062 −0.072 0.014 0.002 −0.004

aðq0Þη0n ð1 GeVÞ −0.022 −0.128 0.036 −0.039 0.027 0.007

aðgÞη0nð1 GeVÞ −0.042 −0.074 0.010 −0.006 0.003 0.0005
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aðgÞη2 ð1GeVÞ¼6.37 aðq0Þη2 ð1GeVÞ¼0.155 n̄¼2

aðgÞη2 ð1GeVÞ¼−275

aðgÞη4 ð1GeVÞ¼278

aðq0Þη2 ð1GeVÞ¼1.24

aðq0Þη4 ð1GeVÞ¼−0.937

�
n̄¼4:

ð50Þ

Taking into account the results of our first analysis
(discussed in the previous subsection), in which we obtain
χ2=ðnumber of pointsÞ ¼ 1.33, it is seen that the n̄ ¼ 2 fit
shows no gain of quality in the description of the exper-
imental data. In addition, the n̄ ¼ 4 fit leads to a strong
cancellation between the n ¼ 2 and n ¼ 4 gluon coeffi-
cients. There is no physical reason for this cancellation;
therefore we interpret this result as a spurious solution.
Thus we conclude that there is no evidence of a significant
presence of gluons in the case of the η meson.

For the η0 meson the n̄ ¼ 2 fit leads to aðgÞη02ð3 GeVÞ ¼
4.31, while from the n̄ ¼ 4 fit we obtain aðgÞη02ð3 GeVÞ ¼
4.38 and aðgÞη04ð3 GeVÞ ¼ −0.049. The quality of the fit is

approximately the same in both cases, with χ2=ðnumber of
pointsÞ ¼ 0.91. Evolving these coefficients to μ ¼ 1 GeV
we obtain

aðgÞη02ð1GeVÞ¼10.9 aðq0Þη02 ð1GeVÞ¼−0.064 n̄¼2

aðgÞη02ð1GeVÞ¼11.1

aðgÞη04ð1GeVÞ¼−0.097

aðq0Þη02 ð1GeVÞ¼−0.065

aðq0Þη04 ð1GeVÞ¼−0.127

�
n̄¼4:

ð51Þ
Contrary to the case of the η-γ TFF, now we observe that
there is a significant gain of quality in the description of the
experimental values in comparison with the results from
our first analysis and with those quoted in Sec. III. We
recall that the latter obtained under the assumption of no
gluon contributions to the η0 DA, lead to a fit of η0-γ TFF
with χ2=n ¼ 2.5 (see Table VII). Moreover, although the
n̄ ¼ 4 fit has one more free parameter with respect to the
case n̄ ¼ 2, the theoretical description of the η0-γ TFF is
approximately the same in both cases. Our result is shown
by the dashed line in Fig. 3 (n̄ ¼ 2 and n̄ ¼ 4 fits are
indistinguishable). For comparison we also include in the
figure the previous NLO result with no gluon contribution
(full line, indetermination indicated by the gray band), the
“asymptotic behavior” according to the definition in
Sec. III (short-dashed line), and the asymptotic Q2 → ∞
value (dotted line). Our analysis shows that the gluon
contribution is sizable in the case of the η0 meson. From the
figure it is seen that in the low virtuality region the
difference between our NLO calculation and the asymptotic
behavior is similar to the difference between the present fit
and the NLO result. In fact, the result obtained after
considering the fitted gluon contributions to the η0 DA is

comparable to that arising from the inclusion of higher
twist contributions discussed in the previous section.
Finally, it is interesting to compare our results with those

obtained in Refs. [22–24]. The authors of these articles
perform model-independent fits of the η-γ and η0-γ TFFs,
considering only the n ¼ 2 coefficients of the Gegenbauer
expansions of the DAs. Moreover, they assume meson
independence of the quark and gluon DAs; i.e. they take

ϕðqiÞ
η ¼ ϕðqiÞ

η0 and ϕðgÞ
η ¼ ϕðgÞ

η0 . In this way they end up with

only three free parameters, namely the coefficients aðq8Þ
ηð0Þ2, a

ðq0Þ
ηð0Þ2

and aðgÞ
ηð0Þ2

. The analyses carried out in those papers, consid-

ering various fits under different conditions, show that the
results are quite stable within the quoted errors. Let us take
here as representativevalues thedefault results fromRef. [24],

namely aðq8Þ
ηð0Þ2

ð1 GeVÞ ¼ −0.05� 0.02, aðq0Þ
ηð0Þ2

ð1 GeVÞ ¼
−0.12� 0.01 and aðgÞ

ηð0Þ2ð1 GeVÞ ¼ 19� 5, as well as the

results in Eq. (63) of Ref. [22], which translated to our

notation lead to aðq0Þ
ηð0Þ2

ð1 GeVÞ ¼ −0.12� 0.11 and

aðgÞ
ηð0Þ2ð1 GeVÞ ¼ 18.2� 4.5. It is worth noticing that our

results do not support the hypothesis of meson independence
of quark and gluon DAs; in fact, we find significative
differences between them. Nevertheless, it is seen that the
values obtained from our analysis are consistent with the
above results. Indeed, considering Eq. (3), and taking values
of meson decay constants from Table XII, it is seen that the

coefficients of ϕðq8Þ
M are basically determined by the η-γ TFF,

whereas those of ϕðq0Þ
M (and also ϕðgÞ

M ) are mainly fixed by the

FIG. 3. Theoretical curves and experimental results for the η0-γ
TFF. The full line corresponds to the NLO result with no gluon
contributions discussed in Sec. III, and the gray region indicates
the indetermination in the corresponding Gegenbauer coeffi-
cients. The dashed line is the TFF obtained when the contribu-
tions of gluons are fitted. Short-dashed and dotted lines
correspond to the NLO asymptotic behavior of the TFF (see
discussion in Sec. III) and the asymptotic limit, respectively.
Notice the usage of a logarithmic scale for Q2.
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η0-γ TFF. Therefore, the value of aðq8Þ
ηð0Þ2 in Ref. [24] should be

compared with our result in Table IX, aðq8Þη2 ¼ −0.14, while
the results for aðq0Þ

ηð0Þ2
and aðgÞ

ηð0Þ2
in Refs. [24] and [22] are to be

compared with our values aðq0Þη02 ¼ −0.06 and aðgÞη02 ¼ 11; see
Eq. (51). Taking into account the theoretical and experimental
uncertainties, we conclude that thevalues quoted inRefs. [24]
and [22] are compatible with each other and with our results.

V. CONCLUSIONS

In this work we have evaluated the quark DAs for the η
and η0 mesons and the associated η-γ and η0-γ TFFs within
the framework of a nonlocal Nambu–Jona-Lasinio model.
This approach, which has been shown to provide a
successful description of various meson observables
[33,40], has been previously considered in Ref. [13] for
the study of the π meson DA and the π-γ TFF. Since the
theoretical framework satisfies all basic symmetry require-
ments (i.e. chiral, Poincaré and local electromagnetic gauge
invariances), the quark DAs turn out to be naturally
normalized within this scheme.
One of the main ingredients of our model is the quark

propagator, which by construction shows a momentum
dependence consistent with lattice QCD results. The
calculated quark DAs have to be therefore associated to
the momentum scale of lattice data, namely 3 GeV [36]. In
general, the comparison of any observable related to the
quark DAs (as e.g. the M-γ TFF) with experimental data
will require a perturbative evolution of the results obtained
at this reference scale. Here we have carried out this
evolution up to NLO accuracy in αs, neglecting the mixing
between Gegenbauer coefficients of different orders for the
singlet quark and gluon DAs.
From the obtained quark DAs at the scale of 3 GeV we

have observed the following features: (i) whereas our πDA
is not far from the asymptotic distribution ϕasymðxÞ ¼
6xð1 − xÞ, the η and η0 quark DAs move away from the
asymptotic behavior, the departure being larger the larger
the meson mass is; (ii) all DAs show two maxima, and this
structure arises from the nonlocal genuine contributions in
Eq. (27); (iii) in all cases the DAs go to zero rather fast near
x ¼ 0 and x ¼ 1, supporting the idea of suppression of the
kinematic end points [52,53]. Another outcome of our
results is that when the DAs are expanded in Gegenbauer
polynomials we have found that the absolute values of the
corresponding coefficients decrease rather slowly with n, in
contrast with usual assumptions.
Concerning the evaluation of the M-γ TFFs, we have

found that in general NLO corrections lead to a suppression
of Q2FðQ2Þ. Although this represents a problem regarding
the explanation of the already challenging experimental
scenario for the π-γ TFF, the corrections go in the right
direction in the case of the η-γ and η0-γ TFFs. An important
difference between the case of the π meson and those of the

η and η0 mesons is that η and η0 states can include a gluon-
gluon component. In this regard, we have first performed an
analysis in which these gluon components have been
neglected for all Q2 values, while higher twist corrections
have been taken into account by adding 1=Q2 and 1=Q4

terms to the dominant twist-2 contribution provided by the
DAs. Then we have fitted these contributions to M-γ TFF
data. From our results it is seen that the effect of higher
twist corrections is more important for the π-γ and η-γ
TFFs, particularly for Q2 ≲ 3 GeV2. Moreover, it is seen
that the signs of the corresponding contributions are the
same in both cases. Conversely, for the η0-γ TFF, contrary to
what should be expected, the higher twist corrections
appear to be less concentrated in the low virtuality region.
Finally, we have investigated the effect of two-gluon

components of the η and η0 mesons to leading-twist
accuracy, considering NLO perturbative QCD and neglect-
ing the mixing between Gegenbauer coefficients of differ-
ent orders. From the numerical analysis it is found that the
evolution equations do not generate an appreciable con-
tribution if we assume that meson DAs include no gluons at
low virtuality. On the other hand, if we allow for the
presence of gluon-gluon components in the η and η0 DAs at
low momentum scales, it is seen that the experimental data
for the corresponding TFFs suggest an important gluon
component in the η0 state and a less important one in the η
state. According to the discussion in Sec. IV B, our results
for the first Gegenbauer coefficients of quark DAs at the
scale of 1 GeV are

aðq8Þη2 ð1 GeVÞ ¼ −0.14; aðq8Þη4 ð1 GeVÞ ¼ −0.08;

aðq0Þη2 ð1 GeVÞ ¼ 0.18; aðq0Þη4 ð1 GeVÞ ¼ 0.11;

aðq8Þη02 ð1 GeVÞ ¼ −0.67; aðq8Þη04 ð1 GeVÞ ¼ −0.06;

aðq0Þη02 ð1 GeVÞ ¼ −0.06; aðq0Þη04 ð1 GeVÞ ¼ −0.13:

For the gluon DAs, our results in the case of the ηmeson are
not conclusive, whereas for the η0 we obtain

aðgÞη02ð1 GeVÞ ¼ 11; aðgÞη04ð1 GeVÞ ¼ −0.10:

As discussed in Sec. IV B, these results are found to be
compatible with previous fits for Gegenbauer coefficients
quoted in Refs. [22–24]. In this way, from our analysis we
have concluded that π-γ and η-γ TFFs are more sensible to
corrections coming from higher twist effects, while the
experimental data on the η0-γ TFF point to the presence of a
significant gluon-gluon component in the η0 state.
It is worth pointing out that there is an interesting

experimental proposal of measuring the π-γ transition form
factor at very low values of Q2 at KLOE-2 [58].
Unfortunately, our approach is only valid for relatively
large values of the virtuality. The Q2 dependence of the
TFFs is determined by QCD evolution; therefore our
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predictions would be hardly reliable forQ2 values beyond a
lower limit of Q2 ∼ 1 GeV2.
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APPENDIX A: DETAILS OF THE MODEL

In this appendix we provide some details on the
calculation of the quark DAs in Eq. (24). We start from
the Euclidean action in Eq. (12), to which we add a
coupling with an external axial gauge fieldAa

μ, as described
in Sec. II B. Then we perform a standard bosonization of
the fermionic theory, introducing scalar fields σaðxÞ, ζðxÞ
and pseudoscalar fields πaðxÞ, together with auxiliary fields
SaðxÞ, PaðxÞ and RðxÞ, with a ¼ 0;…; 8. Details of this
procedure can be found e.g. in Ref. [33]. As in that work,
we use the stationary phase approximation, replacing the
path integral over the auxiliary fields by the corresponding
argument evaluated at the minimizing values ~SaðxÞ, ~PaðxÞ,
and ~RðxÞ. This leads to the equations

σaðxÞ þ G ~SaðxÞ þ
H
2
Aabc½ ~SbðxÞ ~ScðxÞ − ~PbðxÞ ~PcðxÞ� ¼ 0;

πaðxÞ þ G ~PaðxÞ þHAabc
~SbðxÞ ~PcðxÞ ¼ 0;

ζðxÞ þ G ~RðxÞ ¼ 0:

ðA1Þ

Thus the bosonized action can be written as

SbosE ¼ − lndetDþ
Z

d4x

�
σaðxÞ ~SaðxÞ þ πaðxÞ ~PaðxÞ

þ ζðxÞ ~RðxÞ þG
2
½ ~SaðxÞ ~SaðxÞ þ ~PaðxÞ ~PaðxÞ þ ~RðxÞ2�

þH
4
Aabc½ ~SaðxÞ ~SbðxÞ ~ScðxÞ− 3~SaðxÞ ~PbðxÞ ~PcðxÞ�

�
;

ðA2Þ

where

D


yþ z

2
; y −

z
2

�

¼ γ0W


yþ z

2
; y
�
γ0

�
δð4ÞðzÞð−i∂ þmcÞ

þ
�
GðzÞ½σaðyÞ þ iγ5πaðyÞ�λa þ F ðzÞσ2ðyÞ

i∂↔
2ϰp

��

×W



y; y −

z
2

�
: ðA3Þ

As usual, we assume that, owing to parity conservation
and charge and isospin symmetries, the fields σaðxÞ, a ¼ 0,
8, and ζðxÞ have nontrivial translational invariant mean
field values σ̄a and ζ̄, while mean field values of the
remaining fields are zero. Thus we write

σaðxÞ ¼ σ̄a þ δσaðxÞ;
πaðxÞ ¼ δπaðxÞ;
ζðxÞ ¼ ζ̄ þ δζðxÞ: ðA4Þ

Replacing in the bosonized effective action, and expanding
the latter in powers of meson fluctuations ξ and powers of
the gauge field Aa

μ, we obtain

SbosE ¼ SðMFAÞ þ Sðξ2Þ þ SðξAÞ þ � � � ; ðA5Þ

where only the terms relevant for our calculation have been
explicitly written.
The mean field action per unit volume reads

SðMFAÞ

Vð4Þ ¼ 2Nc

X
f

Z
d3p
ð2πÞ3 log

�
ZðpÞ2

p2 þMfðpÞ2
�

−


ζ̄ R̄þG

2
R̄2 þH

4
S̄uS̄dS̄s

�

−
1

2

X
f



σ̄fS̄f þ

G
2
S̄2f

�
; ðA6Þ

where we have rotated neutral fields from the SUð3ÞF basis
to a flavor basis, σa; πa → σf; πf, where a ¼ 0, 3, 8 and
f ¼ u, d, s, or equivalently f ¼ 1, 2, 3. The functions
MfðpÞ and ZðpÞ correspond to the momentum-dependent
effective masses and WFR of quark propagators introduced
in Sec. II B [see Eqs. (15) and (16)], while S̄f and R̄ stand

for the values of the fields ~SfðxÞ and ~RðxÞ within the MFA,
respectively. The minimization of SðMFAÞ with respect
to σ̄f and ζ̄ leads to the corresponding Schwinger-Dyson
equations [33].
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The piece of the bosonic Euclidean action that is
quadratic in the meson fluctuations can be written as

Sðξ
2Þ

E ¼ 1

2

Z
d4p
ð2πÞ4

X
M

rMGMðp2ÞξMðpÞξ̄Mð−pÞ; ðA7Þ

where meson fluctuations δσa, δπa have been translated to a
charge basis ξM, M being the scalar and pseudoscalar
mesons in the lowest mass nonets (σ, π0, etc.), plus the ζ
field. The coefficient rM is 1 for charge eigenstates
M ¼ a00; σ; f0; ζ; π

0; η; η0, and 2 for M ¼ aþ0 ; K
�þ
0 ; K�0

0 ;
πþ; Kþ; K0. The full expressions for the one-loop func-
tions GMðqÞ, as well as those for the above-mentioned
Schwinger-Dyson equations, can be found in Ref. [33].
Meson masses can be obtained by solving the equations

GMð−m2
MÞ ¼ 0: ðA8Þ

In order to obtain physical states ~ξM one still has to
introduce a wave function renormalization factor,

~ξMðpÞ ¼ Z−1=2
M ξMðpÞ; ðA9Þ

where

Z−1
M ¼ dGMðpÞ

dp2

����
p2¼−m2

M

¼ g−2Mqq: ðA10Þ

Finally, the bilinear piece in ξM andAa
μ fields in Eq. (A4)

is given by

SðξAÞ
E ¼ Tr½D−1

0 DξD−1
0 DA� − Tr½D−1

0 DξA�; ðA11Þ

whereDξ,DA andDξA stand for the terms in the expansion
of Eq. (A3) that are linear in ξM and/orAa

μ. Then the meson
DAs within the nlNJL model can be obtained by taking the
functional derivative of SðξAÞ with respect to ξM and Aa

μ.
The corresponding expressions are lengthy, and will not be
quoted here. After some work one arrives at the result in
Eqs. (24)–(29).
It is worth noticing that, owing to the bilocal character of

the current in Eq. (4), one gets an extra delta function that
involves the þ components of the momenta. Namely, if Γ
represents some operator that includes dirac and flavor
matrices, one has

Z þ∞

−∞

dz−

2π
ψ̄



−
z
2

�
Γψ



z
2

�����
zþ¼0;~zT¼0

eiP
þz−ðx−1

2
Þ ¼ ðA12Þ

Z
d4p1

ð2πÞ4
d4p2

ð2πÞ4 δ


Pþ



x −

1

2

�
−
pþ
1 þ pþ

2

2

�
ψ̄p2

Γψp1
:

ðA13Þ

The numerical results for meson masses and weak
decay constants obtained within the present nonlocal
model, taking the parameters in Table I, are listed in
Table XII.

APPENDIX B: NLO RENORMALIZATION
FACTORS FOR THE QCD EVOLUTION

OF THE OCTET DA

We quote here the expressions for the renormalization
factors ENLO

n and dkn needed to calculate the evolution of the
coefficients aMnðμÞ in Eq. (40). One has

ENLO
n ðμ; μ0Þ ¼



αsðμ0Þ
αsðμÞ

�
γqqn =β0

�
1þ αsðμÞ − αsðμ0Þ

8π

γqqn
β0

×



γð1Þn

γqqn
−
β1
β0

��
;

where β0ðβ1Þ and γqqn ðγð1Þn Þ are the LO (NLO) coefficients
of the QCD β function and the anomalous dimensions,
respectively. One has β1 ¼ 102 − 38nf=3, where nf is the
number of flavors (we take here nf ¼ 4). The values of β0
and γqqn are given in Sec. II C, and analytical expressions for

γð1Þn can be found in Refs. [59,60]. For the evolution of the
strong coupling constant αs at LO we use

αsðμÞ ¼
4π

β0 lnðμ2=Λ2Þ ; ðB1Þ

with Λ ¼ 0.224 GeV, while at NLO we take

αsðμÞ ¼
4π

β0 lnðμ2=Λ2Þ
�
1 −

β1
β20

ln½lnðμ2=Λ2Þ�
lnðμ2=Λ2Þ

�
; ðB2Þ

with Λ ¼ 0.326 GeV.
On the other hand, the off-diagonal mixing coefficients

dkn in Eq. (40) are given by

TABLE XII. Numerical results from our model and empirical values [57] for various phenomenological
quantities. Input values are indicated with an asterisk.

mπ mK mη mη0 fπ
(MeV) (MeV) (MeV) (MeV) (MeV) fK=fπ f0η=fπ f8η=fπ f0η0=fπ f8η0=fπ

Model 139� 495� 523 958� 131� 1.17 0.209 1.085 1.496 −0.463
Empirical 139 495 547 958 131 1.22 0.187 1.174 1.155 −0.456
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dknðμ;μ0Þ ¼
Mk

n

γqqn − γqqk − 2β0

�
1−

�
αsðμÞ
αsðμ0Þ

�½γqqn −γqqk −2β0�=2β0�
:

ðB3Þ

Here the matrix elements Mk
n are defined as

Mk
n ¼

ðkþ 1Þðkþ 2Þð2nþ 3Þ
ðnþ 1Þðnþ 2Þ ½γqqn − γqqk �

×

�
8CFAk

n − γqqk − 2β0
ðn − kÞðnþ kþ 3Þ þ 4CF

Ak
n − S1ðnþ 1ÞÞ
ðkþ 1Þðkþ 2Þ

�
;

ðB4Þ

where

Ak
n ¼ S1



nþ kþ 2

2

�
− S1



n − k − 2

2

�

þ 2S1ðn − k − 1Þ − S1ðnþ 1Þ; ðB5Þ
with

S1ðnÞ ¼
Xn
j¼1

1

j
: ðB6Þ

Numerical values of the coefficients Mk
n for n ≤ 12 can be

found in Ref. [48].
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