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We give a detailed account of the phenomenology of all-order resummations of logarithmically
enhanced contributions at small momentum fraction of the observed hadron in semi-inclusive electron-
positron annihilation and the timelike scale evolution of parton-to-hadron fragmentation functions. The
formalism to perform resummations in Mellin moment space is briefly reviewed, and all relevant
expressions up to next-to-next-to-leading logarithmic order are derived, including their explicit dependence
on the factorization and renormalization scales. We discuss the details pertinent to a proper numerical
implementation of the resummed results comprising an iterative solution to the timelike evolution
equations, the matching to known fixed-order expressions, and the choice of the contour in the Mellin
inverse transformation. First extractions of parton-to-pion fragmentation functions from semi-inclusive
annihilation data are performed at different logarithmic orders of the resummations in order to estimate
their phenomenological relevance. To this end, we compare our results to corresponding fits up to fixed,
next-to-next-to-leading order accuracy and study the residual dependence on the factorization scale in each
case.
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I. INTRODUCTION AND MOTIVATION

Fragmentation functions (FFs) Dh
i ðz;Q2Þ are an integral

part of the theoretical framework describing hard-scattering
processes with an observed hadron in the final state in
perturbative QCD (pQCD) [1]. They parametrize in a
process-independent way the nonperturbative transition of
a parton with a particular flavor i into a hadron of type h and
depend on the fraction z of the parton’s longitudinal
momentum taken by the hadron and a large scaleQ inherent
to the process under consideration [2]. The prime example is
single-inclusive electron-positron annihilation (SIA),
e−eþ → hX, at some center-of-mass system (c.m.s.) energyffiffiffi
S

p ¼ Q, where X is some unidentified hadronic remnant.
Precise data on SIA [3–9], available at different

ffiffiffi
S

p
,

ranging from about 10 GeV up to the mass MZ of the Z
boson, reveal important experimental information on FFs
that is routinely used in theoretical extractions, i.e., fits of
FFs [10–15]. Processes other than SIA are required, how-
ever, to gather the information needed to fully disentangle
all the different FFs Dh

i for i ¼ u; ū; d; d̄;… quark and
antiquark flavors and the gluon. Specifically, data on semi-
inclusive deep-inelastic scattering (SIDIS), e�p→hX, and
the single-inclusive, high transverse momentum (pT)

production of hadrons in proton-proton collisions,
pp → hX, are utilized, which turn extractions of FFs into
global QCD analyses [10–13]. Most recently, a proper
theoretical framework in terms of FFs has been developed
for a novel class of processes, where a hadron is observed
inside a jet [16]. It is expected that corresponding data [17]
will soon be included in global analyses, where they will
provide additional constraints on, in particular, the gluon-
to-hadron FF.
The ever increasing precision of all these probes sensi-

tive to the hadronization of (anti)quarks and gluons has to
be matched by more and more refined theoretical calcu-
lations. One way of advancing QCD calculations is the
computation of higher order corrections in the strong
coupling αs. Here, next-to-leading order (NLO) results
are available throughout for all ingredients needed for a
global QCD analysis of FFs as outlined above. Specifically,
they comprise the partonic hard scattering cross sections for
inclusive hadron production in SIA [18,19], SIDIS [18–21],
and pp collisions [22] and the evolution kernels or timelike
parton-to-parton splitting functions PT

ij [23–26], which
govern the scale Q dependence of the FFs through a set
of integro-differential evolution equations [27]. Such type
of NLO global analyses of FFs represents the current state
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of the art in this field. For instance, a recent extraction of
parton-to-pion FFs Dπ

i at NLO accuracy can be found in
Ref. [13]. A special role in this context plays SIA, where
fits of FFs can be carried out already at the next-to-next-
leading order (NNLO) level thanks to the available SIA
coefficient functions [24,26,28,29] and kernels PT

ij at
NNLO [30]. This has not yet been achieved in the case
of hadron production in SIDIS or in pp collisions. A first
determination of parton-to-pion FFs from SIA data at
NNLO accuracy has been performed recently in [14].
Another important avenue for systematic improvements

in the theoretical analysis of data sensitive to FFs, which we
pursue in this paper, concerns large logarithms present in
each fixed order of the perturbative series in αs for both
the evolution kernels PT

ij and the process-dependent hard
scattering coefficient functions. In this paper we will deal
with logarithms that become large in the limit of small
momentum fractions z and, in this way, can spoil the
convergence of the expansion in αs even when the coupling
is very small. As we shall see, two additional powers of
log2kðzÞ can arise in each fixed order αks, which is numeri-
cally considerably more severe than in the spacelike case
relevant to deep-inelastic scattering (DIS) and the scale
evolution of parton density functions (PDFs) and com-
pletely destabilizes the behavior of cross sections and FFs
in the small-z regime.
To mitigate the singular small-z behavior imprinted by

these logarithms, one needs to resum them to all orders
in perturbation theory, a well-known procedure [31].
Knowledge of the fixed-order results up to NmLO deter-
mines, in principle, the first mþ 1 “towers” of logarithms
to all orders. Hence, thanks to the available NNLO results,
small-z resummations have been pushed up to the first three
towers of logarithms for SIA and the timelike splitting
functions PT

ij recently, which is termed the next-to-next-to-
leading logarithmic (NNLL) approximation [32,33]. Based
on general considerations on the structure of all-order mass
factorization, as proposed and utilized in Refs. [32,33], we
rederive the resummed coefficient functions for SIA and
the evolution kernels PT

ij and compare them to the results
available in the literature. Next, we shall extend these
expressions by restoring their dependence on the factori-
zation and renormalization scales μF and μR, respectively,
which will allow us to estimate the theoretical uncertainties
related to the choice of μF=Q. It is expected that the scale
ambiguity will shrink the more higher order corrections are
included. We note that large logarithms also appear in the
limit z → 1. Their phenomenological implications have
been addressed in the case of SIA in Refs. [34,35], and we
shall not consider them in the present study focusing
mainly on the small-z regime.
Resummations are most conveniently carried out in

Mellin-N moment space, which also gives the best
analytical insight into the solution of the coupled,

matrix-valued scale evolution equations obeyed by the
quark singlet and gluon FFs. We shall discuss in some
detail how we define a solution to these evolution equations
beyond the fixed-order approximation, i.e., based on
resumed kernels PT

ij. We also explain how we match the
resummed small-z expressions to a given fixed-order result
defined for all z, thereby avoiding any double counting of
logarithms and also maintaining the validity of the momen-
tum sum rule. We shall also address in our discussions the
proper numerical implementation of the resummed expres-
sions in Mellin N space, in particular, the structure of
singularities and the choice of the integration contour for
the inverse Mellin transformation back to the physical z
space. Already at fixed, NNLO accuracy this is known to be
a nontrivial issue [14].
After all these technical preparations, we will present

some phenomenological applications. So far, resummations
in the context of FFs have been, to the best of our
knowledge, exclusively studied for the first five integer
N moments of the z-integrated hadron multiplicities, in
particular, their scale evolution and the shift of the peak of
the multiplicity distribution with energy [31,36]. At fixed
order, multiplicities are ill defined due to the singularities
induced by the small-z behavior. In the “modified leading
logarithmic approximation” and beyond, i.e., upon includ-
ing resummed expressions, these singularities are lifted,
and one finds a rather satisfactory agreement with data,
which can be used to determine, e.g., the strong coupling αs
in SIA [36]. We plan to revisit the phenomenology of
N ¼ 1 multiplicities in a separate publication elsewhere. In
this paper, wewill apply resummations in the entire z range,
i.e., for the first time, we extract FFs from SIA data with
identified pions up to NNLOþ NNLL accuracy, including
a proper matching procedure. We shall investigate the
phenomenological relevance of small-z resummations in
achieving the best possible description of the SIA data. This
will be done by comparing the outcome of a series of fits to
data both at fixed order accuracy and by including up to
three towers of small-z logarithms. We also compare the so
obtained quark singlet and gluon FFs and estimate the
residual theoretical uncertainty due to the choice of μF=Q
in each case. An important phenomenological question that
arises in this context is how low in z one can push the
theoretical framework outlined above before neglected
kinematic hadron mass corrections become relevant.
Hadron mass effects in SIA have been investigated to
some extent in [37] but, so far, there is no fully consistent
way to properly include them in a general process [38], i.e.,
ultimately in a global analysis of FFs. Therefore, one needs
to determine a lower value of z, largely on kinematical
considerations, below which fits of FFs make no sense. We
will discuss this issue as well in the phenomenological
section of the paper. In general, it turns out that in the range
of z where SIA data are available and where the framework
can be applied, a fit at fixed NNLO accuracy already
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captures most of the relevant small-z behavior needed to
arrive at a successful description of the data, and resum-
mations add only very little in a fit.
The remainder of the paper is organized as follows:

Section II comprises all relevant technical aspects. We
start by briefly reviewing the fixed order results for semi-
inclusive annihilation and catalogue the systematics of the
small-z logarithms that appear in each order of perturbation
theory. Next, we show how these logarithms can be
resummed to all orders and compare to existing results
in the literature. In Sec. II C we provide the expressions
containing logarithms of the factorization and renormali-
zation scales to estimate the remaining theoretical uncer-
tainties after resummation. The solution of the timelike
evolution equations with resummed splitting functions in
Mellin moment space is discussed in Sec. II D. Peculiarities
important for a proper numerical implementation of the
resummed expressions in N-space are raised in Sec. II E. In
the second part of the paper we discuss the phenomeno-
logical implications of small-z resummations for the
extraction of fragmentation functions from data. In
Sec. III A we present and discuss various fits to semi-
inclusive annihilation data at different fixed orders in
perturbation theory and levels of small-z resummations.
Finally, in Sec. III B we study the residual scale dependence
with and without resummations of small-z logarithms. We
conclude in Sec. IV.

II. SMALL-z RESUMMATION FOR
SEMI-INCLUSIVE eþe− ANNIHILATION

A. Fixed order SIA, fragmentation functions,
and the systematics of small-z logarithms

We consider the SIA process eþe− → γ=Z → hX, more
specifically, cross sections defined as

dσh

dz
¼
X
k¼T;L

dσhk
dz

: ð1Þ

The parity-violating interference term of vector and axial-
vector contributions, usually called “asymmetric” (A), is
not present in (1) as we have already integrated over the
scattering angle θ; see, e.g. [19]. Hence, only the transverse
(T) and the longitudinal (L) parts remain and will be
considered in what follows. Furthermore, we have intro-
duced the scaling variable

z≡ 2Ph · q
Q2

¼c:m:s: 2Eh

Q
; ð2Þ

where Ph and q are the four momenta of the observed
hadron and timelike γ=Z boson, respectively. Moreover,
Q2 ≡ q2 ¼ S. As indicated in Eq. (2), z reduces to the
hadron’s energy fraction in the c.m.s. and is often also
labeled as xE [19]. Note that experimental data are usually

given in terms of hadron multiplicity distributions, which
are equivalent to the cross sections as defined in Eq. (1)
normalized by the total hadronic cross section σtot [26,39].
The transverse and longitudinal cross sections in Eq. (1)

may be written in a factorized form as [26,29]

dσhk
dz

¼ σð0Þtot

�
Dh

Sðz; μ2Þ ⊗ CS
k;q

�
z;
Q2

μ2

�

þDh
gðz; μ2Þ ⊗ CS

k;g

�
z;
Q2

μ2

��

þ
X
q

σð0Þq Dh
NS;qðz; μ2Þ ⊗ CNS

k;q

�
z;
Q2

μ2

�
: ð3Þ

For simplicity, we have chosen the factorization
and renormalization scales equal, μR ¼ μF ≡ μ, and

σð0Þq ¼ 3σ0ê2q is the total quark production cross section
for a given flavor q at leading order (LO). σ0 ¼ 4πα2=ð3Q2Þ
denotes the lowest order QED cross section for the process
eþe− → μþμ− with α the electromagnetic coupling. The
electroweak quark charges êq can be found, e.g., inRef. [26].

We also defined σð0Þtot ¼
P

qσ
ð0Þ
q . The symbol⊗ denotes the

standard convolution integral which is given by

fðzÞ ⊗ gðzÞ≡
Z

1

0

dx
Z

1

0

dyfðxÞgðyÞδðz − xyÞ: ð4Þ

With this notation, the transverse and longitudinal cross
sections are related to the usual longitudinal and transverse
structure functions [24] according to

Fk ≡ 1

3σ0

dσhk
dz

¼
�X

q

ê2q

��
Dh

Sðz; μ2Þ ⊗ CS
k;q

�
z;
Q2

μ2

�

þDh
gðz; μ2Þ ⊗ CS

k;g

�
z;
Q2

μ2

��

þ
X
q

ê2qDh
NS;qðz; μ2Þ ⊗ CNS

k;q

�
z;
Q2

μ2

�

¼
X

l¼q;q̄;g

Dh
l ðz; μ2Þ ⊗ Ck;l

�
z;
Q2

μ2

�
: ð5Þ

As usual, the factorized structure of Eq. (3) holds in the
presence of a hard scale, i.e., of Oðfew GeVÞ, and up to
corrections that are suppressed by inverse powers of the hard
scale. SIA is a one-scale process, and the hard scale should
be chosen to be ofOðQÞ. The power corrections for SIA are
much less well understood than in DIS, perhaps due to the
lack of an operator product expansion in the timelike case.
One source, which we will get back to later on, is of purely
kinematic origin. Instead of the energy fraction z, SIA data
are often given in terms of the hadron’s three-momentum
fraction in the c.m.s., xp ¼ 2p=Q, which leads to 1=Q2

FRAGMENTATION FUNCTIONS BEYOND FIXED ORDER … PHYSICAL REVIEW D 95, 054003 (2017)

054003-3



corrections when converted back to a proper scaling vari-
able: xp ¼ z − 2m2

h=ðzQ2Þ þOð1=Q4Þ [19]. mh is the
produced hadron’s mass and is neglected in the factorized
formalism outlined above. Other sources of power correc-
tions arise in the nonperturbative formation of a hadron from
quarks or gluons and are expected to behave like 1=Q from
model estimates [19].
The dependence of the FFs on the factorization scale μ

may be calculated in pQCD and is described by the
2Nf þ 1 coupled integro-differential evolution equations
[27] with Nf being the number of active quark flavors. It is
common to define certain linear combinations of quark and
antiquark FFs that appear in SIA. The quark singlet (S) and
nonsinglet (NS) FFs in Eq. (3) are given by

Dh
Sðz; μ2Þ ¼

1

Nf

X
q

½Dh
qðz; μ2Þ þDh

q̄ðz; μ2Þ� ð6Þ

and

Dh
NS;qðz; μ2Þ ¼ Dh

qðz; μ2Þ þDh
q̄ðz; μ2Þ −Dh

Sðz; μ2Þ; ð7Þ

respectively. The corresponding coefficient functions
i ¼ S;NS in (3) can be calculated as a perturbative series
in as ≡ αs=4π,

Ci
k;l ¼ Ci;ð0Þ

k;l þ asC
i;ð1Þ
k;l þ a2sC

i;ð2Þ
k;l þOða3sÞ; ð8Þ

where we have suppressed the arguments ðz;Q2=μ2Þ.
Expressions for the Ci

k;l are available up to Oða2sÞ in
Refs. [24,26,28], which is NNLO for the transverse
coefficient functions but formally only next-to-leading
order (NLO) accuracy for the longitudinal coefficient
functions as the latter start to be nonzero at OðasÞ.
The fixed order results of the coefficient functions

contain logarithms that become large for z → 1 (large-z
regime) and z → 0 (small-z regime). Such large logarithms
can potentially spoil the convergence of the perturbative
expansion even for as ≪ 1 and, hence, need to be taken
into account to all orders in the strong coupling. The
resummation of large-z logarithms in SIA has been
addressed, for instance, in Refs. [34,35]. The main focus
of this paper is on the so far very little explored small-z
regime and its phenomenology. In contrast to the spacelike
DIS process with its single logarithmic enhancement, one
finds a double logarithmic enhancement for the timelike
SIA; see, e.g., [40] and references therein. For example, for
the gluon sector in Eq. (3) one finds

CS;ðkÞ
T;g ∝ aks

1

z
log2k−1−aðzÞ;

CS;ðkÞ
L;g ∝ aks

1

z
log2k−2−aðzÞ; ð9Þ

where a ¼ 0, 1, and 2 correspond to the leading logarithmic
(LL), next-to-leading logarithmic (NLL), and NNLL con-
tribution, respectively.
Furthermore, the same logarithmic behavior at small-z is

found for the timelike splitting functions that govern the
scale evolution of the FFs. For example, for the gluon-to-
gluon and the quark-to-gluon splitting function, one finds

PT;ðkÞ
gi ∝ aðkþ1Þ

s
1

z
log2k−aðzÞ; ð10Þ

where i ¼ q, g, and k denotes the perturbative order starting
from k ¼ 0, i.e., LO. In order to obtain a reliable prediction
from perturbative QCD in the small-z regime, these large
logarithmic contributions, both in the coefficient functions
and in the splitting functions, need to be resummed to all
orders. The resulting expressions are available in the
literature up to NNLL accuracy [32,33] and we will
rederive them in the next subsection. Traditionally, and
most conveniently, these calculations are carried out in the
complex Mellin transform space. In general, the Mellin
integral transform fðNÞ of a function fðzÞ is defined by

fðNÞ ¼
Z

1

0

dzzN−1fðzÞ≡M½fðzÞ�: ð11Þ

Hence, the Mellin transform of the small-z logarithms
given in Eqs. (9) and (10) reads

M
�
log2k−1ðzÞ

z

�
¼ ð−1Þk ð2k − 1Þ!

N̄2k ; ð12Þ

where N̄ ≡ N − 1, i.e., they give rise to singularities at
N ¼ 1 in Mellin space.
The structure of the 1=N̄ divergences for all quantities

relevant to a theoretical analysis of SIA up to NNLL
accuracy is summarized schematically in Tables I and II.
Note that no LL contributions appear in the quark sector,
neither for the splitting nor for the coefficient functions.
Moreover, the LO and NLO small-z contributions to
CS
T=L;q, PT

qq, and PT
qg are not contained in the generic

TABLE I. The explicit 1=N̄ dependence of the coefficient

functions CS
k;l ¼

P
na

n
sC

S;ðnÞ
k;l at any given fixed order n of the

perturbative expansion at the LL, NLL, and NNLL approxima-
tion. These generic structures are valid starting from n ¼ 1 or
n ¼ 2 as indicated in the bottom row of the table. For smaller
values of n, the correct 1=N̄ dependence must be extracted from

the fixed order results; see text. Also, note that the entry for CS;ðnÞ
L;g

at NNLL is obtained by AC relations; see text.

CS;ðnÞ
T;g CS;ðnÞ

T;q CS;ðnÞ
L;g CS;ðnÞ

L;q

LL N̄−2n N̄1−2n

NLL N̄1−2n N̄1−2n N̄2−2n N̄2−2n

NNLL N̄2−2n N̄2−2n N̄3−2n N̄3−2n

n ≥ 1 n ≥ 2 n ≥ 1 n ≥ 2
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structure summarized in Tables I and II. Instead, these
terms have to be extracted directly from the respective fixed
order calculations. We would like to point out that there is
no complete NNLO calculation (i.e., third order in as) for
the longitudinal coefficient functions available at this time.
Therefore, only the first two nonvanishing logarithmic
contributions can be resummed for the time being. For
this reason, the third entry for CS

L;g in Table I has to be
deduced using analytic continuation (AC) relations
between DIS and SIA; see Refs. [30,41] for details.

B. Small-z resummations

The resummation of the first three towers of small-z
logarithms, summarized in Tables I and II, was performed
recently in Refs. [32,33] in a formalism based on all-order
mass factorization relations and the general structure of
unfactorized structure functions in SIA. Explicit analytical
results can be found for the choice μ ¼ Q. The correspond-
ing LL and NLL expressions are known for quite some time
[31,42] and have been derived by other means. We have
adopted the same framework based on mass factorization as
in [32,33] and rederived all results from scratch up to
NNLL accuracy. We are in perfect agreement with all of
their expressions except for some obvious, minor typo-
graphical errors.1 In this section, we will concisely sum-
marize the main aspects of the calculation as we will extend
the obtained results to a general choice of scale μ ≠ Q in
the next subsection.
One starts from the unfactorized structure functions

using dimensional regularization. In our case, we choose
to work in d ¼ 4 − 2ε dimensions. The unfactorized
partonic structure functions can be written as

F̂ k;lðN; as; εÞ ¼
X
i¼q;g

Ck;iðN; as; εÞΓilðN; as; εÞ; ð13Þ

with k ¼ L, T and l ¼ q, g. We have introduced the
d-dimensional coefficient functions Ck;l, which contain
only positive powers in ε,

Ck;lðN; as; εÞ ¼ δkTδl;q þ
X∞
i¼1

ais
X∞
j¼0

εjcði;jÞk;l ðNÞ; ð14Þ

whereas the transition functions Γij include all IR/mass
singularities, which are manifest in 1=ε poles, i.e., they
contain all negative powers of ε. The transition functions
are calculable order by order in as by solving the equation

βdðasÞ
∂Γik

∂as Γ
−1
kj ¼ PT

ij: ð15Þ

Here, βdðasÞ ¼ −εas − a2s
P∞

i¼0 βia
i
s denotes the d-dimen-

sional beta function of QCD. Equation (15) can be derived
from the timelike evolution equations and its solution reads

Γ ¼ 1 − as
PT;ð0Þ

ε
þ a2s

�
1

2ε2
ðPT;ð0Þ þ β0ÞPT;ð0Þ −

1

2ε
PT;ð1Þ

�

þ a3s

�
−

1

6ε3
ðPT;ð0Þ þ β0ÞðPT;ð0Þ þ 2β0ÞPT;ð0Þ

þ 1

6ε2

�
ðPT;ð0Þ þ 2β0ÞPT;ð1Þ þ ðPT;ð1Þ þ β1Þ2PT;ð0Þ

�

−
1

3ε
PT;ð2Þ

�
þOða4sÞ; ð16Þ

where

PT ≡X∞
i¼0

aiþ1
s PT;ðiÞ ≡X∞

i¼0

aiþ1
s

 
PT;ðiÞ
qq PT;ðiÞ

gq

PT;ðiÞ
qg PT;ðiÞ

gg

!
ð17Þ

is the 2 × 2 matrix that contains the timelike singlet
splitting functions. Throughout this work, we use boldface
characters to denote 2 × 2 matrices. Since we are interested
only in the small-z regime, we take the small-N̄ limit of the
known coefficient and splitting functions in Eq. (13).
Alternatively, one can express the unfactorized partonic

structure functions in Eq. (13) as a series in as,

F̂ k;lðN; as; εÞ ¼
X
n

ans F̂
ðnÞ
k;l ðN; as; εÞ: ð18Þ

The key ingredient to achieve the resummations of the
leading small-N̄ contributions, which is the main result of
[32], is the observation that the OðansÞ contribution in
Eq. (18) may be written as

F̂ ðnÞ
k;l ðN;as;εÞ ¼ εδkLþδlqþ1−2n

Xn−1−δlq
i¼0

1

N̄ − 2ðn− iÞε
×ðAði;nÞ

k;l þ εBði;nÞ
k;l þ ε2Cði;nÞ

k;l þ� � �Þ: ð19Þ

Each of the coefficients A, B, and C is associated with a
different logarithmic accuracy of the resummation, i.e., LL,
NLL, and NNLL, respectively.

TABLE II. Same as Table I but for the splitting functions

PT
ij ¼

P
na

nþ1
s PT;ðnÞ

ij .

PT;ðnÞ
gg PT;ðnÞ

gq PT;ðnÞ
qq PT;ðnÞ

qg

LL N̄−1−2n N̄−1−2n

NLL N̄−2n N̄−2n N̄−2n N̄−2n

NNLL N̄1−2n N̄1−2n N̄1−2n N̄1−2n

n ≥ 0 n ≥ 0 n ≥ 2 n ≥ 2

1We noticed the following typographical errors in Ref. [32]
which should be corrected as follows: Eq. (2.12):
ð67
9
CA − 4ζ2Þ → ð67

9
− 4ζ2Þ; Eq. (3.18) first line, last term:

− 38
9
C2
ACFnf → − 38

9
CAC2

Fnf; Eq. (4.8) second line, last term:
− 47

9
CFn2f → − 47

9
C2
Fnf; Eq. (5.5) denominator: 9ðN − 1Þ2n−2 →

9ðN − 1Þ2n−3.
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By equating Eqs. (13) and (18), one obtains a system of
equations which may be solved recursively order by order
in as. The small-z (small-N̄) limits of the fixed order results
are needed here as initial conditions for the first recursion.
Since these results are only known up to NNLO accuracy,
resummations are limited for the time being to the
first three towers listed in Tables I and II. At each
order n, this procedure then yields expressions for

cðn;mÞ
k;l ; PT;ðn−1Þ

ij ; Aðm;nÞ
k;l ; Bðm;nÞ

k;l , and Cðm;nÞ
k;l .

Note that up to NNLL accuracy only β0 is needed in
Eq. (16). All terms proportional to βi≥1 will generate
subleading contributions and, hence, can be discarded.
For instance, when initiating the recursive solution, PT;ð0Þ

and PT;ð1Þ are known from fixed order calculations, and
PT;ð2Þ, that appears at Oða3sÞ in Eq. (16), is the unknown
function that is being determined. The NNLL contribution

for, say, PT;ð2Þ
gg is ∝ 1=N̄2, cf. Table II, whereas the highest

inverse power of N̄ in the term β1P
T;ð0Þ
gg appearing in the

curly brackets of Eq. (16) is ∝ 1=N̄ and, thus, beyond
NNLL accuracy.
After solving the system of equations algebraically using

MATHEMATICA [43], we find expressions for cðn;0Þk;l , and

PT;ðnÞ
ij . Since the coefficient functions and the splitting

functions both have a perturbative expansion in as,

PT
ij ¼

X∞
n¼0

anþ1
s PT;ðnÞ

ij ð20Þ

and

CS
k;l ¼

X∞
n¼0

ansc
ðn;0Þ
k;l ; ð21Þ

one can eventually deduce a closed expression for
resummed splitting functions and coefficient functions as
listed in [33]. As mentioned above, we fully agree with
these results up to the typographical errors listed in the
footnote.

C. Resummed scale dependence

All calculations presented so far, including Refs. [32,33],
have been performed by identifying, for simplicity, the
renormalization and factorization scales with the hard scale
Q, i.e., by setting μF ¼ μR ¼ μ ¼ Q. However, it is well
known that the resummation procedure should not only
yield more stable results but should also lead to a better
control of the residual dependence on the unphysical scales
μF and μR that arises solely from the truncation of the
perturbative series. Hence, for our subsequent studies of the
phenomenological impact of the small-z resummations on
the extraction of FFs from SIA data it is imperative to
separate the dependence on the artificial scales μF and μR

from the hard scale Q in the resummed expressions. This is
the goal of this section. In what follows, we reinstate the
scale dependence with two different, independent methods.
We find full agreement between the two approaches.
First, we consider a renormalization group approach;

see also Ref. [44]. The dependence of the coefficient
functions on the factorization scale μF can be expressed as

CS
k;lðN; as; LMÞ ¼

X∞
i¼0

ais

�
cðiÞk;lðNÞ þ

Xi
m¼1

~cði;mÞ
k;l ðNÞLm

M

�
;

ð22Þ

with LM ≡ log Q2

μ2F
. The coefficients cðiÞk;l ≡ ~cði;0Þk;l are the

finite (i.e., ε independent) coefficients as given in Eq. (14).
The ~cði;mÞ

k;l can be calculated order by order in as by
solving a set of renormalization group equations (RGEs).
These equations can be obtained by requiring that

d
d log μ2F

Fk¼! 0, where Fk ≡PlCk;lDl [see Eq. (5) for the
definition of these structure functions in z space], which
leads to�� ∂

∂ log μ2F þ βðasÞ
∂
∂as
�
δlm þ PT

lmðNÞ
�
CS
k;mðN; as; LMÞ

¼ 0: ð23Þ

Here, the sum over m ¼ q, g is left implicit. For the sake
of better readability, we drop the arguments of all
functions for now. From (23), the following recursive
formula can be obtained:

~cði;mÞ
k;l ¼ 1

m

Xi−1
w¼m−1

~cðw;m−1Þ
k;j ðPT;ði−w−1Þ

lj − wβi−w−1δjlÞ: ð24Þ

Again, the sum over j ¼ q, g is implicitly understood.
Up to NNLO accuracy, we obtain the same results as given
in [26].
If one now plugs in the small-N̄ results for the splitting

and coefficient functions, one can compute the coefficients

~cðn;mÞ
k;l up to any order n and identify the leading three
towers of 1=N̄ in Eq. (22), i.e., the LL, NLL, and NNLL
contributions. At order n we find at LL accuracy

CS;LL;ðnÞ
k;g ¼ cLL;ðnÞk;g : ð25Þ

Thus, no improvement of the scale dependence is achieved
by a LL resummation (recall that resummation in the quark
sector only starts at NLL accuracy). The full LM depend-
ence is given by the fixed-order expressions, which have to
be matched to the resummed result for all practical
purposes. As usual, the matching of a resummed observ-
able Tres to its NκLO fixed-order expression TNκLO is
performed according to the prescription schematically
given by
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Tmatched ¼ TNκLO þ Tres − TresjOðaκsÞ: ð26Þ

Here, TresjOðaκsÞ denotes the expansion in as of Tres up to
order OðaκsÞ.
Likewise, at NLL accuracy one obtains the following

results:

CS;NLL;ðnÞ
T;g ¼ cNLL;ðnÞT;g

þ LM

�
PTLL;ðn−1Þ
gq þ

Xn−2
j¼0

cLL;ðn−1−jÞT;g PTLL;ðjÞ
gg

�
;

ð27Þ
CS;NLL;ðnÞ
L;g ¼ cNLL;ðnÞL;g þ LM

Xn−2
j¼0

cLL;ðn−1−jÞL;g PTLL;ðjÞ
gg ð28Þ

and

CS;NLL;ðnÞ
T;q ¼ cNLL;ðnÞT;q ; ð29Þ

CS;NLL;ðnÞ
L;q ¼ cNLL;ðnÞL;q : ð30Þ

The scale dependent terms ∝ LM enter here for the first
time in the gluonic sector, Eqs. (27) and (28), and are
expressed in terms of LL quantities. Due to the fact that the
quark coefficient functions are subleading, they still do not
carry any scale dependence at NLL. Finally, at NNLL
accuracy one finds

CS;NNLL;ðnÞ
T;g ¼ cNNLL;ðnÞT;g þ LM

�
PTNLL;ðn−1Þ
gq − ðn − 1Þβ0cLL;ðn−1ÞT;g þ

Xn−3
j¼0

cNLL;ðn−1−jÞT;q PTLL;ðjÞ
gq

þ
Xn−2
j¼0

ðcLL;ðn−1−jÞT;g PTNLL;ðjÞ
gg þ cNLL;ðn−1−jÞT;g PTLL;ðjÞ

gg Þ
�

þ L2
M

2

�Xn−2
j¼0

PTLL;ðn−2−jÞ
gq PTLL;ðjÞ

gg þ
Xn−3
i¼0

Xn−2−i
j¼0

cLL;ðn−2−i−jÞT;g PTLL;ðiÞ
gg PTLL;ðjÞ

gg

�
; ð31Þ

CS;NNLL;ðnÞ
L;g ¼ cNNLL;ðnÞL;g þ LM

�
−ðn − 1Þβ0cLL;ðn−1ÞL;g þ

Xn−2
j¼0

ðcLL;ðn−1−jÞL;g PTNLL;ðjÞ
gg þ cNLL;ðn−1−jÞL;g PTLL;ðjÞ

gg Þ

þ
Xn−2
j¼0

cNLL;ðn−1−jÞL;q PTLL;ðjÞ
gq

�
þ L2

M

2

Xn−3
i¼0

Xn−3−i
j¼0

cLL;ðn−2−i−jÞL;g PTLL;ðiÞ
gg PTLL;ðjÞ

gg ; ð32Þ

CS;NNLL;ðnÞ
T;q ¼ cNNLL;ðnÞT;q þ LM

�
PTNLL;ðn−1Þ
qq ð1 − δn;2Þ þ

Xn−1
j¼0;j≠1

cLL;ðn−1−jÞT;g PTNLL;ðjÞ
qg

�
; ð33Þ

and

CS;NNLL;ðnÞ
L;q ¼ cNNLL;ðnÞL;q þ LM

Xn−2
j¼0;j≠1

cLL;ðn−1−jÞL;g PTNLL;ðjÞ
qg : ð34Þ

It should be noticed that by the subscripts LL, NLL, and
NNLL in Eqs. (25) and (27)–(34), we denote only those
contributions in 1=N̄ specific to the tower at LL, NLL, or
NNLL accuracy, respectively. This means, for instance, that
the full next-to-next-to-leading logarithmic expression at
some given order n in the as perturbative expansion of CS

k;l
in Eq. (22) will be always given by the sum of the
individual LL, NLL, and NNLL contributions. As one
may expect from the fixed-order results, the scale depend-
ence at NmLL is expressed entirely in terms of the
resummed expressions at NkLL with k < m. Since the

resummed results are known up to NNLL accuracy, we
may, in principle, extend our calculations to fully predict
the scale dependent terms at N3LL. These findings are
consistent with the scale dependence of fixed-order cross
sections. Finally, for all practical purposes, as we shall see
below, it is numerically adequate to have explicit results for
each tower up to sufficiently high order in n, say, n ¼ 20, in
lieu of a closed analytical expression for the resummed
series as was provided for the case μ ¼ Q in Refs. [32,33].
We may now reintroduce the renormalization scale

dependence as well by following the straightforward steps
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outlined in Ref. [26]. In practice, this amounts to replacing
all couplings as in the expressions given above according to

asðμ2FÞ ¼ asðμ2RÞ
�
1þ asðμ2RÞβ0 log

μ2R
μ2F

þOða2sÞ
�
: ð35Þ

In a second step one needs to reexpand all results in terms
of asðμ2RÞ which leads to additional logarithms of the type
LR ≡ logðμ2R=μ2FÞ. In our phenomenological studies below
we will study, however, only the case μF ¼ μR ≠ Q and,
hence, we do not pursue the LR dependence any further.
The second approach we adopt to recover the scale

dependence of the SIA coefficient functions obtained in
Sec. II B is based on the all-order mass factorization
procedure. After removing the ultraviolet (UV) singular-
ities from the bare partonic structure functions F̂ k;l (which
have been computed directly from Feynman diagrams) by a
suitable renormalization procedure, the remaining final-
state collinear/mass singularities have to be removed by
mass factorization,

~F k;l ¼ Ck;i ⊗ ~Γli: ð36Þ

Here, all singularities are absorbed into the transition
functions ~Γli while the coefficient functions Ck;i are finite.
We have labeled the quantities in Eq. (36) with a tilde to
show that they contain the full dependence on all scales.
We may thus proceed in the following way: first, we

“dress” the transition functions and partonic structure
functions in Eq. (13) with the appropriate scale depend-
ence, i.e., we substitute as → as · ðμ2F=μ2Þ−ε in the Γij and

as → as · ðQ2=μ2Þ−ε in the F̂ k;l, where the mass parameter
μ stems from adopting dimensional regularization. As a
next step, we go back to the unrenormalized expressions,
where we assume that the renormalization was performed at
the scale μ2F and Q2, respectively. Afterwards, we perform
renormalization again, but now at a different scale μ2R.
Schematically, this amounts to

~Γij ¼ R
μ2R
μ2
½ðRμ2F

μ2
Þ−1½Γijðas → as · ðμ2F=μ2Þ−εÞ�� ð37Þ

and

~F k;l ¼ R
μ2R
μ2
½ðRQ2

μ2
Þ−1½F k;lðas → as · ðQ2=μ2Þ−εÞ��: ð38Þ

Here, we are using the following notation: with

R
μ2R
μ2
½f̂ðâsÞ� ¼ f½asðμ2RÞ� we denote the renormalization of

a bare quantity f̂ðâsÞ which, as indicated, depends on the
unrenormalized, bare coupling âs. This procedure yields a
renormalized quantity f½asðμ2RÞ�, which now depends on the
physical coupling asðμ2RÞ. The renormalization procedure

R
μ2R
μ2

is performed by replacing the bare coupling with

âs ¼ asðμ2RÞZðμ2R; μ2Þ; ð39Þ

where we have introduced the renormalization constant

Zðμ2R; μ2Þ≡
�
1 − asðμ2RÞ ·

�
μ2R
μ2

�−ε β0
ε
þOða2sÞ

�
: ð40Þ

Analogously, ðRμ2R
μ2
Þ−1½f½asðμ2RÞ�� ¼ f̂ðâsÞ performs the

inverse operation, i.e., it translates the renormalized quantity
fðasðμ2RÞÞ back to the corresponding bare quantity f̂ðâsÞ.
This is achieved by replacing the renormalized coupling
with

asðμ2RÞ ¼ âsẐðμ2R; μ2Þ; ð41Þ

where the “inverse” renormalization constant reads

Ẑðμ2R; μ2Þ≡
�
1þ âs ·

�
μ2R
μ2

�−ε β0
ε
þOðâ2sÞ

�
: ð42Þ

The latter can be obtained from Eq. (40) by a series
reversion. After substituting Eqs. (37) and (38) into
Eq. (36) one can solve the latter equation for the coefficients
Ck;i, which now exhibit the full dependence on μR and μF.
In order to generate the renormalization constant Z in

Eq. (40) at each order n in an expansion in as with the
maximal precision available at this time (i.e., up to terms
proportional to βi, i ≤ 2), we adopt renormalization
group techniques. The general form of the renormalization
constant reads

Z ¼ 1þ
X∞
k¼1

aks
Xk
l¼1

fk;l
εl

ð43Þ

and may also be written as

Z ¼ 1þ
X∞
l¼1

glðasÞ
εl

; ð44Þ

where glðasÞ ¼
P∞

k¼l a
k
sfk;l is a power series in as with l

being the lowest power. Using the RGE it is possible to
derive a recursive formula for this power series,

g0kþ1ðasÞ ¼ g01ðasÞ
dðasgkðasÞÞ

das
: ð45Þ

Here the prime denotes a derivative with respect to as.
Hence, we obtain gkþ1ðasÞ by integration of Eq. (45). From
the expression of the renormalization constant up to a3s , see,
for example Ref. [45], we obtain as initial conditions

f1;1 ¼ −β0; f2;1 ¼ −
β1
2
; f3;1 ¼ −

β2
3
: ð46Þ
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As already stated above, only terms proportional to β0 are
relevant up to NNLL accuracy.

D. Solution to the timelike evolution equation
with a resummed kernel

The dependence of the gluon andNf quark and antiquark
FFs on the factorization scale μF is governed by a set of
2Nf þ 1 RGEs, which are the timelike counterparts of the
well-known equations pertinent to the scale evolution of
PDFs [27]. Schematically, they can be written as

∂
∂ ln μ2D

h
i ðz; μ2Þ ¼

X
j

PT
jiðz; μ2Þ ⊗ Dh

j ðz; μ2Þ; ð47Þ

with i; j ¼ q; q̄; g. For simplicity, we have set μR ¼ μF ¼ μ
as in Sec. II A. The i → j splitting functions PT

jiðz; μ2Þ obey
a perturbative expansion in as,

PT
ji ¼ asP

T;ð0Þ
ji þ a2sP

T;ð1Þ
ji þ a3sP

T;ð2Þ
ji þ � � � ; ð48Þ

where we have suppressed the arguments z and μ2. As
discussed extensively in [14], up to a minor ambiguity

concerning the off-diagonal splitting kernel PT;ð2Þ
qg , the

expansion (48) is known up to NNLO accuracy [30], i.e.,
Oða3sÞ. Presumably, this remaining uncertainty, which stems
from adoptingAC relations on the known NNLO spacelike
results, is numerically irrelevant for all phenomenological
applications; see Ref. [46] for the status of an ongoing direct
calculation of the three-loop timelike kernels.
Instead of the fixed-order expressions defined in

Eq. (48), we shall consider the resummed results for the
splitting functions PTNκLL

jl as discussed in Sec. II B and
listed in Refs. [32,33]. They obey a similar expansion in as
as in Eq. (48), which reads

PTNκLL
ji ¼

X∞
n¼0

anþ1
s PTNκLL;ðnÞ

ji ; ð49Þ

where each term PTNκLL;ðnÞ
ji in (49) is, in principle, known

up to NNLL accuracy, i.e., for κ ¼ 0, 1, and 2.
Before extending the technical framework to solve

Eq. (47) in Mellin moment space to the resummed case,
we briefly summarize hereinafter the methods and strate-
gies used in the fixed-order approach as they remain
relevant. Here, we closely follow Ref. [47] and the notation
adopted in a recent analysis of pion FFs at NNLO
accuracy [14].
For the singlet sector, Eq. (47) translates into two

coupled integro-differential equations, which read

∂
∂ ln μ2

�
Dh

Σ

Dh
g

�
¼
 

PT
qq 2NfPT

gq

1
2Nf

PT
qg PT

gg

!
⊗

 
Dh

Σ

Dh
g

!
; ð50Þ

where

Dh
Σ ≡

XNf

q

ðDh
q þDh

q̄Þ ð51Þ

is the singlet flavor combination, i.e., Nf times the
combination Dh

S, defined in (6), that appears in the SIA
cross section (3), and Dh

g denotes the gluon FF.
The remaining 2Nf − 1 equations can be fully decoupled

by choosing the following, convenient nonsinglet combi-
nations of FFs:

Dh;�
NS;l ≡

Xk
i¼1

ðDh
qi �Dh

q̄iÞ − kðDh
qk �Dh

q̄kÞ; ð52Þ

Dh
NS;v ≡

XNf

q

ðDh
q −Dh

q̄Þ: ð53Þ

In Eq. (52), we have l ¼ k2 − 1, k ¼ 2;…; Nf, and the
subscripts i, k were introduced to distinguish different
quark flavors. Each combination in Eqs. (52) and (53)
evolves independently with the following NS splitting
functions [30]:

PT;�
NS ¼ PT;v

qq � PT;v
qq̄ ; ð54Þ

PT;v
NS ¼ PT;−

NS þ PT;s
NS ; ð55Þ

respectively, and one has the following relation for PT
qq that

enters in Eq. (50):

PT
qq ¼ PT;þ

NS þ PT;ps: ð56Þ

Similar to the spacelike case, one finds PT;v
qq̄ ¼ PT;s

NS ¼
PT;ps ¼ 0 and PT;s

NS ¼ 0 at LO and NLO, respectively.
Hence, three NS quark combinations that evolve differently
first appear at NNLO accuracy [30]. After the evolution is
performed, i.e., the singlet and the ð2Nf − 1Þ nonsinglet
equations are solved, the individual Dh

q and Dh
q̄ can be

recovered from Eqs. (51)–(53). Likewise, any combination
relevant for a cross section calculation can be computed,
such as those used in the factorized expression for SIA
given in Eq. (3).
As for the resummations of the small-z logarithms in

Secs. II B and II C, it is most convenient to solve the set of
evolution equations in Mellin N space, exploiting the fact
that all convolutions⊗ turn into simple products in moment
space. Hence, one can rewrite all evolution equations as
ordinary differential equations. Schematically, one finds

∂DhðN; asÞ
∂as ¼ −

1

as

�
R0ðNÞ þ

X∞
k¼1

aksRkðNÞ
�
DhðN; asÞ;

ð57Þ
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where the characters in boldface indicate that we are dealing
in general with 2 × 2 matrix-valued equations, cf. Eq. (50).
For the NS combinations (52) and (53), Eq. (57) reduces to a
set of independent partial differential equations, which are
straightforward to solve, and we do not discuss them here.
The Rk in (57) are defined recursively by

R0 ≡ 1

β0
~PT;ð0Þ; Rk ≡ 1

β0
~PT;ðkÞ −

Xk
i¼1

biRk−i; ð58Þ

where ~PT;ðkÞðNÞ is the kth term in the perturbative expan-
sion of the 2 × 2 matrix of the N-moments of the singlet
splitting functions,

~PTðNÞ ¼
 

PT
qqðNÞ 2NfPT

gqðNÞ
1

2Nf
PT
qgðNÞ PT

ggðNÞ

!
: ð59Þ

Note that here and in Eq. (50), the off-diagonal entries of
the matrix ~PT differ from the ones of PT in Eq. (17) by
factors 2Nf and 1=2Nf. This is simply due to the different
definitions used for the singlet combination in the evolution
(50) and in the calculation of the SIA cross section (3),
cf. Eqs. (6) and (51). In addition, we have introduced
bi ≡ βi=β0, where βk denote the expansion coefficients of
the QCD β-function; see Ref. [48] for the explicit expres-
sions up to NNLO, i.e., β2.
Due to the matrix-valued nature of Eq. (57), no unique

closed solution exists beyond the lowest order approxima-
tion. Instead, it can be written as an expansion around the
LO solution, ðas=a0Þ−R0ðNÞDhðN; a0Þ. Here, a0 is the value
of as at the initial scale μ0, where the nonperturbative input
DhðN; a0Þ is specified from a fit to data. More explicitly,
this expansion reads

DhðN; asÞ ¼
�
1þ

X∞
k¼1

aksUkðNÞ
��

as
a0

�
−R0ðNÞ

×

�
1þ

X∞
k¼1

aksUkðNÞ
�
−1
DhðN; a0Þ: ð60Þ

The evolution matrices Uk are again defined recursively by
the commutation relations,

½Uk;R0� ¼ Rk þ
Xk−1
i¼1

Rk−1Ui þ kUk: ð61Þ

When examining Eq. (60) more closely, it turns out that a
fixed-order solution at NmLO accuracy is not unambigu-
ously defined. A certain degree of freedom still remains in
choosing the details on how to truncate the series at order
m. For example, suppose the perturbatively calculable
quantities ~PT;ðkÞ and βk are available up to a certain order
k ¼ m. One possibility is to expand Eq. (60) in as and
strictly keep only terms up to ams . This defines what

is usually called the truncated solution in Mellin moment
space.
However, given the iterative nature of the Rk in Eq. (58),

one may alternatively calculate the Rk and, hence, the Uk in
Eq. (61) for any k > m from the known results for ~PT;ðkÞ

and βk up to k ¼ m. Any higher order ~PT;ðk>mÞ and βk>m is
simply set to zero. Taking into account all the thus
constructed Uk in Eq. (60) defines the so-called iterated
solution. This solution is important as it mimics the results
that are obtained when solving Eq. (47) directly in z-space
by some iterative, numerical methods. It should be stressed
that both choices are equally valid as they only differ by
terms that are of order Oðamþ1

s Þ.
The simplest way of extending the fixed-order frame-

work outlined above to the resummed case is to take the
iterated solution. However, instead of setting contributions
beyond the fixed order to zero, we use the resummed
expressions. One can define a NmLOþ NκLL resummed
“matched solution” by defining the kth term of the splitting
matrix which appears in Eq. (58) as follows:

~PT;ðkÞ ≡
�

~PT FO;ðkÞ k ≤ m
~PT NκLL;ðkÞ k > m:

ð62Þ

In other words, the full fixed-order expressions ~PT FO;ðkÞ for
k ≤ m are kept in Rk, whereas we use the resummed
expressions for k > m. This iterated and matched solution
is the one implemented in our numerical code and will be
used in Sec. III for all our phenomenological studies. For
the range of z-values covered by the actual data sets
considered in this paper, only the terms up to k ¼ 20 are
indeed numerically relevant as we shall discuss further in
Sec. II E. However, when evolving the FFs in scale with
such an extended iterative solution, one finds that momen-
tum conservation is broken to some extent due to missing
subleading terms in the evolution kernels.
In fact, total momentum conservation for FFs is

expressed by the sum rules for combinations of splitting
functions, see, e.g. Ref. [49]:Z

1

0

dx xðPT
qqðxÞ þ PT

gqðxÞÞ ¼ 0;Z
1

0

dx xðPT
ggðxÞ þ PT

qgðxÞÞ ¼ 0: ð63Þ

In terms of Mellin moments, these relations read

PT
qqðN ¼ 2Þ þ PT

gqðN ¼ 2Þ ¼ 0; ð64Þ
PT
ggðN ¼ 2Þ þ PT

qgðN ¼ 2Þ ¼ 0: ð65Þ
These sum rules are satisfied, i.e., built into the kernels, at
any given fixed order.
In the case of the iterated and matched solution we use in

our numerical implementation, the sum rules in Eqs. (64)
and (65) deviate from zero only about a few ‰ which is
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perfectly tolerable. We note that in calculations of the SIA
cross section, we also adopt the matching procedure for the
relevant resummed coefficient functions as specified
in Eq. (26).
However, when evaluating the sum rules without match-

ing, the sums in (64) and (65) yield the approximate values
0.05 and0.1, respectively,which is, of course, not acceptable.
We would like to point out that a NLO truncated þ

resummed solution has been proposed in Ref. [40]. Its
extension to NNLO accuracy and the numerical compari-
son with its iterated counterpart as discussed above is not
pursued in this paper but will be subject to future work.
Given that the logarithmic contributions to the NS

splitting function are subleading up to the NNLL accuracy
considered in this paper, see Ref. [33], no small-z effects
have to be considered. The usual fixed-order NS evolution
equations and kernels should be used instead.

E. Numerical implementation

In this section, we will review how to adapt the
numerical implementation of the fixed-order results up
to NNLO accuracy, as discussed in Ref. [14] to include also
the small-z resummations as discussed above.
Following the discussions on the iterated solution in

Sec. II D, we start with assessing the order k in PT NκLL;ðkÞ
that is necessary to capture the behavior of fully resummed
series down to values of z relevant for phenomenological
studies of SIA data in terms of scale-dependent FFs. To this
end, we study the convergence of the series expansion of
the resummed expressions when evaluated up to a certain
order k. This is achieved by first expanding the resummed
splitting functions in Mellin N space and then using an
appropriate numerical Mellin inversion, see below, to
compare the expanded result with the fully resummed
splitting functions in z-space given in [32,33]. A typical
example, the gluon-to-gluon splitting function, is shown in
Fig. 1. As can be seen, k ¼ 20 in the expansion is accurate
at a level of less than 0.3‰ differences down to values of
z ≈ 10−5. This is more than sufficient for all phenomeno-
logical studies as SIA data only extend down to about
z ¼ 10−3 as we shall discuss later.
However, the splitting functions enter the scale evolution

of the FFs in a highly nontrivial way, cf. Eqs. (57) and (58),
such that this convergence property does not directly imply
that the effects of truncating the expansion at Oðk ¼ 20Þ
are also negligible in the solution of the evolution equa-
tions. To explore this further, we recall that the N-space
version of Eq. (47) reads

∂
∂ ln μ2D

h
i ðN; μ2Þ ¼

X
j

~PT
jiðN; μ2Þ ·Dh

j ðN; μ2Þ; ð66Þ

where ~PT
ji is the ij-entry of the 2 × 2 singlet matrix in (59).

One can solve this equation numerically with the fully

resummed kernels, assuming some initial set of FFs, and
compare the resulting, evolved distributions with the
corresponding FFs obtained from the iterative solution of
Eq. (60) at Oðk ¼ 20Þ defined in Sec. II D. Again, we find
that the two results agree at a level of a few per mill for
z≳ 10−5, i.e., after transforming the evolved FFs from N to
z-space.
In general, the Mellin inversion of a function fðNÞ is

defined as

fðzÞ ¼ 1

2πi

Z
CN

dNz−NfðNÞ; ð67Þ

where the contour CN in the complex plane is usually taken
parallel to the imaginary axis with all singularities of the
function fðNÞ to its left. For practical purposes, i.e. faster
numerical convergence, one chooses a deformed contour
instead, which can be parametrized in terms of a real
variable t, an angle φ, and a real constant c as
NðtÞ ¼ cþ teiφ; see Fig. 2 for an illustration of the chosen
path and Ref. [47] for further details.
In order to properly choose the contour parameters c and

φ, we proceed as in Ref. [14] and analyze the pole structure
of the evolution kernels KT

ij. They are defined as the entries
of the 2 × 2 timelike evolution matrix in

DhðN;asÞ ¼
�
KT

11ðas; a0;NÞ KT
12ðas;a0;NÞ

KT
21ðas; a0;NÞ KT

22ðas;a0;NÞ

�
DhðN;a0Þ;

ð68Þ

i.e. they encompass all the evolution matrices Uk on the
right-hand side of Eq. (60).
In complete analogy to what was found in Ref. [40] in

the spacelike case, the fully resummed timelike splitting
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FIG. 1. Upper panel: Expansion of the splitting function PggðzÞ
times z at NNLL accuracy for different upper values of k
compared to the fully resummed expression of Refs. [32,33].
Lower panel: Deviation of the full andOðkÞ expanded results. All
functions are evaluated at Q2 ¼ 110 GeV2 and Nf ¼ 5 active
flavors.
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functions exhibit additional singularities as compared to the
fixed order expressions. Their location in the complex
plane away from the real axis depends on the value
of as. More specifically, if we consider, for instance, PT

gg

at NLL [33], one can identify terms proportional to
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32CAasðμÞ=ðN − 1Þ2

p
Þ−1 which lead to poles at

N ¼ 1� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32CAasðμÞ

p
that are connected by a branch

cut. If we had chosen to directly solve Eq. (66) numerically
with the fully resummed splitting functions, the appropriate
choice of contour for the Mellin inversion in Fig. 2 would
have to be μ dependent as the position of these poles,
denoted by the squares, depends on asðμÞ.
In the iterative solution, which we adopt throughout,

only the expanded splitting functions PTNκLL;ðkÞ enter the
KT

ij in Eq. (68). Therefore, the evolution is not affected by
the singularities present in the fully resummed kernels, and
a unique, μ-independent choice of the contour parameters c
and φ is still possible. In our numerical code, we take c ¼ 4
and φ ¼ 3=4π. This choice also tames numerical instabil-
ities generated, in particular, by large cancellations caused
by the oscillatory behavior in the vicinity of the N ¼ 1
pole. This is visualized in the upper panel of Fig. 3. Here,
we show the real part of the singlet evolution kernel
RefKT

12g defined in Eq. (68) at NLOþ NNLL accuracy
and Q2 ¼ 110 GeV2. The numerical instabilities are well
recognizable near the N ¼ 1 pole.
Finally, in order to perform a fit of FFs based on SIA data

one has to compute the multiplicities as defined in Eq. (3).
As was mentioned above, in order to arrive at a fast but
reliable numerical implementation of the fitting procedure,
we choose to evaluate the SIA cross section also in Mellin
moment space and, then, perform a numerical inverse

transformation to z-space. Schematically, one has to com-
pute integrals of the form

DðzÞ ⊗ CðzÞ ¼ 1

2πi

Z
CN

dNz−NDðNÞCðNÞ; ð69Þ

where the FFs DðNÞ are given by Eq. (60); for brevity, we
have omitted any dependence on the scale μ and the parton
flavor. In principle, while performing the Mellin inversion,
one has to deal with the same kind of as-dependent
singularities in the fully resummed coefficient functions,
cf. Ref. [33], that we have just encountered in the resummed
splitting functions. In the lower panel of Fig. 3, we show the
real part of the coefficient function CS

T;qðNÞ for which the
pole structure and the branch cut are again well recognizable.
However, for the typical scales relevant for a phenomeno-
logical analysis (μ ¼ 10.5–91.2 GeV; see Sec. III), our
choice of contour CN is nevertheless applicable since the
position of the singularities does not change considerably in
this range of energies.

FIG. 2. The dashed line represents the standard contour CN in
the complex N plane for the inverse Mellin transformation (69).
The poles of the integrand along the real axis are schematically
represented by crosses, whereas the poles lying in the complex
plane away from the real axis are represented by squares. The
branch cut is illustrated by the wiggly line.

FIG. 3. Upper panel: real part of K12 in Eq. (68) in a portion of
the complex N plane. Lower panel: as above but for the
coefficient function CS

T;qðNÞ. Both quantities are computed at
NLOþ NNLL accuracy for Q2 ¼ 110 GeV2. The line corre-
sponds to the contour CN in (69).
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III. PHENOMENOLOGICAL APPLICATIONS

In the literature, small-z resummations have been
exploited to exclusively study the fixed N ¼ 1 moment
of integrated hadron multiplicities in SIA, in particular,
their scale evolution and the shift of the peak of the
multiplicity distribution with energy [36]. In this section,
we will extend these studies to the entire z-range and
present a first phenomenological analysis of SIA data with
identified pions in terms of FFs up to NNLOþ NNLL
accuracy. More specifically, we use the same data sets as in
a recent fixed-order fit of parton-to-pion FFs at NNLO
accuracy [14]. In Sec. III A we perform various fits to SIA
data with and without making use of small-z resummations
to quantify their phenomenological relevance. The impact
of small-z resummations on the residual dependence on the
factorization scale is studied in Sec. III B.

A. Fits to SIA data and the relevance of resummations

To set up the framework for fitting SIA data with
identified pions, we closely follow the procedures outlined
in Refs. [10–14]. Thus, we adopt the same flexible func-
tional form,

Dπþ
i ðz; μ20Þ ¼

Nizαið1 − zÞβi ½1þ γið1 − zÞδi �
B½2þ αi; βi þ 1� þ γiB½2þ αi; βi þ δi þ 1� ;

ð70Þ

to parametrize the nonperturbative FFs for charged pions
at some initial scale μ0 in the commonly adopted MS
scheme. Other than in Refs. [10–14], we choose, however,
μ0 ¼ 10.54 GeV, which is equivalent to the lowest c.m.s.
energy

ffiffiffi
S

p
of the data sets relevant for the fit. This choice is

made to avoid any potential bias in our comparison of
fixed-order and resummed extractions of FFs from starting
the scale evolution at some lowish, hadronic scale
Oð1 GeVÞ where nonperturbative corrections, i.e., power
corrections, might be still of some relevance. The Euler
Beta function B½a; b� in the denominator of (70) is
introduced to normalize the parameter Ni for each flavor
i to its contribution to the energy-momentum sum rule.
As can be inferred from Eq. (3), SIA is only sensitive to

certain combinations of FFs, namely the sum of quarks and
antiquarks, qi þ q̄i, for a given flavor i and the gluon Dh

g .
Therefore, in all our fits, we only consider FFs for these
flavor combinations, i.e., uþ ū, dþ d̄, sþ s̄, cþ c̄, bþ b̄,
and g, each parametrized by the ansatz in (70). The
treatment of heavy flavor FFs, i.e., charm and bottom
quark and antiquark, proceeds in the same, nonperturbative
input scheme used in Ref. [14] and in the global analyses of
[10–13]. More specifically, nonperturbative input distribu-
tions Dh

cþc̄;bþb̄
ðz;m2

c;bÞ, are introduced as soon as the scale
in the evolution crosses the value of the heavy quark pole
mass mc;b, for which we use mc ¼ 1.4 GeV and

mb ¼ 4.75 GeV, respectively. At the same time, the num-
ber of active flavors is increased by one,Nf→Nfþ1, in all
expressions each time a flavor threshold is crossed. Since
we use μ0 ¼ 10.54 GeV > mb, this never actually happens
in the present fit. The parameters of Dh

cþc̄;bþb̄
ðz;m2

c;bÞ are
determined by the fit to data according to the Eq. (70). We
note that a general-mass variable flavor number scheme for
treating the heavy quark-to-light hadron FFs has been
recently put forward in Ref. [50]. Since this scheme, as
well as other matching prescriptions [51], are only available
up to NLO accuracy, we refrain from using them in our
phenomenological analyses.
Rather than fitting the initial value of the strong coupling

at some reference scale in order to solve the RGE governing
its running, we adopt the following boundary conditions
αsðMZÞ ¼ 0.135, 0.120, and 0.118 at LO, NLO, and
NNLO accuracy, respectively, from the recent Martin-
Motylinski-Harland-Lang-Thorne (MMHT) global analy-
sis of PDFs [52]. When we turn on small-z resummations at
a given logarithmic order NmLL in our fit, we keep the αs
value as appropriate for the underlying, fixed-order calcu-
lation to which the resummed results are matched. For
instance, in a fit at NLOþ NNLL accuracy, we use the αs
value at NLO.
In the present paper, we are mainly interested in a

comparison of fixed-order fits with corresponding analyses
including small-z resummations to determine the phenom-
enological impact of the latter. We make the following
selection of data to be included in our fits. First of all, as in
Ref. [14], we limit ourselves to SIA with identified pions
since these data are the most precise ones available so far.
They span a c.m.s. energy range from

ffiffiffi
S

p ≃ 10.5 GeV at
the b-factories at SLAC and KEK to

ffiffiffi
S

p ¼ MZ ≃
91.2 GeV at the CERN-LEP. The second, more important
selection cut concerns the lower value in z accepted in the
fit. Traditionally, fits of FFs introduce a minimum value
zmin of the energy fraction z in the analyses below which
all SIA data are discarded and FFs should not be used in
other processes. This rather ad hoc cut is mainly motivated
by kinematic considerations, more specifically, by the
finite hadron mass or other power corrections which are
neglected in the factorized framework [19]. Hadron mass
effects in SIA have been investigated to some extent in [37]
but there is no systematic way to properly include them in a
general process [38], i.e., ultimately in a global analysis
of FFs. In case of pion FFs, one usually sets zmin ¼ 0.1
[10,13] or zmin ¼ 0.075 [14].
The two main assets one expects from small-z resum-

mations, and which we want to investigate, are an improved
scale dependence and an extended range towards lower
values of z in which data can be successfully described. For
this reason, we have systematically explored to which
extent one can lower the cut zmin in a fit to SIA data once
resummations as outlined in Sec. II are included. It turns
out that for the LEP data, taken at the highest c.m.s. energy
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of
ffiffiffi
S

p ¼ 91.2 GeV, we can extend the z-range of our
analyses from 0.075 < z < 0.95 used in the NNLO fit [14]
to 0.01 < z < 0.95. Unfortunately, any further extension to
even lower values of z is hampered by the fact that two of
the data sets from LEP, the ones from ALEPH [7] and
OPAL [9], appear to be mutually inconsistent below
z≃ 0.01, see Fig. 4. Including these data at lower z always
lets the fits, i.e., the minimization in the multidimensional
parameter space defined by Eq. (70), go astray and the
convergence is very poor.
For the relevant data sets at lower c.m.s. energies, TPC

[5] (
ffiffiffi
S

p ¼ 29 GeV), BELLE [3] (
ffiffiffi
S

p ¼ 10.52 GeV), and
BABAR [4] (

ffiffiffi
S

p ¼ 10.54 GeV), the above-mentioned
problems related to the finite hadron mass arise at small
values of z. A straightforward, often used criterion to assess

the relevance of hadron mass effects is to compare the
scaling variable z, i.e. the hadron’s energy fraction z ¼
2Eh=Q in a c.m.s. frame, with the corresponding three-
momentum fraction xp which is often used in experiments.
Since they are related by xp ¼ z − 2m2

h=ðzQ2Þ þOð1=Q4Þ
[19], i.e., they coincide in the massless limit, any deviation
of the two variables gives a measure of potentially
important power corrections. To determine the cut zmin
for a given data set, we demand that z and xp are
numerically similar at a level of 10 to at most 15%. The
BELLE data are limited to the range z > 0.2 [3], where z
and xp differ by less than 1%. BABAR data are available for
z≳ 0.05, which translates in a maximum difference of the
two variables of about 14%. Concerning the TPC data, we
had to place a lower cut zmin ¼ 0.02 to arrive at a converged
fit, which corresponds to a difference of approximately
11% between z and xp. After imposing these cuts, the total
amount of data points taken into account in our fits is 436.
We note that, in general, the interplay between small-z
resummations and the various sources of power corrections
poses a highly nontrivial problem which deserves to be
studied further in some dedicated future work.
It is also worth mentioning that with the lowered

kinematic cut zmin, we achieve a better convergence of
our fits with our choice of a larger initial scale
μ0 ¼ 10.54 GeV in Eq. (70). Starting the scale evolution
from a lower value μ0 ¼ Oð1Þ GeV, like in the NNLO
analysis of Ref. [14], leads, in general, to less satisfactory
fits in terms of their total χ2 value which is used to judge the
quality of the fits. This could relate to the fact that other
types of power corrections have to be considered as well
when evolving from such a low energy scale in order to be
able to describe the shape of the differential pion multi-
plicities, cf. Fig. 4, measured in experiment. To corroborate
this hypothesis is well beyond the scope of this paper. In
any case, our choice of μ0 is certainly in a region where the
standard perturbative framework can be safely applied and
meaningful conclusions on the impact of small-z resum-
mations in SIA can be drawn. We emphasize that the choice
of μ0 is solely due to technical rather than conceptional
reasons. As the evolution equations are, in principle,
forward-backward symmetric, the actual choice of μ0
should not matter in a fit. Our functional form (70) is
presumably not flexible enough to obtain an equally good
description of the data if the initial scale is chosen well
below 10 GeV, which manifests itself in larger values of χ2

and poor convergence of the fits. The main results and
conclusions of our paper are, however, not affected by the
actual choice of μ0.
Turning back to the choice of our flexible ansatz for the

FFs, it is well known that fits based solely on SIA data are
not able to constrain all of the free parameters in Eq. (70)
for each of the flavors i. As was shown in the global
analysis of SIA, SIDIS, and pp data in [13], charge
conjugation and isospin symmetry are well satisfied for

1

2

3

4

5

6

LO and LO+LL

SLD(TOT)
ALEPH(TOT)

OPAL(TOT)
DELPHI(TOT)

TPC(TOT)
BELLE(TOT)

BABAR-PRT(TOT)

1

2

3

4

5

NLO and NLO+NNLL

1/
σ t

ot
  d

σ /
dζ

OPAL
TPC

BELLE
BABAR

resummed

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

NNLO and NNLO+NNLL

ζ = -log(z)

FIG. 4. Pion multiplicity data [3–9] included in the analyses as
a function of ζ ¼ log ð1=zÞ compared to the results of various fits
without (solid lines) and with (dotted lines) small-z resumma-
tions. All curves refer to the central choice of scale μ ¼ Q. The
top, middle, and lower panel shows the results at LO and
LOþ LL, NLO and NLOþ NNLL, and NNLO and NNLOþ
NNLL accuracy, respectively. The vertical dotted lines illustrate,
from left to right, the lower cuts zmin ¼ 0.075 adopted in [14], and
zmin ¼ 0.02 and 0.01 used in all our fits for the TPC data and
otherwise, respectively.
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pions. Therefore, we impose the constraint Dπ�
uþū ¼ Dπ�

dþd̄
.

We further limit the parameter space associated with the
large-z region by setting δg;sþs̄;cþc̄ ¼ 0 and γg;sþs̄;cþc̄ ¼ 0.
Note that in contrast to Ref. [14], we are now able to keep
βg as a free parameter in the fits.
The remaining 19 free parameters are then determined by

a standard χ2 minimization procedure as described, for
example, in Ref. [13]. The optimal normalization shifts for
each data set are computed analytically. They contribute to
the total χ2 according to the quoted experimental normali-
zation uncertainties; see, e.g., Eq. (5) in Ref. [13] for further
details. The resulting χ2-values, the corresponding “pen-
alties” from the normalization shifts, and the χ2 per degree
of freedom (dof) are listed in Table III for a variety of fits
with a central choice of scale μ ¼ Q. Results are given both
for fits at fixed order (LO, NLO, and NNLO) accuracy and
for selected corresponding fits obtained with small-z
resummations. Here, all cross sections are always matched
to the fixed order results according to the procedures
described in Secs. II C and II D. More specifically, we
choose the logarithmic order in such a way that we do not
resum logarithmic contributions which are not present in
the fixed-order result. For this reason, we match the LO
calculation only with the LL resummation as the only
logarithmic contribution at LO is of LL accuracy;
cf. Tables I and II. Using the same reasoning, we match
NLO with the NNLL resummed results. Finally, at NNLO
accuracy five towers of small-z logarithms are present.
However, the most accurate resummed result currently
available is at NNLL accuracy which includes the first three
towers. Thus, we can match NNLO only with NNLL. It
should be stressed that the results for the fixed-order fits are
not directly comparable to the ones given in Ref. [14] since
we use more data points at lower values of z, a slightly
different set of fit parameters, and a different initial scale μ0.
However, the main aspects of these fits remain the same and
can be read off directly from Table III: a LO fit is not able to
describe the experimental results adequately. The NLO fit
already gives an acceptable result, which is further
improved upon including NNLO corrections. Compared
to the corresponding fixed-order results, the fits including
also all-order resummations of small-z logarithms exhibit,

perhaps somewhat surprisingly, only a slightly better total
χ2, except for the LOþ LL fit, where resummation leads
to a significant improvement in its quality. The small
differences in χ2 between fits at NNLO and NNLOþ
NNLL accuracy are not significant. Hence, we must
conclude that in the z-range covered by the experimental
results, NNLO expressions already capture most of the
relevant features to yield a satisfactory fit to the SIA data
with identified pions.
The same conclusions can be reached from Fig. 4, where

we compare the used inclusive pion multiplicity data in SIA
with the theoretical cross sections at different levels of
fixed- and logarithmic-order obtained from the fits listed in
Table III. The theoretical curves are corrected for the
optimum normalization shifts computed for each set of
data. For the sake of readability, we only show a single
curve for the different experiments at

ffiffiffi
S

p ¼ MZ which is
corrected for the normalization shift obtained for the OPAL
data. The individual normalization shifts for the other sets
are, however, quite similar. We refrain from showing the
less precise flavor-tagged data which are, nevertheless, also
part of the fit. The vertical dotted lines in Fig. 4 indicate the
lower cuts in z applied for the data sets at different c.m.s.
energies as discussed above. The leftmost line (correspond-
ing to zmin ¼ 0.075) is the cut used in the NNLO analysis in
Ref. [14]. Both the data and the calculated multiplicities are
shown as a function of ζ≡ − log z.
In Fig. 5, we plot z times the gluon and singlet FFs for

positively charged pions, Dπþ
g ðz;Q2Þ and Dπþ

S ðz;Q2Þ,
respectively, resulting from our fits given in Table III.
The FFs are computed at Q ¼ MZ ¼ 91.2 GeV and in a
range of z shown extending well below the zmin ¼ 0.01 cut
above which they are constrained by data. We would like to
point out that the resummed (and matched) results for
which we have full control over all logarithmic powers
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FIG. 5. z times the obtained gluon (upper panel) and singlet
(lower panel) FFs as a function of z, evaluated at Q ¼ 91.2 GeV
for the different fits listed in Table III. The singlet is shown for
Nf ¼ 5 active flavors. The fitted z-range, z > 0.01, is to the right
of the dotted vertical line.

TABLE III. The obtained χ2-values, the penalties from nor-
malization shifts, and the χ2=dof for the fits at fixed order and
resummed accuracy as described in the text.

Accuracy χ2 Normalization shift χ2=dof

LO 1260.78 29.02 2.89
NLO 354.10 10.93 0.81
NNLO 330.08 8.87 0.76
LOþ LL 405.54 9.83 0.93
NLOþ NNLL 352.28 11.27 0.81
NNLOþ NNLL 329.96 8.77 0.76
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(i.e. for LOþ LL and NLOþ NNLL) are well behaved at
small-z and show the expected oscillatory behavior with z
which they inherit from the resummed splitting functions
through evolution. The latter behave like different combi-
nations of Bessel functions when the Mellin inverse back to
z-space is taken; for more details see Ref. [33]. The singlet
and gluon FFs at NNLOþ NNLL accuracy still diverge for
z → 0 (i.e. they turn to large negative values in the z-range
shown in Fig. 5) since we do not have control over all five
logarithmic powers that appear in a fixed-order result at
NNLO; cf. Tables I and II. However, the resummation of
the three leading towers of logarithms considerably tames
the small-z singularities as compared to the corresponding
result obtained at NNLO.
Finally, to further quantify the impact of small-z resum-

mations in the range of z relevant for phenomenology,
Fig. 6 shows the K-factors at scale Q ¼ 91.2 GeV for the
pion multiplicities (3) obtained in our fits. Schematically,
they are defined as

K ≡ CFOþRes ⊗ DFOþRes

CFO ⊗ DFO : ð71Þ

Here, CFO and CFOþRes denote the fixed-order coefficient
functions at LO, NLO, and NNLO accuracy and the
corresponding resummed and matched coefficient func-
tions, respectively. Likewise, DFO and DFOþRes are the FFs
evolved with splitting functions at fixed order and
resummed, matched accuracy, respectively. In order to
assess the relevance of the small-z resummations indepen-
dent of the details of the nonperturbative input for the FFs at
scale μ0, we adopt the same FFs for both calculating the
numerator and the denominator. In each computation of K,
we select the set of FFs obtained from the corresponding

fixed-order fit and the different logarithmic orders of the
resummations are chosen as discussed and given in
Table III.
By comparing the results for the K-factors at LOþ LL,

NLOþ NNLL, and NNLOþ NNLL accuracy, it can be
inferred that the corrections due to the small-z resumma-
tions start to become appreciable at a level of a few percent
already below z≃ 0.1. As one might expect, resummations
are gradually less important when the perturbative accuracy
of the corresponding fixed-order baseline is increased, i.e.,
the NNLO result already captures most of the small-z
dynamics relevant for phenomenology whereas the
differences between LO and LOþ LL are still sizable.
This explains the pattern of χ2 values we have observed in
Table III. In addition, Fig. 6 also gives the K-factor at
NNLOþ NNLL accuracy where the small-z resummations
are only performed either for the coefficient functions
(labeled as “C only”) or for the splitting functions (“P
only”). By comparing these results with the full K-factor at
NNLOþ NNLL accuracy, one can easily notice that there
are very large cancellations among the two.

B. Scale dependence

In this section, the remaining scale dependence of the
resummed expressions is studied and compared to the
corresponding fixed-order results. The scale-dependent
terms are implemented according to the discussions in
Sec. II C. As usual, we use the iterated solution with up to
n ¼ 20 terms in the perturbative expansion.
As was already observed in the NNLO analysis of

Ref. [14], the dependence on the factorization scale μF
in SIA is gradually reduced the more higher order correc-
tions are considered in the perturbative expansion. This is
in line with the expectation that all artificial scales, μF and
μR, should cancel in an all-order result, i.e. if the series is
truncated at order m, the remaining dependence on, say, μF
should be of order amþ1

s . Following this reasoning, we do
expect a further reduction of the scale dependence upon
including small-z resummations on top of a given fixed-
order calculation; see Sec. II C.
Usually, the scale dependence is studied by varying the

scale μF by a factor of 2 or 4 around its default (central)
value, μF ¼ Q in case of SIA. Therefore, we introduce the
parameter ξ≡ μ2F=Q

2; note that in this paper we keep
μF ¼ μR as is commonly done. Hence, ξ ¼ 1 corresponds
to the standard choice of scale μF ¼ Q. The conventional
way of showing the dependence of a quantity T, like the
pion multiplicity (3), on ξ is to plot the ratio TðξÞ=Tðξ ¼ 1Þ
for various values of ξ; in our analyses, we will use ξ ¼ 2
and ξ ¼ 0.5.
However, we find that the oscillatory behavior of the

resummed splitting and coefficient functions causes the
SIA multiplicities to become an oscillatory function as
well, which for certain small values of z, well below the cut
zmin down to which we fit FFs to data, eventually becomes
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negative. Therefore, it is not feasible to utilize the common
ratio plots to investigate the resummed scale dependence.
Instead, we decide to study the width of the scale variation
ΔT for a quantity T, defined as

ΔTðzÞ≡max½Tξ¼1ðzÞ; Tξ¼2ðzÞ; Tξ¼0.5ðzÞ�
−min½Tξ¼1ðzÞ; Tξ¼2ðzÞ; Tξ¼0.5ðzÞ� ð72Þ

in the range ξ ¼ ½0.5; 2� as a measure of the residual
dependence on μF.
In Fig. 7, we show ΔSIAðzÞ for the pion multiplicities (3)

at Q ¼ 10.54 GeV for the two fixed-order fits (NLO and
NNLO accuracy) as well as for resummed and matched
fit at NNLOþ NNLL. The main plot, which covers the
z-range down to 10−7, clearly demonstrates that the band
ΔSIA is, on average, considerably more narrow for the
NNLOþ NNLL resummed cross section than for the fixed-
order results, according to the expectation. From the middle
inset of Fig. 7, which shows z values relevant for experi-
ments, i.e. z≳ 10−3, one can infer that the band ΔSIA is
roughly of the same size for all calculations and resum-
mations do not lead to any improvement in the scale
dependence in this range. The small inset zooms into the
range z > 0.01, where a similar conclusion can be reached.
In order to fully understand this behavior, one perhaps

would have to include the yet missing N4LL corrections,
which would allow one to resum all five logarithmic towers
present at NNLO accuracy. The observed result might be
due to these missing subleading terms or it could be related
to some intricate details in the structure of the perturbative
series in the timelike case at small-z.
In any case, one can safely conclude that in the z-region

relevant for phenomenology of SIA, the residual scale
dependence of the resummed result does not differ from the
fixed order calculation at NNLO accuracy. The latter is

therefore entirely sufficient for extractions of FFs from SIA
data as resummations neither improve the quality of the fit,
cf. Sec. III A, nor do they reduce theoretical uncertainties.
Nonetheless, it important to demonstrate from a theoretical
point of view that, on average, resummation does achieve
smaller scale uncertainties, although for values of z that are
well outside the range of currently available data. It should
be also kept in mind that the study of the N ¼ 1 moment of
multiplicities, though not studied in this paper, would not
be possible without invoking small-z resummations as
fixed-order results are singular.

IV. CONCLUSIONS AND OUTLOOK

We have presented a detailed phenomenological analysis
of small-z resummations in semi-inclusive annihilation, the
timelike scale evolution of fragmentation functions, and
their determination from data.
After detailing the systematics of the enhanced contri-

butions at small momentum fractions of the observed
hadron for both coefficient and splitting functions, we
have reviewed how to resum them to all orders in
perturbation theory up to next-to-next-to-leading logarith-
mic accuracy. The approach used in this paper was
proposed in the literature and is based on general consid-
erations concerning all-order mass factorization. Our
results agree with those presented in the literature, and
we have extended them to allow for variations in the
factorization and renormalization scales away from their
default values.
Next, we have shown how to properly implement the

resummed expressions in Mellin moment space and how to
set up a solution to the coupled, matrix-valued singlet
evolution equations. The nonsinglet sector is subleading
and not affected by the presently available logarithmic
order. For all practical purposes we advocate an iterated
solution for the scale evolution of fragmentation functions,
and we have shown that keeping twenty terms in the
expansion of the resummed expressions is sufficient for all
applications. We have also discussed how to match the
resummed towers of logarithms for both the coefficient and
the evolution kernels to the known fixed-order expressions.
Numerical subtleties in complex Mellin moment space
related to finding a proper choice of contour for the inverse
transformation despite the more complicated structure of
singularities of the resummed evolution kernels and coef-
ficient functions have been addressed as well.
In the second part of the paper, a first analysis of semi-

inclusive annihilation data with an identified pion in terms
of parton-to-pion fragmentation functions and in the
presence of resummations was presented. To this end,
various fits at different fixed-orders in perturbation theory
and levels of small-z resummations were compared in order
to study and quantify the phenomenological impact of the
latter. It turned out that for both the quality of the fit to data
and the reduction of theoretical uncertainties due to the
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choice of the factorization scale, resummations provide
only little improvements with respect to an analysis
performed at fixed, next-to-next-to-leading order accuracy.
At values of the hadron’s momentum well outside the range
of phenomenological interest, we did observe, however,
a significant improvement in the scale dependence of
the inclusive pion cross section in the presence of
resummations.
Possible future applications of resummations comprise

revisiting the analyses of the first moment of hadron
multiplicities available in the literature. Here, resumma-
tions are indispensable for obtaining a finite theoretical
result. So far, the main focus was on the energy dependence
of the peak of the multiplicity distribution, its width, and a
determination of the strong coupling. It might be a valuable
exercise to merge the available data on the first moment and
the relevant theoretical formalism with the extraction of the
full momentum dependence of fragmentation functions as
described in this paper to further our knowledge of the
nonperturbative hadronization process.
As was pointed out in the paper, a better understanding of

the interplay of resummations and other sources of poten-
tially large corrections in the region of small momentum
fractions is another important avenue of future studies for
timelike processes. One if not the most important source
of power corrections is the hadron mass, which is neglected
in the factorized framework adopted for any analysis
of fragmentation functions. At variance with the

phenomenology of parton distributions functions, where
one can access and theoretically describe the physics of very
smallmomentum fractions, hadronmass corrections prevent
that in the timelike case. In fact, they become an inevitable
part and severely restrict the range of applicability of
fragmentation functions and the theoretical tools such as
resummations. In addition, resummations can and have been
studied for large fractions of the hadron’s momentum. With
more and more precise data becoming available in this
kinematical regime, it would be very valuable to incorporate
also these types of large logarithms into the analysis
framework for fragmentation functions at some point in
the future.
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