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We investigate the a0ð980Þ resonance within chiral effective field theory through a three-coupled-
channel analysis, namely, πη,KK̄, and πη0. A global fit to recent lattice finite-volume energy levels from πη
scattering and relevant experimental data on a πη event distribution and the γγ → πη cross section is
performed. Both the leading and next-to-leading-order analyses lead to similar and successful descriptions
of the finite-volume energy levels and the experimental data. However, these two different analyses yield
different πη scattering phase shifts for the physical masses for the π, K, η, and η0 mesons. The inelasticities,
the pole positions in the complex energy plane, and their residues are calculated both for unphysical and
physical meson masses.
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I. INTRODUCTION

The nonperturbative meson-meson dynamics of low-
energy QCD, especially in the scalar channels, is one of
the most challenging research topics in hadron physics.
The complexity of the strong meson-meson interactions is
manifested in many resonances that appear in various
scattering processes [1]. Well-known examples are the
f0ð500Þ (or σ) in ππ scattering, the f0ð980Þ in ππ and
KK̄ coupled channels, the a0ð980Þ in πη and KK̄ scatter-
ing, and the K�

0ð800Þ (or κ) in the πK channel. Though it
seems plausible that the light isoscalars f0ð500Þ and
f0ð980Þ, the isovector a0ð980Þ, and the isospin one-half
K�

0ð800Þ may form a nonet [2], the situation for those
scalars is much less clear than for the vector nonet ρð770Þ,
K�ð892Þ, ωð778Þ, and ϕð1020Þ.
A reliable way to obtain further insights into these scalar

mesons is based on the low-energy effective field theory of
QCD, chiral perturbation theory (χPT), and the unitarity and
analyticity requirements of the corresponding scattering
amplitudes [3–7]. In this approach, one usually needs
scattering data, such as the phase shifts or inelasticities, as
inputs to constrain the free parameters. In the last decade,
enormous progress has beenmade in the study of the f0ð500Þ
(see Ref. [8] for a recent review). It is most likely that the
effects from the inelastic channels, such as KK̄ and other
higher ones, are small for thef0ð500Þ. As a result, one can use
the single-channel formalism to describe this broad resonance
well. In addition,many existingpreciseππ scatteringdata also
help to precisely determine the f0ð500Þ pole position. The
experimental πK phase shifts also confirm the existence of the
K�

0ð800Þ as a pole in the complex energy plane [5–7,9–11].

Due to the proximity of the f0ð980Þ and a0ð980Þ to the KK̄
threshold, the coupled-channel formalism is essential to study
these two states. Rigorous dispersive studies have been
performed for the f0ð980Þ (see Ref. [12] and references
therein). Various unitarized χPT approaches also confirm that
there is awell-established resonancepole for thef0ð980Þ after
successfully reproducing theππ scattering data around 1GeV
[4,6,7,13].However, the situation for thea0ð980Þ is less clear,
and its pole positions are still under debate [6,7,14–17]. One
of the biggest difficulties in preventing a precise determi-
nation of the a0ð980Þ is the lack of direct experimental πη
scattering data. It is unlikely that this will be improved in the
near future.
Fortunately, important progress using lattice QCD sim-

ulations for πη scattering, together withKK̄ and πη0 coupled
channels, has been made very recently [17]. However, the
pion mass (mπ ∼ 391 MeV) used in the calculation is still
much heavier than its physical value. A large number of
energy levels in the finite volume is obtained by using a large
amount of interpolating operators andmanymoving frames.
These energy levels are then used to extract the πη phase
shifts and inelasticities by using Lüscher’s method [18] and
parametrizing the K matrix in various ways.1 The resulting
πη phase shifts [17] around the KK̄ threshold do not show

1Note that, recently, the Lüscher method has become a
commonly accepted tool to analyze the lattice data in the
scattering sector, including the case of the multichannel scattering
(see, e.g., Refs. [17,19–21]). Different algebraic parametrizations
for the K matrix are used, and the free parameters are fitted to the
lattice data on the energy levels. Note also that an alternative
approach to study the inelastic scattering has been formulated
recently [22].
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any sharp increase, and hence they do not correspond to the
behavior of a canonical resonance pole in the complex
energy plane. Instead, the authors of Ref. [17] find that
the a0ð980Þ state corresponds to a pole in the fourth
Riemann sheet (RS), which is not directly connected to
the physical sheet.2 Although this observation is made with
mπ ¼ 391 MeV, interestingly it agrees with the previous
study in Ref. [16] for the a0ð980Þ, which also corresponds to
a fourthRS pole. But the calculation inRef. [16] is donewith
the physical masses for the π, K, η, and η0 channels.
In order to make a close comparison with the physical

a0ð980Þ state, a proper way to perform the chiral extrapo-
lation of the lattice simulations in Ref [17] is essential.
In this respect, the χPT framework provides a reliable tool.
In this work we use the unitarized χPT approach [4,7,23] to
reanalyze the lattice simulations and then extrapolate the π,
K, η, and η0 masses to their physical values. It is worth
emphasizing that the methodology for coupled-channel
unitarized χPT in a finite volume for the scalar meson sector
was developed in Refs. [24–27]. Note also that, recently, a
similar method was used in Ref. [28] in order to extract the
position of the ρ-meson pole from the lattice phase shifts. In
particular, it has been argued that the coupling to the KK̄
channel might have a significant impact on it. Instead of
analyzing the phase shifts provided in Ref [17], we directly
fit the lattice energy levels by considering unitarized χPT
in a finite box. In addition to the lattice finite-volume energy
levels, we also include two kinds of experimental data in the
global fits, namely, a πη event distribution [29] and the
γγ → πη cross section [30], so as to better constrain the free
parameters in the analyses.After the successful reproduction
of the lattice energy levels and experimental data, we then
calculate the πη phase shifts, inelasticities, pole positions,
and their residues by taking both heavy unphysical and
physical masses for π, K, η, and η0.
The article is organized as follows. We introduce the

unitarized χPT approach and the finite-volume effects in
moving frames in Sec. II. The fits to the lattice energy levels
and experimental data are analyzed in detail in Sec. III. The
πη scattering phase shifts, inelasticities, the a0ð980Þ and
a0ð1450Þ pole positions, and their residues for the unphys-
ical masses are given in Sec. IV. The results after

extrapolating the π, K, η, and η0 masses to their physical
values are discussed in Sec. V. A short summary and
conclusions are given in Sec. VI.

II. UNITARIZED Uð3Þ χPT AND ITS
FINITE-VOLUME EFFECTS

In this section we briefly review the basic aspects of the
formalism used to analyze lattice QCD energy levels and
experimental data. Note that χPT is the effective field theory
of low-energy QCD, and it has been proven to be quite
successful to describe the dynamics of the pseudo-Nambu-
Goldstone bosons (pNGBs), including the π, K, and η
mesons [31]. In the present work we study the a0ð980Þ by
including the scattering of three coupled channels, namely,
πη,KK̄, and πη0. In this case,Uð3Þ χPT [32,33] is the proper
framework, instead of the conventional SUð3Þ χPT [31].
This is because the singlet η0 and the QCD Uð1ÞA anomaly
effect are explicitly included in Uð3Þ χPT, while in the
SUð3Þ case the heavy singlet η0 is integrated out. The
leading-order (LO) Lagrangian of Uð3Þ χPT reads [34]

L2 ¼
F2

4
huμuμi þ

F2

4
hχþi þ

F2

3
M2

0 ln
2 det u; ð1Þ

where h…i denotes the trace in flavor space and the last term
encodes theUAð1Þ anomaly effect that gives the singlet η0 a
large mass M0 even in the chiral limit. The basic chiral
operators are defined as

uμ ¼ iuþDμUuþ;

χþ ¼ uþχuþ þ uχþu;

U ¼ u2 ¼ exp ði
ffiffiffi
2

p
Φ=FÞ;

DμU ¼ ∂μU − irμU þ iUlμ;

χ ¼ 2Bðsþ ipÞ; ð2Þ
where F denotes the weak decay constant of the pNGBs in
the chiral limit, the parameter B is related to the quark
condensate through h0jq̄iqjj0i ¼ −F2Bδij at leading order,
rμ; lμ; s; p are external sources, and the pNGBs are collected
in the 3 × 3 matrix

Φ ¼

0
BB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η8 þ 1ffiffi
3

p η0 πþ Kþ

π− −1ffiffi
2

p π0 þ 1ffiffi
6

p η8 þ 1ffiffi
3

p η0 K0

K− K̄0 −2ffiffi
6

p η8 þ 1ffiffi
3

p η0

1
CCA: ð3Þ

The explicit chiral symmetry breaking is realized by
taking the vacuum expectation values of the scalar source
s ¼ diagðmu;md;msÞ, withmq the light-quark masses. We
work in the isospin symmetry limit mu ¼ md.
The physical η and η0 states result from the mixing of the

octet η8 and the singlet η0. At leading order, it is enough to

2The pole on the fourth RS in Ref. [17] lies above the KK̄
threshold. The physical sheet in that energy region is directly
connected to the third RS, in which a canonical resonance pole
should be located.
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introduce one mixing angle θ to diagonalize the quadratic
terms of η0 and η8,

η8 ¼ cθη̄þ sθη̄0;

η0 ¼ −sθη̄þ cθη̄0; ð4Þ

with cθ ¼ cos θ and sθ ¼ sin θ. Here, we use the notation η̄
and η̄0 to denote the diagonalized fields of the Lagrangian,
Eq. (1), at leading order. When higher order contributions
are included, η̄ and η̄0 will get mixed again, and we refer to
Refs. [16,35,36] for further details on handling the higher
order mixing effects. The LO mixing angle θ can be
calculated in terms of the singlet η0 mass M0 in the chiral
limit and the LO masses of the pion and the kaon [16,35],

sinθ

¼−

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð3M2

0−2Δ2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M4

0−12M2
0Δ2þ36Δ4

p
Þ2

32Δ4

s 1
CA

−1

;

ð5Þ

whereΔ2 ¼ m̄2
K − m̄2

π , and m̄K and m̄π are the LO kaon and
pion masses, respectively.
The higher order contributions in χPT include both the

chiral loops and the higher order low-energy constants
(LECs). In Ref. [16] the one-loop calculation of all two-
body light-meson scattering amplitudes is carried out within
Uð3Þ χPT. A systematical study of theOðp4Þ Lagrangian of
Uð3Þ χPT is given in Refs. [32,33]. Another way to account
for the effects from the higher order LECs is to include
resonance exchanges in a chiral invariant way [37]. The
pioneering study of resonance exchanges in the chiral
framework for the ππ and πK scattering was given in
Ref. [38]. A generalization to include the leading resonance
exchanges in the chiral counting in all the meson-meson
scattering channels is completed in Ref. [16]. For a more
detailed account, the reader is referred to Ref. [16] and
references therein.

A. Brief reminder of unitarized Uð3Þ χPT
Since χPT is organized in a double expansion inmomenta

and light-quark masses, it can only be applied for low-
energy processes involving the pNGBs. In the higher energy
region, especially when the resonances appear, the pertur-
bative χPT amplitudes start to severely violate the unitarity
condition and one can not trust the χPT expressions any-
more. The unitarization procedure, which restores the
unitarity of the perturbative χPT amplitudes, provides a
useful tool to extend the χPTdomain to the resonance energy
region. However, this is usually done at the expense of
violating crossing symmetry, and such a unitarization
procedure unavoidably introduces some model dependence
from the chosen set of higher order effects that are

resummed. In the single ππ channel case, unitarity and
analyticity can be strictly implemented within a range of
energies, and different groups obtain quite compatible
results for the f0ð500Þ pole positions [8]. However, a
rigorous solution for the coupled-channel scattering is
typically not possible, and usually different types of approx-
imations are introduced. A convenient way to proceed is to
treat the right-hand cut (or the unitarity cut) nonperturba-
tively, whereas the cross-channel effects are included in a
perturbative fashion [4,23,39]. Indeed, this is the case in
many unitarized χPT studies [4,6,7].
A unitarization of the perturbative meson-meson scatter-

ing amplitudes up to the next-to-leading order (NLO)
calculated in the one-loop Uð3Þ χPT plus tree-level
resonance exchanges [16] is then performed using the
formalism of Ref. [7]. The final expression for the meson-
meson scattering amplitude T I

JðsÞ reads

T I
JðsÞ ¼ ½1þ NI

JðsÞ ·GðsÞ�−1 · NI
JðsÞ; ð6Þ

where I and J denote the isospin and angular momentum,
respectively. This unitarization method corresponds to an
algebraic approximation of the conventional N=D method
[7]. By construction, the function GðsÞ in Eq. (6) incor-
porates the two-body right-hand cut, and it is given by the
standard two-point one-loop function

GðsÞ ¼ i
Z

d4q
ð2πÞ4

1

ðq2 −m2
1 þ iϵÞ½ðP − qÞ2 −m2

2 þ iϵ� ;

s≡ P2; ð7Þ

which can be calculated by a once-subtracted dispersion
relation or in the dimensional regularization by replacing
the divergence with a constant. The explicit expression of
GðsÞ reads [7]

GðsÞDR ¼ 1

16π2

�
aðμÞ þ ln

m2
1

μ2
þ s −m2

1 þm2
2

2s
ln
m2

2

m2
1

þ σðsÞ
2s

½lnðσðsÞ þ s −m2
2 þm2

1Þ − lnðσðsÞ
− sþm2

2 −m2
1Þ þ lnðσðsÞ þ sþm2

2 −m2
1Þ

− lnðσðsÞ − s −m2
2 þm2

1Þ�
�
; ð8Þ

where the superscript DR denotes the use of the dimen-
sional regularization in the expression of GðsÞ, m1 and m2

are the masses of the two intermediate mesons in the
scattering process, aðμÞ is the subtraction constant, and

σðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

1; m
2
2Þ

q
; ð9Þ

with λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2bc − 2ac the
Källén function. The function GðsÞ itself is independent
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of the renormalization scale μ, since the explicit μ depend-
ence in the second term in Eq. (8) is compensated by the
subtraction constant aðμÞ. We will fix μ ¼ 770 MeV in our
later discussion, indicating that the value of the subtraction
constant obtained here refers to that scale. The subtraction
constants could be reabsorbed gradually when higher
orders are included in the function NðsÞ. As it is clear
from Eq. (6), for an exact elimination of the subtraction
constants, the inverse of the new function ~NðsÞ would be
~NI
JðsÞ−1 ¼ NI

JðsÞ−1 þ δG, with δG the diagonal matrix
including only the subtraction constants.
In contrast, the NI

JðsÞ function is free of any two-body
right-hand cut singularity3 and only contains the crossed-
channel cuts. Its explicit expression is given by [16]

NI
JðsÞ ¼ TI

JðsÞð2ÞþResþLoop þ TI
JðsÞð2Þ · GðsÞ · TI

JðsÞð2Þ;
ð10Þ

where TI
JðsÞð2ÞþResþLoop are the partial-wave projectedUð3Þ

χPT amplitudes, and the superscripts “(2), Res” and “Loop”
denote the LO amplitudes, resonance exchanges, and loop
contributions, respectively. The explicit calculations of these
perturbative amplitudes are given in detail in Ref. [16], and
we briefly recapitulate themain results here. The LOS-wave
amplitudes in the isospin I ¼ 1 channel are

TI¼1;πη→πη
J¼0 ðsÞð2Þ ¼ ðcθ −

ffiffiffi
2

p
sθÞ2m2

π

3F2
π

;

TI¼1;πη→KK̄
J¼0 ðsÞð2Þ

¼ cθð3m2
η þ 8m2

K þm2
π − 9sÞ þ 2

ffiffiffi
2

p
sθð2m2

K þm2
πÞ

6
ffiffiffi
6

p
F2
π

;

TI¼1;πη→πη0
J¼0 ðsÞð2Þ ¼ ð ffiffiffi

2
p

c2θ − cθsθ −
ffiffiffi
2

p
s2θÞm2

π

3F2
π

;

TI¼1;KK̄→KK̄
J¼0 ðsÞð2Þ ¼ s

4F2
π
;

TI¼1;KK̄→πη0
J¼0 ðsÞð2Þ

¼ sθð3m2
η0 þ 8m2

K þm2
π − 9sÞ − 2

ffiffiffi
2

p
cθð2m2

K þm2
πÞ

6
ffiffiffi
6

p
F2
π

;

TI¼1;πη0→πη0
J¼0 ðsÞð2Þ ¼ ð ffiffiffi

2
p

cθ þ sθÞ2m2
π

3F2
π

; ð11Þ

where cθ and sθ are defined in Eq. (4).
Concerning the resonance exchanges, we mention

that in Ref. [16] one multiplet of bare octet scalar
resonances is included at the Lagrangian level, which is
mostly responsible for the excited physical scalar states of
f0ð1370Þ; K�

0ð1430Þ, and a0ð1450Þ. The bare singlet scalar

introduced at the Lagrangian level is found to be important
for the f0ð980Þ. The other scalar resonances, such as σ, κ,
and a0ð980Þ, are mainly generated from the nonperturba-
tive meson-meson contact interactions. Concerning other
higher order effects, such as the vector resonance
exchanges and light pseudoscalar loop contributions, we
refer to Ref. [16] for further details. The unknown param-
eters in our model, including the resonance couplings and
the subtraction constants, were determined in Ref. [16] by
fitting a large amount of experimental data, consisting of
the ππ → ππ; KK̄ scattering phase shifts and inelasticities
in the IJ ¼ 00 channel [40], the ππ → ππ phase shifts with
IJ ¼ 11 [41] and IJ ¼ 20 [42], the πK → πK phase shifts
with IJ ¼ 1

2
0; 3

2
0 and 1

2
1 [43], and a πη event distribution in

the IJ ¼ 10 case [29]. Note that there is no available direct
experimental data for πη scattering, but the IJ ¼ 10 partial-
wave amplitudes can be tested because of their impact
through final-state interactions. The πη event distribution
taken corresponds to the measured one in the complicated
reaction pp → ppηπþπ− [29]. Since it is quite possible
that the KK̄ and πη intermediate states may enter in
different ways in pp → ppηπþπ−, we introduce two
parameters c1 and c2 to account for the underlying
mechanisms. By assuming that the energy dependence is
dominated by the resonating final-state interactions, we can
then write the πη event distribution near the KK̄ threshold
as [23,44]

dNπη

dEπη
¼ qπηjc1D−1ðsÞπη→πη þ c2D−1ðsÞπη→KK̄j2; ð12Þ

where qπη denotes the three-momentum of the πη system in
the center-of-mass (CM) frame, Eπη ¼

ffiffiffi
s

p
is the CM

energy, and the matrix function D−1ðsÞ is defined as [23]

D−1ðsÞ ¼ ½1þ NI
JðsÞ ·GðsÞ�−1; ð13Þ

such that the unitarized T matrix, cf. Eq. (6), can be written
as T ¼ D−1 · N. In general, the parameters c1 and c2 in
Eq. (12) can be complex, but due to the irrelevance of an
overall phase in the linear combination of Eq. (12), just one
of the two parameters needs to be complex. For definiteness,
we take c2 to be real in later numerical discussions and treat
c1 as complex, if necessary. Note that in Refs. [16,45] it is
found that two real parameters are enough to reproduce the
event distribution.4

In addition, we also include the experimental γγ → πη
cross section from Ref. [30] in our analyses. Clearly, the
strong πη final-state interaction plays the most important
role in the γγ → πη reaction around the a0ð980Þ resonance
region. Based on this argument, we use a similar expression

3Except those from the channels with heavier thresholds.

4Comparing with the formula in Refs. [16,45], we use a
slightly different parametrization to fit the πη event distribution in
this work.
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to Eq. (12) to fit the πη cross section, with different
parameters c01 and c02, which mimic the πη production
mechanism in diphoton annihilation. The explicit formula
to fit the γγ → πη cross section reads

σðsÞ ¼ α2qπη
2s3=2

jc01D−1ðsÞπη→πη þ c02D
−1ðsÞπη→KK̄j2; ð14Þ

with α the fine-structure constant. Analogously to Eq. (12),
just one of the parameters c01 and c

0
2 in Eq. (14) needs to be

complex. We fix c02 as a real parameter and treat c01 as
complex if required to improve the fit quality.
The phase shift and inelasticity can be easily read off

from the S matrix, which in our convention is related to the
unitarized scattering amplitude T of Eq. (6) through

S ¼ 1þ 2i
ffiffiffiffiffiffiffiffiffi
ρðsÞ

p
· T ðsÞ ·

ffiffiffiffiffiffiffiffiffi
ρðsÞ

p
; ð15Þ

with ρðsÞ ¼ σðsÞ=ð16πsÞ. The phase shifts δkk and δkl and
inelasticities εkk and εkl, with k ≠ l, are then given by

Skk ¼ εkke2iδkk ; Skl ¼ iεkleiδkl : ð16Þ

B. Uð3Þ χPT in a finite volume

Although the experimental πη event distribution [29]
and the γγ → πη cross section [30] can provide some hints
on the strong πη interactions, both of them are complicated
by the complex production mechanisms and cannot provide
direct πη scattering information. In fact, direct experimental
measurements on the πη scattering, such as the phase shifts
and inelasticities, are still absent. This is one of the key
obstacles that prevents a precise determination of the
a0ð980Þ properties.
Recently, the first calculation of πη scattering, including

the KK̄ and πη0 coupled channels, has been carried out in
lattice QCD [17]. The simulations are done with three
different lattice volumes, but only one large pion mass
(mπ ∼ 391 MeV) is used. By performing the analysis in
many moving frames, a large number of discrete energy
levels in three volumes are obtained. The rich spectra in a
finite box contain direct information on the πη scattering. In
Ref. [17], a large number of different K-matrix para-
metrizations are used to extract the phase shifts and
inelasticities from the various finite-volume energy levels.
In this work, we propose to use another framework, the
unitarized Uð3Þ χPT, to reanalyze the discrete spectra.
In order to use this approach to describe the lattice energy

levels, we first need to include the finite-volume effects in
unitarized Uð3Þ χPT. Generally speaking, there are two
different kinds of volume dependence of the scattering
amplitudes. First, there are the contributions which are
exponentially suppressed ∝ expð−mPLÞ, where mP is the
mass of the lightest particle in the problem at hand and L
denotes the size of the box. Second, if the energy is above

threshold, there are contributions that are only power sup-
pressed ∝ 1=L3 and behave irregularly. It can be demon-
strated (see, e.g., Refs. [46,47]) that only the s-channel
contributions can lead to the power-law corrections, while
the crossed channels give rise only to the exponentially
suppressed terms (there are exponentially suppressed
s-channel contributions as well). This indicates that the
power-suppressed contributions in the unitarized chiral
amplitude in Eq. (6) are generated solely by the modification
of the function GðsÞ, which incorporates the s-channel
unitarity cut. On the contrary, the function NðsÞ, which
contains the crossed-channel contributions by construction,
contributes to the exponentially suppressed volume depend-
ences only. In the present work, we include the important
finite-volume effects through the functionGðsÞ in Eq. (6) and
neglect the exponentially suppressed volume dependence of
theNðsÞ function. The same prescription has been used in the
previous studies within the same framework [25–27,48–55].
Furthermore, wewould like to comment on the relation of

unitarized χPT in a finite volumewith the Lüscher approach
[18]. In fact, these two approaches are quite similar since, as
can be easily shown, the finite-volume modification of the
function GðsÞ can be expressed through the Lüscher zeta
function up to the exponentially suppressed contributions
[25]. Thus, the only difference with the Lüscher approach
amounts to the use of the different K-matrix parametriza-
tions in the infinite volume: In the unitarized χPT case one
effectively parameterizes the K matrix through the solution
of the coupled-channel equations, whereas simple algebraic
parametrizations were used in Refs. [17,20,21]. If L
becomes smaller, the exponentially suppressed terms
become important, and these two approaches are no longer
equivalent. However, we do not consider this case here.
Following the prescription in Ref. [25], the finite-

volume effects can be implemented in the two-point loop
function GðsÞ in Eq. (7) by replacing the continuous three-
momentum integral with the sum of allowed discrete
momenta in the finite box with periodic boundary con-
ditions. In order to perform the sum, it is convenient to
integrate out the zeroth component of the four-momentum
integral in Eq. (7). This gives

GðsÞcutoff ¼
Z j~qj<qmax d3~q

ð2πÞ3 Iðj~qjÞ; ð17Þ

where

Iðj~qjÞ ¼ w1 þ w2

2w1w2½E2 − ðw1 þ w2Þ2�
; ð18Þ

wi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~qj2 þm2

i

q
; s ¼ E2; ð19Þ

and the ultraviolet three-momentum cutoff qmax is intro-
duced to regularize the divergent integral. One could also
use other regularization methods to obtain finite results,
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such as the dimensional regularization, cf. Eq. (8), or
include different types of form factors [25]. We use sharp
cutoffs below. When calculating the function GðsÞ in a
finite box of length L with periodic boundary conditions,
one obtains

~G ¼ 1

L3

Xj~qj<qmax

~n

Iðj~qjÞ; ð20Þ

where a tilde on top of a symbol is introduced to denote the
quantities in the finite volume and

~q ¼ 2π

L
~n; ~n ∈ Z3: ð21Þ

The difference between the infinite- and finite-volume
functions can then be calculated through

ΔG ¼ ~G −Gcutoff

¼ 1

L3

Xj~qj<qmax

~n

Iðj~qjÞ −
Z j~qj<qmax d3~q

ð2πÞ3 Iðj~qjÞ: ð22Þ

Note that the finite-volume correctionΔG is independent of
the cutoff qmax in the limit L → ∞ due to the cancellation
of the cutoff dependences in the two terms in this equation,
as explicitly demonstrated in Ref. [25]. In the practical
calculation, we have explicitly verified that the cutoff
dependence of ΔG is indeed quite small. In general, taking
qmax ¼ 2π

L nmax and L around 2 fm (mπL ∼ 4), the change of
ΔG for the πη channel is typically smaller than one percent
when increasing nmax from 20 to 30.
One can then add the finite-volume correction ΔG to

the infinite-volume result GDR in Eq. (8) to get the final
expression of the G function used in our study,

~GDR ¼ GDR þ ΔG: ð23Þ

This is the prescription followed in Ref. [55]. The expres-
sion ~GDR evaluated in the finite box should always be real
in the whole energy region, which is guaranteed in Eq. (23)
due to the cancellation of the imaginary parts in GDR and
the cutoff integral in ΔG above threshold.
The two-point loop functionGðsÞ in Eq. (7) is manifestly

Lorentz invariant in the infinite volume. However, this is
not the case for the finite-volume situation, where the
Lorentz invariance is lost. One then needs to work out
the explicit form of the loop function, when boosting from
one frame to another. This issue has been addressed in
Refs. [26,56,57], and we briefly recapitulate the main
results in order to introduce the necessary notations.
In the CM frame of the two particles, one has ~q�1 ¼ −~q�2,

where we follow the convention that any quantity defined
in the CM frame is marked with an asterisk. Now let us
consider the two-particle system in a moving frame with

total four-momentum Pμ ¼ ðP0; ~PÞ. The square of the
CM energy of the two-particle system is then given by

s ¼ E2 ¼ ðP0Þ2 − j~Pj2. The three-momenta of the two
particles in the moving frame are ~q1 and ~q2 ¼ ~P − ~q1.
Boosting to the CM frame, i.e., transforming ~qi¼1;2 to
~q�i¼1;2, one straightforwardly obtains

~q�i ¼ ~qi þ
��

P0

E
− 1

�
~qi · ~P

j~Pj2
−
q0i
E

�
~P: ð24Þ

Furthermore, following Ref. [26], we notice that one is free
to impose the on-shell relation between energy and three-
momentum: q�0i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~q�i j2 þm2

i

p
. We also mention that

this is equivalent to enforcing the on-shell condition for
q0i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~qij2 þm2

i

p
, which automatically leads to the on-

shell condition for q�0i through the following Lorentz
transformation:

q0i ¼
q�0i Eþ ~qi · ~P

P0
: ð25Þ

In order to establish the relation of the functions GðsÞ in
the moving and CM frames, one needs to calculate the
Jacobian of the transformation from d3~q�i to d3~qi. In this
respect, it is convenient to rewrite Eq. (24), substituting
Eq. (25). This gives

~q�i ¼ ~qi þ
��

E
P0

− 1

�
~qi · ~P

j~Pj2
−
q�0i
P0

�
~P; ð26Þ

where according to the on-shell condition for q�0i¼1;2,
one has

q�01 ¼ E2 þm2
1 −m2

2

2E
; q�02 ¼ E2 þm2

2 −m2
1

2E
: ð27Þ

Using Eq. (26) it is straightforward to obtain the JacobianZ
d3~q�1 ¼

E
P0

Z
d3~q1: ð28Þ

Then, the integral can be discretized through the following
substitution:

Z j~q1j�<qmax d3~q�1
ð2πÞ3Iðj~q

�
1jÞ⇒ ~GMV¼ E

P0L3

Xj~q�
1
j<qmax

~q1

Iðj~q�1ð~q1ÞjÞ;

ð29Þ

with

~q1 ¼
2π

L
~n; ~n ∈ Z3; ð30Þ
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~P ¼ 2π

L
~N; ~N ∈ Z3: ð31Þ

Note that the CM three-momentum of the two-particle
system ~P in the finite box should only take the discrete
values shown in Eq. (31) in order to impose the condition
~q1 þ ~q2 ¼ ~P. The final G function, after taking into
account the finite-volume corrections in the moving frame,
takes the form

~GDR;MV ¼ GDR þ ΔGMV; ð32Þ
where

ΔGMV ¼ ~GMV −Gcutoff ; ð33Þ
withGDR; Gcutoff , and ~GMV given in Eqs. (8), (17), and (29),
respectively.
Before ending this section, we briefly comment on the

partial wavemixing effects for a nonvanishing total momen-
tum ~P in the finite box. A noticeable difference between
~P ¼ 0 (CM frame) and ~P ≠ 0 (moving frame) is that, in the
former case, the S wave can mix with the G wave only (the
effect of such a mixing is presumed to be tiny), whereas in
the latter case, there are more mixing patterns: Even the
mixing of the S andPwaves can not be excluded, in general.
Themixing terms between different partial waves could give
some visible effects for some specific channels, such as the
πK S- and P-wave scattering, while in some other cases the
mixing effects are tiny, such as the ππS- and D-wave
scattering [26]. Due to the fact that the isospin for the
P-wave ππ is 1 and the isospin for S-wave ππ is 0 or 2, there
is no mixing between ππS- and P-wave amplitudes.
The situation in πηð0Þ and KK̄ scattering is more subtle.

The G parity of πηð0Þ scattering is definite and negative.
There is no P-wave or higher odd waves in KK̄ scattering
with negative G parity. Only even-wave KK̄ scattering,
such as S and D waves, can have negative G parity. For the
P-wave πηð0Þ scattering, one has the JPC ¼ 1−þ exotic
quantum numbers, and therefore one does not expect any
strong interactions in the low energy region.5 As for the
D-wave πηð0Þ scattering, it only starts to become important
around the a2ð1320Þ region, and it shows very little impact
near the KK̄ threshold, which is explicitly verified in the
lattice simulations in Ref. [17]. Based on these arguments,
it seems quite plausible that the mixing effects between the
higher partial waves and the S wave in πη, KK̄, and πη0
scattering are small. Therefore, in the present study we
neglect the higher partial wave effects, which is explicitly
verified to be a good assumption in Ref. [17].
In summary the formulas that we use to determine the

lattice finite-volume energy levels are

det½I þ N1
0ðsÞ · ~GDR;MV� ¼ 0; ð34Þ

for the moving frames, and

det½I þ N1
0ðsÞ · ~GDR� ¼ 0; ð35Þ

for the CM frame. The matrix I in the previous two
equations denotes the 3 × 3 unit matrix, and ~GDR;MV and
~GDR should be understood as 3 × 3 diagonal matrices, with
their matrix elements calculated for the πη, KK̄, and πη0
channels.

III. GLOBAL FITS TO THE LATTICE ENERGY
LEVELS AND EXPERIMENTAL DATA

In this section, we discuss the global fits to the lattice
finite-volume energy levels and the experimental data,
including a πη event distribution [29] and the γγ → πη
cross section [30]. On the one hand, the lattice energy levels
contain the direct πη scattering information, but the
numerical simulations are done with a relatively heavy
pion mass around 391 MeV. On the other hand, the
experimental data encode the πη dynamics at physical
masses, but both the event distribution and cross section of
the diphoton fusion are affected by the complex production
mechanisms, which usually bring additional uncertainties
when extracting the direct πη scattering information.
Nonetheless, it is clear that the global fits to both kinds
of data from lattice and experiment impose stronger
constraints on the πη scattering amplitudes than the fit to
only one set of these data.
Concerning the lattice simulations, we focus on the

energy levels below the πη0 threshold, and the data points
considered in our fits are explicitly shown in Figs. 1 and 2.
This amounts to 47 data points which are provided by the
authors of Ref. [17] with the correlation information for
those obtained within the same lattice volume. The data
points considered in our work are exactly the same as those
fitted in the two-channel formalism by using the various
two-channel K-matrix parametrizations in Ref. [17]. For
the πη event distribution, there are 11 data points [29],
which are shown in Fig. 3. Note that the background parts
given in Ref. [29] are explicitly extracted when we fit the
event distribution. The γγ → πη cross section points [30]
are shown in Fig. 4, which amounts to 10 more data points.
The systematic error bands given in Ref. [30] are taken into
account in the fits.
For the fits to lattice energy levels, we take the masses for

π, K, η, and η0 from Ref. [17],

mπ ¼ 391.3� 0.7 MeV; mK ¼ 549.5� 0.5 MeV;

mη ¼ 587.2� 1.1 MeV; mη0 ¼ 929.8� 5.7 MeV:

ð36Þ
5It is also very unlikely that the possible exotic states π1ð1400Þ

and π1ð1600Þ [1] will have important impact around the KK̄
threshold region.
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FIG. 2. Fit results of the finite-volume energy levels for the ensembles 001A, 011A, and 111A at leading order. The lattice data are
taken from Ref. [17]. For notations, see Fig. 1.
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FIG. 1. Fit results of the finite-volume energy levels for the ensembles 000A and 002A at leading order. The lattice data are taken from
Ref. [17]. The square symbols represent the results from our best fit, and the shaded areas correspond to the 1σ uncertainties. The
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Fπ in Eq. (40).
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For the fits to experimental data the values of the masses are
the same as in Ref. [16],

mπ ¼ 137.3 MeV; mK ¼ 495.6 MeV;

mη ¼ 547.9 MeV; mη0 ¼ 957.7 MeV: ð37Þ
The η-η0 mixing angle in the flavor octet-singlet basis is

needed in our theoretical model, as can be seen from
Eq. (11). In order to calculate the LO η-η0 mixing angle
in Eq. (5), we first need to know the LO masses for the pion
and kaon, i.e., m̄π and m̄K . In the Appendix of Ref. [16], the
explicit formulas are provided to calculate these two
quantities, and we do not quote the expressions here.
Using the masses from the lattice simulations in Eq. (36),
the LO η-η0 mixing angle turns out to be

θ ¼ ð−10.0� 0.1Þ°; ð38Þ

which is in good agreement with the values given in
Refs. [58,59] and can be compared with the value θphys ¼
−16.2° at the physical masses [16]. Note that this mixing
angle has also recently been calculated by using different
lattice actions; see, e.g., Ref. [60].
Another important quantity that is needed in our calcu-

lation, as can be seen in Eq. (11), is the pion decay constant
Fπ . Its value at the specific masses of Eq. (36) is not
reported in Ref. [17]. Therefore, we need to estimate Fπ at
the unphysical masses within our approach. The one-loop
Uð3Þ χPT result is already given in Ref. [16], which reads

Fπ ¼ F

�
1 −

1

16π2F2

�
m2

π ln
m2

π

μ2
þm2

K

2
ln
m2

K

μ2

�

þ
�
4~cd ~cmðm2

π þ 2m2
KÞ

F2M2
S1

−
8cdcmðm2

K −m2
πÞ

3F2M2
S8

��
: ð39Þ

In this equation, ~cm;d and cm;d are the couplings of the
SUð3Þ singlet and octet bare scalar resonances with masses
MS1 and MS8 , which were introduced at the Lagrangian
level. We take their values as determined in Ref. [16].
We point out that up to one-loop level precision, there is

an ambiguity in choosing the pion decay constant appear-
ing inside the curly brackets on the right-hand side (rhs) of
Eq. (39). For example, one can also use the renormalized
Fπ inside the curly brackets in this equation, since for a
one-loop calculation the difference is of higher order. In
order to conveniently deal with this ambiguity, we impose
two extra conditions to determine the expression for Fπ.
The first condition is that one should recover the physical
value of Fπ ¼ 92.4 MeV when using the physical pion and
kaon masses with a proper value of F. The other condition
is that, in the meantime, we require that our extrapolation
formula for Fπ reproduces other existing lattice simulation
results [61–64], which were analyzed in Ref. [65] in a chiral
framework, when using the specific masses in Eq. (36).
Guided by these requirements, we find that when substitut-
ing F ¼ 77.0 MeV in Eq. (39), we get the correct value for
Fπ with physical pion and kaon masses, while taking the
masses in Eq. (36) leads to Fπ ¼ 105.9 MeV, a value that is
reasonably close to other lattice simulation results [61–64].
Therefore, we take Fπ ¼ 105.9 MeV as the central value in
our fits to the lattice energy levels of Ref. [17].
However, in order to make a further test about the

influence of using different Fπ extrapolation forms on the
extracted energy levels, we also replace F inside the curly
brackets in Eq. (39) with the physical value of Fπ . In this
case we find that with F ¼ 81.1 MeV, the rhs of Eq. (39)
leads to Fπ ¼ 92.4 MeV at physical pion and kaon masses,
and then it predicts Fπ ¼ 102.3 MeV with the masses in
Eq. (36). We consider the differences of Fπ obtained with
the two different extrapolation forms as an additional
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source of uncertainty in our study, which can be treated as a
systematic error. In summary, at the masses given in
Eq. (36), we use

Fπ ¼ 105.9� 3.6 MeV ð40Þ

to extract the finite-volume energy levels. Comparing with
the lattice results given in Refs. [61–64], we may conclude
that our estimate of the error in Fπ , Eq. (40), is quite
conservative. When fitting to experimental data, we always
fix Fπ at its physical value.

A. Leading-order fit

In this part we present the LO fit results. The N1
0ðsÞ

matrix function in Eq. (10) is simply given by the LO
T1
0ðsÞð2Þ in Eq. (11). At this order the only unknown

parameters in the unitarized chiral amplitudes are the three
subtraction constants aπη; aKK̄ , and aπη0 . The fits turn out to
be rather insensitive to the value of aπη0 (a feature that is
also seen in the NLO fits discussed in the next section).
Therefore, we will always fix its value to be equal to aKK̄ ,
both in the LO and NLO fits. Furthermore, in the LO fit we
find that just one common subtraction constant for the three
channels is already enough to obtain a good fit. Leaving
the value for aKK̄ free barely improves the fit quality.
Therefore, we impose aπη ¼ aKK̄ ¼ aπη0 for this case. As
discussed in Sec. II A we need to include additional
parameters in order to describe a πη event distribution
and the γγ → πη cross section, cf. Eqs. (12) and (14). For
the πη event distribution, two real parameters c1 and c2 are
found to be enough to reproduce the data well. For the
γγ → πη cross section, we find that just one real parameter
c02 alone is able to give a reasonable description of the
experimental data, and we take c01 ¼ 0.
The LO fit gives a reasonable description of the overall

data, with a χ2=d:o:f: ¼ 104.5=ð68 − 4Þ≃ 1.69. The chi
square contributed by the 47 lattice energy levels is 90.2,
and the chi square from the 21 experimental data is 14.3.
Note that the correlation information among the lattice
energy levels within the same volume [17] is considered in
our fit. The value of the subtraction constant from this fit is

aπη ¼ −1.44� 0.15� 0.01: ð41Þ

The values for the phenomenologically motivated param-
eters c1, c2, and c02 are c1¼0.44�0.14�0.00MeV−1, c2¼
−0.27�0.11�0.00MeV−1, and c02¼2.18�0.36�0.02.
The first error bar of each parameter corresponds to the
statistical one, and the second one is caused by the
uncertainties of the unphysical masses in Eq. (36). Note
that when using Eq. (14) to fit the γγ → πη cross section,
we have introduced the proper normalization factor to
transform the unit MeV−2 to nanobarn. The statistical error
bars of the parameters aπη, c1, c2, and c02 are calculated in

the following way. We randomly vary the parameters
around their central values from the best fit, recalculate
the corresponding new chi square, and then only keep the
ones that give χ2 ≤ χ20 þ

ffiffiffiffiffiffiffi
2χ20

p
(with χ20 the chi-square

value from the best fit), i.e., those within the 1σ standard
deviation. In order to estimate the influences on the
parameters from the uncertainties of the unphysical masses
in Eq. (36), we have performed a large number of fits by
randomly varying the masses within uncertainties. It turns
out that the variances of the central values of the fitted
parameters are one order smaller than the statistical error
bars and hence negligible. With those parameter configu-
rations within 1σ uncertainty, we also calculate the error
bands of the other quantities, including the finite-volume
energy levels, event distribution, cross section, phase shifts,
inelasticities, pole positions, and corresponding residues.
The reproduction of the lattice energy levels is shown in

Figs. 1 and 2, where the square symbols stand for the
results from our best fit and the shaded areas correspond to
the 1σ error bands. The upwards and downwards triangle
symbols denote the results calculated for the upper and
lower limits of Fπ in Eq. (40). The fit results for the πη
event distribution and γγ → πη cross section are given in
Figs. 3 and 4, respectively. The LO best fits are plotted in
blue by the dotted lines, and their hatched surrounding
areas present the 1σ uncertainties as explained before.
It is interesting to discuss two different variants of LO

fits. In one case, we study the influences of using different
pNGB decay constants in the scattering amplitudes in
Eq. (11). Although distinguishing different pNGB decay
constants is beyond the LO accuracy, it may cause a visible
effect when performing the chiral extrapolation. Here we do
a tentative study of this effect by only distinguishing
the kaon decay constant FK from the others, due to the
prominent KK̄ threshold enhancement around the a0ð980Þ
energy region. To be more specific, we replace one Fπ in
the πη → KK̄,KK̄ → πη0 amplitudes in Eq. (11) by FK and
replace F2

π in KK̄ → KK̄ by F2
K. At the physical mass, FK

is set to 110.1 MeV [1], and when taking the unphysical
masses in Eq. (36), FK is fixed to 115.0 MeV, a value
consistent with the previous lattice determinations [61–64].
We mention that using a somewhat different value for FK at
the unphysical meson masses only moderately changes our
discussion below, since its effect can be compensated by
slightly adjusting the subtraction constants. The resulting
parameters from the fit are aπη ¼ −1.73� 0.16, c1 ¼
0.31� 0.14, c2 ¼ −0.32� 0.11, and c01 ¼ 2.13� 0.36,
with χ2=d:o:f: ¼ 107.1=ð68 − 4Þ. Even though the subtrac-
tion constant is decreased by about 20% due to the
replacement of Fπ by FK in the amplitudes involving kaon,
we will show in Secs. IV and V that the fits using different
meson decay constants lead to qualitatively similar phase
shifts and inelasticities to the case with a common Fπ in all
amplitudes. In the other case, we perform the fit by only
including the lattice energy levels. The resulting parameter
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turns out to be aπη¼−1.49�0.20, with χ2=d:o:f:¼89.3=
ð47−1Þ. The value obtained here is perfectly compatible
with the result in Eq. (41) from the global fit by simulta-
neously including both the lattice and experimental data. In
other words, the LO expression can give a consistent
descriptions of both the lattice data with large unphysical
masses and the experimental data with physical masses.

B. Next-to-leading-order fit

As demonstrated in the previous section and also in
many earlier papers [4,6,7,66,67], the LO unitarized chiral
amplitudes can already reasonably describe the various πη
reactions around the KK̄ threshold energy region. As a
result, it is reasonable to require that including the higher
order effects in the unitarized amplitudes should not spoil
the LO results. Therefore, as a first step to perform the NLO
fits, we impose the condition that the NLO unitarized chiral
amplitudes stay close to the LO results within a 20%
uncertainty around the KK̄ threshold. This condition—in
addition to fitting the lattice energy levels, πη event
distribution, and the γγ → πη cross section—stabilizes
the fit, given the numerous free parameters. After obtaining
good fits, we finally release the closeness condition of the
LO and NLO amplitudes. We find that in this way the fit is
stable, and the final NLO amplitudes still qualitatively
resemble the LO ones.
There are more parameters in the NLO unitarized chiral

amplitudes than in the LO ones. We fit the three subtraction
constants aπη; aKK̄, and aπη0 , which appear in the πη, KK̄,
and πη0 channels. The other parameters are already well
determined in Ref. [16], and we take the values therein. At
NLO, we find that it is impossible to obtain a good fit with
just one subtraction constant. Both aπη and aKK̄ are fitted in
this case, while the fits are quite insensitive to aπη0 ; thus, we
simply fix its value to the one of aKK̄ . For the additional
parameters mimicking the πη production mechanisms in
Eqs. (12) and (14), it turns out that with real c1 and c2 we
are able to give a good description of the event distribution,
and with c02 alone, one can reasonably reproduce the cross
section. We verify that freeing the parameter c01 barely
changes the fit quality. Therefore, we fix c01 ¼ 0 as in the
LO case.
The best NLO fit gives χ2=d:o:f: ¼ 105.4=ð68 − 5Þ≃

1.67, among which 72.7 is contributed by the lattice energy
levels. The values of the two subtraction constants are

aπη ¼ 0.56� 0.90� 0.05;

aKK̄ ¼ −1.62� 0.33� 0.02: ð42Þ
Note that within errors the present determination of the
subtraction constant aπη agrees with the value in Ref. [16],
which gives aπη ≃ 2� 3. The subtraction constant aKK̄ in
IJ ¼ 10 scattering in Ref. [16] was simply taken from the
IJ ¼ 00 ππ scattering: aKK̄ ≃ −1.15� 0.1, by invoking
SUð3Þ symmetry. The values for the parameters related to

the πη production are c1 ¼ 0.48� 0.16� 0.01 MeV−1,
c2 ¼ −0.34� 0.10� 0.00 MeV−1, and c02 ¼ 2.22�0.50�
0.01. The first error bar of each parameter is statistical,
and the second one is given by the uncertainties of the
unphysical masses in Eq. (36). The error bars of the
parameters are calculated in the same way as explained
in the LO case. The values of the parameters involved in the
πη production reactions turn out to be rather similar to their
LO values, indicating that the D functions in Eq. (12) for
both fits corresponding to the a0ð980Þ are not very differ-
ent. It is worth pointing out that we have tried to fit only the
lattice energy levels with the NLO unitarized amplitudes.
Though the χ2 from the lattice energy levels in this case
decreases around 10 compared with the corresponding value
from the global fit, the resulting NLO amplitudes turn out to
be rather different from the LO ones, and they give unsat-
isfactory descriptions of the experimental πη event distribu-
tion data within the simple formalism in Eq. (12), even with
the complex c1 parameter. Moreover, the well-established
a0ð1450Þ resonance, which is explicitly introduced in the
NLO amplitude, is also strongly distorted, i.e., far away from
its PDG value [1], which hints that the NLO fit to only lattice
energy levels does not seem to correspond to the real physical
solution. Therefore, we refrain from discussing this fit further
and focus on the global fit by simultaneously including the
lattice and the experimental data. In this respect, we argue that
the lattice energy levelswith smaller pionmasses can be quite
useful to further constrain the NLO amplitudes. This is
because, unlike the description of the complicated πη
production, no additional theoretical uncertainties will be
introduced to study the lattice energy levels, as they are purely
determined by the πη scattering.
The NLO fit results for the lattice energy levels are given

in Figs. 5 and 6. The reproduction of the πη event
distribution and γγ → πη cross section is shown in
Figs. 3 and 4, respectively, together with the LO results.
The meaning of the symbols used in the LO figures is kept
for the NLO ones. Though the overall reproduction of the
lattice energy levels and experimental data is quite similar
for the LO and NLO fits, the latter gives a slightly better
description of the 47 lattice energy levels with χ2 ¼ 72.7
than the former case with χ2 ¼ 90.2. The LO fit yields
better results for the πη event distribution and the γγ → πη
cross section. In other words, the NLO unitarized amplitude
seems to work better for the πη dynamics at large
unphysical masses, while the LO amplitude seems more
efficient to reproduce the experimental peaks around the
a0ð980Þ region. Nevertheless, this statement should be
taken with a grain of salt because many parameters in the
NLO amplitudes are determined from other processes in
Ref. [16], and they can not be solely fixed by the current
available data from πη scattering. A more refined theoreti-
cal model to describe complicated πη production mecha-
nisms to fit experimental data might also be useful to
further discern the two amplitudes.
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IV. PHASE SHIFTS, INELASTICITIES, AND POLES
AT UNPHYSICAL MASSES

After fixing the parameters in the unitarized chiral
amplitudes, we calculate the phase shifts, inelasticities,
resonance poles, and their residues with the unphysical

masses used in Ref. [17]. In Fig. 7, we give our LO
predictions for the πη scattering phase shifts and inelas-
ticities. We observe two different kinds of solutions for the
phase shifts within 1σ uncertainty. Both of them show a
clear kink structure at the KK̄ threshold. On the one hand,
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for the first set of solutions we see that the phase shifts
show a steep increase around 1.2 GeV and are always
positive. We explicitly verify that this solution corresponds
to the situation when aπη < −1.41. Our best fit and the

result with a lower limit of Fπ in Eq. (40), shown with red
solid and black dashed lines in Fig. 7, respectively, belong
to this kind of solution. On the other hand, in the second
case when aπη > −1.41 the phase shifts exhibit mild and
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continuous changes with increasing energies and become
negative in the energy region above 1.2 GeV. The result
obtained with the upper limit of Fπ in Eq. (40) is similar to
the second case. It is also interesting to note that the phase
shifts obtained in the lattice analyses in Ref. [17] are similar
to our second type of solution, i.e., to the lower branch
shown in the left panel of Fig. 7. In the right panel, we give
the inelasticity of the πη scattering. Below the KK̄ thresh-
old, the inelasticity is equal to 1, as it should be. At the KK̄
threshold, the inelasticity suddenly decreases to almost zero
and gradually increases when the energy becomes larger.
As shown in Fig. 7, the inelasticities show a qualitatively
similar behavior within 1σ uncertainty and with different
extrapolation forms of Fπ . On physical grounds, both types
of solutions for the phase shifts are indeed very similar
since above 1.2 GeV both results for the πη phase shifts
only differ by 180 degrees. Although in the energy region
between the KK̄ threshold and 1.2 GeV the phase shifts
show large uncertainties, the inelasticity in this region is
almost zero. In order to clearly demonstrate the similarity of
the underlying dynamics between these two different
branches of phase shifts in Fig. 7, we give the S matrix
for the πη → πη scattering in Fig. 8. This also indicates that
the πη → KK̄ scattering plays a more important role in this
specific energy range. In Fig. 9, we show the LO phase
shifts (left panel) and inelasticities (right panel) for the
πη → KK̄ scattering with blue dashed lines. Note that, as
expected, this transition amplitude just varies slightly
within the 1σ region. It is worth pointing out that around

the KK̄ threshold, the πη phase shifts are also found to be
quite sensitive to the small variation of parameters in
Ref. [17], but the scattering amplitudes are stable.
Our NLO predictions for the πη scattering phase shifts

and inelasticities calculated at the unphysical masses of
Eq. (36) are shown in Fig. 10. Similarly to the LO case, two
different kinds of solutions for the phase shifts within 1σ
uncertainty are found. The first set of fits for the phase
shifts shows a steep increase around 1170 MeV and are
always positive. The result with the lower limit of Fπ in
Eq. (40), shown by the black dashed line in Fig. 10, belongs
to this kind of solution. Most of the parameter configura-
tions of the NLO fits lead to the second type of solution:
The phase shifts exhibit mild and continuous changes with
increasing energies and become negative in the energy
region above 1170 MeVor so. The result obtained with the
upper limit of Fπ in Eq. (40) belongs to the second type of
solution. The inelasticities of the πη scattering are given in
the right panel of Fig. 10. The NLO inelasticities show a
different behavior compared to the LO ones above the
1.3 GeV region. There is a rapid increase in the NLO case
around 1.4 GeV. The reason behind this behavior is that in
the NLO amplitude the a0ð1450Þ resonance is explicitly
included, while only the lowest order contact meson-meson
interactions are incorporated at LO and the a0ð1450Þ can
not be generated in this case. Similar to the LO situation,
the phase shifts above 1.2 GeV only differ by 180 degrees
but show large uncertainties in the energy range between
the KK̄ threshold and 1.2 GeV. However, these large
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uncertainties do not matter since the inelasticities are very
small in the same region. This statement can be clearly seen
in Fig. 11, where the real and imaginary parts of the S
matrix for πη → πη scattering at NLO are displayed. Then
the physics is dominated by the πη → KK̄ scattering in this
region. The NLO phase shifts and inelasticities for πη →

KK̄ scattering, together with the LO results, are given in
Fig. 9. One can clearly see that the LO and NLO phase
shifts and inelasticities for πη → KK̄ scattering are quite
similar in the range from the KK̄ threshold up to around
1.3 GeV, somewhat before the effects of the a0ð1450Þ
resonance become dominant.
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A unique way to characterize a resonance is to look for
the corresponding poles in the complex energy plane. This
is also the only model-independent method. In our frame-
work, one can extrapolate to the complex energy plane by
modifying the infinite-volume G function in Eq. (8). Three
two-body thresholds, i.e., πη; KK̄, and πη0, introduce 23

RS’s in the complex plane. TheG function for each channel
has two RS’s, and the expression in Eq. (8) corresponds to
the first RS. Its expression on the second RS takes the form

GðsÞDRII ðsÞ ¼ GðsÞDR þ i
σðsÞ
8πs

; ð43Þ

with GðsÞDR and σðsÞ defined in Eqs. (8) and (9),
respectively.6 Changing from the first RS to the second
one implies reversing the sign of the imaginary part of the
G function along the real s axis above threshold.
We denote the physical or first RS by ðþ;þ;þÞ, where

the plus sign in each entry indicates that the G function is
evaluated in the physical RS at πη; KK̄, and πη0 thresholds,
in order. The second, third, fourth, and fifth RS’s are
labeled as ð−;þ;þÞ, ð−;−;þÞ, ðþ;−;þÞ, and ð−;−;−Þ,
respectively, with the minus sign indicating that the G
function for this channel is evaluated in its second RS,
cf. Eq. (43). The same convention has also been used in
Refs. [16,17], making the comparison between different
approaches straightforward. In addition to the pole posi-
tions, we also calculate the residues for the three different
channels, which characterize the couplings of the poles to
the different channels.
Both for the LO andNLO cases, we find one relevant pole

near theKK̄ threshold, which is located either on the second
or fourth sheet within 1σ uncertainty. In fact, we find that the
poles in the second sheet correspond to the parameter
configurations that lead to the upper branch of phase shifts
in Figs. 7 and 10, whereas the poles in the fourth sheet
correspond to the parameters that give the lower branch of
the phase shifts in Figs. 7 and 10. The relations between the

transition of pole locations and the different behaviors of
phase shifts are also noticed in Ref. [17]. The explicit values
of the pole positions, together with their residues, are given
in Table I. Notice that the central values of parameters of the
LO and NLO fits lead to the a0ð980Þ poles on the second
and fourth sheets, respectively. At NLO, the poles around
theKK̄ threshold are quite similar to those at LO, though the
masses of both the second- and fourth-sheet poles in the
NLO amplitude are about 20 MeV below the LO ones. We
also note that the couplings to the πη0 channel for the poles
around the KK̄ threshold in both LO and NLO cases are
small, implying a marginal role of this channel when
determining the a0ð980Þ state. Let us note that no pole
for the a0ð980Þ in Table I lies in the unphysical RS that
matches the physical RS above theKK̄ threshold, so only the
low-energy tail of the pole in the second RS is directly
realized on the real energy axis below this threshold. One
obvious difference between the LO and NLO amplitudes is
that the latter contains a resonance pole located at around
1420 MeV in the fifth RS, corresponding to the a0ð1450Þ,
which is absent in theLOcase. Theπη0 channel is found to be
important for the heavy a0ð1450Þ resonance, since the
coupling to the πη0 channel is even larger than the coupling
to the πη one for this resonance, as shown in Table I.
Next we make a brief comparison with the pole content

in Ref. [17]. Around the KK̄ threshold region, one fourth-
sheet pole is found, with mass 1177� 27 MeV and width
49� 33 MeV. The error bars were obtained by averaging
many different types of parametrizations in Ref. [17]. In our
case the a0ð980Þ pole can be either on the second or fourth
sheet within 1σ uncertainty. The pole content resulting from
the global fits, by including both the lattice and exper-
imental data, is summarized in Table I. In order to make a
more clear comparison with Ref. [17], we also give the pole
content from the LO fit by only including the 47 lattice
energy levels. Again, the pole can be located either on the
second or the fourth sheet within 1σ uncertainty. The mass
and width on the second sheet are 1170þ12

−26 MeV and
16þ34

−16 MeV, respectively. The central value of the mass and
width of the second sheet pole simply corresponds to taking

TABLE I. Pole positions and the corresponding residues when the masses of pNGBs are taken at their lattice values in Eq. (36). The
thresholds of πη, KK̄, and πη0 are 978.5, 1099, and 1321.1 MeV, respectively. We point out that there is only one pole around the KK̄
threshold for each parameter configuration. Nevertheless, within 1σ uncertainty different parameter configurations can either give a pole
on the second sheet or the fourth sheet. See the text for details.

Resonance RS Mass (MeV) Width=2 (MeV) jResiduej1=2πη (GeV) Ratios

LO
a0ð980Þ II 1178þ4

−20 3þ13
−3 5.6þ0.1

−1.6 1.23þ0.04
−0.01 (KK̄=πη) 0.18þ0.02

−0.01 (πη0=πη)
a0ð980Þ IV 1189þ15

−6 4þ9
−4 5.8þ0.3

−1.5 1.21þ0.01
−0.03 (KK̄=πη) 0.16þ0.01

−0.02 (πη0=πη)
NLO
a0ð980Þ II 1160þ14

−10 2þ5
−2 3.6þ0.9

−0.5 1.29þ0.04
−0.03 (KK̄=πη) 0.19þ0.00

−0.01 (πη0=πη)
a0ð980Þ IV 1169þ26

−13 4þ16
−4 4.4þ1.4

−1.0 1.25þ0.04
−0.05 (KK̄=πη) 0.19þ0.01

−0.01 (πη0=πη)
a0ð1450Þ V 1418þ13

−15 54þ70
−18 1.0þ0.8

−0.1 2.9þ1.2
−0.9 (KK̄=πη) 1.8þ0.3

−0.6 (πη0=πη)

6In the complex s plane, σðsÞ has to be calculated such that
ImσðsÞ > 0.
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the central value of the subtraction constant from this fit. For
the mass and width of the fourth-sheet pole, we take the
median numbers as their central values. Then the mass and
width of the pole on the fourth sheet are 1192þ11

−10 and
12þ12

−12 MeV. Similar rules are also applied to other numbers
in Tables I and II. As pointed out in Ref. [17], the lower half-
plane of the second sheet is continuously connected to the
upper half of the fourth sheet,which indicates that the nearby
pole in the second or fourth sheet in fact represents quite
similar physics. In Fig. 8 we further confirm this conclusion:
The Smatrix exhibits continuous changes within uncertain-
ties, though different sheets of poles are found.
Within uncertainties either a fourth-sheet virtual pole

ranging from 971 to 978 MeV near the πη threshold or a
third-sheet virtual pole ranging from 975 to 978 MeV is
found for the LO case, which confirms the result in
Ref. [17], giving 964� 62 MeV. However, at NLO we
find only a prominent bump around 976 MeV in the fourth
sheet, instead of a pole. The fourth- or third-sheet virtual

pole does not produce a prominent structure for the πη
scattering amplitude on the physical axis. Other poles that
are far away from the KK̄ threshold in the third sheet are
also found in Ref. [17] and in our case. Since these poles
are so far away from the energy region we are focusing on,
we do not discuss them any further.

V. PHASE SHIFTS, INELASTICITIES, AND POLES
AT THE PHYSICAL MASSES

Since Uð3Þ χPT is based on the chiral symmetry of
QCD, it provides a useful framework to perform the chiral
extrapolation from unphysically large pion masses to its
physical value. Therefore, in this section, we give the
predictions for the phase shifts, inelasticities, pole posi-
tions, and the residues for the πη scattering by taking the
physical masses for the π, K, η, and η0 mesons.
As in the previous section, we present the results for the

LO and NLO study separately. The LO predictions for the

TABLE II. Pole positions and the corresponding residues when the masses of the pNGBs are fixed at their physical values given in
Eq. (37). The thresholds of the πη, KK̄, and πη0 channels are 685.2, 991.2, and 1095 MeV, respectively.

Resonance RS Mass (MeV) Width=2 (MeV) jResiduej1=2πη (GeV) Ratios

LO
a0ð980Þ II 1037þ17

−14 44þ6
−9 3.8þ0.3

−0.2 1.43þ0.03
−0.03 (KK̄=πη) 0.05þ0.01

−0.01 (πη0=πη)
NLO
a0ð980Þ IV 1019þ22

−8 24þ57
−17 2.8þ1.4

−0.6 1.8þ0.1
−0.3 (KK̄=πη) 0.01þ0.06

−0.01 (πη0=πη)
a0ð1450Þ V 1397þ40

−27 62þ79
−8 1.7þ0.3

−0.4 1.4þ2.4
−0.6 (KK̄=πη) 0.9þ0.8

−0.2 (πη0=πη)
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πη phase shifts and inelasticities are shown in the left and
right panels of Fig. 12, respectively. The corresponding
predictions at NLO are given in Fig. 13. We observe very
different results by comparing the two figures. Unlike the
unphysical mass case, only one solution is found for LO.
Although one solution is found for NLO around the KK̄
threshold, two branches of phase shifts within 1σ uncer-
tainty appear at NLO in the energy region above around
1.4 GeV. To be more specific, we always observe a steep
increase around the KK̄ threshold for the LO πη phase
shifts, while the NLO phases continuously decrease above
the KK̄ threshold until the appearance of the a0ð1450Þ. In
the energy region around 1.4 GeV, we find large uncertain-
ties for theNLOphase shifts. However, the inelasticities turn
out to be quite small in the same energy range. Then the
situation here is similar to the discussions about large
unphysical meson masses around the 1.2 GeV region in
Figs. 7 and 10. Due to the inclusion of the a0ð1450Þ, more
complicated structures for the inelasticities appear at NLO
than at LO. We also give the phase shifts and inelasticities
from the πη → KK̄ scattering, both at LO and NLO,
evaluated with physical masses in Fig. 14. We point out
that the uncertainties given in Figs. 12–14 should be taken
with caution since only the statistical errors are included
here; the systematic errors caused by the theoretical uncer-
tainties and the chiral extrapolations are not considered.
One possible theoretical uncertainty is given by using
different pNGB decay constants in the scattering ampli-
tudes. We make an exploratory study about this effect. The
phase shifts and inelasticities with the replacement of Fπ by
FK in the amplitudes involving kaons are shown as green

dashed-dotted and dotted lines in Figs. 7 and 12, respec-
tively. Quantitatively, results similar to those from using a
common Fπ in all the amplitudes are observed.
The relevant pole positions for the a0ð980Þ and a0ð1450Þ

in the complex energy plane and the corresponding residues
are given in Table II. Only one second RS pole for the
a0ð980Þ is found in the LO case, while one pole located on
the fourth RS is found in the NLO amplitude. The a0ð980Þ
poles in both cases are clearly above the KK̄ threshold, and
they are found to be barely coupled to the πη0 channel.
Neither of them lies in the RS that matches with the
physical sheet in the energy interval between the KK̄ and
πη0 thresholds. But, while for the LO case the pole in the
second RS is directly accessible from the energy axis below
this threshold, this is not the case for the hidden fourth RS
pole in the NLO case. The most relevant pole for a0ð1450Þ
is located on the fifth RS since it lies above the πη0
threshold. The coupling strength of the a0ð1450Þ to the πη0
channel is found to be similar to the πη one and therefore
should be included when discussing this excited a0 state.
We mention that other redundant poles are also found in our
unitarized amplitudes, such as a third-sheet pole with mass
around 750 MeVand width around 100 MeV. However, the
redundant poles, which are usually located in the position
that is not directly connected to the physical RS, do not
show any visible effects on the physical axis. Therefore, we
refrain from discussing them any further.
Our current predictions for the πη phase shifts are

different from the recent study in Ref. [14]. The reason
for this is not difficult to understand. In that work, two
specific pole positions for the a0ð980Þ in the second and
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third RS’s and one pole for the a0ð1450Þ in the third RS are
taken as external input to determine the phase shifts. In
other words, the phase shifts given in Ref. [14] are (at least
partially) determined a priori by the imposed pole positions
of the a0ð980Þ and a0ð1450Þ. This is clearly different from
our method since the pole positions in Table II are not
imposed beforehand. Instead, our pole content is determined
once the phenomenological and lattice inputs are success-
fully reproduced. Indeed, we do not find any third RS pole
for the a0ð980Þ in our study, while in Ref. [14] this kind of
pole is imposed to find the phase shifts. In our NLO study,
we do not find any second RS pole, and only one pole in the
fourth RS is found.With different pole content embedded in
the chiral amplitudes, it is not surprising to observe different
solutions for the phase shifts. The phase shifts and inelas-
ticities obtained here can provide important input for the
dispersive study of processes involving πη [68,69].

VI. SUMMARY AND CONCLUSIONS

In this work, we have analyzed very recent lattice finite-
volume energy levels in the rest and moving frames for πη
scattering, together with the experimental data on a πη
event distribution and the γγ → πη cross section. Three
coupled channels, πη, KK̄, and πη0, are considered in our
study. Both the leading and next-to-leading-order chiral
amplitudes are used in the analyses. The simultaneous fits
to the present lattice QCD finite-volume levels and the
experimental data can not distinguish between the leading
and next-to-leading-order scenarios, both of which lead to
quite similar fit qualities.

However, somewhat different πη scattering phase shifts
are obtained for the leading and next-to-leading-order cases,
when taking the heavy unphysical masses in Eq. (36). Two
branches of solutions for the πη phase shifts are foundwithin
uncertainties. Nevertheless, the two solutions of phase shifts
in fact give similar dynamics, when combined with the
inelasticities. The πη → KK̄ scattering phase shifts and
inelasticities are also provided. A pole in either the second
or the fourth Riemann sheet is found for the a0ð980Þwithin
1σ uncertainty, when using the heavy unphysical masses for
the π, K, η, and η0. Our determinations for the pole of the
a0ð980Þ are compatible with those in Ref. [17] within
uncertainties.
The most interesting predictions of this work are given in

Sec.V. The phase shifts and inelasticities of the πη → πη and
πη → KK̄ scattering, pole positions, and their residues are
calculated by taking the physical masses for the π, K, η,
and η0. Within the statistical uncertainties, only one set of
solutions of the πη phase shifts is found for the leading-order
case. Although one set of solutions of the πη phase shifts is
observed at next-to-leading order around the KK̄ threshold,
two branches of solutions are found above around 1.4 GeV.
For the leading-order scenario, the physical πη phase shifts
clearly show a steep increase around the KK̄ threshold.
However, the phase shifts at next-to-leading order decrease
continuously above this threshold until the appearance of the
a0ð1450Þ resonance. Though at next-to-leading order large
uncertainties for the πη phase shifts show up around
1.4 GeV, the inelasticities in the same region are quite
small. The different behaviors of phase shifts are also
reflected in the different pole contents. One pole slightly
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CHIRAL STUDY OF THE a0ð980Þ RESONANCE AND … PHYSICAL REVIEW D 95, 054004 (2017)

054004-19



above the KK̄ threshold is found in the second Riemann
sheet for the leading-order amplitude (so that its low-energy
tail directly influences the amplitudes on the energy axis
below the KK̄ threshold), while there is only one hidden
fourth-sheet pole in the next-to-leading-order case for the
a0ð980Þ. Due to the inclusion of the a0ð1450Þ in the next-to-
leading-order case, which is absent at leading order, the
inelasticities from the two orders show different behaviors
above around 1.1 GeV. The πη0 channel is found to be rather
weakly coupled to the a0ð980Þ at both heavy unphysical and
physical masses and hence plays a minor role for the
determination of the a0ð980Þ properties. The coupling
strength of the a0ð1450Þ to the πη0 channel is nearly as
large as the πη one.
To summarize, global fits of similar quality including

both experimental and lattice data are obtained, using
unitarized chiral perturbation theory with two input chiral
amplitudes, evaluated at leading and next-to-leading order.
The leading-order amplitude gives a better description of
the experimental πη data evaluated at physical masses, but
it gives slightly worse results for the lattice energy levels at
mπ ¼ 391 MeV. The situation for the next-to-leading-
order case is just the opposite. More importantly, the two
different amplitudes obviously lead to different πη phase
shifts for the physical masses. Unlike the πη experimental
data which include the complicated πη production mecha-
nisms, the lattice energy levels are solely determined by the
πη scattering information. It is therefore important to have
the finite-volume energy levels from the πη scattering with

lighter quark masses in order to discriminate between these
two different solutions.
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