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In this paper, we study the problem of gauge invariance of the first order transition amplitudes in de Sitter
QED in the Coulomb gauge. We consider the gauge transformations which preserve the Coulomb gauge,
that contain the gradient of the gauge function. The final results prove that the first order transition
amplitudes do not change at a gradient transformation of the vector potential because the only allowed
transformation is Λ ¼ 0. Our results suggest that the remarks made in the comment by Nicolaevici and
Farkas [this issue, Phys. Rev. D 95, 048501 (2017)] are not directly applicable to the results in our paper
since their proposed gauge transformations do not preserve the Coulomb gauge.
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I. INTRODUCTION

The problem of gauge invariance of the transition
amplitudes in Minkowski QED was the subject of an
intense debate some decades ago [1–13]. While some of
the authors argue that the surface terms that appear in the
variation of the amplitude in the first order, at a gauge
transformation of the potential Aμ, are vanishing due to the
fact that the fields vanish if we impose boundary conditions
[5,8–11,14], others prove that the problem of gauge
invariance of the amplitudes must be discussed in relation
with the renormalization of the Minkowski QED [1–3],
since the renormalization constants also depend on the
chosen gauge. In quantum field theory on curved spacetime
[15], the problem of gauge invariance was not studied in
detail, and the existing results do not allow us to reach
definitive conclusions regarding the gauge dependence of
the amplitudes. The perturbative QED on the de Sitter
spacetime was constructed in [16] where it is shown that a
mandatory condition for quantifying the whole theory is to
choose and fix the Coulomb gauge. Moreover, this seems to
be a specific feature of the de Sitter geometry as long as the
massless limit of the free Proca field on this background
[17] gives just the freeMaxwell field in the Coulomb gauge.
Another result obtained recently [18] shows that there

are indications that the transition amplitudes in the first
order of perturbation theory are gauge dependent in
de Sitter spacetime. The comment [19] to our paper
[20] is a continuation of the result obtained in [18],
and the cause of the gauge dependence of the amplitudes
was indicated to be contained in the temporal part of the
Dirac current which loses its oscillatory behavior in the
infinite future. In this reply, we want to reconsider
the problem of gauge invariance of transition amplitudes
in de Sitter QED. This is done by discussing the situation
from our paper [20], where we use Coulomb gauge and by
making some observations about the results obtained in
the comment [19].

The paper is organized as follows: In Sec. II, we discuss
the problem of the transition amplitudes when the Coulomb
gauge is used. In Sec. III, the problem of gauge invariance
is discussed in relation with the vector potential decom-
position in perpendicular and parallel components. In
Sec. IV, we discuss the problem of gauge invariance in
relation with the renormalization of the theory, and our
conclusions are presented in Sec. V.

II. AMPLITUDES IN THE COULOMB GAUGE

The line element [21] which describes the de Sitter
universe is

ds2 ¼ dt2 − e2Htd~x2 ¼ 1

ðHηÞ2 ðdη
2 − d~x2Þ; ð1Þ

where H is the expansion factor, and H > 0, while
η ¼ − 1

H e−Ht, is the conformal time.
It is known that Minkowski QED is a gauge invariant

theory in the sense that any transformations of the type

Aμ → Aμ þ ∂μΛ;

ψ → eieΛψ ð2Þ
leave the field equations invariant, where Λ is the gauge
function which is a scalar function dependent both on
time and spatial coordinates [9,11,12,14,22]. The second
transformation from (2) refers to the matter fields, and this
second transformation must be accompanied by the trans-
formation of the potential in the case when the electro-
magnetic field is coupled with a matter field for leaving
the field equations unchanged. We will assume the usual
boundary conditions in space and time, such that the gauge
function vanishes at infinity [10,14]:

Λ → 0; ð3Þ
for t → ∞; x → ∞.
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Before proceeding in our analysis, let us make a few
observations related to the Coulomb gauge. It is true that in
our paper about the fermion production in the field of the
magnetic dipole [20], we omit to mention that we use the
Coulomb gauge. The reasons for using the Coulomb gauge
will be detailed in what follows, and an extended discussion
can also be found in our previous papers [16,23,24]. The
significance of the Coulomb gauge in de Sitter geometry is
very important if we take into account the conformal
invariance of the Maxwell equations. Then it seems that
the Coulomb gauge is the only gauge which opens the way
to conformally relate the whole theory of the Maxwell field
written in the chart with conformal time fη; ~xg, to the usual
electrodynamics from Minkowski spacetime. The Lorentz
condition is conformally invariant only in the Coulomb
gauge in de Sitter geometry, and this allows us to obtain the
solutions of the free Maxwell equations in the helicity-
momentum basis as in flat space theory [24]. The canonical
quantization of the free Maxwell field can be performed in
the Coulomb gauge where the Lorentz condition becomes
conformally invariant [24], as we point out above. This
means that it is useful to maintain this gauge for construct-
ing the theory of interacting fields [16]. However there is a
lot of work to be done if wewant to speak about measurable
quantities in this geometry, but an important result is that
we recover in the limit of the zero expansion factor the
results from flat space QED. This means that in the limit of
the zero expansion factor, the transition amplitudes and
probabilities computed in de Sitter QED in the Coulomb
gauge reduce to those from Minkowski theory. To the best
of our knowledge, it is not known how the theory of the free
Maxwell field looks in other gauges in de Sitter geometry,
and, therefore, further studies must be done to fully
understand the theory of the Maxwell field in this geometry.
For the above-mentioned reasons, we restrict ourselves to
use the Coulomb gauge for studying the perturbative QED
in de Sitter geometry.
All the details related to the construction of perturbative

QED in de Sitter geometry using the Coulomb gauge can
be found in [16], and we remind here only the main steps.
The construction of the de Sitter QED in the Coulomb
gauge starts with the Lagrangian theory that gives the field
equations and the principal conserved observables of the
interacting fields [16]. Then the equal time commutators
and anticommutators are postulated, and the equation of the
time-dependent evolution operator is derived, obtaining the
perturbation series of the scattering operator in terms of free
fields. This is generated by the interaction Hamiltonian
which does not depend on the Coulomb potential. So the
Coulomb gauge allows a natural quantization separating of
the Coulomb potential [16]. Finally, the asymptotic fields
are defined, and we obtain the in-out amplitudes by using
the reduction formalism and the scattering operator [16].
Thus, one first chooses a gauge for solving the free

Maxwell equations, then the quantization can be done. The

theory of field interactions is also constructed by choosing a
gauge since we have to find the solutions for the interacting
field equations, which in de Sitter geometry are strongly
dependent on the gauge [16]. Then the perturbation theory
can be constructed, and finally we can obtain the expres-
sions for the transition amplitudes in any order. It is then
clear that once a gauge is fixed and the quantization
procedure is done, one could not do a gauge transformation
in the transition amplitudes for passing to another gauge.
In these circumstances, any gauge transformations related
to the electromagnetic potentials that are allowed are just
those that preserve the chosen gauge in which the theory of
interacting fields was constructed and the quantization was
done. The authors of the comment [19] to our paper seem to
miss this important observation, since the only allowed
gauge transformations are those that preserve the Coulomb
gauge, and their discussion should consider these trans-
formations only when commenting on our paper [20].
Instead, at the beginning of the comment, the authors leave
the impression that they work in the Coulomb gauge taking
into account that they consider Ai ≠ 0; A0 ¼ 0, and then
they choose to make the discussion in another gauge such
that the amplitude is defined in general with Aμ. This
comment should construct the theory of the free electro-
magnetic field in another gauge, in de Sitter geometry, then
make the quantization, and finally construct the QED in this
new gauge. Therefore, a comment to our papers [16,20,23]
should prove the following: First, take another gauge
and solve the Maxwell equations and then construct the
perturbative QED in this new gauge. Then in this new
gauge, take a potential which gives the same dipolar
magnetic field (as the one used in our paper [20]), compute
the first order amplitude corresponding to the fermion pair
production, and finally compare the results from this
new gauge with our results obtained in the Coulomb gauge.
To conclude, the comment [19] did not prove that the
amplitudes from our paper [20] are gauge dependent. In
what follows, we will clarify what it means to do a gauge
transformation in our case [20].
The amplitude of pair production in an external magnetic

field from our paper [20] will be further considered.
In [20], the vector potential that describes the magnetic
field produced by a dipole was taken as

~A ¼
~M × ~x
j~xj3 e−Ht; A0 ¼ 0; ð4Þ

where ~M is the magnetic dipole moment. We also observe

that ∇~A ¼ 0; A0 ¼ 0. The first order transition amplitude
corresponding to pair creation in external field, assuming
the minimal coupling, is [20]

Ae−eþ ¼ −ie
Z

d4x½−gðxÞ�1=2Ū~p;λðxÞ~γ · ~AðxÞV~p0;λ0 ðxÞ;

ð5Þ
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where U~p;λðxÞ; V ~p0;λ0 ðxÞ are the solutions of the Dirac
equation in momentum basis in de Sitter geometry [25].
Our analysis in the de Sitter case is done by preserving

the Coulomb gauge, and the same is true for our paper [20].
Let us denote by∇α the covariant derivative, with α ¼ 0, 1,
2, 3. The condition ∂iAi ¼ 0 from Minkowski space is
replaced by the vanishing of the covariant derivative in the
de Sitter case ∇ið ffiffiffiffiffiffi−gp

AiÞ ¼ 0 [16,24], but it is sufficient
to apply the covariant derivative only on Ai since

ffiffiffiffiffiffi−gp
depends only on time, and we obtain

∇iAi ¼ 0 ¼ ∂iAi þ Γi
iαA

α ¼ ∂iAi þ Γi
ijA

j þ Γi
i0A

0: ð6Þ

Considering the de Sitter line element (1), with g00 ¼ 1;
gij ¼ −δije2Ht, we obtain that Γi

ij ¼ 0;Γi
i0 ¼ H, and the

above equation becomes

∇iAi ¼ ∂iAi þHA0 ¼ 0: ð7Þ

Since A0 ¼ 0, this implies ∂iAi ¼ 0.
It is known that further gauge transformations that

preserve the Coulomb gauge condition can be made, and
these gauge transformations which contain the components
of Aμ can be written as

Ai → Ai þ ∂iΛ;

A0 → A0 þ ∂0Λ: ð8Þ
Since A0 ¼ 0, we observe that the condition ∂tΛ ¼ 0 is
mandatory (this conclusion can be reached following
similar arguments like in the Minkowski theory; see [7]).
Let us apply the covariant derivative to the potential

transformation given in Eq. (8)

∇iAi → ∇iAi þ∇ið∂iΛÞ ð9Þ
and compute ∇ið∂iΛÞ to obtain

∇ið∂iΛÞ ¼ ∂i∂iΛþ Γi
ij∂jΛþ Γi

i0∂0Λ ¼ ∂i∂iΛþH∂tΛ:

ð10Þ

Since we impose the condition ∇iAi ¼ 0, we observe that
we must take ∇ið∂iΛÞ ¼ 0 for preserving the Coulomb
gauge and finally obtain the equation for Λ in de Sitter
geometry:

∂2
iΛ −He2Ht∂tΛ ¼ 0: ð11Þ

A similar situation is encountered in Minkowski QED,
where for preserving the Coulomb gauge the condition
∂2
iΛ ¼ 0 is imposed [10,12,14,26]. In Eq. (11), we observe

that Λ is a time-independent function, i.e., ∂tΛ ¼ 0, as
shown above, and the first term of the equation reproduces
the situation from the flat space case, giving for the gauge
function an equation of the Laplace type [10,12,14,26]:

△Λ ¼ 0: ð12Þ
From the analysis above, we observe that in the Coulomb

gauge the gauge function Λ depends only on spatial
coordinates. But Eq. (12) has a nice property: its solutions
are unique [14]. In other words, if we can find a solution to
the Laplace equation which satisfies the boundary con-
ditions, then it is clear that this is the only solution. The
physical criterion that the gauge function must accomplish
is for it to vanish when the spatial distances and the time
become infinite, where the Dirac fields and the potential
used in our calculations also vanish [9,10,12,14]. In these
circumstances, the unique solution that accomplishes these
criteria is [12,14,22]

Λ ¼ 0; ð13Þ
and no gauge arbitrary remains in this case. So our
transition amplitudes of fermion production in the magnetic
field on de Sitter spacetime obtained in [20] do not change
if we add to the potential the gradient of the gauge function,
as long as we impose to remain in the Coulomb gauge. To
the best of our knowledge, how physics looks in de Sitter
geometry if we choose other gauges is not studied in the
literature. Instead, it seems that for the moment, the
Coulomb gauge is the only gauge in which one could
construct the theory of free electromagnetic field, imposing
then the canonical quantization and further making a
coherent perturbative QED [16].
An interesting observation about our vector potential is

that we know its divergence and curl, and, in addition, we
know that it vanishes when the spatial distances become
infinite. Then, a vector field which vanishes at infinity is
completely specified once its divergence and its curl are

given (∇~A ¼ 0;∇ × ~A ¼ ~B) [14]. There are no additional
terms due to the transformation (8) in our amplitude of
fermion production in magnetic field, and this is the result
of the use of the Coulomb gauge and of the use of boundary
conditions in space and time. So we prove that any gradient
transformation leaves the transition amplitude invariant in
the Coulomb gauge. Or, in other words, the only gauge
transformation allowed which preserves the Coulomb
gauge is Λ ¼ 0, as in the Minkowski QED [12].

III. GAUGE INVARIANCE AND VECTOR
POTENTIAL DECOMPOSITION

Another way to tell the above story is as follows.
Consider that the vector potential is decomposed in
longitudinal and transversal parts [27],

~A ¼ ~A⊥ þ ~A∥; ð14Þ

such that [27] ∇ ~A⊥ ¼ 0;∇ × ~A∥ ¼ 0, which is known

since the magnetic field is purely transversal ~B∥ ¼ 0. Then,
the gauge transformation
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~A → ~Aþ∇Λ ð15Þ

will give the transformation rules for the longitudinal and
transversal components [27]:

~A⊥ → ~A⊥;
~A∥ → ~A∥ þ∇Λ: ð16Þ

We observe from the above equation that the transversal
component of the potential vector is gauge invariant [27],
and only the longitudinal component transforms. In
our calculations, we use only the transversal component
~A ¼ ~A⊥ as given in Eq. (4). Moreover in the Coulomb

gauge ~A∥ ¼ 0 [27], and only the transversal components
are not vanishing.
Finally, we conclude that working in the Coulomb

gauge, only with the transversal components of the poten-
tial vector can one obtain results which are gauge inde-
pendent in de Sitter QED. One needs to fix a gauge for
studying the theory of free electromagnetic field and
perturbative QED and then compute the amplitudes.

IV. GAUGE INVARIANCE
AND RENORMALIZATION

Since we know from flat space QED that for computing
observable quantities one needs to do the renormalization
of the theory, which depends on the gauge [1–4,7], the
same observation could be also valid in de Sitter QED.
Then the discussion of gauge invariance in de Sitter QED is
not at all an easy task since a complete proof of the gauge
independence/dependence of the amplitudes/probabilities
could depend on the renormalization of the theory, which is
an issue not clear at this moment in this geometry.
It is known from flat space QED that the unrenormalized
S-matrix elements obtained from Feynman diagrams
always appear in physical-scattering amplitudes multiplied
by the renormalization constants Z2 and Z3. As we know,
Z3 is gauge invariant, but Z2 is a gauge-dependent quantity
[1–4]. This means that the unrenormalized transition
amplitudes could be gauge dependent in order to secure
the gauge invariance of the product between the

renormalization constants and the unrenormalized matrix
elements [1–4]. So a proof of the gauge invariance could be
carried out on the renormalized amplitudes/probabilities
in de Sitter QED. For that, we must study the Maxwell
and Dirac propagators including their radiative corrections.
The above program must be completed, and only then a
definite conclusion could be addressed properly about the
gauge dependence of the amplitudes in de Sitter QED.

V. CONCLUSIONS

The final conclusion is that the comment [19] needs to be
considered with care, and the authors do not present valid
arguments regarding the gauge dependence of the ampli-
tude from our paper [20]. In our paper, we work in the
Coulomb gauge in which the only allowed gauge trans-
formations are Λ ¼ 0. In quantum field theory, the standard
procedure is to establish the gauge first and only afterwards
perform the quantization. Once a gauge is fixed and the
quantization procedure is done, one could not do a gauge
transformation in the transition amplitudes which alter the
chosen gauge.
Another important observation is that the analysis of

the amplitudes variation in other gauges and with given
external electromagnetic fields must be done in de Sitter
geometry in order to understand the problem of gauge
invariance, but there are no concrete results at the present
time in the literature.
Since the authors of the comment do not say or prove

how the analytical results or physical interpretation of our
results will be modified by their result, we disagree with the
implication of the comment [19] that the analysis in our
paper [20] and our previous papers [16,23] are physically
incorrect or there are ambiguities about the quantities that
were computed.
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