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The present study is devoted for an improved analysis of the self-interference contribution of the
electromagnetic dipole operator O7 to the double differential decay width dΓ=ðds1ds2Þ for the inclusive
B̄ → Xsγγ process, where the kinematical variables s1 and s2 are defined as si ¼ ðpb − qiÞ2=m2

b with pb,
q1, q2 being the momenta of the b-quark and two photons. This calculation completes the next-to-leading-
logarithmic (NLL) QCD prediction of the numerically important self-interference contribution of O7 by
keeping the full dependence on the strange-quark massms, which is introduced to control possible collinear
configurations of one of the photons with the strange quark. Our results are given for exactms, in contrast to
an earlier work where only logarithmic and constant terms in ms were retained. This improved NLL result
for the ðO7;O7Þ-interference contribution shows that finite ms effects are only sizable near the kinematical
endpoints of the spectrum dΓ=ðds1ds2Þ. At the level of the branching ratio, in the phase-space region
considered in this paper, it is observed that Br½B̄ → Xsγγ� does not develop a sizable ms dependence: the
impact on this branching ratio is less than 5% when ms is varied between 400–600 MeV. For the same
phase-space region finite strange quark mass effects for the branching ratio are less than 7%.

DOI: 10.1103/PhysRevD.95.053006

I. INTRODUCTION

In the standard model (SM), flavor changing neutral
current transitions [such as b → sγðγÞ] are suppressed since
they are loop-induced. When going beyond the SM, such
processes could provide a unique source for probing
physics indirectly at the TeV scale. For instance, in the
two-Higgs-doublet-model (2HDM) of type II the inclusive
singly radiative decay B̄ → Xsγ is known to have provided
a very stringent (almost tan β-independent) lower bound on
the charged Higgs boson mass to be mH� > 480 GeV at
95% CL. This limit has been obtained by comparing the
recent experimental data for Br½B̄ → Xsγ� with the corre-
sponding theoretical 2HDM results, which are based on the
next-to-next-to-leading-logarithmic (NNLL) SM results
[1], as well as on the NLL [2–4] and NNLL [5] charged
Higgs contributions to the various Wilson coefficients.
Although the branching ratio for the singly radiative

decay B̄ → Xsγ is much larger, the double radiative decay
B̄ → Xsγγ possesses certain advantages. In contrast to the
singly radiative decay, the current-current operators O1;2

contribute to the double radiative decay at order α0s
precision (through one-particle irreducible one-loop dia-
grams), leading to an interesting interference pattern with
the contributions associated with the electromagnetic
dipole operator O7 already at LL precision. As a result,

potential new physics should be clearly visible not only
in the total branching ratio, but also in the differential
distributions.
The process B̄ → Xsγγ is of direct interest to the new

Belle II experiment (SuperKEKB) in Japan, which aims to
detect branching ratios as small as 10−8 or smaller and will
start taking B data in 2018 [6,7]. This calls for more precise
SM calculations of this observable. The status of the related
works can be summarized as follows: The SM estimates of
the branching ratios for B̄ → Xsγ [1,8] and B̄ → Xslþl−

are now available even to NNLL precision (see e.g. [9,10]
for reviews). Regarding the B̄ → Xsγγ decay, the leading
logarithmic (LL) prediction for the branching ratio was
known since a long time [11–14], while the first attempts
toward a NLL calculation were only made years later by us
[15,16], in which the QCD corrections to the numerically
dominant ðO7;O7Þ contribution were worked out in certain
approximations which will be detailed in the next para-
graph. In 2015, we also provided the contributions stem-
ming from the self-interference of chromomagnetic dipole
operator O8 [17].
In Ref. [15] we calculated order αs corrections based on

the operator O7 to the double differential decay width
dΓ=ðds1ds2Þ, by taking into account only the leading
power terms in s3 in the underlying triple differential
decay width dΓ=ðds1ds2ds3Þ, where s3 is the normalized
invariant mass squared of the hadronic particles in the final
state. In Ref. [16], we worked out the double differential
decay width based on the triple differential width, retaining
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all powers with respect to s3. In that work we approxi-
mated, however, the dependence on the strange quark mass
ms, by only keeping logarithmic terms in ms and the terms
which are independent of ms. As ms is interpreted as a
constituent mass in our setup, varying in a range between
400 and 600 MeV, this approximation is somewhat ques-
tionable. In the present work, we therefore give NLL results
which take into account the full ms dependence. We denote
these results as exact results and the results of Ref. [16] as
results in the limit ms → 0.
We should mention that this inclusive process has also

been analyzed in some new physics scenarios [12,14,18].
Also, spectator quark and long distance (resonant) effects
were studied in the literature (see e.g. [19–21], [13] and
references therein). Further, there have also been several
studies on the corresponding exclusive channels Bs → γγ
and B → Kγγ, both within [13,19,20,22–28] and beyond
the SM [18,20,25,29–37].
Our paper is structured as follows. In Sec. II we discuss

the theoretical framework and some preliminaries for the
calculations. In Sec. III we work out the double differential
distribution dΓ77=ðds1ds2Þ in leading order, i.e., without
taking into account QCD corrections to the matrix element

hsγγjO7jbi. In this section we also give the order α0s results
when including the effects of the operators O1 and O2,
keeping the full dependence on ms.
In Sec. IV we calculate virtual and bremsstrahlung

QCD corrections to the double differential decay width
dΓ77½B̄ → Xsγγ�=ðds1ds2Þ associated with the operatorO7,
keeping the full dependence on the strange-quark mass ms.
In Sec. V we give numerical illustrations of our results. In
Sec. VI we give a brief summary of our findings.

II. THEORETICAL FRAMEWORK AND
KINEMATICAL CUTS

We begin our calculation by identifying the effective
Hamiltonian governing b → sγðγÞ transition, after integrat-
ing out the heavy degrees of freedom in the SM. This
Hamiltonian reads

Heff ¼ −
4GFffiffiffi

2
p V⋆

tsVtb

X8
i¼1

CiðμÞOiðμÞ; ð1Þ

where the operators are defined according to [38] as:

O1 ¼ ðs̄LγμTacLÞðc̄LγμTabLÞ; O2 ¼ ðs̄LγμcLÞðc̄LγμbLÞ;
O3 ¼ ðs̄LγμbLÞ

X
q

ðq̄γμqÞ; O4 ¼ ðs̄LγμTabLÞ
X
q

ðq̄γμTaqÞ;

O5 ¼ ðs̄LγμγνγρbLÞ
X
q

ðq̄γμγνγρqÞ; O6 ¼ ðs̄LγμγνγρTabLÞ
X
q

ðq̄γμγνγρTaqÞ;

O7 ¼
e

16π2
½s̄σμνðm̄bðμÞRþ m̄sðμÞLÞFμνb�; O8 ¼

gs
16π2

½s̄σμνðm̄bðμÞRþ m̄sðμÞLÞTaGa
μνb�: ð2Þ

In Eq. (2), Ta (a ¼ 1, 8) are the SUð3Þ color generators, e
and gs are the electromagnetic and the strong couplings, and
m̄sðμÞ and m̄bðμÞ are the running s and b-quark masses
defined in the M̄S-scheme. Note that we keep the term
involving ms in the operator O7, as we keep the full
dependence on ms in our work. Further, Eq. (1) takes this
compact form only after neglecting the smallVubV�

us element
(as VubV�

us ≪ VtbV�
ts) and exploiting the unitarity of the

unitarity of Cabibbo–Kobayashi–Maskawa (CKM) matrix.
In the effective theory framework, the calculation for the

branching ratio (or for a specific differential distribution)
can be divided into two parts. The first one deals with
perturbative matching calculations of the Wilson coeffi-
cients CiðμÞ appearing in Eq. (1) at the large scale
(μ ∼mW), followed by solving the renormalization-
group-equations (RGE) for these coefficients1 to obtain

their values at the decay scale (μ ∼mb). The second part
consists of calculating the matrix elements of the
operators in Eq. (2). At the bottom scale, the strong
coupling is still small enough (αsðmbÞ ∼ 0.22) such that
perturbative calculations of the matrix elements are
possible.
For the process of interest, the Wilson coefficients at the

low scale Ciðμ ∼mbÞ are available today even to NNLO
precision (see e.g. the reviews [9,10] and references
therein). On the other hand, the matrix elements
hsγγjOijbi and hsgγγjOijbi, which in a NLL calculation
are needed to order g2s and gs, respectively, are only
partially known by now (see [15–17] for the details of
the provided NLL contributions and [42] for a recent
summary).
In the present paper, we calculate OðαsÞ corrections

arising from the self-interference contribution of the electro-
magnetic dipole operatorO7 to the double differential decay
width dΓ=ðds1ds2Þ for B̄ → Xsγγ, where the kinematical
variables s1 and s2 are defined as si ¼ ðpb − qiÞ2=m2

b with

1Solving RGEs requires computing anomalous-dimension-
matrices (ADM) of the effective operators to the desired order
(see e.g. Refs. [39–41] for the impressive three and four-loop
ADM contributions).
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pb, q1, q2 being the four-momenta of the b-quark and two
photons. At this order in αs, this involves contributions with
three (virtual) and four particles (bremsstrahlung) in the final
state. The key difference to our study in Ref. [16] is that we
keep the full dependence on strange-quark mass in our
results.
Kinematically, the ðs1; s2Þ-region accessible to the three

body decay b → sγγ is given by (see [43]) by2

s1 > x4; s2 > x4; 1 − s1 − s2 þ x4 > 0;

s1s2 > x4; ð3Þ

where x4 ¼ m2
s=m2

b. In the rest frame of the decaying b-
quark, one has a simple relation between si variables and
final state photon energies Ei: si ¼ 1�2Ei=mb. At this
stage, we need to impose some kinematical cuts. First, in
order for observing two hard photons, the si variables
should be smaller than one. Also, detection of two distinct
photons requires kinematically that their invariant mass is
different from zero. It is possible to satisfy all these
requirements using a single physical cutoff parameter c
(c > x4), by demanding3

1 − s1 − s2 > c; ðs1 − cÞðs2 − cÞ > c: ð4Þ

Note that the region defined in Eq. (4) is a subregion of the
one specified in Eq. (3).
With these cuts at hand, soft photon related singularities

are absent, whereas there exist kinematical configurations
where one of the photons can become collinear to the s-
quark. Working with a finite strange quark mass our final
NLL result involves single logarithms of the form
logðms=mbÞ, whose origin is entirely related to collinear
photon emissions from s-quark and not to gluons. The
reason for this is that QCD-wise, our observable (the
double or triple differential decay width) is fully inclusive
and therefore nonsingular. As a result, all soft and/or
collinear gluon related singularities cancel out in our final
result after adding the corresponding virtual and brems-
strahlung corrections, as a consequence of the Kinoshita-
Lee-Nauenberg (KLN) theorem. However, QED-wise our
observable is not fully inclusive, because we want to
observe exactly two photons in the final state; therefore
logðms=mbÞ terms remain.
We note that ms, which is initially introduced as an

infrared/collinear regulator, is eventually interpreted to be

a mass of constituent type varying between 400–
600 MeV in the final numerics. We believe that this
range covers the nonperturbative uncertainties due to the
hadronic substructure of photons. This approach has also
been adopted previously, e.g. by Kaminski et al. in [44]
and Asatrian et al. in [16,17,45]. The experience gained
in these references shows that the constituent mass
approach gives results which are similar to those when
using fragmentation functions [45]. Therefore, we
believe that this method is sufficient to obtain an estimate
of the calculated contribution. While the fragmentation
approach seems better from the theoretical point of view,
it is not clear that it leads to better final results in
practice, because the fragmentation functions (for s → γ
or g → γ) suffer from experimental uncertainties, as
pointed out in [45]. An alternative could be to look at
the version with “isolated photons” a la Frixione [46]
which corresponds, however, to a slightly different
observable. Such an approach is beyond the scope of
the present paper and is left for future studies.

III. IMPROVED LEADING
ORDER RESULTS

In this section we give the double differential decay
width dΓ=ðds1ds2Þ at lowest order in QCD, keeping the
full dependence on the strange quark mass. We define the
dimensionless variables s1 and s2 as

s1 ¼
ðpb − q1Þ2

m2
b

; s2 ¼
ðpb − q2Þ2

m2
b

: ð5Þ

At lowest order the double differential decay width
dΓ0

77=ðds1ds2Þ is based on the diagrams shown in
Fig. 1. Since the lowest order decay width will also be
needed for the UV-renormalization of the virtual correc-
tions, we present the leading-order result in d ¼ 4 − 2ϵ
dimensions, keeping terms up to ϵ1 order in the expansion.
Using x4 ¼ m2

s=m2
b, we obtain

dΓð0;dÞ
77

ds1ds2
¼ α2m3

bjC7;effðμÞj2G2
FjVtbV�

tsj2Q2
d

1024π5

�
μ

mb

�
4ϵ

~r; ð6Þ

with

FIG. 1. Tree-level amplitudes representing the ðO7;O7Þ con-
tribution to b → sγγ. The symmetric diagrams are understood to
be obtained from those shown by interchanging q1 with q2 as
indicated in brackets.

2The phase-space region corresponding to real gluon radiation
b → sgγγ is wider than this. Nevertheless we consider the
bremsstrahlung process only in the restricted region, which is
also accessible to the three body decay b → sγγ.

3In terms of the four particle final state, the invariant mass
squared s ¼ ðq1 þ q2Þ2=mb

2 of the two photons can be written as
s ¼ 1 − s1 − s2 þ s3, where s3 is the normalized hadronic mass
squared. Then, choosing 1 − s1 − s2 > c, still prevents the
photons from flying parallel to each other.

IMPROVED ANALYSIS OF THE (O7, … PHYSICAL REVIEW D 95, 053006 (2017)

053006-3



~r ¼ ½m̄2
bðμÞ~ra þ

ffiffiffiffiffi
x4

p
m̄sðμÞm̄bðμÞ~rb þ m̄2

sðμÞ~rc þ ϵm2
bð~r1 þ ~r2 þ ~r3Þ�ð1 − s1 − s2 þ x4Þ

ð1 − s1Þ2ðs1 − x4Þ2ð1 − s2Þ2ðs2 − x4Þ2
: ð7Þ

Note that the terms proportional to ϵ in Eq. (7) will only be involved in the renormalization procedure of the
virtual corrections, leading there to terms of order αs. As in such terms the running masses m̄bðμÞ and m̄sðμÞ can be
identified with the pole masses mb and ms, we immediately performed this identification in the corresponding terms
of Eq. (7).
The individual ~ri quantities read

~ra ¼ 8ðs21s2 þ s41s2 þ s1s22 − 12s21s
2
2 þ 14s31s

2
2 − 7s41s

2
2 þ 14s21s

3
2 − 24s31s

3
2 þ 12s41s

3
2 þ s1s42 − 7s21s

4
2 þ 12s31s

4
2

− 6s41s
4
2 − 3s21x4 þ 2s31x4 − s41x4 − 2s1s2x4 þ 23s21s2x4 − 38s31s2x4 þ 13s41s2x4 − 3s22x4 þ 23s1s22x4

− 50s21s
2
2x4 þ 68s31s

2
2x4 − 24s41s

2
2x4 þ 2s32x4 − 38s1s32x4 þ 68s21s

3
2x4 − 52s31s

3
2x4 þ 12s41s

3
2x4 − s42x4

þ 13s1s42x4 − 24s21s
4
2x4 þ 12s31s

4
2x4 þ 5s1x24 − 7s21x

2
4 þ 16s31x

2
4 − 6s41x

2
4 þ 5s2x24 − 56s1s2x24 þ 82s21s2x

2
4

− 48s31s2x
2
4 þ 13s41s2x

2
4 − 7s22x

2
4 þ 82s1s22x

2
4 − 152s21s

2
2x

2
4 þ 68s31s

2
2x

2
4 − 7s41s

2
2x

2
4 þ 16s32x

2
4 − 48s1s32x

2
4

þ 68s21s
3
2x

2
4 − 24s31s

3
2x

2
4 − 6s42x

2
4 þ 13s1s42x

2
4 − 7s21s

4
2x

2
4 − 4x34 þ 19s1x34 − 42s21x

3
4 þ 16s31x

3
4 − s41x

3
4 þ 19s2x34

− 48s1s2x34 þ 82s21s2x
3
4 − 38s31s2x

3
4 þ s41s2x

3
4 − 42s22x

3
4 þ 82s1s22x

3
4 − 50s21s

2
2x

3
4 þ 14s31s

2
2x

3
4 þ 16s32x

3
4

− 38s1s32x
3
4 þ 14s21s

3
2x

3
4 − s42x

3
4 þ s1s42x

3
4 − 6x44 þ 19s1x44 − 7s21x

4
4 þ 2s31x

4
4 þ 19s2x44 − 56s1s2x44 þ 23s21s2x

4
4

− 7s22x
4
4 þ 23s1s22x

4
4 − 12s21s

2
2x

4
4 þ 2s32x

4
4 − 4x54 þ 5s1x54 − 3s21x

5
4 þ 5s2x54 − 2s1s2x54 þ s21s2x

5
4 − 3s22x

5
4 þ s1s22x

5
4Þ;

~rb ¼ −32ð1 − s1Þð1 − s2Þðs1 − x4Þðs2 − x4Þðs1s2 − x4Þð1þ x4 − s1 − s2Þ;
~rc ¼ ~ra; ð8Þ

~r1 ¼ −16s21x64 − 16s22x
6
4 − 16s1x64 þ 48s1s2x64 − 16s2x64 þ 16x64 þ 16s1s32x

5
4 þ 144s21x

5
4 − 16s21s

2
2x

5
4 − 112s1s22x

5
4

þ 144s22x
5
4 − 208s1x54 þ 16s31s2x

5
4 − 112s21s2x

5
4 þ 224s1s2x54 − 208s2x54 þ 112x54 − 144s31x

4
4 − 32s21s

3
2x

4
4 þ 128s1s32x

4
4

− 144s32x
4
4 þ 448s21x

4
4 − 32s31s

2
2x

4
4 þ 576s21s

2
2x

4
4 − 928s1s22x

4
4 þ 448s22x

4
4 − 448s1x44 þ 128s31s2x

4
4 − 928s21s2x

4
4

þ 1264s1s2x44 − 448s2x44 þ 112x44 þ 64s41x
3
4 þ 16s21s

4
2x

3
4 − 80s1s42x

3
4 þ 64s42x

3
4 − 352s31x

3
4 þ 48s31s

3
2x

3
4 − 544s21s

3
2x

3
4

þ 880s1s32x
3
4 − 352s32x

3
4 þ 448s21x

3
4 þ 16s41s

2
2x

3
4 − 544s31s

2
2x

3
4 þ 1744s21s

2
2x

3
4 − 1760s1s22x

3
4 þ 448s22x

3
4 − 208s1x34

− 80s41s2x
3
4 þ 880s31s2x

3
4 − 1760s21s2x

3
4 þ 1264s1s2x34 − 208s2x34 þ 16x34 þ 64s41x

2
4 − 16s31s

4
2x

2
4 þ 176s21s

4
2x

2
4

− 224s1s42x
2
4 þ 64s42x

2
4 − 144s31x

2
4 − 16s41s

3
2x

2
4 þ 464s31s

3
2x

2
4 − 1152s21s

3
2x

2
4 þ 880s1s32x

2
4 − 144s32x

2
4 þ 144s21x

2
4

þ 176s41s
2
2x

2
4 − 1152s31s

2
2x

2
4 þ 1744s21s

2
2x

2
4 − 928s1s22x

2
4 þ 144s22x

2
4 − 16s1x24 − 224s41s2x

2
4 þ 880s31s2x

2
4 − 928s21s2x

2
4

þ 224s1s2x24 − 16s2x24 − 96s31s
4
2x4 þ 176s21s

4
2x4 − 80s1s42x4 − 96s41s

3
2x4 þ 464s31s

3
2x4 − 544s21s

3
2x4 þ 128s1s32x4

− 16s21x4 þ 176s41s
2
2x4 − 544s31s

2
2x4 þ 576s21s

2
2x4 − 112s1s22x4 − 16s22x4 − 80s41s2x4 þ 128s31s2x4 − 112s21s2x4

þ 48s1s2x4 − 16s31s
4
2 þ 16s21s

4
2 − 16s41s

3
2 þ 48s31s

3
2 − 32s21s

3
2 þ 16s1s32 þ 16s41s

2
2 − 32s31s

2
2 − 16s21s

2
2 þ 16s31s2;

~r2 ¼ −~r0 log ðs1s2 − x4Þ;
~r3 ¼ −~r0 log ð1 − s1 − s2 þ x4Þ; ~r0 ¼ ~ra þ x4ð~rb þ ~rcÞ:

The leading-order spectrum in d ¼ 4 dimensions is simply understood to be obtained from Eq. (6) and Eq. (7) by setting ϵ to
zero. In the limitms → 0, Eq. (6) correctly reproduces the tree-level result given in Eq. (2.3) of Ref. [16], which was derived
in this limit.
For completeness, we have also improved the lowest order results for the double differential decay width based on the

remaining operators O1 and O2 by working out the full ms dependence. For this piece we obtain4

4Note that in Eq. (2.10) of Ref. [16] there was a sign mistake which is corrected in Eq. (9) of the present work.
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dΓð0Þ
Remaining

ds1ds2
¼ α2m5

bG
2
FjVtbV�

tsj2
1024π5

×

�
4Q4

u

�
C2ðμÞ þ

4

3
C1ðμÞ

�
2 ðs1 þ s2 − ð4 − s1 − s2Þx4Þ

ð1 − s1 − s2 þ x4Þ2
~hð2;1Þ

−16Q2
uQd

�
C2ðμÞ þ

4

3
C1ðμÞ

�
C7;effðμÞ

1

ð1 − s1Þð1 − s2Þðs1 − x4Þðs2 − x4Þ
~hð2;1;7Þ

�
: ð9Þ

The ~h functions appearing in Eq. (9) read

~hð2;1Þ ¼ j1 − s1 − s2 þ x4 − 4m̂2
carcsin2ð~zÞj2; ð10Þ

~hð2;1;7Þ ¼ ðs1s2x34 − 2s1x34 − 2s2x34 þ 2s21x
2
4 − s1s22x

2
4 þ 2s22x

2
4 − 6s1x24 − s21s2x

2
4 þ 7s1s2x24 − 6s2x24 þ 2s21x4

þ s21s
2
2x4 − 4s1s22x4 þ 2s22x4 − 2s1x4 − 4s21s2x4 þ 7s1s2x4 − 2s2x4 þ s21s

2
2 − s1s22 − s21s2 þ s1s2

þ 3x34 þ 3x24Þð1 − s1 − s2 þ x4 − 4m̂2
cRe½arcsin2ð~zÞ�Þ; ð11Þ

where m̂c ¼ mc=mb. The argument of the arcsin function
reads ~z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − s1 − s2 þ x4Þ=ð4m̂2

cÞ
p

, where m̂2
c is tacitly

understood to have a small negative imaginary part. In
Fig. 2 we present the leading-order spectrum based on all
operators [see Eq. (6) and Eq. (9)] as a function of s2 for s1
fixed at 0.2 and μ ∈ ½mb=2; 2mb�. The dotted (lowermost),
blue, yellow and red (uppermost) lines in these frames
describe the results when putting ms ¼ 0, ms ¼ 400 MeV,

ms ¼ 500 MeV and ms ¼ 600 MeV, respectively. The
numerical values of the input parameters and of the Wilson
coefficients are listed in Table I. We see that for μ ¼ mb=2
the ðO7;O7Þ contribution is by far the dominant one. This
can be easily understood from Eq. (9). For the renormal-
ization scale μ ¼ mb=2 the combination ðC2ðμÞ þ 4

3
C1ðμÞÞ

tends to zero since C2ðmb=2Þ ≈ − 4
3
C1ðmb=2Þ and thus the

ðO7;O7Þ contribution dominates at this scale.
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FIG. 2. Leading-order spectrum based on all operator contributions as given in Eq. (6) and Eq. (9), as a function of s2 for s1 fixed at 0.2
and μ ∈ ½mb=2; 2mb�. The dotted (lowermost), blue, yellow and red (uppermost) lines in these frames describe the results when putting
ms ¼ 0, ms ¼ 400 MeV, ms ¼ 500 MeV and ms ¼ 600 MeV, respectively.
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IV. IMPROVED OðαsÞ RESULTS FOR
THE DOUBLE DIFFERENTIAL

SPECTRUM dΓ=ðds1ds2Þ
A. Virtual corrections

We now turn to the calculation of the virtual QCD
corrections, i.e., to the contributions of order αs with three
particles in the final state. The diagrams defining the

(unrenormalized) virtual corrections at the amplitude level
are shown in the first two lines of Fig. 3. As the diagrams
with a self-energy insertion on the external b- and s-quark
legs are taken into account in the renormalization process,
these diagrams are not shown in Fig. 3. In order to get the
(unrenormalized) virtual corrections dΓbare

77 =ðds1ds2Þ of
order αs, we have to work out the interference of the
diagrams in Fig. 3 with the leading order diagrams in Fig. 1.
From the technical point of view we use two different

methods to perform the calculations. In the first method we
use the Laporta Algorithm [47] (see also [48,49]) to
identify the needed master integrals, followed by applying
the differential equation method to solve them. As we used
these techniques also in [15], we refer to Sec. 7 of that
paper which contains the technical details and the corre-
sponding references. In the second method, the one-loop
amplitudes are reduced to tensor integrals and subsequently
decomposed into their Lorentz-covariant structure by
means of the Mathematica package FEYNCALC [50,51].
For the numerical evaluation of the tensor-coefficient
functions we employed the LOOPTOOLS library [52,53].
For some checks, we also used the SecDec-3.0 package [54].
We note that the two methods give the same result,
providing us with firm check of our results.
In order to renormalize the calculated bare OðαsÞ virtual

corrections, one needs to add counterterm contributions
which, in our case, can be divided into two parts as

dΓct
77

ds1ds2
¼ dΓct;ðAÞ

77

ds1ds2
þ dΓct;ðBÞ

77

ds1ds2
: ð12Þ

FIG. 3. On the first two lines the one-loop Feynman diagrams for b → sγγ associated with O7 are shown at the amplitude level.
Diagrams with self-energy insertions on the external quark-legs are not shown. On the last line the contribution to the decay width
corresponding to the interference of the third diagram on the first line with the first (tree-level) diagram in Fig. 1 with q1 ↔ q2 is shown.

TABLE I. Top: Input parameters used in this paper. Bottom:
Relevant Wilson coefficients and αsðμÞ at different values of the
renormalization scale μ.

Parameter Value

BRexp
sl 0.1049

mc=mb 0.29
mb 4.8 GeV
mt 175 GeV
mW 80.4 GeV
mZ 91.19 GeV
GF 1.16637 × 10−5 GeV−2

Vcb 0.04
VtbV�

ts 0.04
αðemÞ−1 137
αsðmZÞ 0.119

C0
1ðμÞ C0

2ðμÞ C0
7;effðμÞ C1

7;effðμÞ αsðμÞ
μ ¼ mW 0 1 −0.1957 −2.3835 0.1213
μ ¼ 2mb −0.3352 1.0116 −0.2796 −0.1788 0.1818
μ ¼ mb −0.4976 1.0245 −0.3142 0.4728 0.2175
μ ¼ mb=2 −0.7117 1.0478 −0.3556 1.0794 0.2714
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Part (A) involves the Lehmann, Symanzik, Zimmermann

(LSZ) factors
ffiffiffiffiffiffiffiffi
ZOS
2b

q
and

ffiffiffiffiffiffiffiffi
ZOS
2s

q
for the b- and s-quark

fields, as well as the self-renormalization constant ZMS
77 of

the operator O7, as well as ZMS
mb

and ZMS
ms

renormalizing the
factors m̄bðμÞ and m̄sðμÞ present in the operator O7.
Defining δZi ¼ Zi − 1, we get for part (A)

dΓct;ðAÞ
77

ds1ds2
¼ ½δZOS

2b þ δZOS
2s þ 2δZMS

m þ 2δZMS
77 �

dΓð0;dÞ
77

ds1ds2
:

ð13Þ
The simple structure of this result is related to the fact that
the MS renormalization constants of the bottom and the

strange quark mass are identical, i.e., ZMS
mb

¼ ZMS
ms

≡ ZMS
m .

The counterterms defining part (B) are due to the
insertion of −iδmbb̄b and −iδmss̄s in the internal b and
s-quark lines in the leading order diagrams as indicated in
Fig. 4, where

δmb ¼ ðZOS
mb

− 1Þmb; δms ¼ ðZOS
ms

− 1Þms:

More precisely, part (B) consists of the interference of
the diagrams in Fig. 4 with the leading order diagrams in
Fig. 1. The various Z-factors are listed for completeness in
Appendix B.

By adding dΓbare
77 =ðds1ds2Þ and dΓct

77=ðds1ds2Þ, we get
the result for the renormalized virtual corrections to the

spectrum, dΓð1Þ;virt
77 =ðds1ds2Þ.

dΓð1Þ;virt
77

ds1ds2
¼ dΓbare

77

ds1ds2
þ dΓct

77

ds1ds2
: ð14Þ

B. Bremsstrahlung corrections

We now turn to the calculation of the bremsstrahlung
QCD corrections, i.e., to the contributions of order αs with
four particles in the final state. The corresponding diagrams
at the amplitude level are shown on the first line in Fig. 5.
We use again two methods to calculate the bremsstrahlung
corrections. In the first one, we use the Laporta Algorithm
[47] to identify the master integrals, which are then solved
by applying the differential equation method. As in [45] we
worked out in a first step the triple differential spectrum

dΓð1Þ;brems
77 =ðds1ds2ds3Þ, s3 ¼ ðps þ pgÞ2=m2

b, obtaining a
fully analytic result which however is very lengthy. To

get the double differential spectrum dΓð1Þ;brems
77 =ds1ds2, we

integrated over s3, which runs in the interval ½m2
s=m2

b; s1s2�.
In some terms this integration was done numerically. In the
second method we perform a slicing of the phase-space: We
introduce a small gluon energy cutoff ω0 and divide the real
emission contribution into a soft and a hard part. The soft
part, which contains the infrared (IR) singularity, comes
from the phase space region where the gluon energy is
below ω0. As in the case of the virtual diagrams, the IR
singularities are regularized dimensionally. By taking
advantage of the soft gluon approximation for the ampli-
tude of the bremsstrahlung process, it is possible to perform
the integral with respect to the gluon momentum analyti-
cally; the process-independent result, which was derived in
[55] (see also [56]), depends only on the momenta of the
external particles in the corresponding Born process. We
explicitly checked that the IR divergencies cancel out once
the soft part is combined with the virtual corrections. In
order to obtain the hard part contribution to the double
differential decay width, a three-dimensional (finite) inte-
gral is involved; we performed this integration numerically,
by making use of the CUBA-library [57]. Again, the two
methods lead to the same result.

C. Improved final result for the
decay width at OðαsÞ

The complete order αs correction to the double differ-
ential decay width dΓ77=ðds1ds2Þ is obtained by adding the
renormalized virtual corrections from Sec. IVA and the
bremsstrahlung corrections discussed in Sec. IV B:

dΓ1
77

ds1ds2
¼ dΓð1Þ;virt

77

ds1ds2
þ dΓð1Þ;brems

77

ds1ds2
: ð15Þ

FIG. 4. Counterterm amplitudes involving δms;b insertions in
the internal quark lines.

FIG. 5. On the first line the diagrams defining the O7

contribution to b → sgγγ are shown at the amplitude level.
The crosses in the graphs stand for the possible emission places
of the gluon. On the second line the contribution to the decay
width corresponding to the interference of diagram 4 with
diagram 2 (q1 ↔ q2) is illustrated. This sample interference
diagram gives rise to log ðms=mbÞ terms due to collinear
configurations of one of the photons with the s-quark.
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V. NUMERICAL ILLUSTRATIONS

The NLL prediction for the double differential decay
width reads

dΓ77

ds1ds2
¼ dΓð0;4Þ

77

ds1ds2
þ dΓð1Þ

77

ds1ds2
: ð16Þ

To illustrate our results, we first rewrite the M̄S masses
m̄bðμÞ, m̄sðμÞ in Eq. (16) in terms of the pole masses mb,
ms, using the one-loop relations

m̄bðμÞ ¼ mb

�
1 −

αsðμÞ
4π

�
8 log

μ

mb
þ 16

3

��
; ð17Þ

m̄sðμÞ ¼ ms

�
1 −

αsðμÞ
4π

�
8 log

μ

ms
þ 16

3

��
: ð18Þ

We then insert C7;effðμÞ in the form

C7;effðμÞ ¼ C0
7;effðμÞ þ

αsðμÞ
4π

C1
7;effðμÞ ð19Þ

and expand the resulting expression for dΓ77=ðds1ds2Þ
with respect to αs, discarding terms of order α2s. This
procedure defines the NLL result. The corresponding LL
result is obtained by discarding the order α1s terms. The
numerical values for the input parameters and for the
Wilson coefficient C7;effðμÞ at various values for the scale

μ, together with the numerical values of αsðμÞ, are given in
Table I.
In Fig. 6 we give the NLL double differential spectrum

based on the ðO7;O7Þ contribution only, as a function of s2
for s1 fixed at 0.2. In each of these plots, the solid curves
show the results based on the present calculation with exact
ms dependence, while the dashed curves are based on the
previous approximated result of Ref. [16], where only
logarithmic and constant terms in ms were kept (which we
denote as “ms → 0 results”). The renormalization scale μ
andms are varied as explicitly displayed. A straightforward
comparison between the solid (ms exact results) and the
dashed curves (ms → 0 results) shows that finite ms effects
are only sizable near the kinematical endpoints of the
spectrum. One also can see that the exact ms results only
develop a sizable ms dependence near the kinematical
endpoints of the spectrum.
In Fig. 7 we give the NLL double differential spectrum

based on all available operator contributions to date
as a function of s2 (for s1 fixed at 0.2) taking μ ∈
fmb=2; mb; 2mbg and putting ms ¼ 400 MeV, ms ¼
500 MeV, and ms ¼ 600 MeV.
We stress that the numerically important QCD correc-

tions to the matrix element for B̄ → Xsγγ involving the
operators O1 and O2 are unknown so far. Our calculation
based on the operator O7 therefore only represents a partial
next-to-leading logarithmic (NLL) result. In general, a
reduction of the scale dependence is not expected at this
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FIG. 6. NLL double differential spectrum based on ðO7;O7Þ contribution only, as a function of s2 for s1 fixed at 0.2. In each of these
plots, the solid curves show the results based on the new calculation with exact ms, while the dashed curves are based on previous
results, i.e., in the limit ms → 0. See the text for details.
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level. Indeed, we find that our partial NLL result shows a
similar scale dependence as leading logarithmic (LL) result.
Historically, a similar feature was observed in the process
B → Xsγ. Partial NLL results for the branching ratio
showed a scale dependence similar to the one at LL.
Only after taking into account all NLL contributions, the
scale dependence got drastically reduced.
As the analytic expressions for the double differential

decay width dΓðB → XsγγÞ=ðds1ds2Þ are very lengthy,
they cannot be given in this paper. In order to provide
nevertheless the complete information, we decided to give
it in form of a Fortran program, called “doublediff.F”,
which can be obtained from the authors. The input/output
information is described in a few comment lines at the
beginning of the very short main program. The program
uses the LOOPTOOLS-library [52,53] and the CUBA-
library [57]. The code has been tested when using the
versions LoopTools-2-13 and Cuba-3.2, respectively.
We already mentioned that one gets a sizable ms

dependence only near the kinematical endpoints of the
spectrum. This means that if one is sufficiently away from
these endpoints, one gets more reliable predictions. From
Eq. (4) one can see that this situation can be achieved when
choosing a value for c which is not too small. On the other
hand, the decay width for B̄ → Xsγγ will decrease for
increasing values of c. It is therefore necessary to take
compromising values for c. Explicit calculations show that
for c ¼ 1=50 the decay width does not develop a sizablems

dependence: When varying ms between 400 and 600 MeV,
the impact on the decay width is less than 5%. For larger
choices of c, the ms sensitivity is even much smaller. To
illustrate the c-dependence of the decay width, we use the
values c ¼ 1=50, c ¼ 1=25 and c ¼ 1=15 in the following.
In the decay B → Xsγγ two photons are emitted, char-

acterized by the kinematical variables s1 and s2. We now
define the one-dimensional physical spectrum

dΓ77

ds
where s ¼ min fs1; s2g: ð20Þ

This observable can be constructed from the double differ-
ential spectrum dΓ77=ðds1ds2Þ in the following way:

dΓ77

ds
¼ 2

�Z
G
ds2dΓ77=ðds1ds2Þ

�
s1→s

: ð21Þ

The integration intervalG can be specified as follows: For a
given value of s1 the variable s2 runs over all values in the
cut phase space [characterized by Eq. (4)] which satisfy the
additional condition s2 > s1. More explicitly, this can be
summarized as

1

2
ð1 − c −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 10cþ 9c2

p
Þ < s1 <

1

2
ð1 − cÞ;

max

�
s1; cþ

c
s1 − c

�
< s2 < 1 − c − s1: ð22Þ
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FIG. 7. NLL spectrum (with exact treatment ofms) based on all available operator contributions to date, as a function of s2 for s1 fixed
at 0.2. The blue (uppermost), yellow, and red (lowermost) curves in these frames describe the results when putting ms ¼ 400 MeV,
ms ¼ 500 MeV, and ms ¼ 600 MeV, respectively.
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In Fig. 8 we show the next-to-leading order prediction of
dΓ77=ds for different values of the cut-off parameter c.
To get the branching ratio for B̄ → Xsγγ as a function of

the cut-off parameter c defined in Eq. (4), we integrate the
double differential spectrum over the corresponding range

in s1 and s2, divide by the semileptonic decay width and
multiply with the measured semileptonic branching ratio.
The relevant formula for the semileptonic decay width at
lowest order (which is sufficient for the purpose of this
paper) reads (recalling that m̂c ¼ mc=mb)
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FIG. 8. dΓ77=ds at next-to-leading-order for different values of the cut-off parameter c. The first frame corresponds to c ¼ 1=50, the
second to c ¼ 1=25 and the third to c ¼ 1=15. The blue (uppermost), yellow and red (lowermost) curves in these plots describe the
results when setting ms ¼ 400 MeV, ms ¼ 500 MeV and ms ¼ 600 MeV, respectively. Further, the solid (uppermost three), dashed
(middle three) and dotted (lowermost three) curves in these frames define the results when choosing μ ¼ mb=2, μ ¼ mb and μ ¼ 2mb,
respectively. See text for details.

TABLE II. Branching ratios (in units of 10−7) for B̄ → Xsγγ. The left panel of the table corresponds to the results when choosing the
kinematical cutoff parameter c ¼ 1=50, the middle panel is for c ¼ 1=25 and the right one for c ¼ 1=15. The rows labeled as LL, LL1,
LL2, and LL3 stand for the improved leading-order results when settingms ¼ 0,ms ¼ 400 MeV,ms ¼ 500 MeV, andms ¼ 600 MeV,
respectively. The rows labeled with NLL1, NLL2, and NLL3 give the improved results when the calculated OðαsÞ contributions are also
included, setting ms ¼ 400 MeV, ms ¼ 500 MeV and ms ¼ 600 MeV, respectively. In this table “all” stands for the sum of all
available operator contributions up-to-date at the given order.

Branching ratios for B̄ → Xsγγ

c ¼ 1=50 c ¼ 1=25 c ¼ 1=15

μ ¼ mb=2 μ ¼ mb μ ¼ 2mb μ ¼ mb=2 μ ¼ mb μ ¼ 2mb μ ¼ mb=2 μ ¼ mb μ ¼ 2mb

O7 all O7 all O7 all O7 all O7 all O7 all O7 all O7 all O7 all

LL 0.94 0.95 0.74 0.79 0.58 0.69 0.28 0.29 0.22 0.25 0.17 0.24 0.054 0.056 0.042 0.049 0.034 0.046
LL1 1.05 1.06 0.82 0.87 0.65 0.76 0.30 0.31 0.24 0.27 0.19 0.25 0.058 0.059 0.045 0.052 0.036 0.049
LL2 1.11 1.12 0.87 0.92 0.69 0.79 0.31 0.32 0.25 0.28 0.19 0.26 0.059 0.061 0.046 0.054 0.037 0.051
LL3 1.20 1.20 0.93 0.99 0.74 0.85 0.33 0.34 0.26 0.29 0.20 0.27 0.062 0.064 0.048 0.056 0.038 0.053
NLL1 1.18 1.19 0.73 0.79 0.49 0.60 0.35 0.35 0.22 0.25 0.15 0.21 0.068 0.069 0.042 0.050 0.028 0.042
NLL2 1.14 1.15 0.71 0.76 0.48 0.58 0.33 0.34 0.21 0.24 0.14 0.21 0.066 0.067 0.041 0.049 0.027 0.041
NLL3 1.12 1.13 0.69 0.75 0.47 0.58 0.33 0.34 0.20 0.24 0.14 0.20 0.064 0.066 0.040 0.048 0.027 0.042
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Γsl ¼
m5

bG
2
FjV2

cbj
192π3

gðm̂cÞ; ð23Þ

where the phase-space factor is defined as

gðxÞ ¼ 1 − 8x2 þ 8x6 − x8 − 24x4 logðxÞ: ð24Þ
Using the input parameters in Table I, we get the

branching ratios shown in Table II for different values of
the cutoff parameter c.
In a previous work (see Fig. 3 of Ref. [17]), we showed

that the numerical impact of the self-interference contri-
bution of O8 to B̄ → Xsγγ is minor in the full phase space
and no unexpected enhancements occur, therefore it is safe
to neglect this particular piece in the final numerics.
We have also investigated the relative change

Arel ¼
�
Br½B̄ → Xsγγ�NLLms−exact − Br½B̄ → Xsγγ�NLLms→0

Br½B̄ → Xsγγ�NLLms−exact þ Br½B̄ → Xsγγ�NLLms→0

�

of the NLL branching ratio due to the finite ms effects by
comparing the present ms exact result with the previous
approximated result (ms → 0) of Ref. [16]. We arrive at the
following conclusion: For ms ∈ ½400; 600� MeV, Arel is at
most 7% when choosing the kinematical cut-off parameter
c as small as 1=50. For larger choices of c, the impact on
the branching ratio from terms which contain powers of ms
becomes even less important.

VI. SUMMARY

We calculated the ðO7;O7Þ-contribution to B̄ → Xsγγ at
OðαsÞ retaining the full dependence on the strange-quark
mass ms in our results. At this order in αs, this requires the
calculation of virtual corrections (with three body final state
and a virtual gluon in the loop) and gluon bremsstrahlung
corrections (tree-level contributions with four particles in
the final state, one of them being massive).
We showed that for the phase-space region

ð1−s1−s2Þ>c, ðs1 − cÞðs2 − cÞ > c with c ≥ 1=50, the
branching ratio for B̄ → Xsγγ does not develop a sizablems
dependence: the impact on the branching ratio is less

than 5% when ms is varied between 400 and 600 MeV.
Besides, we have also investigated the size of the finite
strange-quark mass effects and observed that such effects are
less than 7% for the same phase-space region. The observed
mild sensitivity of the branching ratio on the strange-quark
mass indicates that the nonperturbative effects related to the
hadronic photon substructure are under control.
To give the complete results of our work, we append the

Fortran program “doublediff.F” (see the corresponding para-
graph after the description of Fig. 7 in Sec. V).
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APPENDIX A: PHASE-SPACE REGION
FOR EXACT ms CASE

In this section we give the kinematical ranges considered
in this paper on the phase-space variables s1 and s2 in
explicit form. These restricted ranges are based on Eqs. (3)
and (4), leading to

~s1− < s1 < ~s1þ; cþ c
s1 − c

< s2 < 1 − s1 − c with

~s1� ¼ ð1 − c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cÞð1 − 9cÞ

p
Þ=2; ðA1Þ

where c is the cutoff parameter satisfying x4 < c < 1=9.
We display in Fig. 9 the geometrical representation of
Eq. (A1) when choosing c ¼ 1=25.

APPENDIX B: RENORMALIZATION
CONSTANTS

In this appendix, we collect the explicit expressions of
the renormalization constants needed for the ultraviolet
renormalization in our calculation (see Sec. IVA).
The operator O7, as well as the b- and s-quark mass

contained in this operator are renormalized in the MS
scheme [58]:

ZMS
77 ¼ 1þ 4CF

ϵ

αsðμÞ
4π

þOðα2sÞ;

ZMS
mb

¼ ZMS
ms

¼ 1 −
3CF

ϵ

αsðμÞ
4π

þOðα2sÞ: ðB1Þ

All the remaining fields and parameters are renormalized
in the on-shell scheme. The on-shell renormalization

c 1 25

0 1

1

s 2

s1

FIG. 9. Pictorial representation of the ðs1; s2Þ phase-space
region when choosing c ¼ 1=25.
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constants for the b-quark and the s-quark masses read
(q ¼ b or q ¼ s)

ZOS
mq

¼ 1 − CFΓðϵÞeγϵ
3 − 2ϵ

1 − 2ϵ

�
μ

mq

�
2ϵ αsðμÞ

4π
þOðα2sÞ;

ðB2Þ

while the renormalization constants for the s- and b-quark
fields are given by (q ¼ b or q ¼ s)

ZOS
2q ¼ 1 − CFΓðϵÞeγϵ

3 − 2ϵ

1 − 2ϵ

�
μ

mq

�
2ϵ αsðμÞ

4π
þOðα2sÞ:

ðB3Þ
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