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A, semileptonic decays in a quark model
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Hadronic form factors for semileptonic decay of the A, are calculated in a nonrelativistic quark model.
The full quark model wave functions are employed to numerically calculate the form factors to all relevant
orders in (1/m,, 1/my). The form factors obtained satisfy relationships expected from the heavy quark
effective theory (HQET). The differential decay rates and branching fractions are calculated for transitions
to the ground state and a number of excited states of A. The branching fraction of the semileptonic decay
width to the total width of A, has been calculated and compared with other theoretical estimates and
experimental results. The branching fractions for A, — A*I[*v; - Zal*y, and A, — ATy, - NKITy,
are also calculated. Apart from decays to the ground state A(1115), it is found that decays through the
A(1405) provide a significant portion of the branching fraction A, — X /v;. A new estimate for f =

B(Af = Al'ty;)/B(Af — X, ["v;) is obtained.
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I. INTRODUCTION AND MOTIVATION

Semileptonic decays of hadrons are the main sources
for precise knowledge on Cabibo-Kobayashi-Maskawa
(CKM) matrix elements [1]. The form factors that para-
metrize the nonperturbative QCD effects in these transi-
tions play a crucial role in the extraction of CKM matrix
elements, and the precision depends on how well the form
factors are calculated.

A great deal of work has been done on semileptonic
decay processes to calculate and improve the modeling of
the form factors. For example, monopole type form factors
were used to study semileptonic decay of heavy mesons by
Wirbel, Stech and Bauer [2]. Isgur, Scora, Grinstein and
Wise caculated the semileptonic B and D meson decays in a
nonrelativistic quark model [3]. Lattice QCD calculations
of semileptonic decay form factors have been done in
Ref. [4]. These are a very few out of a huge number of
articles. More work has been done on semileptonic meson
decays than baryon decays. Pervin, Roberts and Capstick
worked on semileptonic baryon decays of A, [5] and Q,
[6] in a constituent quark model. Some baryon decays have
also been addressed in QCD sum rules [7], perturbative
lattice QCD [8] and a number of other approaches [9].

The description of the weak decays of heavy hadrons are
somewhat simplified because of the so-called heavy quark
symmetry. This was first pointed out by Isgur and Wise
[10]. Hadrons containing one heavy quark Q (with
mg > Aqcp) possess this symmetry, which has been
formalized into the heavy quark effective theory
(HQET). In HQET the properties of the hadrons are
governed by the light degrees of freedom and are inde-
pendent of the heavy quark degrees of freedom. For

fmozarnmelhussain @gmail.com
"wroberts @fsu.edu

2470-0010/2017/95(5)/053005(33)

053005-1

semileptonic decays of heavy hadrons, HQET reduces
the number of independent form factors needed to describe
the decays.

In this paper, we examine the semileptonic decays of the
A to a number of As, including the ground state. Because
it is the lightest charmed baryon, A plays an important
role in understanding charm and bottom baryons. The
lowest-lying bottom baryon is most often detected through
its weak decay to A", In addition, the study of all of the A} -
type and X .-type baryons are directly linked to the under-
standing of the ground state of A}, as these baryons
eventually decay into a A].

Among the branching fractions of the A., B(Al —
pK~n") is used to normalize most of its other branching
fractions. The Particle Data Group (PDG), in their previous
version [11] reported that there was no model-independent
measurement of B(A — pK~z"). Two model-dependent
measurements were reported, with two different results
obtained from different assumptions. The model that
calculated branching fractions B(Af — pK~z") from
semileptonic decays estimated that

B(D - XI*v;)

B(Af - pK~n")=RfF

(A5, (1)

where
R = B(A} —» pKzn")/B(Af - Al'y)),

£ = BINF = Aw) BN = X0,
F = B(A} = X,I"v))/B(D — X I"v)).

They estimated B(Al — pK zt) = (73+14)% with
the theoretical estimate of f = F = 1.0 with significant
uncertainties.

© 2017 American Physical Society
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However, in their most recent release, PDG [12] reports a
model-independent measurement of B(A — pK~z™").
Zupanc et al. (Belle Collaboration) [13] measured it to
be 6.8470:32%, while Ablikim et al. (BESIII Collaboration)
[14] measured it to be 5.84 + 0.27 £+ 0.23%. The PDG fit is
6.35 + 0.33% that leads to a new estimate of

f=B(AS = Al'w))/B(A = X, lFy) = 0871013,

with the assumption of F = 1.0. Pervin, Roberts and
Capstick (PRCI) [5] estimated the value of f to be
0.85 £ 0.04. Mott and Roberts [15] later estimated the
rare decay branching fractions of the A, using two different
methods. Their results indicated that the results were
sensitive to the precision with which the form factors were
estimated, and this further implied that f could be even
smaller than 0.85. The semileptonic branching fraction,
B(Af — Alty;) is reported to be 2.8 +0.5% with the
assumption that the A decays only to the ground state
A(1115). No semileptonic decays to excited A have been
reported. This provides the motivation for our work.
There have been a number of theoretical articles on the
semileptonic decay of A} in recent years. Gutsche et al. used
acovariant quark model to estimate the branching fraction for
A, = Al*y;[16]. Liu et al. used QCD light cone sum rules to
examine this decay [17], while lkeno and Oset have
examined the semileptonic decay to the A(1405), treating
that state as a dynamically generated molecular state [18].
In the work presented herein, we work in the framework
of a constituent quark model. Such models have been quite
successful in explaining the main features of hadron
phenomenology. In computing the form factors for
A, — A*, we have deployed two approximations. In the
first approximation, single component wave functions are
used to compute the analytic form factors for A, - A*
transitions. As in PRCI [5], a variational diagonalization of
a quark model Hamiltonian was used to extract the single
component wave functions, and the quark operators were
reduced to their nonrelativistic Pauli form. In the second
method we keep the full relativistic form of the quark
spinors and use the full quark model wave functions. We
believe that this second method provides more reliable
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numerical values of the form factors as it uses fewer
approximations.

We calculate the decay widths and branching fractions for
decays to ground state and a number of excited A*). We also
study the decay widths and branching fractions of two other
decay channels, namely A} — Zzl*v, and A} — NKI*y,,
via a set of A resonances.

The rest of this paper is organized as follows: In Sec. II,
we discuss the hadronic matrix elements and decay rates.
Section III presents a concise overview of HQET and the
relationships predicted by HQET among the form factors
for the transitions we study. In Sec. IV we describe the
model we employ to calculate the form factors. Section V is
devoted to discussing the numerical results such as form
factors, decay rates and branching fractions. Section VI
presents our conclusions and outlook. A number of details
of the calculation are shown in the Appendixes.

II. MATRIX ELEMENTS AND DECAY WIDTHS
A. Semileptonic decay (A — Al*y;)

1. Matrix elements
Figure 1 depicts the semileptonic decay A} — A® [Ty,
We work in the rest frame of the parent A.. The transition
matrix element for the decay is

M= G—évmwwa DAL @)
where V. is the CKM matrix element, L* = i, y* (1 — y5)v;
is the lepton current and J,, = 5y,(1 — ys)c is the hadronic
current. The momenta of the A, A, [, v, are labeled as p, p’,
p; and p,, respectively. The hadronic matrix element is
defined as

Hﬂ :<A<*)|Jﬂ|AL‘>' (3)

The hadronic matrix elements are parametrized in terms of a
number of form factors. For transitions from the ground state
A, (J =1) to the ground state A (J* = 1T), the matrix
elements for the vector (V) and axial-vector (A,) currents
are, respectively,

) P p,
APV, Aup.s)) = (s ) (ml L P, +—”F3)u<p,s>, )
mAL_ ma

A )IAL AP 5)) = a<p',s/>(

/!

p p
7.G1 +ﬁG2+m—ZG3>J’5”(P,S)’ (5)

where the F;’s and G;’s are the form factors and s(s”) is the spin of A.(A). The matrix elements for transitions to a daughter

sp TP 3
baryon with J© = 5~ are

<A(pl, S/)|VM|/\L-(p, S)> — l_la(p/, S/) |:,,5—Z

¢

p P,
(7/;4F1 +ﬁF2 +m_/;\F3> +gauF4:| l/t(p,S), (6)
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_a Pa p p,
A AL, 5)) = 1) | 22 (1,61 + LG+ 22.G1) 4., Go (). 0
My, my, m
The Rarita-Schwinger spinor #“* satisfies the conditions
pait*(p'.s') =0, u*(p".s )y, =0,  u*(p'.s")p' = mppu(p'.s'). (8)

The corresponding matrix elements for transitions to a daughter baryon with J? = %* are

_ sap Pa_| Pp

A VI p.5) = a0 L
_ Pa | P

L S IA(ps)) = () L

my, My,

The spinor #% satisfies the conditions

P (v ') = P (p'.s') =0,
ﬁa/}(p/’ S/)ﬁ' — mAs/zﬁ”ﬁ(p/, S’),

Here, we have shown the hadronic transition matrix elements
for the decays to daughter baryons with natural parity. For
decays to states with unnatural parity, the matrix elements are
constructed by switching ys from the equations defining the
G; to the equations defining the F;.

2. Decay width

The differential decay rate for the transition A, —
A<*) l+IJ1 is

1 &pdp,d*p' 2x)*6 (p—p' = pi—p.,)

dlr = M ,
ZmAC| | 2E2E,2F (27)3(27)3 (2x)?
9)
where
M = Gi v |212HTH AL
2 cs 2 i it 2 ’
spins
G
= T|Vcs|2H;lew' (10)
I+
Y
+
A¢
A
FIG. 1. Semileptonic decay AT — A® [Ty,

p P,
(nyl +ﬁF2 +m_l;\F3> + gﬁﬂF4:| u(p.s).

p .
(}/ﬂGl +£LG,+£ G3> +gﬂﬂG4} ysu(p,s).
nip mu

c

a(p'.s' )y, = a®(p'.s")yp = 0.

uaﬂ(p/, s/)ga/)’ =0.
|
Here, |M|? is the squared amplitude averaged over the
initial spins (the factor of %) and summed over the
final spins.

The most general Lorentz form of the hadronic tensor
can be written as

H/w =ag, +ﬂPPP/4Pz/ +ﬂPLP/4Lv +ﬂLPL/4Pv

+:BLLL;¢L1/ + iyeﬂvpapme (11)

where we have defined P = p’ and L = p — p’. The lepton
tensor is

L =8(p) pt, + Pl pt = ¢ (P1-Pu,) + i€ prapyg) (12)

Integrating over the lepton momenta allows us to write the
lepton tensor as

/

where ¢> = (p — p')? and

&pdp,
(27)*(27)*2E 2E,,

L"”—/dQ,(Ag/‘”—f—A’L”L”), (13)

(q* —m?)?(24* + m7)
384754

(q> —m7)*(q* + 2m7)

1927°¢° '

A=-—

El

A= (14)

The complete expression for the differential decay rate
becomes
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© (d)

FIG. 2. (a) Semileptonic decay A} — A*I*y, followed by the
strong decay A — Zz. (b) Semileptonic decay Af — A*Ity,
followed by the strong decay A — NK. (c) Strong decay A} —
>*x followed by the semileptonic decay X — X[ v,. (d) Strong
decay A — D*N followed by the semileptonic decay

D* = Kilty,.

dr ‘V | GF (¢* —mj)?
al es 2172 m2, ]
dg*> 192 m’m}, (3. ') 445

x (~6ag* +/3pp[2q2((P -L)? —miq*)
+m(4(P-L)* = m3q®)]
+ [BLp(P-L) +Pp (P- L) + Pr.q*3miq?), (15)
2

P-L=%(mi —mj—q*) and 2'%(x,y,z)=
(x* +y> + 722 — 2xy — 2yz — 2zx)'/2.  When contracted
with the lepton tensor, all of the fs (except fpp) are
proportional to powers of the lepton mass m; and thus give
small contributions to the decay rate. The complete form of
Ppp 1s given in Appendix E 1.

where

B. A, = A*l*y; — Zaltv;/NKIly,

We include six A*) in this calculation. We denote these
as A;,i=1...6. In this notation, A;=A(1115)1/2%; A, =
A(1600)1/2"; Az = A(1405)1/27; Ay = A(1520)3/27;

= A(1890)3/2%; Ag = A(1820)5/2". With the excep-
tion of A, these excited A; are not stable particles and will

1 2
P=\zmx ma + Sz =4

L ! (
= m
2mAC

1
2)7 07 072

1
A= Sse +4%),0.0.—3
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FIG. 3. Kinematics for the process A, — Xzlv. The lepton
momenta define the lepton plane, while the momenta of the
hadrons define the hadron plane.

decay strongly to Xz or NK. Thus, we study the four-body
decays, A,— ATy, —»Zxlty, and A.— ATy, —NKIty,
as shown in Figs. 2(a) and 2(b). There are other contribu-
tions to each of these four-body final states, two of which
are shown in Figs. 2(c) and 2(d). However, in each case, the
intermediate resonance is very heavy and very far from the
mass shell. Thus, we expect these contributions to be small.

1. Kinematics

Figure 3 shows the kinematic diagram for the four-
particle decay A, — Xzl"v,. We define

P=ps+p,, Q=ps—p,. L=p+p, (16)

so that py = P + L. In the rest frame of the A, the back-

to back momenta P and L define a common z-axis. In the
rest frame of the daughter hadrons, @; is the polar angle

between the pion momentum and P. Similarly, in the rest
frame of the lepton pair, @} is the polar angle between the

lepton momentum and L. Here, ¢* is then the angle
between the lepton and hadron planes.

In the overall rest frame of A., the momenta P and
L are

/11/2(,,”3\6’ Sy, q2)> ,

mAC

AR e ) )

In the rest frame of the daughter hadrons, the momenta psy and p, are

1 1 . 1 .
Pr = <2\/E (SZH m% + mjzr)v TEAI/Z(SZH’ m%’ m?z) sin Hhv 07 2@/’{1/2(5'27:’ m%a mizz) COos Hh) s
1 * 1 *
Ps = <2\/E (SEn: + m%, - m%’)’ - 2\/@11/2(8271" m%’ ) sin 911’ O’ 2\/8—2”/11/2(5271" m%’ m%) cos 9h> .
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In the rest frame of the lepton pair, the lepton momenta are

p—( : (q* +m}) :
SOV
1

m?), —

_ 1 2 _
pu_(z\/?(q 1 2\/?

2. Matrix elements

The hadron matrix elements for the decays
A. = A;lv;, — BMly,, where B is a baryon with J¥ =
1/2% and M is a pseudoscalar meson, can be written as

((B(ps)M(pa))ilulAe(Pa,))
i(pp) TR(P)Tju(P+L). (17)

In this expression, T represents the strong decay vertex,
pp and p,, are the momenta of the daughter baryon B and
meson M, respectively, R(P) is the propagator with
momentum P. Here, J, is the weak current leading to
the weak decay, while 7 ;, 1s the matrix element for the
semileptonic decay A, — A,, written in terms of the form
factors of Sec. II A 1. In this notation, the momenta of
Eq. (16) are more generally written as

P=pg+py. O=pp—pu. L=p/+p,. (18)

When the intermediate baryon has J¥ = 1/2F, the
hadron matrix elements are

(B(pe)M(pu)|Vii|Ac(P+L))
= grsui(pp)rs(P+Mp)V'!
(P+L)

. P,
”F’2+—”F’3]u(P+L),
A, my,

i

x |:7;4Fli +
(B(pp)M(pu)|ALIA(P+L))

= gnsmi(pp)ys(P +Mp)V!

(P+L)

. P,
[t + GGl P+ ). (19

where V/ = 1/(P? — M{?) and M} =m,, —il;/2, with
my, and T; the mass and total decay width of the A;,
respectively. Here, gy gy is the strong coupling constant for
the decay A; — BM.

For an intermediate state with J¥ = 3/2~, the hadron
matrix elements are

(g% — m?)sin;,0,

(¢*> —m?)sin6;,0, —

1
———(g* — m?) cos 07) :
2\ ¢?
1

2—\/?(11

2 2 *
—ml)cosﬁl>.

(B(pg)M(py)|Vi|A(P + L))

Pm, R“ﬂ(P)Vi
mpyy

P+L  (P+L), .
% [7< ) <y,,F’l + P+L), Fi
mAC

= gn,ami(PB)7s

mAC

P, . )
+——F5 ) +gp.F, u(P+ L),
mpy

i

(B(pp)M(pu)|ALIA(P + L))
= grsmi(P)7s ;—’V;Raﬁmvz‘

P+ L ) P+ L .
X [4< )ﬁ <yﬂG’l +7( )” G
mAE mAC

Py i i
+ﬁG3> +9ﬁyG4] ysu(P + L), (20)

where R (P) is the Rarita-Schwinger tensor for a massive
spin 3/2 propagator, which takes the form

) 1 2 pa Pﬂ y(z Pﬂ _ y/i Pe
R¥(P)=—(P+ML)| g% —~y%P - - .
(P =P ) = 2
For an intermediate state with J¥ = 5/2%, the hadronic
matrix elements are

<B(PB)M(PM) | VL |Ac(pAL.)>

P}T}Pﬁ/} b

— a i

= gasmi(PB)rs ) R,g/,v(P)v
M

P+ L . P+ L )
x [7< )y (yﬂF’l + (PHL), Fi
my, mp,

(P+L),
mp

¢

Py i
+EF3 + gp.Fy |u(p),

(B(ps)M(pu)|Au|A(P + L))

(P+L),
mp

PPt pap

— Qj B

= gasmi(PB)rs ) R”J/),,(P)Vl
M

[P (01

mA(

"

<P + L)H Gi
2
mA(

P : )
#7261 + g Gl ru(P+ L), 1)
A;
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where R;’;,(P) is the Rarita-Schwinger propagator tensor for a massive particle with total angular momentum 5/2 [19].

We need to cast the matrix elements from the previous three equations into a more general form that makes it easier to
organize the calculation. The most general form of the contribution of the ith state to the matrix element for the four-body
decay Af — A;ITv; » BMIv; can be written

16

M = (pp) (Z c;‘.oj) u(P+1L),

J=1
where the Lorentz-Dirac operators O; are

Ol =7u» 02:[’}/1/7 03 :Pw 04:PPZ/7 05 :Lw 06:PLD’ 07:Qw OSZPQM
Oy =7,7s. 010:12%75, O =Pys, OlZZPPDYS’ O3=L,ys, 014:PLD7/5’ O15=0,7s, 016:PQV7’5-

Because of the forms of the propagators in Egs. (19)—(21), there are no terms containing L or Q among the O;. For the cases
of Egs. (20) and (21), the meson momentum p,, can be replaced by P — pp, and any factors of pp can be commuted
leftward until they are adjacent to the spinor #(pp). The Dirac equation can then be used to write this as the scalar mp.

The cj can be written as

i __9nsm iF iG
Cj - P2 _ M{qz ;(C/k Fk + Cjk Gk)’ (22)

where k runs from 1 to 3 for spin % states and from 1 to 4 for states with higher spin.
In the above, we have shown the forms for the A, states with natural parity. For the states with unnatural parity, the weak
and strong vertices each acquire an extra multiplicative factor of ys.

3. Decay width
The differential decay rate for the decay A} — BMI"y; is
1 G%

ZmA[ 7

& ppd’ pyd’ pdp,,
-5t - - -pr— H, LM, 23
YEREIERE, O AT Ps TPy P P (23)

Vel

The hadron tensor that arises from each intermediate state i can be written as

H;iu/ = ZM;ITMix = aig/w +ﬂ§’PP/4Pu +:B5DQP/4QU +:BiQPQ/4Pz/ +ﬂiQQQ;4Q1/

spins

+ :BiQLQMLV +ﬂ2QL/4Qv + Bl L,L, + por PuL, + fp P,L,

+ iyl P, Q5 + iyhWPOL, Py + iyie 0L, Q5 + iyiePL,P,0P, + iyie™L,P,050,
+ i}/}eaﬂpéLaPpQéLu + iyb e’ L,P,0sP, + iy,e”°L,P,0;0, + iyie”"’L,P,Q5L,.

In this expression,
16
i_ i
a = E ajc; s (24)
jk=1

with similar forms for all of the other coefficients. The terms in y; do not contribute to the decay rates that we consider, due
to the symmetry of the lepton tensor.

For the process A, — BMlv;, we examine the contribution from each A; individually, as well as the coherent contribution
of all the A;. For the coherent sum, we write
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T (Z 10, )ulpy ). 25)

Z ch. (26)

Integrating over the lepton momenta, and making use of Eq. (13) leads to

sin0,2'/2(m3 , Sy, 4*)A*(Shp my, miy) (a4A + A' g

+ BeplASey + A'(P- L)) + [Bro + Borl[A(P- Q) + A'(P- L)(Q - L))

+ [(BLp + Br) (P L) + (BLo + Bor)(Q - L) + Brrg’||[A + A'q%)), (27)

dr _|V]* 4nGE
dSpydq*d6,do,dg 2 128m3} Sy
+BoolA(Q- Q) +A'(Q- L)
where

PPZP?\* ESBM’
P-0= m% - m,%,,,
P-L=(m} —Spu—q)/2.
L-L=g,
0-0 :2m123+2mﬁ,1—SBM,

1
Q . 2 2

28 sm

III. HEAVY QUARK EFFECTIVE THEORY

The heavy quark effective theory (HQET) has been a
very useful tool in the study of the electroweak decays of
hadrons containing one heavy quark. In this effective
theory, the matrix elements are expanded in increasing
orders of 1/mg, where m,, is the mass of the heavy quark.
This expansion has facilitated the extraction of CKM
matrix elements with decreasing model dependence.

Hadrons containing a single charm or beauty quark are
considered to be heavy hadrons as the mass mgy > Agcp.
For such hadrons, HQET reduces the number of indepen-
dent form factors required to describe the transitions
mediated by electroweak transitions that change a heavy
quark of one flavor into a heavy quark of different flavor. At
leading order in the 1/m, expansion, such heavy to heavy
transitions require a single form factor, the so-called Isgur-
Wise function. This is the case independent of the total
angular momentum of the daughter hadron (we assume that
the parent hadron is a ground-state hadron), integer
(meson) or half-integer (baryon). For transitions between
a ground-state heavy hadron and a light one, HQET is not
as powerful. However, for transitions between a heavy
baryon (ground state) and a light one, HQET indicates that

= [(m — mM)(mzz\c — Spu — q°) + cos Hhﬂl/z(mgv Seus @*) A (g, m. myy)].

a pair of form factors is all that is needed to describe the
transition, independent of the angular momentum of the
daughter baryon.

The semileptonic decays A, — A* fall into this second
category and are therefore described by two independent
form factors. We may represent one of these light baryons
of angular momentum J by a generalized Rarita-Schwinger
field u#1--#+(p) where n = J — 1/2. This field is symmetric
under exchange of any pair of its Lorentz indices and
satisfies the conditions

{mmmﬂn(p) = mAuﬂl"'/‘n(p)’ J/,llu’““"‘"(p) =0,
P (p) =0, wy (p) =0.
The matrix element we are interested in is
(A*(p")3Tc|AL (p)) = w+ M, ., Tu(p), (28)

where I = y# or y*y5 defines vector or axial vector current

and M, ,, , is a tensor. The most general tensor can be

constructed as

M =, .0, A (29)

HiH2- -y Hi Hn® 7102
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where A, is the most general Lorentz scalar that can be
constructed. This takes the form

A, =& 4480, (30)

where v = p/m,_is the velocity of the parent baryon. For
the transitions to daughter baryons with unnatural parity,
M,,,. ., must be a pseudo-tensor. This is easily con-
structed by including a factor of ys, so that

Myt = Vpyee eV, (an) + /}Cén))YS- (31)

A. Form factors

The matrix elements can be written in terms of six
general form factors for spin 1 or eight general form

2
factors for spin 3* and 3*, as shown in Sec. ITA 1.

2 2

Comparing the predictions of HQET with the most general
form of the matrix elements leads to a number of relations
among the general form factors F;/G; and the HQET form
factors &;/C;.

For spin %*, these relationships are

G =& +¢&,

Fr=g"-g"
Fy =G, =28,

For spin J~, they are

Fr=-"+a").  Gi=-"-a").

F,=G,=-2Y,  F3;=G,=0. (33)
For spin 3-, they are

Fr=8V_gl g =dViel F=cG,=2",
F3:G3:0, F4:G4:0. (34)

For spin %*, the relationships are

Fr=—@"+8".  G=-"-4").
F,=G,=-2\), F3;=G;=0, F;,=G,=0.
(35)

For spin 3, they are

Fi=8-&? G =P+, F,=G,=2,
F3:G3:O, F4:G4:O. (36)

B. Decay width

At leading order in HQET, the differential decay rates
take simple forms for all the excited states we discuss. This
general form is

PHYSICAL REVIEW D 95, 053005 (2017)

dar m? m m?
— =0'X | A +A2—21 §%+—A B1+Bz—21 &
dq q my, q

2
=+ 1 (C1 + G %) fg} ) (37)

2
Ny,

where ®’ is a dimensionless quantity that depends on the

angular momentum of the daughter baryon. Here,
X,A;, B;, C; are, respectively,
AT GE i 0 o
X =y P2 ),
Ay = [m} +m} (q° = 2m}) + m} + miq® - 24",

Ay = [2m} —m} (4m3 + ¢*) +2m} — miq® - q*).

By =2[m} —2mj (m} —2q%) + (m} — ¢*)?],

By = 4[m}_+mj} (q* = 2m3) + (m3 — ¢*)’].

Cy = [m3 (m} +24°) —m} (2m} = 3m3q* + q*)
+(m} = 4*)°],

Cy = [m} (2m} + q*) + m} (=4m} + 3miq® + q*)
+2(m} - ¢%)*].

The decay width for states with total spin J does not

depend on parity. The ®’ for states with angular momentum
J are

Q2 =4,
3/2 2 2 2 2
/" = 3m/2\ m[z\/l(mA s xS q )’
1
/2 — 2(m2  m2, g2
lomﬁ\rm?\ ( A, A q )

IV. THE MODEL

A. Wave function components

In our model, a baryon state has the form

NP9 =37 [ Ep,dpi € las(Fus)
X q>(P2.52)43(P3. 53)), (38)

where A, is a flavored baryon (Af or A) having a
flavored quark (¢ or s) Q, which may or may not be
considered heavy. Here, ¢;(p;, s;) is the creation operator
for quark ¢; with momentum p; and spin s;. Also,
191(P1,51)92(P2,52)93(P3, 53)) is the three quark state
with quarks g; having momenta and spins (p;,s;). The
;?,; = %(;’1 —p2) and p; = \/Lg(ﬁl + Py —2p3) are the
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A. SEMILEPTONIC DECAYS IN A QUARK MODEL

Jacobi momenta. Here, C* is the antisymmetric color wave
. S _ . . .
function and ¥ Ro = ¢ AW A A, 1S @ symmetric combina-

tion of flavor, momentum and spin wave functions. For AQ,
the flavor wave function is

1
I, =75 (ud = du)0. (39)
This is antisymmetric under the exchange of the first two
quarks, so the spin-space wave function must also be
antisymmetric under such exchange.
The total spin of a system of three spin—% particles can be
either 3 or 1. The maximally stretched spin states are

(+3/2) = [111),
1
Zal172) = S5 (11) = 1),
Fop(+1/2) = == (14) + 1411) - 21110)),

V6

where the superscript S indicates that the state is totally
symmetric under the exchange of any pair of quarks, while
p, A denote the mixed-symmetric states that are antisym-
metric and symmetric under the exchange of first two spins,
respectively.

The momentum-space wave function y,, can be con-
structed from the Clebsch-Gordan sum of the product of
wave functions of the two Jacobi momenta p,,, p; with total

angular momentum L= L, + 1,

YiLIM n,lml; (PasPy)

= Cinstsn¥n (Pt -m(P2)- (40)

This wave function is then coupled to the spin wave
function y,, to give a spin-momentum wave function of

total spin J and parity (—)(1p+h),

Yim = Zci%L,SM_MLl//LMLn/,l/)nAI,;)(S(M -Mp). (41)
M,

The full wave function is then constructed as
‘PAQ,JP,M = ¢AQ Z’?ilng' (42)
1

The #; are the coefficients determined by diagonalizing
the Hamiltonian in the basis of the states ¥, [5].
In this model the expansion is restricted to N <2,
where N = 2(n, +n;) +1, + 1.

PHYSICAL REVIEW D 95, 053005 (2017)

In the notation introduced above, the wave functions for

states with J* = %* are written as

P rgtem = P, ([1W000000 (P P2) +12%001000(P )+ P2)
+’73W000010(f9p,134)])(§(M)
+ 14w o00101 (P P2) ;(M)

+ 15w i, 0101 (P ;)ﬂ))(f(M M)l jom

N

-

+ (6w 10,0101 (P P2XE (M — M) om
+17[wan, 0000 (P P (M =M )]y o r)s (43)

2

I

where we have used (Wi, n,1,n,1,(Pp. Pa)Xs(M — M)
as a shorthand notation for the Clebsch-Gordan
sum ZML C‘[,‘]j‘l/l/[L,SM—MLWLMLn/,lpnAIA (;)p’ i’/l))(S(M - ML)

In our analytic calculation of the form factors we have
used the following single component representation of the
A states with different J*:

W12+ 1 = PalWo00000 (P P2)XT (M = ML)]1 12 1
P12t = PAW000010(Pps PAY 1o (M =M L)) 2 1
‘Pl/z-,M:(bA[l//lMLooo (Z? ﬁ ))(/1/2(M_ML)}1/2,M7
\PB/Z*,M:¢A[W1MLOOO (ﬁp71_5/1))(€/2(M_ML)}3/2,M’
'{’3/2+,M = ¢A[WZMLOOO2(Z7/HZ’/I))(//Q(M_MLHS/Z.Mv
W52+ 0 = PalWars,0002(Pps PAXY jp(M =M )]s o0 (44)

For details of the construction of the wave functions, see
Appendix D.

Here, v,,;,, is expanded in the harmonic oscillator basis,
whose wave functions in momentum space are

3) [ 2n! r ] 1
Youim\P) = |75 1, - 03
(n+1+dH!

p?
e EIL (P ) V(P).  (49)

where, L) (x) are the generalized Laguerre polynomials
with p = |p| and V,,,(p) the solid harmonics.

B. Extraction of form factors

The hadron matrix elements for any arbitrary current sI'c
take the form

(A(pa.s')[sTc|A (0, 5))
— / d3p2d3pl’0d3pﬂd3ppCA*CA‘Pj\(s')

x (q1q5515T¢c|q1q,c)P 5 (5), (46)
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where (q¢5s|5T'c|q,92¢) = (4145|9142)(s|5T'c|c). In our
spectator approximation (¢ ¢5|q;g,) gives delta functions
in spin, momentum and flavor.

The analytic expressions for the form factors shown in
Appendix C are obtained using the single-component wave
functions of Eq. (44). We also calculate the form factors
numerically using the full multicomponent wave functions
extracted from the diagonalization of the Hamiltonian. For
this, we adapted the semianalytic approach used by Mott
and Roberts [15] in their calculation of the rare dileptonic
decay of A;. In this method some of the calculation is done
analytically, leaving a couple of integrations to be done
numerically.

In the rest frame of the parent A., we write the initial
quark momenta in terms of the Jacobi momenta as

- 1 1

P1:—213p+—6‘794,
- | . 1
P2 ——2Pp+\/6m,
- - 2.
P3=p=— gpz-

We use the spectator approximation in which the first two
quarks are unaffected by the transition. This allows us to
integrate over the Jacobi momenta separately and write the
matrix element as

(AlsTc|A,) = Zh/\*h “dy, s|5s sz(
b'.b

)l»r+l/1

nl/li/mllsqr

P o )DF;nﬂAmﬂ'q (ay, ay),

n//l rm /(
n/,l/,m, PP

(47)

where the coefficients /) are the products of the
normalization of the baryon states, the expansion coeffi-
cients 7;, and the various Clebsch-Gordan coefficients that
appear in the parent (daughter) baryon wave function. The
indices b(b') contain all the relevant quantum numbers
being summed over for the parent (daughter) baryon state.

nil,m,
P
Here, B”ﬂ Lm, 18 the spectator overlap,
nslm,
P — 3 3 * -7
nl,m, (@, ay) = /d pyd Po¥oa,tm, (@3 Py)

XYW m, ( p;ﬁp)é(pp - pp’)' (48)

PP

This integral can be done analytically and is given in
Appendix B

PHYSICAL REVIEW D 95, 053005 (2017)

ni/llrml/qu .

The interaction overlap Dy, Lims, 18

n/l/l;/m/l/s !

Drytms, (B F) = / Epyy 1 m, (B D)
X (s(P + Pa- s )I5Tcle(p. s,))

X l//njl;vmi (ﬂ’ ﬁ)’

where p) = \/2/ 3055/) is the reduced length parameter for
the parent (daughter) baryon, and p’ = (2m,/m\)ps + P,
mp = mg + 2mg, and mg and m, are the masses of the
strange quark and each light quark, respectively. In terms of
the generalized Laguerre polynomials,

nylymys, p/2 p2
FlnlemAsq (ﬂ ﬁ/) /d3p exp (— 2ﬁ/2 — 2_ﬂz>
l/+l>i<
x Ll (ﬁQ)y,ﬂ,ml,( B
X (s(pa + P.sg)|5Tcle(p. s,))

« ci ( ﬁz) ) (49)

The angular dependence in the exponential is eliminated by
using the substitutions

p=k+apy, P =k+dPp,. (50)
where
2 myo2,
a=-200  a= T (51)
maQyy MAQ

and a;y = \/(aj +a;)/2. The interaction overlap then

takes the form

ni/]/l/m”/ / 3 6 p/\ 3 _azkz
FnAlAmAsq (ﬂ ﬁ) - CXP( 2m 2 ) /d ke

A D

l/#»%*
X L:’;}f (ﬂ/2>yl/m/l’( )
X (s(pa + p.sg)[50clc(p, s,))

x ciH ( ﬂz)m( ) (52)

+a
2 2 2
harmonics are functlons of k and p,. The details of the
semianalytic calculations are given in Appendix A.

where a? = . The Laguerre polynomials and the solid
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A, SEMILEPTONIC DECAYS IN A QUARK MODEL
V. NUMERICAL RESULTS

A. Form factors

The form factors in this work are calculated using the
parameters for the quark model wave functions taken from
[20]. The quark masses relevant for this calculation are
shown in Table I, while the wave function size parameters
are shown in Table II. The calculated form factors are
parametrized to have the simple form

TABLE I. Quark masses used in [20].

m, GeV m, GeV m. GeV
0.2848 0.5553 1.8182
TABLE II. Baryon masses and wave function size parameters,

@, and a, obtained from [20]. All values are in GeV.

PHYSICAL REVIEW D 95, 053005 (2017)

—3m?2 pA

2m 0{M,> - 3)

2 2
A

F =(ap + axq* + asq*) exp(
where ¢ is the momentum transfer (p, — pa)?. Here, p,
is calculated in the rest frame of the parent A, and takes the
form

1
M2 (my mi. ).

S (54)

c

The parameters for the form factors we obtain are given in
Table I1I.

Figure 4 shows the form factors for the transitions to the
ground state and the excited states that we consider. In the
language of HQET, the form factors (F, G;) associated
with leading order in the 1/m,. expansion are dominant,
while all of the others are smaller. With the exception of
transitions to the A(1600)1/27, all of the form factors have
their largest absolute values at their respective nonrecoil
points.

Mass (GeV) Size parameters (GeV)
State, J” Experiment  Model a, a, B. Comparison with HQET
A (2286);" 2.29 227 0.424 0.393 In Sec. III A, we obtained expressions for the general
A(1115)5F 1.12 1.10 0.387 0.372 transition form factors in terms of the leading order HQET
A(1600)%F 1.60 1.71 0.387 0.372 form factors. Those expressions can be inverted to write the
A(1405)%‘ 1.41 1.48 0.333 0.320 HQET form factors in terms of the general ones. Since the
A(1520)3 152 153 0.333 0.308 pair of leading 0rdpr HQET form fa}ctors are valid for both
A(1890)3+ 1.89 1.81 0325 0.303 the vector and axial-vector hadronic matrix elements, we
can extract them from both sets of general form factors. The
A(1820)%+ 1.82 1.81 0.325 0.303 . f .
expressions for &; (£;) and &, ({,) are shown in Table IV,
and the curves are shown in Fig. 5.
TABLE III.  Coefficients in parametrization of the form factors, from Eq. (53).
Transition a, (GeV_”) Fl F2 F3 F4 Gl G2 G3 G4
A, = A(1115) ag 1.382 —-0.235 —0.146 0.868 —0.440 0.203
a, —-0.073 0.022 —0.003 0.013 —-0.116 —-0.009
ay 0.000 0.006 —0.001 0.004 0.003 0.000
A, = A(1600) ay 0.172 0.036 —0.015 0.144 —0.002 0.021
a, —-0.257 0.121 0.020 —0.102 0.160 —0.040
ay 0.025 —0.008 —0.001 0.005 —0.026 0.004
A — A(1405) ag 0.300 —-0.797 0.162 0.881 -0.516 0.027
a, —-0.126 0.028 —-0.010 —0.058 —-0.066 0.025
a, 0.008 —0.003 —0.000 .. 0.002 0.009 —-0.001 o
A, — A(1520) ag 1.496 —0.530 —0.172 0.094 0.613 —0.810 0.351 —0.170
a, —0.080 0.019 —0.005 0.001 0.005 0.122 —0.010 0.008
ay 0.002 0.003 —0.001 0.000 0.002 —0.001 0.000 0.000
A, — A(1890) ay 0.251 —0.358 0.165 —0.090 0.625 —-0.257 0.016 0.040
ay —-0.079 —-0.107 —-0.006 0.004 —0.030 —0.041 0.021 -0.011
a, 0.005 0.950 0.000 —0.000 0.001 0.006 —-0.001 0.001
A, — A(1820) ag 1.148 —0.441 —0.177 0.139 0.322 —0.677 0.381 —0.325
a, —0.059 0.008 —0.005 0.001 0.002 0.089 —0.008 0.013
ay 0.002 0.001 —0.001 0.000 0.000 —0.002 0.000 0.000
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TABLE IV. The leading order HQET form factors in terms of the general form factors. The second and third columns show the
expressions in terms of the vector form factors, while the fifth and sixth columns show them in terms of the axial-vector form factors.
The fourth and seventh columns show the ratios &,/&;(¢,/¢;) calculated at the nonrecoil point.

Vector Axial Vector
State, J” SH(9Y) & (62) &/& /) SH(9Y; & (62) &/& G/
A(1115),%+ F\+F,/2 F,/2 —0.093 G, —G,/2 G,/2 —0.202
A(1600), 1+ 0.095 ~0.007
A(1405),1- —F| +F,/2 —F,)2 ~0.571 —G,~G,)2 ~G,)2 —0.414
A(1520),3 Fi+F,)2 F,/2 ~0215 G, - G,)2 —G,/2 ~0.398
A(1890),%+ —-F,+ F,/2 —F,/2 —-0.416 -G, —G,/2 -G,/2 -0.259
A(1820),3 F\+ Fy)2 Fy)/2 ~0.238 Gy - G,)2 G,/2 ~0.512

The leading order HQET expectation is that the extrac-
tion of £; and &, should be independent of whether they are
extracted from axial or vector form factors. However, the
curves we obtain indicate that there is some sensitivity to
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FIG. 6. Differential decay rates dI"/dg? (in units of s™! GeV~2)
for the semileptonic decays A — A*)[*y,. (a) Decay rate for all
states considered. (b) Decay rates for the excited states only.

which set of form factors is used. This sensitivity can be
attributed to the fact that our form factors include effects
that arise in all orders of 1/m,., while the relationships
between the &;({;) and the F; and G; are obtained at leading
order. Higher order terms in the 1/m, expansion will
modify the expressions shown in Eqgs. (32)—(36) and,
hence, the inverted relationships.

C. Decay widths

1. Af = AWy,

The differential decay rates, dI"/dq* (in s™' GeV~?) for
the semileptonic decays A — Ay, are shown in Fig. 6.
Figure 6(a) shows the decay rates for the transition to the
elastic channel (the ground state) as well as to the excited
states that we consider. The elastic channel is dominant, but
the decay rates for the decays to 1/27 and 3/2~ are
significant. Figure 6(b) shows an enlarged version of the
decay rates to the excited states. This figure shows that the

TABLE V. Integrated total decay widths for A7 — A®) [ty in
units of 10'! s~! for the states we consider in this work. Also
shown are the results obtained in PRCI. The last row shows the
branching fraction of the elastic decay channel, where I'y is
the total semileptonic decay width assuming the decays shown in
the table saturate the semileptonic decays.

Model estimates

This work
Spin Mass (GeV) Af — A*etv, Al = A*u'y, PRCI[5]
L+ 1.115 1.92 1.86 2.10
L+ 1600 0.63x1072  0.55x1072 2.00x 1072
1- 1.405 0.12 0.11 0.19
3= 1.519 297x 1072 26x 1072 5.00x 1072
3+ 1.890 1.58x 10 1.01x 107
S+ 1820 0.66x107*  042x 107
Total 2.08 2.00 2.36
Crs—aro,/Tiota 0.92 0.93 0.89
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TABLE VI

PHYSICAL REVIEW D 95, 053005 (2017)

Branching fractions of the semileptonic decay A — A(1115)ITv,, compared with other theoretical estimates and

experimental results. In the table, CQM refers to the covariant quark model of Ref. [16], while LCSR refers to the light cone sum rules of

Ref. [17].

Model estimates (%)

Experimental results (%)

Branching fraction This work PRCI [5] CQM [16] LCSR [17] Belle [13] BESIII [21,22]
Taropets, /Tar 3.84 42 2.78 3.05 £0.27 294+0.5 3.63 £0.38 +0.20
FAi—ﬂ\/ﬁw JAUNS 3.72 ) 2.69 1.96 +0.32 2.7+0.6 3494046 £0.27

rates for decays to the radially excited 1/2", the 3/2* and
the 5/27 states are small compared to the rates for the 1/2~
and 3/2 states.

The integrated total decay widths that we obtain for
Af = A®[ty, are shown in Table V. Also shown are
the results presented in PRCI. The calculated total decay
widths to the elastic channel are 1.92 x 10! s™! for [ = e
and 1.86 x 10" s=! for [ = u. The branching fractions

calculated are w: 3.84% for the electron

channel and 3.72% for the muon channel. Here, 'y is
the total decay width of the A.. Table VI compares our
results with other theoretical estimates [16-18] and
the experimental results from the Belle [13] and BESIII
[21,22] Collaborations. Our results are in very good
agreement with the most recent experimental result from
BESIIL

From Table V, it is evident that the elastic channel
dominates the semileptonic decay rate of the A, but does
not saturate it. We find that the branching fraction to the
A*(1405) state with J¥ = 1/27 is 6% of the total semi-
leptonic decay, while the branching fraction to A*(1520) is
1% of the total. Decays to the other states we consider are
significantly smaller.

TABLE VII. Parameters of the excited A states that we use in
our study. Shown are their total decay widths, and their partial
decay widths and the strong couplings for the decays A* — Zx
and A* —» NK.

Partial Strong
width coupling
MeV) constant
Total
Spin Mass  width
of AW (GeV) (MeV) Ta_s, Taink  Gase  9ank
%* 1.115 15.73  14.03
N 1.600  150.0 525 33.8 8.21 5.76
%* 1.405 50.5 50.5 1.57 1.90
3= 1.519 15.7 6.6 7.1 3.64 15.38
%* 1.890  100.0 6.5 27.5 0.14 1.05
3t 1.820 80.0 8.8 48.0 040  8.45

2. A} —» Zal*v; and A] — NKI*y,

Table VII lists the states that we have included in this
study, their total and partial widths in the ¥z and NK
channels, and the corresponding strong coupling constants,
(9asz> 9ank)- The A(1405) lies just below the NK thresh-
old, so its coupling to this channel must be estimated by

5.0%10" ——————— — —
4.0x10" ]
N I
D 3.0x10%] ]
L i
n I
T
10 -
D 20107
[
o I
1.0x107} ]
0 .
0.0 0.2 0.4 0.6 0.8 1.0
9*(GeV?)
(@)
2.0x10" ———— —————
1.5%10" .
‘? L
% —_=1/2"
—=1/24
9 -—- 1
Ja 1.0x10"H --= 32 1
~ —-3/2¢
S —-5[2
= — total
o F - ground state
5.0x1070 L 1
0 1 L L I 1
0.0 1.0 1.5
9%(GeV?)
(b)
FIG. 7. (a) Differential decay rates dI'/dq> for the four-body

decay A — AWy, — Zxlty,. (b) Comparison of the decay
rates of the four-body semileptonic decay to the elastic channel
AF = Alty,.
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%, ] --- 32

[ —- 32
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::‘ 3.0x10 — total
_gg :
o 2.0x10°]
o 1
1.0x10"

0 —_—
4.0 5.0
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FIG. 8. Differential decay rates dI'/dSs, for decays via the
states we consider, along with the coherent total. The black solid
curve shows the coherent total decay rate for the Zzlv final state.

other means. We use the value estimated by Schat, Scoccola
and Gobbi [23], but also explore the effects on the decay
rate of allowing departures from their value.

Figures 7 and 8 show the differential decay rates
dU'/dg* and dI'/dSs,, respectively, for the decays
Af - AWy, > Salty,. The dominant contribution to
this total decay width is through the A(1405) resonance.
Transitions through the A(1115) and A(1520) also provide
a significant contribution to the total decay rate for
A} — Zrlty;. The contributions from the transitions
through the A(1600), A(1890) and A(1820) are small.

The differential decay rates dI"/dg? and dI"/ dS . for the
decay Af = AWy, - NKIty, are shown in Figs. 9
and 10, respectively. In the total decay width, the transition
through the A(1520) is dominant, and the transition
through the subthreshold A(1405) is still large. The
contributions to the total rate, from transitions through
the A(1600), A(1890) and A(1820), are small.

The integrated total decay widths are shown in
Table VIIL In this calculation, we assume Al — A* —
Yz and A} - A* — NK are the dominant decay modes
and that these two decay modes are saturated by
contributions from the states we consider. We also assume
that other semileptonic decay modes of the A. are sup-
pressed. The total decay width I'yi_ ey 3yt and

_ 1 1
L ps A0ty NEiy, are calculated to be ~0.18 X 107" s
and ~0.1 x 10! s~!
FA+_>/\(*)1+»1_>2;[1+L,

semileptonic branching fraction ——

respectively. We calculate the
to be
AF=Xslty

FA*—»A(*)lhkaﬁpl .
e e S — 1S

0.08, while the branching fraction T

Af =Xty

0.04. Our calculation contradicts the assumption of
the CLEO Collaboration [24] that the elastic channel
saturates the semileptonic decay of A.. In our model, we
find the branching fractions for the multiparticle final

PHYSICAL REVIEW D 95, 053005 (2017)
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n 1.5x10" /
NU r
2 :
o 1.0x10"F
5.0%10° brummermnrmeos
of
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
q%(GeV?)
(a)
2.0x10"
1.5%10" .
- I
3 1/2
"'9 0 1 I —=1/2% B
::5 1.0x10"" - - 12
o [ - 32
2 —- 32
o | —= 5/2* ]
— total
5.0,(1010? —— ground state ]
Ok ‘\,.4\...\----
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
q%(GeV?)
(b)
FIG. 9. (a) Differential decay rates dI'/dg> for the decay

Af = AWty - NKI*y,. (b) Comparison of the decay rates
to the excited states with the semileptonic decay to the elastic
channel Al — A(1115)11y,.

states are 12% of the total semileptonic decay. This
suggests that the semileptonic decay of A/ is not saturated
to decay to elastic channel, and further investigation is
needed to see evidence of the channels we have dis-
cussed here.

We have treated the A(1405) as a three-quark state that is
the lightest excitation of the A, with J* = 1/2~. In Fig. 7,
this state contributes a clear resonant structure at
/Sy, ~ 1405. This would suggest that examination of
the decay channel A} — Xz/v; would provide confirma-
tion of this state as a three-quark state. If no evidence is
found for this resonance, then it may well be that this state
is not a simple three-quark state.

There are a number of other conjectures regarding the
structure of the A(1405). It has been suggested that it could
be a dynamically generated molecular state of KN and x
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FIG. 10. (a) Differential decay rate through each of the A* states

considered in this calculation along with the coherent total. The
black solid curve shows the differential decay rate for
A, = NKly,. (b) Differential decay rate dI'/dSyg for different
values of gyyg for A(1405) state.
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[18,25-28] or a multiquark state [29]. Recently, Roca and
Oset [30] explained it as a molecular state of KN. Hall et al.
[31] drew the same conclusion based on a lattice simu-
lation. Tkeno and Oset [18] have estimated the semileptonic
decay rate of the A, to this state, assuming that it is a
dynamically generated molecular state. They obtained a
value of 2 x 1075 for the branching fraction B(A} —
A(1405)ITy;) = 2 x 107, For A — A(1405)[Tv; -
SxlTv,, our branching fraction/ratio is ~2.0 x 1073, while
for Af — A(1405)ITv; — NKIty; it is ~0.4 x 1073, Our
values are therefore about 20 times larger than the pre-
diction by Ikeno and Oset.

VI. CONCLUSIONS AND OUTLOOK

In this work, semileptonic decays of the A have been
studied using a constituent quark model to calculate the
required form factors. These form factors for the A, — A*)
transitions have been obtained both analytically and
numerically, using the harmonic oscillator basis to describe
the baryon wave functions. The form factors obtained in
this model are compared with the HQET expectations at
leading order and are seen to be largely consistent with
those expectations. The decay rates of Al to the ground
state and a number of excited A states have been
evaluated.

The original motivation for this work was that there was
no model-independent calculation for B(Al — pK~z™")
reported in the previous edition of PDG [32]. PDG

estimated B(Af — pK~z") = RfF%r(Aj), based
Ves

on the measurements by the ARGUS [33] and CLEO [34]

Collaborations, using the semileptonic decays of the A,.

They assumed that f:%\%mzlﬂ and F =
B(AF =X, M)

B(D—X, [ 1;)
independent measurement that makes the old estimate
obsolete. Zupanc et al. (Belle Collaboration) [13]
and Ablikim (BESIII Collaboration) [14] measured

= 1.0. The latest edition reports a model-

TABLE VII. Integrated decay widths for AT — A® [ty —» Zxity, and AF - AWy, - NKITy, in units of 10" s!, for
individual A states for both [T = e and [T = u*. The last row shows the coherent totals for the four-body decays A7 — Zzlv; and
Al — NKly,.

Spin of A Mass (GeV) LA, oAt ety —Srets, | N ) LA, —Aety,—~NEet v, DA Ao, ~NRut,
L+ 1.115 4.18 x 1072 3.81 x 1072 1.86 x 1072 1.65 x 1072

1+ 1.600 1.66 x 1073 1.44 x 10~ 9.79 x 10~ 8.42x 1074

1- 1.405 9.54 x 1072 8.78 x 1072 1.82 x 1072 1.65 x 1072

3= 1.519 221 x 1072 1.98 x 1072 2.54 x 1072 2.25 % 1072

3+ 1.890 2.11 x 1075 1.66 x 1073 112 x 107* 9.00 x 1073

3+ 1.820 2.23x 1073 1.74 x 107 1.81 x 107 1.43 x 107
Total 18.31 x 1072 16.59 x 1072 9.33 x 1072 8.23 x 1072
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B(Af » pK~n") to be 6.847)33% and 5.84 +£0.27+
0.23%, respectively. PDG reports their fit for B(Af —
pK~ ") to be 6.35 4 0.33%. This result lets us estimate
the branching fraction f = 0.87f8:113 , still assuming that
F=1.0.

We have calculated branching fractions of the semi-
leptonic decays, and they are in a good agreement with the
calculations done by Pervin et al. in PRCI [5]. The
branching fraction of the decay to the elastic channel
has been calculated to be 3.84% (for [ = ¢) and 3.72%
(for I = ). Our prediction is in agreement with the
recent results from BESIII [21,22] that measured it to be
3.63 £ 0.38 £ 0.20% (for / = e) and 3.49 £+ 0.46 £ 0.27%
(for [ = p).

We have used the form factors obtained to examine the
semileptonic decays to two four-particle final states,
namely Xzl7v; and NK[Tv,. We find that the branching
fraction for these two channels totals 12% of the inclusive
semileptonic decay A, = X ITv;. We estimate f = 0.88, in
disagreement with the CLEO [24] assumption that the
decay to the ground state A(1115) saturates the semi-
leptonic decays of the A,.

The two lowest-lying A resonances, the A(1405)1/2~
and A(1520)3/27, are seen to be important in both the rate
and the shape of the spectrum. The A(1405) produces a
sharp resonant structure in the Sy, spectrum, suggesting
that this state may be detectable in the Al — Zalty,
transition. The A(1520) also generates sharp resonant
structures in both the £z and NK decay spectra. This state
may therefore also be detectable in these channels. This can
have some impact on baryon phenomenology, as it would
confirm these states as orbital excitations of the ground
states A. The broader resonances that were included in
the study are less likely to be identifiable in the decay
spectra.

In this calculation we have assumed that the states we
include saturate the resonant decays of the A.. The
available phase space limits the number of excited
states that can contribute significantly to the semileptonic
decay rate. There is ample phase space to produce some of
the lighter excitations, such as the A(1670)1/2~
and A(1690)3/2~, but the very small wave function
overlap with that of the A, means that the form
factors are tiny, so that the decays are very effectively
suppressed.

|

nylym,

PP _ 3 3 * .2
nyl,m, (aﬂ’aﬂ’> - /d ppd pl)/wnp/lp/mﬂ/ <ap" Py )l//n/,lpmﬂ(

Ll 5m{,m /

l/+l/2*

<, (a2 (2 a?)
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The work presented in this manuscript can be extended
in a number of directions. The form factors calculated here
may be used to study any of the polarization observables
that can arise in these semileptonic decays. With a suitable
parametrization of the factorization assumption, they can
also be used to examine a number of nonleptonic decays of
the A.. The form factors were evaluated using the harmonic
oscillator basis, and this leads to form factors that have
exponential dependence on g>. One possible extension of
the project would be to use a different basis, such as the
Sturmian basis, to extract the form factors. This basis leads
to form factors with multipole dependence on ¢, closer to
popular expectations. The semianalytic method we have
developed for use with the harmonic oscillator basis can
easily be adapted for the Sturmian basis. The semileptonic
decays of the A;, to both charmed and charmless final states
may also be re-examined.
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APPENDIX A: SEMIANALYTIC TREATMENT
OF HADRONIC MATRIX ELEMENTS

The hadronic matrix element can be written in the form,

thh 5y Slésﬂ(_l)zﬁh

n//l/)/m/)/

n,l,m, (ap? ap/)

(A|3sTc|A.)

nylymys,

l—‘/;ln:lﬂ;,ls: (ah a/l’)’ (Al)
where the coefficients 7/ »py are the products of the
normalization of the baryon state A, the expansion coef-
ficients #;, and the various Clebsch-Gordan coefficients that
appear in the parent (daughter) baryon wave function. The
indices b(b’) contain all the relevant quantum numbers
being summed over for the parent (daughter) baryon state.

nylymy
PP g
Here, Bn,, im, 18 the spectator overlap,

Ay ﬁp)é(pp - pp’)

N;/},lp/ (ap’)Nn/,l,,( ) / d3p/) exp(—p%/2a[2,) GXp( p,,/2a )yl )My (p/))yl m, (pp)

* - Z/, 1/2x » 1/2
N, (@), () / & py xp(=0 P2V, (Bp) Vi, (PLE, T (02102 L (D2 ),
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2
+
where b? = 2 2 ", The results for the overlap integrals that

appear in this calculation are shown in Appendix B.

nﬂ/li/m/s .

The interaction overlap Dr.,", ., 5

n/l/[ Uy /

F smlymys, (ﬂ ;B/>

_ —3mz pA 31 =K Pl
_eXp(2m/2\ a%/l, /d ke Ll ﬂ’z ylﬂml( ?')

X (s(pa + P.sg)|35Tcle(p. s,))

(P *
X L4 F Vim, (D) (A2)
where ) =,/2/3 % , 2‘2 +and a;y = (a3 +a3)/2.

Using the changes in varlable p= k+ apA and p' =

o
_ M ma
QaM, and Ty 2a 2 )

harmonics take the form Y, (ap; +bP2) and can be
decomposed using the addition theorem as

k+apA, where a =

Vim(b1p1 + baps) = Z Z Blmyzm (P)Viim—p,(P2)s

i p—)

where

4z(20+1)!

B — b/l b’ Acim
lm ¢m+)ppm+)

Apyl—Am—p;

Equation (A2) then takes the form

n/ll/m/sq

Fn alim; s, (ﬁ ﬂ/)

3m p yu nalys
_ ° A E :2 : Hyr* im AR )
B exp( 2m3 a2 Bl,ymf l;m,lz-l"n Lisg i, (a )’
A N iy

where

"A/l/l/‘vq/ Zﬂ/ﬂ;k/ <a2>
Dimplysg tap,

—a? Ly +4x > y -

— /d3k€ kzﬁnl;/ 2 (ﬂlz)y’vlﬁ/ (k)yl_lm_w(p/\)
> > > L+ (P

X (s(pa + p.sg)I50c|c(p, s4)) Lo, 2(?)

X Vi, V1 gms, (PA)- (A3)

The quark current (s(pa + p.sy)[5Tcle(p,
written in its most general form as

s,)) can be
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c(p.sq))

(K, P) Vi, (K,

(s(p

(A4)
=0 m—

where fr P (k Pa) can be expanded in Legendre poly-
nomials as

&l (k. Pa Zcf—’,f,z,,ow PA)P,(x).  (AS)

Here, x=k-p,. The coefficients Crlnl,(k pa) are

obtained as

S/Sq 2["’1 S/Sq—‘_,
érlm,,0<k,pA>=< 1) [ st G0
(6)

and the integral on the right-and side is evaluated numeri-
cally. In practice, the sum in Eq. (AS) includes a finite
number of terms, determined by the values of [;, n, [y, ny
and the maximum value of / in Eq. (A4). The Legendre
polynomial P, (x) can be written as

4n o . a A
P = (55) 3 Figu a0

my=-—I

S/S

Thus, &, " (k. p,) takes the form

lo=0 my=—1y
[ [N )} (A7)
The product of the Laguerre polynomials
I l;+ .
L, (p%/B?) x Ly, *(p*/p*) can be written as
£[4/+% p/2 1/1+2 D k25 k
ny ﬁ/z ” Z opo pA) ’
dpo
(A8)
where (k- p,) can be expanded as
zk”PAcl (k- pa)
= Zm le 1 Y1, (B, (P),

where P,”(lAc “Pa
defined as

is the Legendre polynomial an is
) is the Legendre polynomial and C7’ i
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225 (4s +1)(r +5)!
2r+2s+ 1)!(r—s)!"
225 (45 +3)(r + s+ 1)!
(2r + 25+ 3)!(r —s)!

C3 = (2r)! Cip =0,

Cotl = (@2r+1)!
cr =0
Equation (A3) therefore becomes

n/}/ l/l’ Sq/ Z.ﬂ.//l/l/ (az)
Tinglysg i auy

DD RLE N

=0 m;=—11y=0 my=-I, opo 1,=0
26,20 1.0 o * 2
S D(S/)ak Pa k Cl 2l 41 [=A'm—py (p/\)

X Y;Fomo(ﬁ/\)yf mg(pA)yl—/im—m(l;A)

X Y1y ()Y 1, ()5, (K) Vi, (0) V3, (K). (A9)

The angular integrations in Eq. (A9) are evaluated using the
properties of the spherical and solid harmonics. The
remaining integral is done numerically.

APPENDIX B: SPECTATOR OVERLAP

The spectator overlaps for the set of quantum numbers
(n,l,m,,n,l,my) used in our calculation are listed in this

appendix. We define a,, = | /a; + /2.

BO00 _ {“ﬂa ]3/2, BOIO _ [ap“ r/z’
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APPENDIX C: ANALYTIC
EXPRESSIONS FOR THE
FORM FACTORS

The analytical expressions for the form factors for
transition to A* states with the J” are shown. We obtained
these form factors using the single component wave
functions in the harmonic oscillator basis.
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! H[ al  m, 12msmca§y( @+ 15a;)
2 Bm,a? 3mia?
G, =—Iy mgz [ - (8a7 +3a3) +—=
mgag, | ag 12m, Mo

m 3m:  mya 6m?>
Gy=Iy— =1+t (14— )|,
¢ Xy My X

14225
mg a/u/

Zm,, |: mg aﬁr:|
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1 N\ 7/2 3 2 .2
IH:_<05,120:4> exp <——m; p2A>.
V2 \ aj, 2m3y a3,

APPENDIX D: WAVE FUNCTIONS

where

The baryon wave functions are expanded in the harmonic oscillator basis. For A states with spin parity J© = %*, the wave
function expansion is

lPAQ,%*M = ¢AQ([’71WOOOOOO(I_5/;’ 13/1) + ’721//001000(13/;, 57/1) + ’131l/000010(l3p, 13/1)])/1’ (M)

2
+ 14w 000101 (P P2)2H (M) + 15[ 101, 0101 (P f?z))(g(M M)l om

1
2

+ e [WIMLOIOI (ﬁp? ﬁx)Zg(M - ML)]I/Z,M + 17 [WzMLowl (13,;7 f%))(gs(M - ML)]I/Z,M)’ (Dl)

where the 7;’s are the expansion coefficients and [y, m n,mxs(M —ML)], | is a short-hand notation for the Clebsch-

M
Gordan sum >, Cii sy—u, -
For JP =1~ and J¥ = 3=, the wave function expansion is

lPAQ,J-M = ¢AQ(’11 [WIML0001 (ij’ ﬁl))(;(M - ML)]J,M + ’72[1//1ML0100(13p1 lzi))(l(M - ML)]J,M

1
2

+ 13w i, 0100(Pp- ﬁz))(%g(M — ML)y m)- (D2)
For J¥ = %*, the wave function is

gz = P, (1 [Wam, 0002 (P ﬁz)Xg(M —Mp)ls0m + M2 [W2m,0200(Pps 13/1))(;(1"1 -Mp)30m
+ 13 [WIMLOIOI (Z’w ZJA)ZQ(M - ML)h/z,M + 14 [1//2ML0101 (Z’w Z?/l))(i(M - ML)]3/2,M
=+ 115Woo0o101 (Z?p’ ﬁi)xf(M) + nG[WlML()lOl (ﬁp’ Z?A))(;S(M - ML)b/z,M
+ 17 [wan, 0101 (P, Z’ﬂ))(%g(M - ML)]3/2,M)' (D3)

For J? = 3", the wave function is

W, 5m = Py (11 [Wam, 0000 (P 13/1))(;(1‘4 — M )]s /om0 + M2 [Wan, 0002 (P fy);é’(M —Mp)]sjm
+ 13 [Wan, 0101 (P> Z’/l))(;(M = M)sjom + na¥ia 0101 (P Z’l))(gS(M>
+ 15 [wan, 0101 (P, 13/1)){%5(M —Mp)lsom)- (D4)

No other states are expected to have significant overlap with the decaying ground state A, in the spectator approximation.

APPENDIX E: HADRON TENSORS

1. Hadron tensor in A}/ — A*I'y; transitions

a. 1/2"
a=2[YF? + XG3]. (El)
i=3,j=3
Py = (Aj;FiF; + A;;GG)), (E2)

i=1,j=1

where

053005-22



A. SEMILEPTONIC DECAYS IN A QUARK MODEL

All - 2, Alll - 2,
1
Ay = —X, A, =—Y,
22 ng\c 22 zmg\c
Azz = ! X AL, = ! Y
3 2my " BT omk
-2
Ap = — (mAg +my), A, = —(mA( —my),
A My,
1 1
A23 - Xv A/2’; — Y,
MAMp T mpmy,
-2
Az =—(mp, +my), Ay = —(my, —my)
A mp

7(1/2+) =4F G,

where X=[(m,_+mp)*—q*] and Y =[(my, —mp)*—¢*].

b. 1/2-
a= 2[XF% + YG%], (E3)
i=3,j=3
i=1,j=1
where
Ay =2, A’11 =2,
1 1
Ay = T Y, Aézisz\t_x’
1 1
Asy = Y, ALy = X,
P omd 37 2md
) )
A12 ——A(mA —mA), A12_ (mA[ +mA),
1 1
A23 - Y, A/23 - X,
MAMp, MANp,
-2
Az = —(my, —my), Ay = —(my, +my),
A
y(1/2%) = 4F,G,. (ES)
c. 3/2°
i=4j=4

i=1,j=1
where Z = 3m3 m3 and the nonvanishing coefficients are
c

Bll :XYZ, B14:B/14:—2mAl_mAXY,

By = 4m3\(:m3\X, B}, = X*Y, B}, = 4mf\(_m3\Y.

PHYSICAL REVIEW D 95, 053005 (2017)

i=4,j=4 1
Piy = E(AijFiFj + A},GiG)). (E7)
i=1,j=1
A”:XY, A/“:ny
I o
A12 ——(mAC —l—mA)XY, AIZZE(’”AL‘ _mA)XYa
1 -1

Ay =— XY, Ay =— - XY,
13 mA(mAC+mA) K (mp, —my)

Arg = 2my [my (m3 —m3 = %) +mp(m3 —m3)],

ALy = =2mp [mp (m3 —m3 —q*) —mp(my_—m3)],
1 1
Ay = Xy, Ay, =—5XY?
2 4m3\[ 2 4m3\[
Ay = #XQY AL, = #XYZ
2 ZmACmA ’ 23 2mAcmA ’

Ay :X(mi _m%_qz), Ay = Y(mf\ _m%_qz)’

1
Ap=T—=XY, A= XV
33 2 B Am3
Ac
Ay =—"X(m}_—m} - %),
mpy
my,
AL, = (m3, —mj —q?),
mp
A44 = mf\ X, A:M = m?\(. Y,
i=4,j=4 1
}/ = ZCUFIGJ’
i=1,j=1
Ci =2XY, Cia = —2my m\Y,
C41 _ _zmA(',mAX’ C44 — —4m3\0m%\
d. 3/2*F
i=4,j=4 1
a= 7 (BijFiF;+ Bj;G,G)). (E8)

i=1j=1
where Z = 3m3 m3 and the non vanishing coefficients are
C

B, = XY, By = B\, = —2m, m\XY,

By, = 4m3 m3Y, B}, = XY?, Bl = 4m; m3X,

i=4,j=4
Py = Z E(AijFiFj + A};GiG)). (E9)
i=T =1
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A =XY, A =XY,

- 1
Ap=—o - Xy, A, =—ro
= (mA(. my) 2=,

A,

(mp, +mp)XY,

1 oo
A13:——(mA(—|—mA)XY, A13 :—(mA[—l-mA)XY,
ma ma

Ay ==2my [my, (mfx —my—q*)— mA(m?\ —m3)].

Aly=2my [mp (m} —m} —q?)+mp(my —m3)].

Ay = ! XY?, A :LXZY
4m3\c T2 4m3\£‘ ’
ABZ#XY2 Al :L)@Y

2mAL.mA 7 > 2m/\(.m/\ 7

Ay = Y(’”%\L, —mi—q*), A, :X(m%\ —-m3—q°),

1 1
A33 :—XYZ, A/33 :—XZY,
4m3 4m3;
m
Ay =—Y (m}_—m} —¢?),
ma ¢
mAC
Ay = m (mf\ - m/2\ -q%).
A
A44 = m%\(. Y, A:M = m%\[X,
i=4,j=4 1
Yy = ZCUF G],
i=1,j=1
C, = 2XY
Ciy = —2my mpX,
Cyp = —2mp m\Y,
C44 = —4mg\cm3\.
e. 5/2F
i=4,j=4 1

< Z

where Z' = 20m% m}, and the nonvanishing coefficients
are

By = —X*Y?,

By = By = 2m; mpyX°Y?,
By, = —3mf\cm/2\X2Y,

B, = -X*Y?,

By, = =3m} myXY?,

PHYSICAL REVIEW D 95, 053005 (2017)

i=4j=4
i=1j=1
Ay =Xr? A =XY2
1 -1
A12:H(mAC+mA)X2Y2’ Aﬁzza(mAc_mA)XzYz’
1 2 ’ — 22
A13— (mA —|—mA)X Y Al3 :—(mAC—mA)X Y s
mu mp
A14:2mA‘.XY[mAC(m?\[_mg\_q) mA(mA my)].
Aly==2mp XY[mp (m3 —m3—q*)—mp(m3 —m})],
1 1
Ay = X3y, A= X2Y3,
2 4m%\‘_ 2 4m%\6
A g:;X3Y2 Al :éXZY3
= 2mp my ' 3 2my my ’
A, —XZY(mA -m3 —q°), A’24:XY2(mf\C—mi—q2),

1 1
_ 3y2 _ 2vy3
A= XV A= X0V,

A A

A34— (XZY( —mf\—q2),
my

Ay = A‘XY2( —m%—qz)’

Ay :mAfXﬂ(mlz\c,m%\,qz), A, = mlz\CY/l(mlz\c,mi,qz),

2

where  A(mj ,my,q*) = 3

(mj‘\t_ +m} + q* - me\(_m/\ -
2m3 ¢* —2miq?).

i=j=4 |
y= ZcijFiGj,
i=1,j=1
C]] — 2X2Y2,

Ciq = —2mp mpXY?,
C41 = —2mAcmAX2Y,

C44 = —Zm%\(mg\XY

2. Hadron tensor in A — A*lTy; — Zalty;/NKIy,
transitions

The most general form of the contribution of the ith state
to the matrix element for the four-body decay Al —
A;ltv; - BMIty, can be written as

M! = u(pg) (f: c;ioj)u(P +L),

J=1

where the Lorentz-Dirac operators O; are
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O,=y,, 0,=Py,, O3=P, O,=PP,

Os=L,, Os=PL,, O;=0,, 0Os=PQ,
Og=r,r5. Ow=Prys, On=Pys. On=PPys,
Oni=Lys. Ou=PLys. O;5=0,rs. O1s=PQ,ys.

Thus, there are 16 independent Lorentz-Dirac structures in
the amplitude. The cj. can be written

ci=gapm Y _(CiLF+CiEG),  (El2)
k

where k runs from 1 to 3 for spin % states and from 1 to 4 for
states with higher spin.

The hadron tensor arising from a single intermediate A;
can be written as

Hi, = MM =adg,, +popP,P,+foyP,0,
spins
+ﬁiQPQl4PV +ﬂlQQQ/4Qu +ﬁiQLQ,4Ly +ﬂlLQL”Q,/
+ﬂ2LL/4Ll/ +ﬁ;’LPﬂLy +ﬁ§JLPﬂLy + iyzeﬂypépré
+ iyl L Py iyl L Qs + iy L,P,QsP,
+iyLe°L,P,05Q, + iy e L,P,0;L,
+irye™L,P,QsP, + iv},e™”L,P, 050,

+iyie™L,P,0sL,. (E13)

The terms in y' do not contribute to the decay width.
Because they are proportional to at least one power of the
lepton mass, contributions from Bor Bors Birs Bips Bio
are small. The o' from each intermediate state considered
takes the form

16
a = Z aj-kc;’-cfc. (E14)
JA=

Similarly, for the ﬂ}l P, (P; and P, denotes P, Q or L),

16
Bop, = Y biclic. (E15)
jk=1

When we treat the coherent sum of the contributions from
all the states we consider, we write

M, = i(p) (Z 60, )ulrn)

PHYSICAL REVIEW D 95, 053005 (2017)

which ultimately leads to
(E17)

In this case, the hadron tensor takes the same form as in
Eq. (E13) with the superscripts i removed. The coefficients
contributing to the differential decay widths we consider
are then

16
a = E ajkCJT-Ck,
Jok=1

16
Bripy = > buCiCr (E18)
Jik=1

For each intermediate A; we consider, the cj. can be
written as

k= gAiBMZ(C;ka + C;ka)» (E19)
k

where k runs from 1 to 3 for spin % states and from 1 to 4 for
states with higher spin. Here, g,s, is the strong coupling
constant for the decay A’ — BM.

For future convenience, we define

1 1
Bzi, =
6mim,. ZOm?\mf\C
C,=(P-Q0), C=(P-L), GC=(Q L)

The nonzero coefficients a s and bjs for a and fs are
listed in the next few subsections.

ap = 2(2"1/\5"12 -G -C—C3— SZn)v
ayp = 2(mp (Cy + Sy,) = 2msCy —2msSy,),

a9,9 = 2(2m,\(_mz + C2 + C] + C3 —+ Szﬂ),
ag 19 = 2(mp, Cy + my Sy, +2msCy + 2myzSs,),

Ay, =2((2mp my+Cy—Cy + C3—Sx,)Sy, —2C,C;),

ajo,i0=—2((2mp ms +Cr+Cy = C3+ S3,) S5, +2C,C;).

b. ﬂPP

b1y =byg =4,
bys = byg10=4(2C; + Sx),

b1.2 = b2,1 = _b9,10 = _b10,9 = 16my,
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b3_3 = 2(2mA(_mz + C2 + C1 + C3 + Szﬂ),

b3 4 =byz3=2(4msCy+2my Cy+2my Sy, +4msSs,),

by4=2(2C,Cy + (2mp my+Cy+ Cy — C3+ S3,;)S5z).
byi 11 =2(=2mp my+Cy+ Cy +C3+ Sy,),

b11,12 = b12,11
= 2(—41/1’!2(;2 + ZmAC C1 —|—2mACSZ,r —4szzﬂ),

bi212 =2(2C,Cy + (=2mp my + Cy + C — C3+ Sx,)S5,)
b1,3 =2 mA[ + 2m2), b9,11 = Z(mA( — 2m2),
bi4=2(2my my — C3+ Sx,),
bg 1y = 2(=2mp my — C3 + Sy,),

(
(
(=

byz = 2(2mA my +2C; + C3 + Ss,),
= 2(=2mp my 4 2C; + C5 + Sy,),
(2mp Cy + my Sy, +2msSs,),
(

2mACC] + mACSZ,, - 2m2S2ﬂ.).

C. ﬁPQ, ﬂQP

bLl = b9,9 =2, bz,z = blO,lO = —2S2ﬂ,
b3 =bo 11 =2m,,,
byy = —byy = bg1p = =byg 11 = 2(Cy + Sx.),

bys =Dbip12 = —2’”/\‘,52;:’

by7 = 2(my, + 2my),
C3 + Szz),

— C3+ S34)s

by7 =2(2mp ms +2Cy + C3 + Ss,),

( by 15 = 2(my
(
(=
(
bio1s = 2(=2mp my +2Cy + C3 + Sy,),
(
(
(
(=

. —2m2),
b1.8 =2 2mA my —

b9,16 =2 2mA my

byg = 2(2my,Cy + my Sy, + 2msSs,),
bio16 = 2(2mp Cy + my Sy, —2mySs,),
b3y7 = 2 2mA my + C2 + C] + C3 + Szﬂ)

bll,lS =2 2mA mZ+C2+C1+C3+SZﬂ)

byg=by7=2(2msCy+my Ci+my Sy, +2msSs,),
byg=2(2C,Cy 4 (2mp my +Cy +C; — C3+ Sx,)S3,).
bi116="b12.15
=2(=2msCy+my Cy+my Sy, —2msSs,),
bi12,16 =2(2C,Cy + (=2my mz + C, +C,

- C3 + SZﬂ)SZE)'

PHYSICAL REVIEW D 95, 053005 (2017)
d. Boo

bi7=bg5 = 4mAD,
byg = —by7 = bg 16 = —b1915 = 2(2C; + 2Syx,),

byg = bip,16 = _4mACSZm

by7=2(2my my+Cy+ Cy 4 C3+ Sy,),
byg=bg7=2(4myCy+2my Cy +2mp Sy, +4msSs,),
bg s =2(2C,Cy + (2mp my +Cy + Cy — C5+ Sx,)Ss,),
bisis=2(=2mp my+ Cy+ C + C5+ Sy,),
b1s.16 =Dbie.15
=2(=4mgCy +2my Cy+2mp Sy, —4msSy,),
bi6.16 =2(2C,Cy + (=2mp my + Cy + C; — C3+ Sx,)Sx,).

€. ﬂQL, ﬁLQ

br1=bgy=2,

bya=b19.10 =255,

b1,5 = b9,13 = ZmAC»

b =—bys5="bg14=—b1013=2(Cs+Ss,),

by e =b1g,14=—2my Sy,

by 7=—bg 5 ="4ms,

byg=by7="bg16="b1015=2(Ci + S5,),

by g =—b19,16 =4mxSs,,

bs7=by315 =2(2mp my+ Cy 4 C; + C3 + Sy,),

bsg=be7=2(2msCy+mp Cy+(my, +2ms)Ss,),

bes =2(2C,C + (2my my +Cy+ C, = C5)Sx, + S%ﬂ),
bi316 = b1a15 =2(=2mzCsr +my Cy + (mp, —2myz)Ss,),
b1a16=2(2C,Cy + (=2mp my + Cy +Cy = C5) Sy, + S3)-

f. B

bl,S = —b9,13 = 8my,
b1,6 = bz,s = b9,14 = b10,13 = 2(2C1 =+ 252;1),

b2,6 = —byg,14 = 8myzSy,.
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b5!5 = 2(2mAcmz + C2 + C1 + C3 + Sz,,),

b5,6 = b6,5 = 2(4m2C2 + 2mACC1 + 2mACSZﬂ- —|—4m2S2ﬂ),
— C3+ S32)Ss2).

bee = 2(2C,C, + (2my my + C, + Cy
bi313 = 2(=2mp my + C, + Cy + C3 + Sx,),
biz 14 = bia13
= 2(=4mzC, + 2my Cy + 2mp Sy, —4msSs,),

bisi4 =2(2C,C1 — (2mp my — Cy — Cy + C3 — S5,)S5,)-
g. Prrs Prp
by =bgg =2,
b1y =byy = —bg 19 = —b1p9 = 8my,
byy = byg10 = 2(2C, + Sx,),
b1,3 = —b9,11 = 4my,

big=by3=bg 1y = b1 =2(Cy + Sx,),

byy = _b10,12 = 4msSs,,
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bys=2(my, + 2m2) b3 = 2(my, —2my),
bl,ﬁ = 2(2 - C3 + SZI‘[)’
bo 14 = 2(— 2’"/\ my — C3 + Ss,),
bys =2(2my my +2Cy + C5 + Sy,).
bio13 = 2(=2my my +2C; + C3 + Sy,),
by =2(2my, Cy + my Sy, +2msSs,),
bioya = 2(2mp Cy + my Sy, — 2msSs,).

The nonzero terms in the coefficients c; are listed in the
following subsections.
h. A, =A%+(1115), A, =A%+(1600)
CIG,I :_Cgl :Mr,

M
G G or
C%z— an C52 C132— ’
mAC
M
G _ F o _ r G _ F o _
C3,3—_C11,3—_ > C2,1—_C10,1—_11
my
CG f_CF ch f_CF _ 1 CG *—CF _ 1
42— 122 = %62~ 142 — ) 43— 23—
A, mp

i. Az=Al"(1405)

M
c§,=-Ch,=¢¢,=-C5,=-=L,
bys=2(2my, my+ Cy+Cy +Cs+ Sy,). 2 2= Fs2 T T Ty
byo="bss5=2(2myCy+my Cy+my Sy, +2msSs,), C3G3 = —Cf, = % c§, =-Ch,, =-1,
by =2(2C,Cy+ (2mp my +Cy— C5+ Sy, +C})Ss,), A |
bi113=2(=2mp my+Cr+ C, + C3+Sy,), sz = sz,z = C62 =Cl=—1.
b1 14 = b1y 13 =2(=2msCy +my Cy +my Sy, —2msSs,), 6 _cF 1
bi214 =2(2C,Cy = (2my my—Cy +C3—Cy = S5,)S5,)s BTy
|
j- Ag=A3-(1520)
CY, = —C§, = B[(2Mr — m,)S3, + [Mr[my(—mp + 2mz) = 2(Cy — Cy)] — mp(2mpmy + C1)]Ss,
+ Mr[3m3(C, — Cy 4 C3) 4 2C3(mpamy — Cy)] — 2m\C,C, ],
CIG,4 = —Cg:4 = mAmAUB[—MrSZ,, =+ Mr(2m,\m): =+ Cl) - 2mAC1},
Cgl = _C{:O,l = B{—ZS%E + [—Mrm/\ + m,\(3m,\ + 2m2) + 2(C1 - CQ)]SZH
+ mA[—MF(ZmAmZ + 2C2 + Cl) + mA(3C2 - Cl - 3C3) + 2m2C2] + 2C2Cd,
ngt = C104 = mpmp, B[Sy, — 2Mrmy + 2mpymy — C,],
m B
C§, =—2C§y = CY, = — [-2MpS2, + [Mr[my(3my — 2ms) — mamy, +2(Cy — Cy)] + 2mpCy]Sy,
. A,

+ [M[3m3 (C, - Cy

- C3) + mACmA(ZmAmZ + Cl)

—2C;(mamy — Cy)] = 2mpCi(mpymy, — C5)]],
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C:’aGA = _Cfl 4 = mA_B[—ZMrSXﬂ + Mr[m,\(3m,\ — Zmz) + 2C1] + 2m/\Cl],
Cﬁ(l;,2 = m CG3 = C62 = [2S =+ [mA(ZMr 3mA — 277’12 + m/\") - 2(C1 - Cz)}Szﬂ
/\

c

+ mp[=2(Mp + mg)(mp my — Cy) = 3mp(Cy = Cy = C3) —my Ci] = 2C,C4],
Ci,= —Cl,4 = my B[2Ss, + mA[zMr —3mp —2myz] = 2C],
Cli, = —Acn 3=Chy = [2Mr52 — [My[mp(3my = 2myz) +mpamy_ +2(Cy = Cy)] = 2mpCy]Sy,

c

— Mr[3mj(C, = Cy - C3) —mp mp(2mpams + Cp) = 2Cy(mpms + Cy)] = 2mpC(mpymy_ + C3)],

m B
sz.z - : sz 37— Cﬂz = mA [QS%H + [mA(ZMr —3mp —2my — mAL.) - 2(C1 - CZ)]SZﬂ
+mp2(Mp — mg)(mp my + Cy) = 3mp(C, — Cy = C3) +my Cy| = 2C,Cy],
My 1
C?A = _CfsA = _7’ Cg.A = _C1F6.4 = 5-
k. As=A3"(1890)
C§) = —C§| = B[[mp = 2Mr]S5, + [Mp[my(mp 4 2mz) + 2(Cy = Cy)] — mp(2mpms — C1)]Ss,

+ Mr[3m3(Cy — Cy = C3) + 2Cy(myms + Cy)] + 2mpC,Cy ],
Cl 4= _Cg4 = mpamp B[MrSy, + Mp(2mymy — Cy) +2mpCy],

C§, = —Cly, = B[-283, + [-Mrmp 4+ my(3my — 2ms) +2(C, — C,)]Ss,
+ mA[Mp(ZmAmz — 2C2 - Cl) + mA(3C2 - Cl - 3C3) - 2mzC2] + 2C2C1],
C§,4 = _Cf0,4 = mAmACB[SZn: —2Mrmp = 2mpymy — Cy],

m B
ng = ﬁ Cg3 = CsG,z = . [—ZMFS%,[ + [Mr[m,\(3m,\ + 2””2) +mpamy, + 2(C, - Cz)] + ZmACl]SZz

+ [Mr[3m3 (Cy — Cy = C3) + mp mp(2mpamy — Cy) + 2Cy(mpms + Cy)] + 2mpCi(mamy, + C,)]],
C§, = —Cf\ 4 = mp B[-2M Sy, + Mrmy(3my + 2myg) 4 2C,] + 2m\Cy],
B
CS) = —C43 =C¢, = . (253, + [mA(=2Mp + 3my — 2mg +my ) +2(C) — C,)]Ss,
my,

+ mp[=2(Mp + my)(mp mp + Cy) + 3mp(C, = Cy — C3) —my Ci] +2C,C4],
C?A = _CfZA = mA(_B[—ZSZ,, + mA[—2Mr + 3m/\ - 27}12] + 2C1],
m B
Cfl,Z = miACflﬁ = CE,Z = mf [2M1"S%ﬂ - [Mr[m/\(3m/\ + 2m2) - mAmAc - 2(C1 - Cz)] - 2mAC1]SE,,
A A,

c

- Mr[3m3\(C2 = Cy = C3) = mp mpy(2mpams — Cy) + 2C,(mpms + Cy)] + 2mpCi(mpmy, — C5)].,

B
szz C123 C142 = _m—[ —28%, + [mA(=2Mr + 3my —2myg —m, ) + 2(Cy — C)|Ss,
+ mA[Z(Mr + mg)(mp mp — Cy) +3mp(Cy — Cy — C3) + myp Cyi] 4 2C,C],
My |
C7G,4 = —Cfs,4 = 2 C§;4 = Cf6,4 = T

L Ag=AST(1820)

The coefficients take the form

Cf;(G) = D[TSS%T + T4S§:ﬂ + T3S%n + TZS%II + TISZﬂ + TOL
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C§, = —Cl| = D2MS3, — A[m3 (M — mg) + Mp(C — C,)]Ss, + T583, + T128%, + TS5, + To),

where
Ty = my(Mp — 8msg) + m} (2Mr(2C, — 3C, 4 C3) + 4ms(2C, — Cy) 4+ 2Mp(C} + C3 — 4C,Cy),
Ty = m§(Mr 4 4myg) + mj[Mp[4m3 + 2(Cy — 2C, + 2C3) + ¢*] + 4ms[2C; — 3C, + Cs]]
+ m{ 2Mp[Cy(Cy = Cy + C3) = C,C5] + 4ms G, [C, = 2C1]] 4 4MC,C, (Cy — C),
Tl = —m?\[ZMr[Zm% - 3C2 + Cl + 3C3] + 4m2[C1 - C2 + C3H
+ m;l\[Mr[Sm%Cz - 6C§ + 8C2C1 + 6C2C3 - 7C% - 8C1C3 - 2C1q2] + 4m2C2[2C1 - C2 + C3H
+ 2m/2\C2C1 [M]"[ZC] - C2 - C3] - 2m2C2] + ZMFC%C%,
Ty = Mymj[m} (=4m3[2C; + ¢°] + 5[C + C5 + C3] = 2C4[C, - 2¢%] 4 10[C, = C,]C5)
+ m3% (4miC3 + 2C,C,[3C, — 4C| = 5C3] + C2¢?) + 2C3C7).
C, = —C§, = mymy D[=S3, + [m} + (2C, = )18, + TS5, + TS5, + T,
where
Tz = [mf\(2Mrm>; + Cz - 4C1 - C3) + C] (2C2 - Cl)]’
Tl = ij‘\(Cl - Mrmz) ‘|‘ mlz\[2Mrm2[C2 - Cl] —|— C] [3C1 - 3C2 + C3]] — CzC%,
TO = mf\[Mrmz - ClHCl - C2 + C3] + mg\C2C1 [C] - Mrmz].
CS, =—C, = D[-283, —4(Cy — C)S%, + T38%, + T,5%, + T1Ss, + Ty,
where

T3 = [Tm} + m} (4Mpmg — 2(C, + 2C1C3) — 2(C} + C3 — 4C,Cy)),

T, = —Smf\ + mf\[—4m2[2Mp +my] +2(C, — C, — 4C3) — ¢°]
+ m}[AMrms[2C; — C,] = 2C5(Cy 4 C, + C3) + 2C1(2C, + C3)] +4C,C,[C, — Cy],

T, = m§ [4mg[Mr + myg] + 2[C, — 5C, + 5C;]|
+ mj‘\[4Mrm2[2C1 - 3C2 + C3] - 8m%C2 + 2C2[5C2 - 2C1 - 5C3] - Cl [Cl - 4C3 + 2q2]]
+ mj [4MrmyCy[C, — 2C1] 4 2C,C4[C, 4 2C + G3]] - 2C3CH,

Ty = mQ[4Mrms[C, — C; — C3] 4 4m3[2C, + ¢*] — [C] + 5C5 + 5C3] = 2G5[Cy — 5C5] — 2C4[3C5 — 247]]
+ my [4MrmsCy[2C) — Cy + C5] —4m3C3 + C[2C5(3C5 — Cy) — C1¢%]] — 2Mrm3ms C5C,.

CS, = —Ci4 = mimy DIMpS3, + [m} (2ms — 3My) + M (C, — 2C1)]S%, + TS5, + To),

where
T, =2m4 (M — ms) + mAMr(4C, = 3C, + C3) + 2mx(C, — Cy) + M (C; = 2C5),
T() = 2m16\(Mr — mz)(CZ — Cl — C3) + m?\[Mrcl(?)Cz — Cl - C3) — 2m2C2C1] + MrmiCQC%
m D
Cs, = m—AC§3 =C§,= P [—2M 1S3, + T4Sy, + T58%, + T28%, + T1 S5, + To),
AC C
where

053005-29



MD MOZAMMEL HUSSAIN and WINSTON ROBERTS PHYSICAL REVIEW D 95, 053005 (2017)
Ty = 2m3(My —2mg —m, ) +4M(C) — C,)],
Ty = m}[SMy + 4my + 2my | + 2m3 [Mp(2C; — C3) + 2myg(Cy — 2C,) + my (2C) — C5)]
- 2Mr(C1 + G5 - 4C1Cy),
Ty = =5Mprm§ — m}[Mp[4m3 4 2(5C, — 5C, — 3C3) + ¢* — 4mgm, | 4+ 4ms(C; — 2C, + C3)
+2(4Cy = Gy + C3)] + mi 2M[Cy(C, + €1 = C3) = C(C, = C3)]
+4mzCy(2C, — Cy) = 2my C(Cy = 2C5)] = 4M:C,C(C = Cy),
Ty =2mS{[Mr[2m3 —5C, + 3Cy + 5C; — 2mymy | + 2Cym, |
+ mjl\[M[‘[_8m%C2 +2C,(3C, —=7C, —3C3) + C,(9C, 4 10C3) + 2C,q* + 4mzmAc(C2 -C))]
+4msC,[C, — C; — C3] + ZmACCl(—3C2 +3C, + G3)]
+ 2m/2\C1C2[MF(C2 —3C, + C3) +2msC, — mACCﬂ - 2M1—C%C%,
Ty = m§[Mr[4m3(2C, + ¢*) + C2(2C; — 5C, 4 10C3) — C1(5C; + 10C5 + 4¢?) — 5C3
+4my my(C, — C, + C3)] +4C,(C, = C, = C3)]
+ m§ [Mp[—4m3C3 + 2C,Cy(=3C, + 4C + 5C3) — C1q* — dmsmy CoC] + 4mp C,C3] — 4Myrm3 C3C3.
C§, = Cliy = mp D[-2MpSy, + [m3 (2Mp — my_— 4ms + 2Mp(2C, — C1)]S3, + 1555, + TSy, + T,

where

Ty = m}[5SMy + mp_+ 4mg| + mi[Mp[2C, + C; — C5] 4 2mp Cy 4 4my(C, — Cy)] 4+ 4MC(2C, — Cy),
Ty = =5Mrm§ + m}[Mr[2mg(mp_—2myg) +6C, —7Cy —3C3] — 3mp Cy 4 2ms(2C; — C; — C3)]

+ m}[Mr-C,[2C, — 3C + C3] — my C} + 4msC,C\] — 2MC,C3,
Ty = m?\[Mr[—2mz(mAC —2my) = 5C, + Cy + 5C5] +2my Cy]

+ m} [Mr[—2mg(my Cy +2mzCy) + C (4Cy — 6C, + 5C3)] + 2my CF| — 4Mrm} C,Cf.

D
[ZS%K =+ [2m/2\ + 4(C2 - Cl)]S‘éﬂ =+ T3S%7r + T2S%ﬂ' + TISZII + TO]’

mp
Cffz = Cz(t;3 = ng =
’ mpy, ! ! mpy,

where

T3 = =9m} + 2m3 [Mp(my, = 2ms) + (2C; + C3)] +2(CT + C5 = 4C, Cy),

Ty = 5mS + mi[2Mr(2my — 3my ) + 4ms(ms + my ) +2(5C, —9C, + 5C3) + ¢°
+2m3 [Mr[2mg(Cy = 2C5) 4 my (Cy = 2Cy)] + Co(C, = €y + C3) = C(Cy + C3))]
+4C,C5(C, = Cy),

T, = m?\[4MrmAc —4my(my + mAf) +2(5C, -3C; —5C3)]
+ my [Mp[4my(2C, = C = C3) 4 2my_(4Cy = 3C, + C3)] + 8mECy + 10C,(Cy — Cy + C3)
- Ci(5C, —6C5—24¢%) + 4m2m,\[(C2 -C)]
+ 2m4 [Mr[2msC5(2C, — C,) 4+ my, C1(Cy = 2C,)] — C2C1(Cy + Cy + C3)] + 2C3C3,

Ty = m§[4Mrmy (C, — Cy — C3) —4m%(2C; — ¢*) + 5(C3 + C} + C3) — 2C1(C, — 2¢°)
+10(Cy = C,)C5 + 4mgmy (Cy — C, + C3)]
+ m}y [2Mr[2msCy(Cy — Cy — C3) + my C1(3C, — Cy — C3) + 4mzCy(msCy — myp Cy)
+2C,C5(Cy = 2C, = 3C5) + Cig*] 4 2mxMrCyCy[2msCy + my C].

C{y = mp D283, +2[m3 + (C, = 2C)]S3,, + S5, + TSz, + T,
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where

Ty = —=9m} + mi[Mr(my_ —4myg) +2C, — C; + C3] + 2C1(Cy —2C,),
Ty = my[Mp(=3mp_+ 4mg) + 2mg(my, + 2myg) +5(Cy = 2C, + C3)]
+m3 [2Mr(2mz(Cy = Cy) = my Cy) = C1(2C, + Cy + C3)] + 5m§ +2C,CF,
Ty = m§[2Mrmp_—2my(mp_+ 2my) + 5C, — C; = 5C3] + mi[Mp(3my, Cy + 2ms(2C, — Cy — C3))
—2mg(mp Cy —2mzCy) + C1(2C, — 2C — 3C3)| + maMrC(mp Cy 4 4msCy).
Chia = Clio = 1 Cly g = 2 RMrSS, + TuSk, + TaSh, + TaSh, + TS5, + 7ol

c c

where

Ty = =2[m3(My —2my +m, ) +2Mr(C, — C,)].
Ty = —m\ [SMr + 4ms —2m, | — 2m3 [Mr(2C, — C3) 4 2ms5(Cy = 2Cy) + mp (C, —2Cy)] + 2Mp(C] + C3 —4C, C;),
Ty = 5Mrm§ + mj[Mr[4ms(ms + my_) +10(Cy — Cy) + 6C5 + ¢*] + 4ms(C; —2C5 + C3) 4 2myp (C, —4Cy — C3))]
+2m3 [=Mr[Cy(Cy + Cy = C3) = C{(Cy = C3)] 4+ 2m5C(Cy = 2Cy) +my C1(2C, = Cy)] +4MrC,Ci (Cy = Cy),
Ty =2m{ [My[-2mg(mg +my ) 4+ 5(C, — C3) = 3C,] 4 2m, C)]
+ mf\[Mr[gmécz —2C,(3C,=7C, —=3C3)—C,(9C, + 10C3) — 2C, 4% +4mzmAc(C2 - ()]
+4myCy(Cy = Cy + C5) +2my C(3C; = 3C, +2C3)]
+2m}[Mr(=Cy +3C; — C3) = 2myCy —my Cy] + 2MC3CH,
To = m{[Mr[-m3(2C; + ¢%) +5(C5 + €5+ C3) + 10(Cy = C,)C3 = 2C(C, - 2¢7)
+4myg(Cy = Cy + C3)] +4my (C, = C, = C3)]
+ mh [Mr[4msCy(msCy —my Cp) +2C,C1(3C, —4Cy = 5C3) + C1g?] + 4my CoCH + 4Mrm3 C3CH,

m D
Ch,= ﬁcfzg =Cly,= N 283, +2[m3 +2(C, — C))] S5, + 83, + 1253, + T Sy, + To).

C ¢

where

T3 = =9mj + 2m3[~Mr(2ms + my ) + (2C; + C3)] +2(CT + €5 = 4C, ),
T, = 5m8 + m} [2M(2my + 3mp ) +dmg(my —my ) +2(5C, +5C; = 9C,) + 7]
+ mi[Mp[4mg(Cy = 2C5) 4 2mp (2C) = C)] 4 2C5(C, = Cy + C3) = 2C1(Cy + C3)]
+4C,C,(C) = Cy),
T = m§[-4Mrmy_+ 4mg(mp —ms) 4+ 2(5C; — 3C; — 5C;)]
+ mi[Mr[4mZ(2C2 -C -Gy + 2mA0(3C2 —4C, - G3)]
+ Sm%(fz +10C,(Cy = C, + C3) — C(5C, + 6C5 — 2q2) + 4mZmAC(C1 -G
+2m3 [Mr[2msCo(2C) = C3) + mp, C1(2C, = C1)] = C,C1(Cy + G + G3)] + 2G3CE
Ty = m§[4Mrmy (Cy — Cy + C3) —4m3(2C; + ¢*) + 5(CF + C3 + C3) + 10(Cy — C,)C5
—2C(C; = 2¢%) +4ms(C, = Cy = C3))]
+ m} [2M[2myC5(C, = Cy = C3) + my Ci(Cy = 3C, + C5)]
+4msCy(msCy + my Cy) + 2C3C,(Cy = 2Cy = 3C3) + C2g%) + 2mi My CyC, [2msCy — my Cy).
CLyy = —mp D[2S, + 2[m3 + (Cy = 2C)|S3, + TS%, + T1 Sy, + To,

053005-31



MD MOZAMMEL HUSSAIN and WINSTON ROBERTS

where

PHYSICAL REVIEW D 95, 053005 (2017)

Ty = =9my — mi[Mp(my_+4ms) = 2C, + C; — C3] +2C(C; = 2Cy),
Ty = SmQ + my[Mr(3my_+4myg) + 2ms(2mg —my ) +5(Cy = 2C, + C3]
+ m3[2My(mp Cy 4+ ms(2C; = C;)) = C1(2C; + Cy + C3)] + 2G5,
TO = m?\[—2MrmAC + ng(m/\c — 2m):) + 5C2 - C] - 5C3]
—+ mj‘\[Mr[—3mA(_C1 + 2m2(2C2 — Cl - C3)] + 2m2(mACC1 + 2m2C2) + Cl (2C2 - 2C1 — 3C3)]

+ miMrC,[4msCy — my Cy],

C§, = —C 4 = mymp D[-MpS}, + 2Mr-C,Ss, + 4miMr(m3 — C,) — My C3],
C¢, = —Ct,, = mimy D[S}, —2C, Sy, + [4m}(C, —m}) + C3]],
CSy = mimy D[-MrS3, — [m3 (3Mr + my_ + 2my) — Mp(Cy — C,)]S%,
+ [5Mrm} — mi[Mr(3C, = 5C) — my, Cy + 2msCy] + MrCyCy]Ss,
+mA (Mp[2mp ms +5(Cy = Cy = C3)] = 2my, Cy) + SMrmi C,Cy ),
C§y = mimy DIS3, + [5m} + (Cy = C\)]S5, + [-5my + m} [Mr(my, —2my) +5C; = 3C1] = C,C) ]S,
+mi[=2Mpmy 4 2mp my + 5(Cy = Cy + C3)] = mA[Mr(my Cy + 2msCy) + 3C,C]],
Cts, = mimy DIMpS3, + [mi(3Mr — my_+2myz) — Mp(Cy — C,)]S%,
— [5Mrm} = mi[Mr(3C, = 5C,) + my Cy 4 2mzCy) + MrC,Cy]Ss,
+ [my (Mp[2mp my = 5(Cy = Cy — C3)] = 2my Cy) = 5Mrm{ C,Cy]],
Cloq = —mamp D[S3, + [Smy + (Cy — C1)S5, + [=5m} + mi[~Mp(my_+ 2mz) +5C; = 3Cy] — C,Cy]Sx,
+ my [2Mrmy, —2my my + 5(Cy — Cy + C3)] + mj [Mp(mp Cy — 2msCy) — 3C,Cy]].
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