
Neutrino-induced one-pion production revisited: The νμn → μ−nπþ channel

E. Hernández1 and J. Nieves2
1Departamento de Física Fundamental e IUFFyM,

Universidad de Salamanca, E-37008 Salamanca, Spain
2Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia,
Institutos de Investigación de Paterna, Apartado 22085, E-46071 Valencia, Spain

(Received 9 December 2016; published 24 March 2017)

Understanding single pion production reactions on free nucleons is the first step towards a correct
description of these processes in nuclei, which are important for signal and background contributions in
current and near future accelerator neutrino oscillation experiments. In this work, we reanalyze our
previous studies of neutrino-induced one-pion production on nucleons for outgoing πN invariant masses
below 1.4 GeV. Our motivation is to get a better description of the νμn → μ−nπþ cross section, for which
current theoretical models give values significantly below data. This channel is very sensitive to the
crossed Δð1232Þ contribution and thus, to spin 1=2 components in the Rarita-Schwinger Δ propagator.
We show how these spin 1=2 components are nonpropagating and give rise to contact interactions. In this
context, we point out that the discrepancy with experiment might be corrected by the addition of
appropriate extra contact terms and argue that this procedure will provide a natural solution to the
νμn → μ−nπþ puzzle. To keep our model simple, in this work, we propose to change the strength of the
spin 1=2 components in the Δ propagator and use the νμn → μ−nπþ data to constraint its value. With this
modification, we now find a good reproduction of the νμn → μ−nπþ cross section without affecting the
good results previously obtained for the other channels. We also explore how this change in the Δ
propagator affects our predictions for pion photoproduction and find also a better agreement with
experiment than with the previous model.
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I. INTRODUCTION

New and more precise measurements of neutrino cross
sections in the few GeVenergy region have renewed interest
in a better understanding of electroweak interactions on
nucleons and nuclei. This interest comes from neutrino
oscillation experiments and their need to reduce systematic
errors to achieve the precision goals of the neutrino
oscillation program, making new discoveries, like the CP
violation in the leptonic sector, possible. Neutrinos are
detected through their interactions with the nuclei that form
part of the detectors. For nuclear physics, this represents a
challenge because precise knowledge of neutrino oscillation
parameters requires an accurate understanding of the detector
responses, and it can only be achieved if nuclear effects are

under control [1–6]. Neutrino fluxes used in contemporary
and near future long and short baseline experiments (T2K,
NOνA, MINERνA, DUNE, …) are peaked in the 1–5 GeV
energy domain, whereweak pion production becomes one of
the main reaction mechanisms [3]. Nuclear effects, arising
from the fact that the reaction takes place inside of a nuclear
medium, or from the final-state interactions (FSI) of the
produced hadrons through their path across the nucleus will
certainly need to be incorporated.1

Nevertheless, the first requirement to put neutrino
induced pion production on nuclear targets on a firm ground
is to have a realistic model at the nucleon level.2 Data on
neutrino pion production off nucleons all come from
deuterium bubble chamber experiments carried out in the
1980’s at Argonne (ANL) [17] and Brookhaven (BNL) [18]

1Weak pion production in dense matter is strongly affected by nuclear corrections, which might not be under control. As example of
the theoretical difficulties faced, we refer the reader to the MiniBooNE flux-folded differential dσ=dpπ cross section data in mineral oil
reported in Ref. [7], which cannot be described by the state of the art theoretical calculations of Refs. [8] and [9]. The latter approach is
based in the chiral-inspired model of Ref. [10] for weak pion production reaction off nucleons, which will be updated in this work.
MINERνA pion production data for higher neutrino energies (Eν ∼ 4 GeV) have recently become available [11–13] and show some
appreciable inconsistencies, mostly in the magnitude of the cross sections, with MiniBooNE measurements. This is an open problem
that deserves further discussion. Charged current pion production data from T2K will be an important check, since the neutrino energy
range in this experiment is similar to that of MiniBooNE.

2At this point, we should stress that the Rein-Sehgal model [14] used by almost all Monte Carlo generators, provides a really poor
description of the pion electroproduction data on protons [15,16]. Indeed, the model underestimates significantly the electron data, and it
also reveals itself unsatisfactory in the axial sector at q2 ¼ 0, where the divergence of the axial current can be related to the πN amplitude
by PCAC (partial conservation of the axial current).
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national laboratories. The overall neutrino-flux normal-
izations of these measurements have been recently rean-
alyzed and corrected in Refs. [19,20]. For antineutrinos,
the measurements are of lower quality, and data on single
nucleons are not available. Most of the models describe
the pion production process by means of the weak
excitation of the Δð1232Þ resonance followed by its
strong decay into Nπ (Δ-pole mechanism depicted in
the left-top diagram of Fig. 1), and in some occasions,
incorporate background terms. The major part of the
models includes also the weak excitation of higher
resonances as intermediate states. Vector form factors
are fixed from helicity amplitudes extracted in the analysis
of pion electroproduction data, while the axial couplings
are obtained from PCAC [4].
In this work, we pay a special attention to the νμn →

μ−nπþ cross section, for which current theoretical models
give values significantly below data. Actually, this channel
is certainly much worse described than the others, νμn →
μ−pπ0 and νμp → μ−pπþ, included in the ANL and BNL
data sets. We reanalyze our previous study in Ref. [10] of
neutrino-induced one-pion production on nucleons and
show that this anomaly could be greatly improved by
the addition of appropriate extra local terms. Such con-
tributions are intimately related to the spin 1=2 degrees of
freedom present in the Rarita-Schwinger (RS)Δ propagator
and greatly suppress the crossed Δ mechanism (left-bottom
diagram in Fig. 1). We find that the use of (almost)
consistent Δ couplings [22], which keep only the spin
3=2 contribution from the Δ propagator, leads to an overall
good description of the ANL and BNL data in all three
available charge channels.
The work is organized as follows: After this introduction

in Sec. II, we briefly review the most relevant ingredients of
model of Ref. [10], updated in Refs. [9,21], together with

its predictions for the νμn → μ−nπþ cross section for
outgoing pion-nucleon invariant masses below 1.4 GeV.
Next in Sec. III, we describe the Δð1232Þ propagator used
in Ref. [10] and show that it is a Green function of the RS
equation of motion. We also give its decomposition into a
spin 3=2 part plus the rest. The latter is a nonpropagating
spin 1=2 contribution that gives rise to contact interactions,
at least in the limit of zero Δ width. In Sec. IV, we describe
the prescription of Ref. [22] to go from inconsistent to
consistent couplings and show the effects of using con-
sistent couplings in the evaluation of an amplitude, where
the Δ appears as an intermediate state. The extension
(modification) of our model is described in Sec. V, and the
new results are presented in Sec. VI, where results for pion
photoproduction are also given. The amplitude for this
latter process derives from the vector part of our model for
weak pion production, and it is described in the Appendix.
Finally, in Sec. VII, we summarize the main conclusions of
this work.

II. THE MODEL OF REFS. [9,10,21]: OFF
DIAGONAL GOLDBERGER-TREIMAN
RELATION, WATSON’S THEOREM,

AND THE νμn → μ−nπþ CROSS SECTION

In Ref. [10], we developed a model for neutrino-
induced one-pion production off the nucleon at low
energies where, besides the dominant Δ mechanism, we
included also nonresonant contributions required by chiral
symmetry. These chiral background terms were evaluated
using a nonlinear SU(2) chiral Lagrangian, and we
supplemented them with well-known phenomenological
form factors introduced in a way that respected both CVC
(conservation of the vector current) and PCAC. As for
the dominant Δ contribution, the weak N → Δ transition
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FIG. 1. Left: Direct (top) and crossed (bottom) Δð1232Þ-pole mechanisms. Right: νμn → μ−nπþ total cross section obtained with the
parameters from fit B in Ref. [21] as compared to ANL [17] and BNL [18] data. ANL data and theoretical results include a cut
WπN < 1.4 GeV in the final pion-nucleon invariant mass. Experimental points include a systematic error due to flux uncertainties
(assumed to be 20% for ANL and 10% for BNL data), which had been added in quadratures to the statistical ones. Theoretical bands
correspond to the variation of the results when CA

5 ð0Þ changes within its error interval.
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matrix element can be parametrized in terms of four vector
CV
3−6 form factors and four axial CA

3−6 ones. C
V
6 is exactly

zero from CVC, while the rest of the vector form factors
were determined from pion electroproduction, and for
them, we adopted the values in Ref. [23]. Axial form
factors are mostly unknown. In fact, one uses the weak
pion production process as a tool to extract information on
the axial nucleon to resonance transition form factors. The
term proportional to CA

5 is the dominant one. Assuming
the pion pole dominance of the pseudoscalar CA

6 form
factor, PCAC gives its value in terms of CA

5 as
CA
6 ¼ CA

5
M2

m2
π−q2

, where qμ is the lepton transfer four

momentum and M (mπ) the nucleon (pion) mass. We
further adopted Adler’s model [24], in which one has
CA
3 ¼ 0, CA

4 ¼ − 1
4
CA
5 . We fitted CA

5 to data assuming a
modified dipole parametrization. The experimental data
set consisted of the flux-averaged q2-differential νμp →
μ−pπþ cross section measured at ANL [17], which
incorporated a kinematical cut WπN < 1.4 GeV on the
invariant mass of the final nucleon-pion pair. This was
appropriate since our model ignored the contribution from
higher mass resonances. From the fit, we obtained
CA
5 ð0Þ ¼ 0.87� 0.08. This result was at variance with

the value derived from the off diagonal Goldberger-
Treiman relation (GTR) that predicts CA

5 ð0Þ ∼ 1.15–1.20.
The disagreement with the GTR value got reduced in

Ref. [25] where, following the work of Ref. [26], we
included in our fit total cross sections measured at BNL
[18], and we fully evaluated deuteron effects, the latter
relevant since ANL and BNL data were actually obtained
using a deuterium target. We had already noticed in
Ref. [10] that the correct description of BNL cross sections
required larger CA

5 ð0Þ values. Our preference at the time for
ANL data was due to the fact that they provided absolute
q2-differential cross sections (as opposed to BNL, where
only the shape was given) evaluated with a kinematical cut
appropriate for our model. BNL cross section values are
larger, and they seemed to be incompatible with ANL ones.
As it has recently been demonstrated in Ref. [19], where a
reanalysis of both ANL and BNL data has been conducted,
the discrepancies between the two data sets stem from their
respective uncertainties in the neutrino flux normalization.
In Ref. [25], in addition to the ANL flux-averaged
q2-differential νμp → μ−pπþ cross section, we included
in the fit the three lowest neutrino energy νμp → μ−pπþ

total cross sections from BNL, and we considered the
uncertainties on the neutrino flux normalizations as fully
correlated systematic errors. Deuteron effects turned out to
reduce the cross section by some 10% which agreed with
previous estimates in Refs. [26,27]. To compensate this
reduction in the cross section, a roughly 5% larger CA

5 ð0Þ
value was needed. However, it was the consideration in the
fit of BNL cross sections what was responsible for the
larger change in CA

5 ð0Þ. Assuming a simpler pure dipole

form for CA
5 , we obtained C

A
5 ð0Þ ¼ 1.0� 0.1, a value closer

to the GTR one.3

In Ref. [9], and in order to extend the model to higher
neutrino energies (up to 2 GeV), we added the contribution
from the spin 3=2 nucleonD13ð1520Þ resonance. This is the
only resonance, apart from the Δ, that gives a significant
contribution in that energy region [28]. The corresponding
vector and axial form factors for the N → D13 transition
current were taken, respectively, from fits to results in
Refs. [29] and [30], respectively. A full account of the
D13ð1520Þ contribution can be found in the Appendix
of Ref. [9].
Finally, in Ref. [21], we partially unitarized our model by

imposing Watson’s theorem. This theorem is a result of
unitarity and time-reversal invariance, and it implies that
the phase of the electro or weak pion production amplitude
is fully determined by the strong πN → πN interaction
elastic phase shifts ½δL2Jþ1;2Tþ1

ðWπNÞ�. Imposing Watson
restrictions in general is a difficult task, and thus in
[21], we only paid attention to the dominant spin-3=2
isospin-3=2 positive-parity amplitude, where the direct
excitation of the Δð1232Þ resonance occurs. Following
the procedure suggested by M.G. Olsson in Ref. [31], we
introduced independent vector and axial phases (two-
dimensional functions of q2 and WπN) to correct the
interference between the dominant direct Δ term and the
nonresonant background. These extra phases were fixed by
requiring that the total (resonance plus background con-
tributions) amplitude in this dominant channel had the
correct phase δP33

ðWπNÞ. Since this was not possible in a
consistent way for all different terms that contribute to the
P33 amplitude in the multipolar expansion, we unitarized
only the dominant vector and axial multipoles. Within
this scheme, we performed two different fits in Ref. [21].
For fit A, we used the same input data as in Ref. [25] and
described above. As a consequence of imposing Watson’s
theorem, the interference between the dominant direct Δ
contribution (left-top diagram of Fig. 1) and the back-
ground terms changed, and as a result, a larger value
(1.12� 0.11) for CA

5 ð0Þ, in agreement now with the GTR
prediction, was obtained. For fit B, we used the results of
Ref. [19]. As already mentioned, the authors of Ref. [19]
reanalyzed ANL and BNL experiments producing data on
the ratio between the σðνμp → μ−pπþÞ and the charged
current quasielastic (CCQE) cross sections measured in
deuterium. In this way, the flux uncertainties present in the
experiments cancel. They found a good agreement between
the two experiments for these ratios. Then, by multiplying
the cross section ratio by the theoretical CCQE cross

3In some fits carried out in [25], we unsuccessfully relaxed
Adler’s constraints exploring the possibility of extracting some
direct information on CA

3;4ð0Þ. We showed there that, the available
low-energy data cannot effectively disentangle the different form-
factor contributions.
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section on the deuteron,4 which is well under control, flux
normalization independent pion production cross sections
were extracted. We took advantage of these developments,
and for fit B in Ref. [21], we considered the new data
points. Since no cut in WπN was imposed on this new data,
we only used total cross sections for neutrino energies
below 1 GeV. Besides, to constrain the q2 dependence of
the CA

5 form factor, we also fitted the shape of the original
ANL flux-folded dσ=dq2 distribution, where a WπN <
1.4 GeV cut was implemented. For this fit, we obtained
CA
5 ð0Þ ¼ 1.14� 0.07, similar to the result from fit A. The

quality of the fit, the predictions for cross sections in other
channels, as well as the values of the Olsson phases needed
to satisfy Watson’s theorem were very similar in fits
A and B.
The agreement of the theoretical predictions with data

was also good for the total cross sections in other channels
with one notable exception, the νμn → μ−nπþ reaction
shown in the right panel of Fig. 1, where theoretical
predictions lie below experimental points. This is a
common problem to other models [33–36].5 A special
mention deserves the dynamical model of photo-, electro-
and weak pion production initially derived in Ref. [33],
and that has been recently further refined and extended
to incorporate N� resonances and a larger number of
meson-baryon states [34,35]. Despite its theoretical and
phenomenological robust support, satisfying unitary con-
strains and fulfilling thus Watson’s theorem, this model
provides a description of the νμn → μ−nπþ channel, only
slightly better [37] to that shown here in the right panel
of Fig. 1.
As can be deduced from the explicit expressions given in

Ref. [10], theνμn → μ−nπþ reactiongets a large contribution
from the crossed Δ mechanism (left-bottom diagram in
Fig. 1), and thus, it is very sensitive to the spin 1=2
components present in the RS covariant Δ propagator.
Indeed, besides the Δ propagator, the numerical factors of
the (direct and crossed) Δ mechanisms are (

ffiffiffi
3

p
and 1=

ffiffiffi
3

p
),

(−
ffiffiffiffiffiffiffiffi
2=3

p
and

ffiffiffiffiffiffiffiffi
2=3

p
), and (1=

ffiffiffi
3

p
and

ffiffiffi
3

p
) for the pπþ, pπ0,

and nπþ channels, respectively.6 Thus, isospin invariance
implies that the largest (smallest) contribution of the crossed
Δ mechanism occurs in the nπþ (pπþ) channel, while the
largest (smallest) contribution of the direct Δ mechanism in
contrast is found in the pπþ (nπþ) amplitude.
The RS covariant propagator, with its lower spin

components, is considered to be incorrect in Ref. [38],

where the authors advocate the use of the pure spin 3=2
propagator of Behrends and Fronsdal [39]. The opposite
view is adopted in Ref. [40], where the pure spin 3=2
propagator is considered incorrect since it does not
satisfy the appropriate Green function equation. In
Ref. [41], it is argued that off shell terms of lower spin
can naturally appear in the construction of propagators,
and such terms explain, for instance, the decay of a
spinless pion through an intermediate vector meson,
without violating the conservation law of angular
momentum. It is only because the vector propagator
has an off shell spin 0 part that the charged pion can
decay [40–42]. What is also true is that those lower spin
terms are always nonpropagating giving rise to pure
contact interactions. In Refs. [22,43,44], the approach is
somewhat different. There, the authors arrive at a pure
spin 3=2 contribution from the Δ propagator by selecting
consistent couplings. These are derivative couplings that
preserve the gauge invariance of the free massless spin
3=2 Lagrangian. In Ref. [22], it is shown how to obtain
consistent couplings from inconsistent ones by just a
redefinition of the spin 3=2 field. The difference amount
to contact terms that in this approach are responsible for
the contribution of the extra lower-spin degrees of freedom.
However, as already acknowledged in Ref. [43], and very
recently reanalyzed in Ref. [45], consistent couplings
cannot be kept in the presence of electromagnetic inter-
actions. This is so since any derivative on the Δ field
gives rise through minimal substitution to a new nonde-
rivative term.
Our approach to this problem is conceptually different,

based on the perspective of an effective field theory, and it
is motivated by the discussion in Ref. [22]. In this latter
reference, it is argued that (i) the use of consistent or
inconsistent couplings will provide the same physical
predictions as far as all relevant contact terms allowed
by the underlying symmetries are included in both cases,
and (ii) the strength of the contact terms will have to be
fitted to experiment. According to this, in this work, we
propose a minimal modification of our model, in which the
contact terms that derive from the spin 1=2 part of the Δ
propagator are multiplied by an extra parameter (low
energy constant), that will be fitted to data.

III. RARITA-SCHWINGER PROPAGATOR

The RS Lagrangian of the free massive spin 3=2
reads [22] [we particularize for the Δð1232Þ resonance
case],

LRS ¼ Ψ̄μΛμνΨν;

Λμν ¼ ðγμναi∂α −MΔγ
μνÞ

¼ 1

2
fði∂ −MΔÞ; γμνgþ; ð1Þ

4For that purpose, they used the prediction from GENIE 2.9 [32].
5Note that in Ref. [36], the theoretical predictions are below

data when the cut WπN < 1.4 GeV is implemented. Indeed, this
work uses the SU(2) chiral model derived in Ref. [10], imposing
GTR and including smaller contributions from other resonances
different to the Δð1232Þ and the D13ð1520Þ.

6Note that the pπ0 coefficients quoted in a similar discussion in
Ref. [21] were wrong by an overall −1=

ffiffiffi
2

p
factor.
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where Ψμ represents the RS field for the Δ and

γβνα ¼
1

2
fγβν; γαgþ ¼ −iϵβναργργ5; γβν ¼

1

2
½γβ; γν�;

ð2Þ

with ϵ0123 ¼ þ1 and gμν ¼ ð1;−1;−1;−1Þ. The
Lagrangian in Eq. (1) corresponds to the parameter
A ¼ −1 in the discussion of Eq. (2) of Ref. [40] (note
that the physical properties of the free field are independent
of this parameter). The Euler-Lagrange equation reads

ΛμνΨν ¼ ðγμναi∂α −MΔγ
μνÞΨν

¼ −½ði∂ −MΔÞgμν þ γμði∂ þMΔÞγν
− iðγμ∂ν þ ∂μγνÞ�Ψν ¼ 0; ð3Þ

which leads to the set of equations

ði∂ −MΔÞΨν ¼ 0; ∂νΨν ¼ 0; γνΨν ¼ 0: ð4Þ

The corresponding RS propagator is

GμνðpΔÞ ¼
PμνðpΔÞ

p2
Δ −M2

Δ þ iMΔΓΔ
. ð5Þ

PμνðpΔÞ ¼ −ðpΔ þMΔÞ

×

�
gμν −

1

3
γμγν −

2

3

pμ
Δp

ν
Δ

M2
Δ

þ 1

3

pμ
Δγ

ν − pν
Δγ

μ

MΔ

�
:

ð6Þ

In the zero width limit (ΓΔ ¼ 0, i.e., when dealing with a
stable particle), the above propagator gives the Green
function of the RS equation of motion

ΛαβG
β
δðxÞ ¼ gαδδ4ðxÞ; ð7Þ

with GμνðxÞ the Fourier’s transform of GμνðpΔÞ. This result
follows trivially from

ðγμναpα
Δ −MΔγμνÞPνβðpΔÞ ¼ ðp2

Δ −M2
ΔÞgβμ; ð8Þ

which can be obtained after a little of Dirac algebra.
The Pμν operator can be rewritten as [44]

PμνðpÞ ¼ P
3
2
μνðpÞ þ ðp2 −M2

ΔÞ

×

�
2

3M2
Δ
ðpþMΔÞ

pμpν

p2

−
1

3MΔ

�
pρpνγμρ

p2
þ pρpμγρν

p2

��
; ð9Þ

with

P
3
2
μνðpÞ ¼ −ðpþMΔÞ

×

�
gμν −

1

3
γμγν −

1

3p2
ðpγμpν þ pμγνpÞ

�
: ð10Þ

P
3
2
μνðpÞ satisfies the relations

0 ¼ ½p;P3
2
μνðpÞ� ¼ pμP

3
2
μνðpÞ

¼ P
3
2
μνðpÞpν ¼ γμP

3
2
μνðpÞ ¼ P

3
2
μνðpÞγν;

P
3
2
μνðpÞ½P3

2ðpÞ�νρ ¼ −ðpþMΔÞ½P3
2ðpÞ�ρμ. ð11Þ

from where one concludes that P
3
2
μν is the spin-3=2

projection operator.
Finally, we would like to stress that Eq. (9) shows that in

the RS propagator of Eq. (5), only the spin-3=2 degrees of
freedom propagate, while the controversial spin-1=2 con-
tributions give rise to contact background terms. [This
is strictly true in the zero width limit where the factor
ðp2 −M2

ΔÞ in Eq. (9) cancels the denominator of the Δ
propagator.] As we will discuss below, the total strength of
the contact terms is undetermined in an effective chiral
expansion, and it needs to be determined from experiment.

IV. CONSISTENT Δ INTERACTIONS:
THE PRESCRIPTION OF REF. [22]

The kinetic term of the free RS Lagrangian in Eq. (1) is
invariant under the gauge transformation

ΨμðxÞ → ΨμðxÞ þ ∂μϵðxÞ; ð12Þ

with ϵðxÞ a spinor. It is argued in Refs. [43,44] that any
interaction term that respects this symmetry does not
change the degrees of freedom content of the free theory,
where the constraints on ΨμðxÞ guarantee that it indeed
describes spin 3=2 particles. Couplings respecting this
symmetry are called consistent ones. In the case of linear
couplings of the form

Lint ¼ gΨ̄βJβ þ H:c:; ð13Þ

where Jμ is any current coupled to Δ, the invariance of
the Lagrangian under the gauge transformation requires
the current Jμ to be conserved. If that is not the case, the
coupling is called inconsistent. The transformation of
this latter coupling into a consistent one can be achieved
via a redefinition of the Δ field

Ψμ → Ψμ þ gξμ: ð14Þ

This transformation modifies the linear coupling

L0
int ¼ gΨ̄βðJβ þ ΛβνξνÞ þ H:c: ð15Þ
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and gives rise to an additional contact interactionLagrangian,
LC, independent of the RS field (see Ref. [22] for details
on LC). By selecting

ξμ ¼ ðMΔγ
μνÞ−1Jν ¼ −

1

MΔ
Oð−1=3Þ

μν Jν; ð16Þ

where

OðxÞ
νμ ¼ gνμ þ xγνγμ; ð17Þ

one has that the new total current coupled to the Δ is

J β ¼ Jβ þ Λβνξν ¼ γβναi∂αξν ¼ −
i

MΔ
γβναOð−1=3Þ

νρ ∂αJρ;

ð18Þ

which is indeed conserved.
Apart from a total divergence of no consequence,

Eq. (15) can be rewritten as

L0
int ¼ i

g
MΔ

∂αΨ̄βγ
αβνOð−1=3Þ

νρ Jρ þ H:c: ð19Þ

This is the prescription described in Ref. [22] to transform
an inconsistent coupling into a consistent one. The descrip-
tion in terms of the original Lint or the modified L0

int þ LC
Lagrangians is equivalent at the level of the S matrix.
It is further argued in Ref. [22] that, within chiral

perturbation theory (ChPT), any linear spin-3=2 coupling
is acceptable. This is so since the additional LC contact
terms, which provide the equivalence between inconsistent
and consistent couplings, have to be included in both
situations with arbitrary coefficients that have to be fitted to
some experimental input. Thus, it is only the value of the
coefficients of the contact terms that change. In this respect,
the spin-1=2 contributions in the RS propagator, that give
rise to pure contact terms, can be totally eliminated, and
their effects reabsorbed into the values of some of the low-
energy constants of the additional zero-range couplings.
According to Ref. [22], it is preferable to use consistent
interaction terms, supplemented with the adequate contact
interactions, in the analysis of the separate contributions
due to spin 3=2 degrees of freedom versus the rest.
To see the effect of the use of consistent interactions, let

us consider a process driven by the excitation of the Δ and
its subsequent decay into some final particles. This mecha-
nism is depicted in the left panel of Fig. 2, and it is
determined by the currents K̄ϵ and Jρ that couple the Δ to
the initial and final particles, respectively, and that we
assume to be of the inconsistent type. In the zero width
limit, the amplitude for the process would be

T ¼ g1g2K̄ϵ
Pϵρ

p2
Δ −M2

Δ
Jρ; ð20Þ

while using the consistent currents K̄ϵ and J ρ, one would
get

Tconsistent ¼ g1g2K̄ϵ Pϵρ

p2
Δ −M2

Δ
J ρ ð21Þ

¼ g1g2
pΔηpΔσ

M2
Δ

K̄ϵOð−1=3Þ
ϵμ γμηα

×
Pαβ

p2
Δ −M2

Δ
γβσνOð−1=3Þ

νρ Jρ ð22Þ

¼ g1g2K̄ϵ p
2
Δ

M2
Δ

P
3
2
ϵρ

p2
Δ −M2

Δ
Jρ: ð23Þ

This result follows from the antisymmetry of the γμηα tensor
that guaranties that

pΔηpΔσO
ð−1=3Þ
ϵμ γμηαPαβγ

βσνOð−1=3Þ
νρ

¼ pΔηpΔσO
ð−1=3Þ
ϵμ γμηαP

3
2

αβγ
βσνOð−1=3Þ

νρ

¼ −pΔηpΔσO
ð−1=3Þ
ϵμ γμηαðpΔ þMΔÞOð−1=3Þ

αβ γβσνOð−1=3Þ
νρ ;

ð24Þ

and some further Dirac algebra.7

By comparing Eqs. (20) and (23), we see that the use of
consistent couplings induces the replacement

Pϵρ ↔
p2
Δ

M2
Δ
P

3
2
ϵρ ð25Þ

in the Feynman amplitudes. Note that the factor p2
Δ in front

of P
3
2
ϵρ corrects for the ill-defined infrared behavior of the

latter operator. From Eq. (9), we see that Pϵρ and P
3
2
ϵρ differ

in terms that vanish on shell (p2
Δ ¼ M2

Δ),

Ψρ g
1
g

2 K
εδPε ρ J

ρδT=
g Ψε JK

ρg
2

ε

Δ

1

FIG. 2. Left: Reaction mechanism where a Δ is excited and
later on it decays into some final particles. Right: Contact term
that accounts for the difference when the diagram depicted in the
left panel is evaluated using consistent or inconsistent Δ
couplings.

7In Eq. (24), the gϵμ tensor in Oð−1=3Þ
ϵμ gives the final result,

p2
ΔP

3
2
ϵρ, while the γϵγμ part produces an antisymmetric tensor in

the η and σ indices whose contribution vanishes when contracted
with the symmetric pΔηpΔσ term.
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Pϵρ −
p2
Δ

M2
Δ
P

3
2
ϵρ ¼ ðp2

Δ −M2
ΔÞδPϵρðpΔÞ ð26Þ

δPϵρðpΔÞ ¼
1

M2
Δ
ðpΔ þMΔÞ

�
gϵρ −

1

3
γϵγρ

�

þ 1

3M2
Δ
ðpΔϵγρ − pΔργϵÞ ð27Þ

and thus, the amplitudes T and Tconsistent differ in a contact
(nonpropagating) term δT,

T ¼ Tconsistent þ δT; δT ¼ g1g2K̄ϵδPϵρJρ: ð28Þ

The discussion above amounts to admit that the actual size
of a contact term like δT is in fact undetermined, since the
contact terms that appear in the effective chiral expansion
are not fixed, and need to be fitted to experiment. Hence,
the use of consistent or inconsistent Δ couplings should not
produce any difference, as long as the needed contact terms
are phenomenologically determined.

A. The πNΔ coupling

For the case of the πNΔ coupling, in Ref. [10], we took

LπNΔ ¼ f�

mπ
Ψ̄β

~T†Ψ∂β ~ϕþ H:c: ð29Þ

with f� the strong coupling constant, mπ the pion mass, Ψ
and ~ϕ the nucleon and pion fields,8 and ~T† the isospin
1=2 → 3=2 transition operator defined such that its Wigner-
Eckart reduced matrix element is equal to one. The Δwidth
that results from the above vertex, assuming an on shell Δ
at rest and with massWπN , i.e., p

μ
Δ ¼ ðWπN; ~0Þ, is given by9

ΓΔ→NπðWπNÞ ¼
1

6π

�
f�

mπ

�
2 EþM
2WπN

k3πΘðWπN −M −mπÞ;

ð30Þ

where M, E and kπ are the mass and energy of the final
nucleon and the final pion momentum, respectively, in the
Δ rest frame. Using isospin averaged masses and the value
ΓΔ→NπðMΔÞ ¼ 117 MeV [46], we obtain f� ¼ 2.15 to be
compared to the value 2.14 that we have been using so far.
The use of a consistent coupling would lead to the inclusion
of an additional multiplicative factor W2

πN=M
2
Δ.

To end this section, we would like to devote a few
words to the use of a more general πNΔ interaction of
the form [40]

f�

mπ
Ψ̄β

~T†ðgβα þ zγβγαÞΨ∂α
~ϕþ H:c: ð31Þ

In diagrams with an intermediate Δ, and because

P
3
2

αβγ
β ¼ 0, the z term will always give rise to contact

contributions which, as argued above, need to be phenom-
enologically determined. Hence, without lost of generality,
one can ignore these off shell terms as far as all relevant
contact interactions are taken into account.10

V. EXTENSION OF THE MODEL
OF REFS. [9,10,21]

Aiming at improving the description of the νμn →
μ−nπþ channel, we open the possibility of supplementing
the model of Refs. [9,10,21] with some additional contact
terms. To keep the model simple, we introduce just one
undetermined low energy constant (LEC), c, that enters in a
modification of the Δ propagator compatible with ChPT,

PμνðpΔÞ
p2
Δ −M2

Δ
→

PμνðpΔÞ þ cðPμνðpΔÞ − p2
Δ

M2
Δ
P

3
2
μνðpΔÞÞ

p2
Δ −M2

Δ

¼ PμνðpΔÞ
p2
Δ −M2

Δ
þ cδPμνðpΔÞ ð32Þ

with the operator δPμν defined in Eq. (27). The introduction
of this LEC induces two new terms in the model that come
from the direct (ΔP) and crossed Δ pole (CΔP) amplitudes.
[Note that there no exists an unequivocal relation between
the LEC c and the parameter z introduced in Eq. (31), and
thus effects produced by the latter cannot be completely
accounted by the inclusion of these two new terms.]
So far, the values c ¼ 0 and c ¼ −1would correspond to

the use of inconsistent and consistent Δ couplings. We now
reintroduce in the denominator of the propagator in
Eq. (32) the imaginary part iMΔΓΔ, where for ΓΔ we
use Eq. (30) with the new f� value. Note that the width is
zero for the CΔP term, while we expect the direct ΔP
contribution to be largely dominated by the resonant
propagator, being there the influence of the δPμν term
quite small. However, we foresee that the contribution of
this latter term could be relevant in the CΔP amplitude,
because in that case the Δ is largely off shell.
It is worth stressing that the nondiagonal GTR is not

affected by the changes, and it predicts

CA
5 ð0Þ ¼

ffiffiffi
2

3

r
fπ
mπ

f�; ð33Þ
8In our convention, ϕ ¼ ðϕx − iϕyÞ=

ffiffiffi
2

p
creates a π− from the

vacuum or annihilates a πþ, whereas the ϕz field creates or
annihilates a π0.

9In the expression of Eq. (45) of Ref. [10], the factor
ðEþMÞ=2WπN was approximated by M=WπN.

10In this context, the inconsistency between the free Δ
propagator and the πNΔ Lagrangian referred to in Refs. [42,47]
would no longer be relevant.
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that for fπ ¼ 93.2 MeV and the isospin averaged mπ value
that we use results in CA

5 ð0Þ ¼ 1.19.
In principle, one could also modify the D13ð1520Þ terms

included in our model (see Ref. [9]) along the lines
described above and introduce an extra parameter.
However, since theD13ð1520Þ exchange contributions play
a minor role, the effect of these latter modifications would
be much less important, and we shall ignore them.
With the modification in the Δ contributions, we repeat

the fit B carried out in Ref. [21]. There is a total of four best
fit parameters: the LEC c, CA

5 ð0Þ, and MAΔ, that determine
the CA

5 ðq2Þ axial form factor for which we assume a dipole
form

CA
5 ðq2Þ ¼

CA
5 ð0Þ

ð1 − q2=M2
AΔÞ2

; ð34Þ

and the normalization parameter β of the νμp → μ−pπþ

ANL differential cross section introduced in Ref. [21]. In
addition and to increase the sensitivity on the new c
parameter, we now also include in the fit data for the νμn →
μ−nπþ reaction. We thus minimize the following χ2:

χ2 ¼
�X

i∈ANL

�
βdσ=dQ2

i jexp − dσ=dQ2
i jth

βΔðdσ=dQ2
i jexpÞ

�2

þ
X

i∈ANL

�
σijexp − σijth
ΔðσijexpÞ

�
2

þ
X

i∈BNL

�
σijexp − σijth
ΔðσijexpÞ

�
2
�

νμp→μ−pπþ

þ
�X

i∈ANL

�
σijexp − σijth
ΔðσijexpÞ

�
2
�

νμn→μ−nπþ
; ð35Þ

where Q2 ¼ −q2. The dσ=dQ2 differential cross section
values are the flux averaged measurements carried out at
[17] (ANL), and they contain a WπN < 1.4 GeV cut in the
final pion-nucleon invariant mass. This data set serves the
purpose of constraining the q2 dependence of the CA

5 ðq2Þ
axial form factor. The role played by the parameter β is to
allow fitting only the shape of this distribution. The total
νμp → μ−pπþ ANL and BNL cross sections included in
the fit are collected in Table II of Ref. [21]. They have been
taken from the reanalysis of Ref. [19], where flux uncer-
tainties in the original ANL and BNL data have been
eliminated. Since they do not include a cut inWπN , we only
consider cross sections for neutrino energies Eν ≤ 1 GeV.
Finally, for the total νμn → μ−nπþ cross section, we take
also the results of the reanalysis of the ANL data conducted
in Ref. [20] and shown in Table I. In this latter case, the
data do contain a WπN < 1.4 GeV cut. As in Ref. [21],
we consider deuterium effects and Adler’s constraints
(CA

3 ¼ 0; CA
4 ¼ −CA

5=4) on the axial form factors. Besides,

Olsson’s approximate implementation of Watson’s
theorem, as described in Ref. [21], is also taken into
account.

VI. RESULTS

A. Pion production by neutrinos

The best fit parameters resulting from the new fit are

CA
5 ð0Þ ¼ 1.18� 0.07; MAΔ ¼ 950� 60 MeV;

c ¼ −1.11� 0.21; β ¼ 1.23� 0.08: ð36Þ

The new χ2=dof ¼ 1.1 is dominated by the νμn → μ−nπþ

reaction that gives rise to about 75% of the total. CA
5 ð0Þ is

now larger by 3.5% than that found in Ref. [21], and it is in
excellent agreement with the GTR value. The β parameter
is a measure of the neutrino flux uncertainty in the ANL
experiment. Its value is in agreement with the 20%
uncertainty assumed for our fit A in Ref. [21] and the fits
in Refs. [25,26].
In Fig. 3, we compare the fitted data and the new

theoretical results. For comparison, we also show the
results from fit B carried out in Ref. [21]. The shape for
the flux averaged differential cross section dσ=dQ2 νμp →
μ−pπþ is shown in the upper left panel. Both fits give
almost identical results, as it is also the case for the total
νμp → μ−pπþ cross section, depicted in the upper right
panel, where some minor differences can be only seen for
the larger neutrino energies.
In the lower panel, we show the νμn → μ−nπþ cross

section. The new theoretical results are very different from
the ones obtained from fit B in Ref. [21], and they are now
in a much better global agreement with experimental data.
The modifications introduced in the Δ contributions, that
amount to the introduction of new contact terms controlled
by the fitted LEC c, are crucial for this. Without those, one
can not reproduce the νμn → μ−nπþ cross sections without
worsening the agreement with data in other channels.
Results for the total νμn → μ−pπ0 and νμn → νμpπ−

cross sections are given in Fig. 4. We find a good global
agreement with data and only very minor differences with
the results obtained from fit B carried out in Ref. [21].

TABLE I. νμn → μ−nπþ ANL cross sections (in units of
10−38 cm2) taken from the reanalysis of Ref. [20]. A WπN <
1.4 GeV cut has been applied to obtain the data.

Eν (GeV) σjexp ΔðσjexpÞ Expt.

0.400 0.010 0.006 ANL
0.625 0.070 0.014 ANL
0.875 0.121 0.022 ANL
1.125 0.110 0.024 ANL
1.375 0.122 0.033 ANL
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FIG. 3. Theoretical results for the shape of the flux-folded differential dσ=dQ2 (upper left panel) and total νμp → μ−pπþ (upper right
panel) and νμn → μ−nπþ (bottom panel) cross sections compared to data from ANL [17] (upper left panel) and the reanalyses of
Refs. [19] (upper right panel) and [20] (bottom panel). In the bottom panel, we also show the original ANL [17] and BNL [18] data. Red
solid and black dashed lines show the results obtained in this work, obtained using the best fit parameters of Eq. (36), and those derived
from fit B of Ref. [21], respectively. In the upper left and bottom panels, ANL data (both original and reanalyzed) and theoretical results
include a WπN < 1.4 GeV cut in the final pion-nucleon invariant mass. Brown (gray) theoretical bands account for the variation of the
results when CA

5 ð0Þ (LEC c) changes within its error interval given in Eq. (36). ANL reanalyzed cross sections have no systematic errors
due to flux uncertainties. Besides, theoretical results in the upper left panel have been divided by β ¼ 1.23, accounting for flux
uncertainties [see Eq. (35)]. Deuteron effects have been taken into account as explained in Ref. [25].
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FIG. 4. Total νμn → μ−pπ0 (left) and νμn → νpπ− (right) cross sections. Red solid and black dashed lines show the results obtained in
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The brown and gray theoretical bands in Figs. 3 and 4
show the sensitivity of the predicted cross sections to the
errors on the best-fit parameters CA

5 ð0Þ and the LEC c,
respectively. In this latter case, only the νμn → μ−nπþ

channel is strongly affected when varying c. This was not
unexpected, since the νμn → μ−nπþ cross section has a
large contribution form the CΔP amplitude, and thus, it is
very sensitive to the spin 1=2 part of the Δ propagator,
which strength is now controlled by the parameter c.
The Olsson phases needed to satisfy Watson’s theorem

are presented in Fig. 5. We have selected the scales in order
to allow a direct comparison with those obtained in
Ref. [21], which are shown in Fig. 3 of that reference.
We now find much smaller values, always below 20°, and at
theΔ peak (left panel in Fig. 5) axial (vector) phases remain
quite small and below 5° (10°) for the whole range
(½0; 2; 5� GeV2) of Q2 values shown in the plot. This
means that the present model without the phases is closer
to satisfying unitarity than the one in Ref. [21].
Finally, we pay attention to the best-fit value quoted in

Eq. (36) for the LEC c. It is compatible with −1, within
errors, but however, we should point out that c ¼ −1 does
not correspond exactly to a consistent coupling. This is
because of the Δ width, and thus even for c ¼ −1, we have

Pμν

p2
Δ −M2

Δ þ iMΔΓΔ
− δPμνðpΔÞ

¼ Pμν − ðp2
Δ −M2

Δ þ iMΔΓΔÞδPμνðpΔÞ
p2
Δ −M2

Δ þ iMΔΓΔ

¼
Pμν −

p2
Δ−M

2
ΔþiMΔΓΔ

p2
Δ−M

2
Δ

ðPμν −
p2
Δ

M2
Δ
P

3
2
μνÞ

p2
Δ −M2

Δ þ iMΔΓΔ

¼ p2
Δ

M2
Δ

P
3
2
μν

p2
Δ −M2

Δ þ iMΔΓΔ

−
iMΔΓΔ

p2
Δ −M2

Δ

Pμν −
p2
Δ

M2
Δ
P

3
2
μν

p2
Δ −M2

Δ þ iMΔΓΔ
: ð37Þ

The first term in Eq. (37) corresponds to the prescription for
consistent interactions advocated in Refs. [22,43,44]. The
second one, that vanishes for the CΔP amplitude, provides
complex corrections to the direct Δ contribution, which
induce changes in the Olsson phases. Indeed, we have
checked that if the second term in Eq. (37) is neglected, one
finds also an improved description of the νμn → μ−nπþ

data, as compared to the c ¼ 0 case, and just a bit worse
than that presented here in Fig. 3. However, the needed
Olsson phases turn out to be larger than those depicted in
Fig. 5, being only slightly different to the ones found in
Ref. [21], where the LEC c was set to zero. Note that the
p2
Δ=M

2
Δ factor, in front of the first term of Eq. (37),

drastically suppresses the CΔP contribution, because in
this mechanism the Δ is largely off shell, with p2

Δ much
smaller (in modulus) than M2

Δ.
If one looks in more detail at the results for the νμn →

μ−nπþ cross section shown in the lower panel of Fig. 3, one
sees that, though we obtain a global good agreement, the
model underestimates the experimental (central) values
below 0.9 GeV, while for higher energies it overestimates
the data. This is also true, with some exceptions, for the
νμn → μ−pπ0 and νμn → νμpπ− channels depicted in
Fig. 4. In fact, the model fails to provide a reasonable
description of the central values below 1 GeV for those
channels, using realistic values of the fitted parameters as
we will see later. This is the reason why to better determine
the parameter c, we included νμn → μ−nπþ data above
1 GeV, and then we had to implement the cut in WπN . The
situation is different for the νμp → μ−pπþ case, where we
provide a good reproduction of the data for neutrino
energies below 1 GeV. One might, however, look at the
predictions of the model for the νμp → μ−pπþ cross
sections, with the WπN < 1.4 GeV cut, at higher energies.
The comparison of the model results with data, up to
4 GeV for the neutrino energy, is now shown in Fig. 6. We
find an overall reasonable description of the reanalyzed
ANL and BNL cross sections, though the model also
overestimates the central values for neutrino energies in the
range 1–2 GeV, as it occurred in the other channels.
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Part of this discrepancy could be perhaps accounted for
by including a phenomenological form factor to regularize
the possible unphysical behavior of the Δ tree-level
amplitudes in the kinematic regions far from the peak of
the resonance [49]. The effects of such form factor, with the
form and parameters used in [49], on the WπN < 1.4 GeV
νμp → μ−pπþ cross sections could be seen in Fig. 18 of
this latter reference, and they would certainly improve the
description exhibited in Fig. 6. This would also improve
our reproduction of the νμn → μ−nπþ and νμn → μ−pπ0

data at energies above 1 GeV. Results below 1 GeV will be
affected to a much lesser extend, while the effects on the
νμp → μ−pπþ flux-folded dσ=dQ2 differential cross sec-
tion could be mostly reabsorbed into the β flux parameter.
This is certainly a topic that is worth analyzing in future
work, paying also an special attention to its possible
interference/interplay with the partial unitarization imple-
mented in our model through the Olsson phases [21]. When
considering higher neutrino energies, it would be also
advisable to study the effects produced by the assumption
of the Adler’s constrains on the axial C4 and C5 form
factors. The contributions driven by these latter form
factors are not relevant at the low q2 values accessible
when the neutrino energy is below 1 GeV [25], but they
might need to be considered more carefully, especially in
the νμp → μ−pπþ channel, when higher neutrino energies
are examined.
Nevertheless, we have also carried out a best fit taking into

account the WπN < 1.4 GeV νμp → μ−pπþ cross sections
depicted in Fig. 6 instead of those below 1 GeV, shown in
the upper right panel of Fig. 3. The new best fit parameters
differ from those quoted in Eq. (36) in one (MAΔ, c) or two

(CA
5 ð0Þ; β) sigmas.11 The new fit is, in our view, somehow

unsatisfactory, because the resulting model appreciably
underestimates the νμp → μ−pπþ cross section data
obtained at 0.7 and 0.9GeVwhen no cut onWπN is imposed.
It is, however, precisely at these low energies where the
model, inspired in a chiral expansion, should perform best.
A word of caution must be said here. For neutrino energies
below 1 GeV, the WπN < 1.4 GeV cut does not lead to
appreciable effects on the cross sections obtained within our
model. This is in accordancewith the data shown in Table III
of Ref. [17] (ANL), where up to 1 GeV, there is almost no
difference between data reported with and without the cut.
This should be expected, since below 1 GeV there is little
phase space available forWπN > 1.4 GeV.However, as seen
in Fig. 6, both ANL and BNL reanalyzed data for 0.9 GeV
are significantly smaller when the cut WπN < 1.4 GeV is
taken into account. Thus, it seems to be a certain degree of
inconsistency between the two νμp → μ−pπþ data sets (with
or without the WπN < 1.4 GeV cut) below 1 GeV. As a
result, we can fit the parameters in our model to reproduce
one or the other set of cross sections, but not both at the same
time. We preferred to use the reanalyzed data without the
WπN < 1.4 GeV cut since their extraction seem to suffer
from less uncertainties.12

Finally, we have also explored the possibility of fitting
only data below 1 GeV and with no WπN < 1.4 GeV cut
applied. To that end, we have included in the fit
νμp → μ−pπþ, νμn → μ−nπþ, and νμn → μ−pπ0 data in
this neutrino energy range taken from Ref. [20]. In this new
fit, the c parameter significantly departs from −1 (propa-
gation of only spin 3=2 degrees of freedom in the CΔP
term) and becomes closer to −1.5, while CA

5 ð0Þ is about
1.23, now even above the GTR prediction. However the
normalization parameter β turns out to be 1.35, a value too
large to be accommodated within the ANL flux uncertain-
ties. Besides, one obtains χ2=dof ¼ 3.07, which is much
worse than for our preferred fit in Eq. (36).
Thus, we consider the fit of Eq. (36), a sensible option,

given the somehow uncertain situation, and that it leads to a
remarkable description of the pion photoproduction data off
the nucleon, as we will discuss next.

B. Pion photoproduction

Since in Ref. [21], we showed results for pion photo-
production, it is relevant to see also for this case the effect
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σ 
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0−3
8  c

m
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ANL reanalyzed no cut
BNL reanalyzed no cut

W     < 1.4 GeVπ N

νμ p → μ−
 p π+

FIG. 6. Total νμp → μ−pπþ cross section, evaluated with the
parameters of Eq. (36) and with the WπN < 1.4 GeV cut,
compared to ANL and BNL reanalyzed data taken from Ref. [20].
For Eν < 1 GeV, we also show ANL and BNL reanalyzed data
where no cut in WπN has been applied. Theoretical bands as in
Fig. 3. Deuteron effects have been taken into account as
explained in Ref. [25].

11The largest changes occur for CA
5 ð0Þ and β. The first of these

parameters now takes values of around 1.07 leading to smaller
cross sections. This needs to be compensated by a change of 15%
in the normalization parameter β, which is now around ∼1.05, to
avoid spoiling the description of the flux averaged dσ=dQ2

differential νμp → μ−pπþ cross section included in the fit.
12As stated in Ref. [20], to get the reanalyzedWπN < 1.4 GeV

cross sections, the ratio of reanalyzed to published cross sections
obtained without the cut is used.
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of the modification introduced in the Δ propagator.
Amplitudes for pion photoproduction derive directly from
the vector part of our model for weak pion production by
neutrinos, and they are extensively discussed in the
Appendix. As for the case of neutrino production, the
model is also partially unitarized by imposing Watson’s
theorem on the dominant vector multipole, now evaluated
at q2 ¼ 0. What we will show are pure predictions of the
model without any readjustment of parameters or vector
form factors. In Fig. 7, we present results for total cross
sections that we compare to data taken from the George
Washington University SAID database [50]. On the theo-
retical side, we compare the predictions obtained with the
present model (red solid lines) with the results obtained
without the modification of the spin 1=2 component of the
Δ propagator (black dashed lines), the latter corresponding
to setting c ¼ 0. The description of the data is better in the
current modified case, with c close to −1. The theoretical
bands show the sensitivity of the results with respect to the
c parameter, when it is varied within the errors quoted in
Eq. (36). To get a better reproduction of the cross sections
above the Δ resonance region, the model would have to be
enlarged by the addition of extra resonance contributions
relevant for the case of electro- or photoproduction.

VII. SUMMARY AND CONCLUSIONS

We have improved our model of Refs. [9,10,21] by
including two extra contact terms13 This has been moti-
vated by the failure of present theoretical approaches to
describe the νμn → μ−nπþ total cross section data. As
shown in Ref. [10], this channel has a large contribution
from the CΔP mechanism, and it is thus very sensitive to
the spin 1=2 components in theΔ propagator. This spin 1=2
part is nonpropagating, and it gives rise to contact terms.
Contact terms appear naturally within effective field the-
ories, and in particular, in ChPT, as counterterms with
unknown strengths. Indeed, the coefficients of the contact
terms have to be ultimately fitted to experiment. Aiming at
keeping our model simple, we have just introduced only
one new parameter, c, that controls the strength of the
contact terms generated by the spin 1=2 part of the Δ
propagator. To constraint its value, we have also included
νμn → μ−nπþ cross section data in the fit. The description
of this channel considerably improves, without affecting
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FIG. 7. Total γp → nπþ (upper left), γp → pπ0 (upper right) and γn → pπ− (bottom) cross sections as a function of the photon energy
in the laboratory frame. Red solid and black dashed lines show the predictions from the model presented in this work (see the Appendix),
and the results obtained without the modification of the spin 1=2 component of theΔ propagator (c ¼ 0). Cross sections have been taken
from the George Washington University SAID database [50]. Theoretical uncertainty bands account for the variation of the results when
the parameter c changes within its error interval given in Eq. (36).

13The correction in the Δ propagator of Eq. (32) induces
contact interactions both for the ΔP and CΔP amplitudes in the
original model of Refs. [10,21].
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the good results we had already obtained in Refs. [10,21]
for the other channels. Since the fitted value of c is
compatible with −1, we find that the crossed Δ pole
amplitude is substantially suppressed and that consistent
Δ couplings [22,43,44] are preferred. Besides, the new
Olsson phases needed to satisfy Watson’s theorem are now
much smaller than those obtained in Ref. [21] for the c ¼ 0
case, indicating that the present version without the phases
is closer to satisfying unitarity. Yet, the CA

5 ð0Þ is now larger
by 3.5% than that found in Ref. [21], and it is in remarkable
agreement with the GTR prediction.
We have also explored how this change in the Δ

propagator affects our predictions for pion photoproduc-
tion. We also find now a better agreement with experiment
compared to the case where the LEC c was set to zero.
Finally, we should mention that FSI effects on single

pion production off the deuteron might induce corrections
on the nucleon spectator approximation. This approxima-
tion is used to extract the pion production cross sections on
the nucleon from the data on the deuteron. These effects
have not been addressed in this work. However, it has been
argued [51,52] that they might be of special relevance
precisely in the nπþ channel, and that the ANL and BNL
data on the deuterium target might need a more careful
analysis with the FSI’s taken into account. For such a
reanalysis to be meaningful, it will be mandatory to
incorporate the kinematical cuts implemented in the old
experiments to properly separate the three reaction chan-
nels (pπþ; pπ0, and nπþ), since these cuts were designed to
minimize the corrections to the spectator hypothesis.
Nevertheless, the existence of some FSI effects will not
exclude the solution to the nπþ puzzle offered here, and
based on the possibility of adding phenomenological
contact terms. It is certainly natural within the context of
effective field theories.
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APPENDIX: MODEL FOR PION PHOTO- AND
ELECTROPRODUCTION OFF THE NUCLEON

Our model for pion photo or electroproduction off the
nucleon derives directly from the vector part of that
constructed for weak pion production by neutrinos.
Thus, it includes all the contributions depicted in Fig. 8:
the resonant direct and crossed Δð1232Þ pole terms (ΔP
and CΔP, respectively) and the background terms required

by chiral symmetry. The latter ones include direct and
crossed nucleon pole (labeled as NP and CNP), contact
(CT), and pion-in-flight (PF) terms. Besides we also
consider the direct and crossed D13ð1520Þ pole terms
(DP and CDP, respectively).
In the notation of Ref. [10], the quark level electromag-

netic current is given by14

sμem ¼ 2

3
Ψ̄uγ

μΨu −
1

3
Ψ̄dγ

μΨd −
1

3
Ψ̄sγ

μΨs: ðA1Þ

This can be written as the sum of an isoscalar and an
isovector pieces

sμem ¼ sμem IS þ sμem IV ðA2Þ

sμem IS ¼
1

6
Ψ̄qγ

μΨq −
1

3
Ψ̄sγ

μΨs;

sμem IV ¼ 1ffiffiffi
2

p Ψ̄qγ
μ τ10ffiffiffi

2
p Ψq ðA3Þ

with Ψq ¼ ðΨu

Ψd
Þ and τ10 ¼ τz, where τx, τy, τz are the three

Pauli matrices.
In the same notation the vector part of the charged weak

current reads

Vμ
cc� ¼∓ Ψ̄qγ

μ τ
1
�1ffiffiffi
2

p Ψq ðA4Þ

Δ

ΔN N’

N’

ππ

N

γ γ

N’

π π
N

N N’ NN

γ γ

N’

π
π

NN

π

N’

γ
γ

N N’

N’

ππ

N

γ γ
D

D13

13

FIG. 8. Model for the γN → N0π or γ�N → N0π reactions. First
row: Direct and crossed Δð1232Þ pole terms. Second row: Direct
and crossed nucleon pole terms. Third row: Contact and pion-in-
flight terms. Fourth row: Direct and crossed D13 pole terms.

14We ignore the contribution from heavy quarks.
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with τ1�1 ¼∓ 1ffiffi
2

p ðτx � iτyÞ. We could relate the matrix

elements of the isovector part of the electromagnetic
current with those of Vμ

cc�. To that end, we express the
physical nucleon-pion states in terms of states with well-
defined total isospin,

jpπþi ¼ −jNπ; 3=2; 3=2i;

jpπ0i ¼
ffiffiffi
2

3

r
jNπ; 3=2; 1=2i þ 1ffiffiffi

3
p jNπ; 1=2; 1=2i;

jnπþi ¼ −
1ffiffiffi
3

p jNπ; 3=2; 1=2i þ
ffiffiffi
2

3

r
jNπ; 1=2; 1=2i;

jnπ0i ¼
ffiffiffi
2

3

r
jNπ; 3=2;−1=2i − 1ffiffiffi

3
p jNπ; 1=2;−1=2i;

jpπ−i ¼ 1ffiffiffi
3

p jNπ; 3=2;−1=2i þ
ffiffiffi
2

3

r
jNπ; 1=2;−1=2i;

jnπ−i ¼ jNπ; 3=2;−3=2i; ðA5Þ

and then, we can obtain15

hpπþjVμ
ccþð0Þjpi ¼ −h3=2∥Vμ∥1=2i;

hnπþjVμ
ccþð0Þjni ¼ −

1ffiffiffi
3

p hNπ; 3=2;1=2jVμ
ccþð0Þjni

þ
ffiffiffi
2

3

r
hNπ; 1=2;1=2jVμ

ccþð0Þjni

¼ −
1

3
h3=2∥Vμ∥1=2i− 2

3
h1=2∥Vμ∥1=2i;

ðA7Þ

from where

h3=2∥Vμ∥1=2i ¼ −hpπþjVμ
ccþð0Þjpi;

h1=2∥Vμ∥1=2i ¼ −
3

2
hnπþjVμ

ccþð0Þjni

þ 1

2
hpπþjVμ

ccþð0Þjpi: ðA8Þ

These two reduced matrix elements determine all matrix
elements of the isovector part of the electromagnetic
current. As an example, we evaluate16

hpπ0jsμemIVð0Þjpi

¼
ffiffiffi
2

3

r
hNπ; 3=2; 1=2jsμem IVð0Þjpi

þ 1ffiffiffi
3

p hNπ; 1=2; 1=2jsμem IVð0Þjpi

¼ −
1ffiffiffi
2

p
�
2

3
h3=2∥Vμ∥1=2i þ 1

3
h1=2∥Vμ∥1=2i

�

¼ 1

2
ffiffiffi
2

p ðhpπþjVμ
ccþð0Þjpi þ hnπþjVμ

ccþð0ÞjniÞ: ðA9Þ

Similarly,

hnπþjsμem IVð0Þjpi ¼ −
1

2
ðhpπþjVμ

ccþð0Þjpi
− hnπþjVμ

ccþð0ÞjniÞ;
hnπ0jsμem IVð0Þjni ¼ hpπ0jsμem IVð0Þjpi
hpπ−jsμem IVð0Þjni ¼ −hnπþjsμem IVð0Þjpi: ðA10Þ

Since the Δ exchange contributions of Fig. 8 are purely
isovector, and denoting by jμem the matrix elements of the
electromagnetic current, we thus get17

jμemjΔP ¼ iCΔP
γ

f�

mπ

ffiffiffi
3

p
kαπūð~p0Þ

×

�
PαβðpΔÞ

p2
Δ −M2

Δ þ iMΔΓΔ
þ cδPαβðpΔÞ

�

× Γβμ
V ðp; qÞuð~pÞ;

pΔ ¼ pþ q;

CΔP
γ ¼

0
BBB@

ffiffiffi
2

p
=3 for p → pπ0

−1=3 for p → nπþffiffiffi
2

p
=3 for n → nπ0

1=3 for n → pπ−

1
CCCA;

Γβμ
V ðp; qÞ ¼

�
CV
3

M
ðgβμq − qβγμÞ þ CV

4

M2
ðgβμq · pΔ − qβpμ

ΔÞ

þ CV
5

M2
ðgβμq · p − qβpμÞ þ CV

6 g
βμ

�
γ5;

pΔ ¼ pþ q ðA11Þ15For a tensor operator Tj
m, we use the Wigner-Eckart theorem

with the convention

hj2m2jTj
mjj1m1i ¼ ðj1; j; j2; m1; m;m2Þhj2∥Tj∥j1i; ðA6Þ

with ðj1; j; j2; m1; m;m2Þ a Clebsch-Gordan coefficient and
hj2∥Tj∥j1i the reduced matrix element.

16Note the factor − 1ffiffi
2

p difference in the definition of sμem IV
and Vμ

ccþ.

17The Feynman amplitude will be proportional to ejμemϵμ, with
ϵμ the photon polarization vector and e ¼ ffiffiffiffiffiffiffiffi

4πα
p

, the dimension-
less proton electric charge, with α ∼ 1=137.
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jμemjCΔP ¼ iCCΔP
γ

f�

mπ

1ffiffiffi
3

p kβπūð~p0ÞΓ̂μα
V ðp0; qÞ

×

�
PαβðpΔÞ

p2
Δ −M2

Δ þ iMΔΓΔ
þ cδPαβðpΔÞ

�
uð~pÞ;

pΔ ¼ p0 − q;

CCΔP
γ ¼

0
BBB@

ffiffiffi
2

p
for p → pπ0

1 for p → nπþffiffiffi
2

p
for n → nπ0

−1 for n → pπ−

1
CCCA;

Γ̂μα
V ðp0; qÞ ¼ γ0½Γαμ

V ðp0;−qÞ�†γ0 ðA12Þ
where q, p, kπ , and p0 are the incoming photon and nucleon
and the outgoing pion and nucleon four momenta.
To compute the nonresonant amplitudes, we pay atten-

tion to the electromagnetic current associated to the
Lagrangian of the SU(2) nonlinear σ model derived in
Ref. [10]. It reads

sμem ¼ Ψ̄γμ
�
1þ τz
2

�
Ψþ igA

2fπ
Ψ̄γμγ5ðτ1−1ϕ† þ τ1þ1ϕÞΨ

þ iðϕ†∂μϕ − ϕ∂μϕ†Þ þ � � � ðA13Þ
with gA ¼ 1.26, fπ ¼ 93.2 MeV, Ψ and ~ϕ the nucleon and
pion fields already introduced in Sec. IVA. We have only
kept those terms contributing to one pion production in the
absence of chiral loop corrections. Thus, within our frame-
work, and besides the excitation of theΔ and the N�ð1520Þ,
the model for the γN → πN reaction would consist of direct
and crossed nucleonpole, contact and pion-in-flight terms, as
shown diagrammatically in Fig. 8. We see that neither the
pion-in-flight nor the contact terms contribute for π0 photo-
production, which implies in turn that they are purely
isovector. Thus, we get for these two contributions

jμemjCT ¼ −iCCT
γ

gAffiffiffi
2

p
fπ

ðFp
1 ðq2Þ − Fn

1ðq2ÞÞūð~p0Þγμγ5uð~pÞ;

CCT
γ ¼

�
−1 for p → nπþ

1 for n → pπ−

�
ðA14Þ

jμemjPF ¼ −iCPF
γ

gAffiffiffi
2

p
fπ

ðFp
1 ðq2Þ

− Fn
1ðq2ÞÞ

2Mð2kπ − qÞμ
ðkπ − qÞ2 −m2

π
ūð~p0Þγ5uð~pÞ;

CPF
γ ¼

�−1 for p → nπþ

1 for n → pπ−

�
: ðA15Þ

For the proton and neutron Dirac electromagnetic form
factors, Fp;n

1 we use the parametrization of Galster et al.
[53], as we did in Ref. [10] for weak pion production.
To account for direct and crossed nucleon pole contribu-

tions,weneed toconsider, inaddition to the isovectorpart, the
isoscalar part of the electromagnetic current. For the isoscalar
part of the electromagnetic current, we have from Eq. (A5)

hnπþjsμem ISjpi ¼ hpπ−jsμem ISjni ¼
ffiffiffi
2

p
hpπ0jsμem ISjpi

¼ −
ffiffiffi
2

p
hnπ0jsμem ISjni: ðA16Þ

Using the current of Eq. (A13), supplemented by includ-
ing i) the q2 dependence induced by the Dirac Fp;n

1 form
factors and ii) the magnetic contribution in the γNN vertex
[with the corresponding magnetic form factors μpF

p
2 ðq2Þ;

μnFn
2ðq2Þ, for which we also use the Galster parametriza-

tion], we find [10]

hpπ0jsμem ISjpi ¼ −
hnπ0jsμemð0Þjni − hpπ0jsμemð0Þjpi

2

ðA17Þ

¼ −i
gA
2fπ

ūð~p0Þ
�
kπγ5

pþ qþM
ðpþ qÞ2 −M2 þ iϵ

×

�
FIS
1 ðq2Þγμ þ iμIS

FIS
2 ðq2Þ
2M

σμνqν

�

þ
�
FIS
1 ðq2Þγμ þ iμIS

FIS
2 ðq2Þ
2M

σμνqν

�

×
p0 − qþM

ðp0 − qÞ2 −M2 þ iϵ
kπγ5

�
uð~pÞ

ðA18Þ

with

FIS
1 ðq2Þ ¼

1

2
ðFp

1 ðq2Þ þ Fn
1ðq2ÞÞ;

μISFIS
2 ðq2Þ ¼

1

2
ðμpFp

2 ðq2Þ þ μnFn
2ðq2ÞÞ; ðA19Þ

where we have made use of the cancellation of the
isovector contributions in the difference ðhnπ0jsμemð0Þjni−
hpπ0jsμemð0ÞjpiÞ.
Taking also into account the isovector contributions, we

get the following direct and crossed nucleon pole amplitudes:

jμemjNP ¼ −iCNP
γ

gA
2fπ

ūð~p0Þkπγ5

×
pþ qþM

ðpþ qÞ2 −M2 þ iϵ
Vμ
NPðqÞuð~pÞ;

CNP
γ ¼

0
BBB@

1 for p → pπ0ffiffiffi
2

p
for p → nπþ

−1 for n → nπ0ffiffiffi
2

p
for n → pπ−

1
CCCA;

Vμ
NP ¼

0
BBB@

Vμ
pðqÞ for p → pπ0

Vμ
pðqÞ for p → nπþ

Vμ
nðqÞ for n → nπ0

Vμ
nðqÞ for n → pπ−

1
CCCA ðA20Þ
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jμemjCNP ¼ −iCCNP
γ

gA
2fπ

ūð~p0ÞVμ
CNPðqÞ

×
p0 − qþM

ðp0 − qÞ2 −M2 þ iϵ
kπγ5uð~pÞ;

CCNP
γ ¼

0
BBB@

1 for p → pπ0ffiffiffi
2

p
for p → nπþ

−1 for n → nπ0ffiffiffi
2

p
for n → pπ−

1
CCCA;

Vμ
CNP ¼

0
BBB@

Vμ
pðqÞ for p → pπ0

Vμ
nðqÞ for p → nπþ

Vμ
nðqÞ for n → nπ0

Vμ
pðqÞ for n → pπ−

1
CCCA ðA21Þ

with

Vμ
p;nðqÞ ¼ Fp;n

1 ðq2Þγμ þ iμp;n
Fp;n
2 ðq2Þ
2M

σμνqν: ðA22Þ

One can check that CVC is preserved by the nonresonant
amplitudes.
Finally, we give the expressions for the DP and CDP

N�ð1520Þ terms. The isovector parts are determined, as for
the case of the Δ, in terms of the matrix elements of the
Vμ
ccþ weak vector current that appear in the Appendix of

Ref. [9]. They are given by

jμem IVjDP ¼ iCDP
IV gD

1

2
ffiffiffi
3

p kαπ
p2
D −M2

D þ iMDΓD

× ūð~p0Þγ5PD
αβðpDÞΓVβμ

D ðp; qÞuð~pÞ;
pD ¼ pþ q;

CDP
IV ¼

0
BBB@

1 for p → pπ0ffiffiffi
2

p
for p → nπþ

1 for n → nπ0

−
ffiffiffi
2

p
for p → pπ−

1
CCCA ðA23Þ

jμem IVjCDP ¼ −iCCDP
IV gD

1

2
ffiffiffi
3

p kαπ
p2
D −M2

D þ iMDΓD

× ūð~p0ÞΓ̂Dμβ
V ðp0;−qÞPD

βαðpDÞγ5uð~pÞ;
pD ¼ p0 − q;

CCDP
IV ¼

0
BBB@

1 for p → pπ0

−
ffiffiffi
2

p
for p → nπþ

1 for n → nπ0ffiffiffi
2

p
for p → pπ−

1
CCCA;

Γ̂Dμβ
V ðp0;−qÞ ¼ γ0½ΓDβμ

V ðp0;−qÞ�†γ0: ðA24Þ

with MD ¼ 1520 MeV, and

PD
αβðpDÞ ¼ −ðpD þMDÞ

�
gαβ −

1

3
γαγβ −

2

3

pDαpDβ

M2
D

þ 1

3

pDαγβ − pDβγα
MD

�
ðA25Þ

ΓDβμ
V ðp; qÞ ¼

�
~CV
3

M
ðgβμq − qβγμÞ þ

~CV
4

M2
ðgβμq · pD

− qβpμ
DÞ þ

~CV
5

M2
ðgβμq · p − qβpμÞ þ ~CV

6 gβμ
�
;

pD ¼ pþ q: ðA26Þ

The corresponding vector form factors are given in Ref. [9],
and they are obtained from a fit to results in Ref. [28].
The value of the gD strong coupling is determined

from the ΓD13→NπðMDÞ partial decay width to be gD ¼
20 GeV−1. This partial decay width is given, for WπN >
M þmπ , by

ΓD13→NπðWπNÞ ¼
g2D
8π

1

3W2
πN

½ðWπN −MÞ2 −m2
π�j~pπj3

ðA27Þ

with j~pπj ¼ λ1=2ðW2
πN;M

2;m2
πÞ

2WπN
. For ΓD13→NπðMDÞ, we took 61%

of 115 MeV. For the total width ΓD, we use

ΓDðWπNÞ ¼ ΓD13→NπðWπNÞ þ ΓD13→ΔπðWπNÞ; ðA28Þ

where for ΓD13→Δπ, we assumed an S-wave decay and took

ΓD13→ΔπðWπNÞ ¼ 0.39 × 115 MeV
j~p0

πj
j~p0o−s

π j
× θðWπN −MΔ −mπÞ; ðA29Þ

with j~p0
πj ¼ λ1=2ðW2

πN;M
2
Δ;m

2
πÞ

2WπN
and j~p0o−s

π j ¼ λ1=2ðM2
D;M

2
Δ;m

2
πÞ

2MD
.

As for the matrix elements of the isoscalar part of the
electromagnetic current associated to the N�ð1520Þ, we
make use of the relations given in Eq. (A16) and the
expression for hnπ0jsμem;ISð0Þjni given in Ref. [9]. Thus, we
obtain

jμem ISjDP ¼ iCDP
IS gD

1ffiffiffi
3

p kαπ
p2
D −M2

D þ iMDΓD

× ūð~p0Þγ5PD
βαðpDÞΓDβμ

VIS ðp; qÞuð~pÞ;
pD ¼ pþ q;

CDP
IS ¼

0
BBB@

1 for p → pπ0ffiffiffi
2

p
for p → nπþ

−1 for n → nπ0ffiffiffi
2

p
for p → pπ−

1
CCCA; ðA30Þ
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jμem ISjCDP ¼ −iCCDP
IS gD

1ffiffiffi
3

p kαπ
p2
D −M2

D þ iMDΓD

× ūð~p0ÞΓ̂Dμβ
V ISðp0;−qÞPβαðpDÞγ5uð~pÞ;

pD ¼ p0 − q;

CDP
IS ¼

0
BBB@

1 for p → pπ0ffiffiffi
2

p
for p → nπþ

−1 for n → nπ0ffiffiffi
2

p
for p → pπ−

1
CCCA;

Γ̂Vμβ
D ISðp0;−qÞ ¼ γ0½ΓVβμ

D ISðp0;−qÞ�†γ0; ðA31Þ
with

ΓDβμ
V IS ¼

�
~CV; IS
3

M
ðgβμq − qβγμÞ

þ
~CV; IS
4

M2
ðgβμq · pD − qβpμ

DÞ

þ
~CV; IS
5

M2
ðgβμq · p − qβpμÞ þ ~CV; IS

6 gβμ
�
: ðA32Þ

The isoscalar form factors are given in Ref. [9]. For them,
we use the same functional form as for the ~CV

j while their
values at q2 ¼ 0 have been taken from Ref. [29].
Finally, the differential γN → N0π cross section in the

laboratory (LAB) frame for real photons is obtained from
the amplitudes jμem as

d2σ
d cosðθπÞdEπ

				
LAB

¼ −
αj~kπj

16Mj~qjE0

×

�X̄
spins

jμemj�μem

�

× δðq0 þM − Eπ − E0Þ: ðA33Þ

The energy conservation Dirac delta fixes the pion polar
angle in the LAB frame as

cosðθπÞ ¼
2MðEπ − q0Þ þ 2q0Eπ −m2

π

2q0j~kπj
: ðA34Þ

In addition, the average and sum over the initial and
final nucleon spins in Eq. (A33) is readily done
thanks to

X̄
spins

ūð~p0ÞSμuð~pÞ½ūð~p0ÞSμuð~pÞ��

¼ 1

2
Trððp0 þMÞSμðpþMÞγ0S†

μγ0Þ; ðA35Þ

where the spin dependence of the Dirac’s spinors is
understood and Sμ is a matrix in the Dirac’s space for
each value of the Lorentz index μ.
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