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Extending the works of [Phys. Rev. Lett. 115, 161304 (2015)] and [Phys. Rev. D 93, 064014 (2016)], we
study three dimensional Euclidean higher spin gravity with negative cosmological constant. This theory
can be formulated in terms of SLðN;CÞ Chern-Simons theory. By introducing auxiliary fields, we rewrite it
in a supersymmetric way and compute its partition function exactly by using the localization method. We
obtain a good expression for the partition function in terms of characters for the vacuum and primaries in
2D unitary conformal field theory with WN symmetry. We also check that the coefficients of the character
expansion are positive integers and exhibit Cardy formula in the large central charge limit.
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I. INTRODUCTION

3D quantum gravity is always a fascinating toy model of
the realistic 4D quantum gravity. In [1,2], the authors
considered 3D pure AdS gravity partition function. It is
well known that 3D Euclidean Einstein gravity with
negative cosmological constant can be formulated in terms
of the Chern-Simons (CS) theory with the gauge group
SLð2;CÞ [3,4]. Furthermore, by introducing only auxiliary
fields, this theory can be written in a supersymmetric way.
Based on this observation, the authors applied the locali-
zation technique to the 3D Euclidean Einstein gravity, and
under certain assumptions, obtained the quantum gravity
partition function [1] and arrived at plausible conformal
field theory (CFT) interpretations [2].
Similarly, the CS theory with the gauge group SLðN;CÞ

describes 3D higher spin gravity with negative cosmologi-
cal constant, where gravity is coupled to symmetric tensors
of spin 3; 4;…; N [5]. Then it is very natural to generalize
our previous works [1] and [2], where the gauge group is
SLð2;CÞ, to SLðN;CÞ for exact path integral of the higher
spin gravity. In fact, in our previous work [2] for the
SLð2;CÞ case, we have seen that in the semiclassical limit,
we can express the exact partition function as summation
over vacuum and primary characters. In this paper, we will
see that this nice expression holds even in the higher spin
gravity case where the gauge group for the CS theory is
SLðN;CÞ and the partition function is written in terms of
characters of 2D WN CFT.

Another motivation to study the 3D higher spin gravity
is the recent progress on the Vasiliev higher spin theory
[6], which has brought much attention in the context of

AdS/CFT correspondence. In contrast to usual AdS/CFT,
the Vasiliev theory is expected to be dual to vectorlike CFT
as discussed earlier in [7]. While string theory at high
energy has been suspected to have higher spin symmetry
[8], spectrum of the Vasiliev theory is fairly different from
the one of typical string theory and how the Vasiliev theory
is related to string theory is still mysterious. Furthermore it
is known that in a black hole solution of the Vasiliev theory,
horizon itself is a gauge dependent concept (see e.g. [9]).
Thus the higher spin gravity has various unusual properties
and should be studied more quantitatively.
The Euclidean action of the 3D higher spin gravity is

given by

SHigherSpin ¼
ik
4π

SCS½A� − ik
4π

SCS½Ā�; ð1Þ

where

SCS½A� ¼
Z
M

Tr

�
AdAþ 2

3
A3

�
: ð2Þ

In this paper, we consider the case, where the subgroup
SLð2;CÞ ⊂ SLðN;CÞ is embedded in the principal embed-
ding [10]. Then the gauge field is related to the generalized
vielbein e and spin connection ω by

e ¼ l
2i
ðA − ĀÞ; ω ¼ 1

2
ðAþ ĀÞ; ð3Þ

where l is AdS scale. One can denote the metric and higher
spin fields in terms of trace invariants of the vielbein
[11,12] such as gμν ∼ TrðeμeνÞ, ϕμνλ ∼ TrðeðμeνeλÞÞ, for
example. The CS level k is related to the Newton constant
by k ¼ 3l=2GNNðN2 − 1Þ. By generalizing Brown-
Henneaux’s work [13], we can show that central charge
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cQ of asymptotic symmetry group in the higher spin gravity
is given by [11,14] cQ ¼ kNðN2 − 1Þ ¼ 3l=2GN . The
quantization condition for the SLðN;CÞ group is k ∈ Z
(see e.g. [15]). However the isometry of AdS3 is SOð3; 1Þ,
which is locally SLð2;CÞ ⊂ SLðN;CÞ. If we considered the
CS theory with the gauge group SOð3; 1Þ, then the
quantization condition is k=4 ∈ Z [16]. Since SLðN;CÞ
group corresponds to the theory of Einstein gravity (s ¼ 2)
with higher spin fields (2 < s ≤ N) and we can always set
the higher spin fields to be zero, we expect that the correct
quantization for k is still k=4 ∈ Z even for N > 2, and this
leads to cQ=24 ∈ Z. We will see later that the condition
cQ=24 ∈ Z guarantees that convergent and modular invari-
ant partition function does not vanish.
In this paper we exactly compute the partition function of

the higher spin gravity

ZHigherSpin ¼
Z

DeDωe−SHigherSpin ; ð4Þ

by generalizing the previous work for the pure Einstein
gravity corresponding to SLð2;CÞ [1]. For this purpose, we
shall first define the path integral measure for the higher
spin gravity in terms of the Chern-Simons formulation. In
the path integral of the higher spin gravity, e and ω can take
all possible values, corresponding to all possible bulk
topologies, with a given asymptotic AdS boundary con-
dition. Through the relation (3), this data for e and ω is
mapped into the data for the gauge bosonsA and Ā. On the
other hand, in the usual quantum field theory without
gravity, we shall regard two Chern-Simons theories living
on the different bulk topologies as different theories.
Hence, to take an appropriate measure for the quantum
gravity, we expect

DeDω ¼
X

bulk topology

DADĀ; ð5Þ

and need to consider possible bulk topologies contributing
to the partition function. However our localization argu-
ment gives the answer to this sum; the bulk topology sum in
the right-hand side of (5) is given by the modular sum
(Rademacher sum) with fixed topology D2 × S1, a solid
torus [1].
To see this, let us recall that when we perform the

localization calculation, configurations which contribute to
the path integral are only around the localization locus. In
this case, the metric and spin connection path integral
DeDω is replaced as DADĀ, but only the locus F μν ¼ 0

contributes to the path integral, and F μν ¼ 0 is the same as
the classical equation motion of the higher spin gravity
including the Einstein equation. Since all the known
classical solutions of the higher spin gravity have the
topology D2 × S1, a solid torus [17] (see e.g. [9,18] for
the known solutions), this would justify our claim that the

partition function has contribution only from the bulk
topology D2 × S1. However this does not fix the bulk
geometry for the gravity path integral completely. This is
because the boundary of D2 × S1 has topology of torus
parametrized by complex structure τ. One can recall that
both τ and −1=τ gives the same asymptotic AdS boundary
condition with the solid torus, D2 × S1 bulk topology, but
one corresponds to the thermal AdS while the other
corresponds to the nonrotating Banados-Teitelboim-
Zanelli (BTZ) black hole [19]. Although they are physi-
cally different, both of them have asymptotic AdS metric.
Therefore we need to sum over all the consistent choices for
the complex structure τ. This is simply because in the
localization calculation, we have to sum over all the
possible configurations of the localization locus. For that,
we ask which circle on the boundary torus is contractible
and this information is labeled by cosets of SLð2;ZÞ, which
is parametrized by the integers ða; b; c; dÞ for the modular
transformation τ → aτþb

cτþd, satisfying ad − bc ¼ 1. Here
ða; b; c; dÞ ≈ −ða; b; c; dÞ and ðc; dÞGCD ¼ 1, so that given
c ≥ 0 and d satisfying ðc; dÞGCD ¼ 1, then a and b are
uniquely determined up to the irrelevant ambiguity
ða; bÞ ≈ ðaþ c; bþ dÞ. As a result, we are left with the
sum over the integers c ≥ 0 and d and this gives the
modular sum (Rademacher sum). Physically this is
“roughly” equivalent to conducting the summation over
all the bulk solutions as farey tail [20–22]. But the
localization gives more justification for this procedure.
Furthermore we assume holomorphic factorization of the

partition function since the action (1) is written as sum over
holomorphic part A and antiholomorphic part Ā as [16].
Then all of these considerations lead us to

DeDω ¼
� X

c≥0;ðc;dÞGCD¼1

DA
�� X

c≥0;ðc;dÞGCD¼1

DĀ
�
; ð6Þ

for the quantum gravity path integral, under the assumption
of the localization at works. Thus the partition function
takes the form

ZHigherSpin ¼
����

X
c≥0;ðc;dÞGCD¼1

Z
DAe−

ik
4πSCS½A�

����
2

: ð7Þ

This factorization is actually reasonable in the localization
method. This is because we regard A and Ā as the
independent variables and take the saddle point approxi-
mation for all of their locus. Since we need to sum over all
the locus, the locus for A and Ā need to be added
independently as (6) [23].
In the rest of this paper, we focus on the holomorphic

part of the partition function and exactly compute this by
the localization method. Then we give a dual CFT
interpretation for the holomorphic part. As a conclusion
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we find that the partition function has a natural interpre-
tation [24] from 2D unitary CFT with WN-symmetry.

II. LOCALIZATION

Now we compute the holomorphic part of the partition
function (7) of the CS theory on a space of the topology
D2 × S1 with appropriate boundary conditions. Since
SLðN;CÞ is the complexification of SUðNÞ, and for
technical reason, we consider localization of SUðNÞ
Chern-Simons theory first, and then perform analytic
continuation after the localization computation is done.
Now let us consider the following particular space of the
topology D2 × S1:

ds2 ¼ dθ2 þ cos2θðdφ2 þ tan2θdt2EÞ; ð8Þ

where 0 ≤ θ ≤ θ0 < π=2, 0 ≤ φ ≤ 2π and 0 ≤ tE ≤ 2π.
Here, instead of the pure CS theory, we supersymmetrize
the CS theory on this space by introducing the 3D N ¼ 2

vector multiplet V ¼ ðAμ; σ; D; λ; λ̄Þ and compute its par-
tition function by the localization technique [26]:

SSCS½V� ¼ SCS½A� þ
Z

d3x
ffiffiffi
g

p
Trð−λ̄λþ 2DσÞ;

Z
DAe−

ik
4πSCS½A� →

Z
DVe−

ik
4πSSCS½V� ≡ Zc;d; ð9Þ

where Zc;d is the holomorphic partition function in (7) of
the supersymmetric CS theory with fixed choice for ðc; dÞ.
In gravity, the appropriate boundary condition for the
metric is the choice giving asymptotic AdS boundary
condition, which is Dirichlet boundary condition, rather
than Neumann boundary condition [27]. Then we can take
the following boundary condition, keeping supersymmetry,

Aφjθ¼θ0
¼ aφ; AtE jθ¼θ0

¼ atE; σjθ¼θ0
¼ 0;

λjθ¼θ0
¼ e−iðφ−tEÞγθλ̄jθ¼θ0

; ð10Þ

where all of them are proportional to the Cartan of SUðNÞ.
As a deformation term of the localization, we choose
N ¼ 2 supersymmetric Yang-Mills term on the geometry
(8):

tSYM ¼ t
Z
M

Tr

�
1

4
F 2

μν þ
1

2
ðDμσÞ2 þ

1

2

�
Dþ σ

l

�
2

þ i
4
λ̄γμDμλþ

i
4
λγμDμλ̄þ

i
2
λ̄½σ; λ� − 1

4l
λ̄λ

�
: ð11Þ

Then localization locus is given by the flat connection
F μν ¼ 0, which is equivalent to the classical equation
motion of the higher spin gravity including the Einstein
equation. This is the reason why our topology sum is only
for the D2 × S1 in (5), (6) and (7).

Since we have added just auxiliary fields, one might
think that this does not affect final result at first sight.
However we propose that this gives the following two
effects. First, the CS level is renormalized as
k → keff ¼ kþ 2. While the CS level shift generally
occurs, we lack of a priori explanation that the renorm-
alization for k by two shift. We will see later that our result
has a natural interpretation from a dual CFTwith the central
charge keffNðN2 − 1Þ, which matches with the correct
central charge extracted from the asymptotic symmetry
analysis [11,14] if the correct renormalization is k → keff .
From this observation, we claim that the CS level is
renormalized as k → keff ¼ kþ 2. Second, there are extra
(N − 1) massless fermionic degrees of freedom localized at
the boundary only in the classical limit k → ∞. The
boundary condition (10) kills the gaugino mass term λ̄λ
at the boundary and this implies that the (N − 1) boundary
localized fermions appear in the classical limit k → ∞. The
origin of (N − 1) fermions could be associated with the
number of Cartan generators of the SUðNÞ. This is because
these Cartan elements of the fermion commute with the
gauge field, aμ in (10). By using the doubling trick, it is
easy to see that classical solution for the fermion admits the
boundary localized fermion wave function [1,2]. Although
it is a priori unclear if the boundary fermions exist also for
finite k, there is apparently no reason to expect the
existence of the boundary fermions for finite k. Indeed
the result of [1] for N ¼ 2 shows that Zhol for keff ¼ 4 is
equal to conjectural J-function by Witten [16], which
agrees with the extremal CFT partition function of
Frenkel, Lepowsky and Meurman [29]. This fact suggests
that there are no boundary fermions for keff ¼ 4. Thus we
propose that the boundary fermions exist only in the large
k limit.
By using the results of [1,26], we obtain Zc;d as

Zc;d ¼ eikπtrðaφatE Þ
Y

α∈rootþ

ðeiπαðaφÞ − e−iπαðaφÞÞ; ð12Þ

where α runs the positive root of SUðNÞ and aφ and atE take
appropriate values as explained below. The first and second
terms come from the classical contribution [30] and the
one-loop determinant in the localization, respectively.
In order to compute Zc;d, it is sufficient to compute the

case of nonrotating BTZ black hole [9,19], namely
ðc; dÞ ¼ ð1; 0Þ. Since BTZ black holes are solutions for
the SLð2;CÞ case and we are considering generic SLðN;CÞ
case, how we describe BTZ black holes in SLðN;CÞ
depends on how we embed the SLð2;CÞ sector into the
whole SLðN;CÞ. As we claim before, here we choose
principal embedding, and there L0 is given by

L0 ¼ diagðλ1;…; λNÞ with λm ¼ 1

2
ðN þ 1 − 2mÞ:

ð13Þ
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Given this, let us recall the boundary condition for the
holonomy in the case of the nonrotating BTZ black hole. In
N ¼ 2 case, it is given by [1]:

aφ ¼ 1

τ
L0; atE ¼ L0; ð14Þ

where L0 is given by N ¼ 2 case of (13).
Since BTZ black hole solutions without higher spin

charges in the higher spin gravity theory are just embedding
of the SLð2;CÞ sector into the whole SLðN;CÞ, the
condition (14) is still true for generic N if L0 is replaced
by N × N matrix representation in SLðN;CÞ given by (13).
To see this more explicitly, note that in the higher spin
gravity, a BTZ black hole is written as (see [9], but take care
the difference for the convention i and periodicity for tE)

AðzÞ ¼ 1

i

�
L1 −

2π

k
LðzÞL−1

�
ðdφþ τdtEÞ; ð15Þ

where L1, L−1 are N × N matrix principal embedding.
More explicitly, see Appendix A in [18]. Diagonalizing this
matrix by gauge transformation, and using the smoothness
condition at the horizon, namely Eq. (2.20) of [9], we
obtain

AðzÞ ¼ 1

τ
L0ðdφþ τdtEÞ; ð16Þ

which is exactly the same form as (14), though L0 is given
instead by N × N matrix (13). Therefore we obtain, for
generic N case,

aφ ¼ 1

τ
diagðλ1;…; λNÞ; atE ¼ diagðλ1;…; λNÞ: ð17Þ

Plugging this into (12), we find (See appendix for more
detail.)

Z1;0 ¼ e
2πi
τ
kþ2
24
NðN2−1Þ YN

s¼2

Ys−1
l¼1

ð1 − e−
2πil
τ Þ: ð18Þ

Then Zc;d can be obtained by the modular transformation of
Z1;0 as Zc;d ¼ Z1;0j−1

τ→
aτþb
cτþd

. This leads us to

Zc;d ¼ e−2πi
kþ2
24
NðN2−1Þaτþb

cτþd

YN
s¼2

Ys−1
l¼1

ð1 − e2πil
aτþb
cτþdÞ

¼ e−2πi
kþ2
24
NðN2−1Þaτþb

cτþd

X1
6
NðN2−1Þ

m¼0

ame
2πimaτþb

cτþd; ð19Þ

where am is defined by

X1
6
NðN2−1Þ

m¼0

amxm ¼
YN
s¼2

Ys−1
l¼1

ð1 − xlÞ: ð20Þ

Next we perform the summation over ðc; dÞGCD in (7).
We regularize this summation by Rademacher sum [31] as
in the N ¼ 2 case [1] and obtain the following holomorphic
partition function for the pure higher spin gravity

ZholðqÞ ¼ Z0;1ðτÞ þ
X

c>0;ðc;dÞGCD¼1

ðZc;dðτÞ − Zc;dð∞ÞÞ

¼
X1

6
NðN2−1Þ

m¼0

amRð−NðN2−1Þkeff
24

þmÞðqÞ; ð21Þ

where keff ¼ kþ 2 and q ¼ e2πiτ, and

RðmÞðqÞ ¼ e2πimτ þ
X

c>0;ðc;dÞGCD¼1

ðe2πimaτþb
cτþd − e2πim

a
cÞ: ð22Þ

This is one of the main results in this paper. For example,
explicit results for N ¼ 2; 3; 4; � � � are

ZholðqÞjN¼2 ¼ Rð−keff
4
ÞðqÞ − Rð−keff

4
þ1ÞðqÞ;

ZholðqÞjN¼3 ¼ Rð−keffÞ − 2Rð−keffþ1Þ

þ 2Rð−keffþ3Þ − Rð−keffþ4Þ;

ZholðqÞjN¼4 ¼ Rð−5keff
2
Þ − 3Rð−5keff

2
þ1Þ þ Rð−5keff

2
þ2Þ

þ 4Rð−5keff
2
þ3Þ − 2Rð−5keff

2
þ4Þ

− 2R−5keff
2
þ5Þ − 2Rð−5keff

2
þ6Þ

þ 4Rð−5keff
2
þ7Þ þ Rð−5keff

2
þ8Þ

− 3Rð−5keff
2
þ9Þ þ Rð−5keff

2
þ10Þ; ð23Þ

and so on. It is straightforward to obtain explicit form for
N ≥ 5, and N ¼ 2 case is the one obtained in [1].
As we have discussed in [1], for m < 0 in RðmÞðqÞ, m

needs to be an integer; This is because RðmÞðqÞ ¼ qm þ
ðnonsingular termsÞ in q → 0 limit for m < 0. Therefore
qm dominates in the RHS, and then the modular invariance
requires that m should be integer. See also Proposition
5.4.2. in [32]. Note that the quantization condition keff=4 ∈
Z guarantees cQ=24 ∈ Z with cQ ¼ keffNðN2 − 1Þ.
Therefore, this guarantees that − NðN2−1Þkeff

24
þm, the

“orders” for Rð−NðN2−1Þkeff
24

þmÞðqÞ in (21) and (23) are always
integer.

III. DUAL CFT INTERPRETATION FOR LARGE k

As discussed above, (N − 1) boundary localized fer-
mions are expected to exist in the large k limit, and a
contribution from each fermion to the partition function is
expected to be
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ZB-fermion ¼
Y∞
n¼1

ð1 − qnÞ; ð24Þ

as is discussed in [1,2]. Since these boundary fermions are
decoupled in the large k limit, we claim that (holomorphic
part of) “bulk pure higher spin gravity” partition function is
given by

Zlarge k
HigherSpinðqÞ ¼

ZholðqÞ
ðZB-fermionÞN−1 : ð25Þ

In this section we discuss properties of Zlarge k
HigherSpinðqÞ and its

dual CFT interpretation. For this purpose it is convenient to
use the following representation of the Rademacher sum
RðmÞðqÞ

RðmÞðqÞ ¼ qm þ ðconstÞ þ
X∞
n¼1

cðm; nÞqn; ð26Þ

where

cðm; nÞ ¼ 2π

ffiffiffiffiffiffiffi
−m
n

r X∞
c¼1

Acðm; nÞ
c

I1

�
4π

ffiffiffiffiffiffiffiffiffiffi
−mn

p
c

�
;

Acðm; nÞ ¼
X

1≤d≤c;ðc;dÞGCD¼1

e2πiðma
cþndcÞ: ð27Þ

Here the sum for Acðm; nÞ is only for d and I1ðzÞ is the
modified Bessel function of the first kind. Since the (const)
term is regularization dependent, here we simply set the
(const) term to be zero though we admit that this is an open
issue [33]. By plugging the expression (26) into (21), and
by using (20) and the identity

YN
s¼2

Ys−1
l¼1

ð1 − qlÞ ¼
Q∞

n¼1ð1 − qnÞN−1Q
N
s¼2

Q∞
m¼s ð1 − qmÞ ; ð28Þ

we find

ZholðqÞ ¼ ðZB-fermionÞN−1q−
cQ
24

YN
s¼2

Y∞
m¼s

1

1 − qm

þ
X∞
Δ¼1

cðkeffÞΔ qΔ; ð29Þ

where cQ ¼ keffNðN2 − 1Þ and

cðkeffÞΔ ¼
X1

6
NðN2−1Þ

m¼0

amc

�
−
cQ
24

þm;Δ
�
: ð30Þ

Then Zlargek
HigerSpin becomes

Zlarge k
HigerSpinðqÞ ¼ q−

cQ
24

YN
s¼2

Y∞
m¼s

1

1 − qm

þ
X∞
Δ¼1

cðkeffÞΔ
qΔQ∞

n¼1ð1 − qnÞN−1 : ð31Þ

Note that the first factor is the same as the character of the
Verma module constructed from the vacuum j0i in WN
CFT (see e.g. Sec. 6.3.2 of [34])

ZvacðqÞ ¼ TrVj0iqL0−
cQ
24 ¼ q−

cQ
24

YN
s¼2

Y∞
m¼s

1

1 − qm
; ð32Þ

where the vacuum satisfies

WðsÞ
n≥−ðs−1Þj0i ¼ 0 ðfor s ¼ 2;…; NÞ: ð33Þ

s represents spin and WðsÞ
n is the generator of the WN-

algebra. In particular, Wðs¼2Þ
n is the Virasoro generator Ln.

From this vacuum, we can construct eigenstates of L0 by

YN
s¼2

Y∞
mðsÞ¼s

ðWðsÞ
−mðsÞ ÞlmðsÞ j0i; ð34Þ

with the eigenvalue −cQ=24þ
P

N
s¼2

P∞
mðsÞ¼s

mðsÞlmðsÞ .
Note also that the vacuum character takes the same form
as (holomorphic part of) the one-loop partition function of
the higher spin gravity on AdS3 [35]. Similarly, the last

factor in (31) is the same as the character ZðΔÞ
primary of the

Verma module generated by the state jΔi satisfying

WðsÞ
n>0jΔi ¼ 0 and L0jΔi ¼ ðcQ=24þ ΔÞjΔi in WN-CFT

ZðΔÞ
primaryðqÞ ¼ TrVjΔiqL0−

cQ
24 ¼ qΔQ∞

m¼1ð1 − qmÞN−1 : ð35Þ

Thus we find the following nice expansion for the partition
function in terms of the characters of the vacuum and
primaries,

Zlarge k
HigherSpinðqÞ ¼ ZvacðqÞ þ

X∞
Δ¼1

cðkeffÞΔ ZðΔÞ
primaryðqÞ: ð36Þ

Furthermore we also claim that cðkeffÞΔ is positive integer as
expected if the dual CFT is unitary. We have explicitly
checked this for ðN; keff ;ΔÞ ¼ ð2;…; 14; 4;…; kmaxðNÞ;
1;…; 50Þ, with ðkmaxð2Þ;…; kmaxð14ÞÞ ¼ð2000; 500; 200;
100; 56; 32; 20; 16; 12; 8; 4; 4; 4Þ. For example, we have
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cð4ÞΔ¼1jN¼2 ¼ 196884;

cð4ÞΔ¼2jN¼2 ¼ 21493760;

cð4ÞΔ¼1jN¼3 ¼ 75798018972;

cð4ÞΔ¼2jN¼3 ¼ 1580451492798464;

cð4ÞΔ¼1jN¼4 ¼ 144317861960158148: ð37Þ

We can also see that the OðqΔÞ coefficient cðkeffÞΔ exhibits
the Cardy formula in the large k limit. Since the modified
Bessel function asymptotically behaves as

lim
z→∞

IνðzÞ ∼
ezffiffiffiffiffiffiffiffi
2πz

p 2F0

�
νþ 1

2
;
1

2
− ν;

1

2z

�
; ð38Þ

in the summation (27) for cðm; nÞ, the c ¼ 1 term gives
most dominant contribution in the large k limit. Noting
A1ðm; nÞ ¼ 1 for ∀m; n ∈ Z, we find

cðm; nÞ ∼ ð−mÞ1=4ffiffiffi
2

p
n3=4

e4π
ffiffiffiffiffiffiffi
−mn

p
2F0

�
3

2
;−

1

2
;

1

8π
ffiffiffiffiffiffiffiffiffiffi
−mn

p
�

þOðe2π ffiffiffiffiffiffiffi
−mn

p Þ: ð39Þ

This immediately shows that the coefficients cðkeffÞΔ of the
characters asymptotically behave as

lim
k→∞

log cðkeffÞΔ ¼ 2π

ffiffiffiffiffiffiffiffiffi
cQΔ
6

r
: ð40Þ

This perfectly matches with the Cardy formula for 2D CFT
in the large central charge limit cQ → ∞, which is the same
as the large k limit, and therefore this result agrees with the
entropy of black hole in higher spin gravity [9]. It is also
easy to compute subleading corrections to the Cardy
formula. Taking into account the leading and subleading
orders, we find, for example,

lim
k→∞

cðkeffÞΔ jN¼2 ¼ 2π

ffiffiffiffiffiffiffiffiffi
cQΔ
6

r
þ log

�
2 ·6

1
4π

Δ1
4c

1
4

Q

�
;

lim
k→∞

cðkeffÞΔ jN¼3 ¼ 2π

ffiffiffiffiffiffiffiffiffi
cQΔ
6

r
þ log

�
384 ·6

1
4π3Δ3

4

c
5
4

Q

�
;

lim
k→∞

cðkeffÞΔ jN¼4 ¼ 2π

ffiffiffiffiffiffiffiffiffi
cQΔ
6

r
þ log

�
884736 ·6

3
4π6Δ9

4

c
11
4

Q

�
: ð41Þ

Similarly, computations of any higher order corrections to

cðkeffÞΔ in 1ffiffiffiffi
cQ

p expansion are straightforward.

These formula give good approximation for precise
value of cðkeffÞΔ . In Fig. 1, we plot log cðkeffÞΔ (dotted lines)
as a function of

ffiffiffiffiffiffiffi
keff

p
and compare those with the Cardy

formula with the subleading corrections (41) (solid lines).
One can easily see that the solid lines match with the dotted
lines even for large but finite k, and that the coefficients
approach to the behavior (41) perfectly in the large k
regime.

IV. SUMMARY AND DISCUSSION

In this paper we have studied the partition function of the
3D higher spin gravity with negative cosmological constant
by generalizing the previous works [1,2] on the pure
Einstein gravity. We first rewrite the higher spin gravity
in the supersymmetric way and exactly compute the
partition function of this theory by using the localization
method. The final answer of the partition function is written
in a nice way in terms of the characters for the vacuum and
primaries in 2D CFT with WN-symmetry. We also check
that the coefficients of the character expansion are positive
integers and exhibit the Cardy formula in the large central
charge limit.
In our procedure, we have assumed that the super-

symmetrization does not essentially change the partition
function but gives the following two effects: First, we
assume that the CS level is renormalized as
k → keff ¼ kþ 2. Although the CS level shift for compact
gauge group is usually dependent on the rank of the gauge
group or zero, we claim that the renormalization is nonzero
but independent of N. As a result, our final result has the
natural interpretation from the dual CFT with the central
charge keffNðN2 − 1Þ, which matches with the central
charge extracted from the asymptotic symmetry analysis
[11,14]. It is interesting if one can justify this by some
arguments. Second, we assume that there are the extra
(N − 1) fermions localized at the boundary only in the
classical limit k → ∞. There is apparently no reason to
expect the existence of the boundary fermions also for finite
k. Indeed the result of [1] for N ¼ 2 shows that Zhol for

FIG. 1. The log of the OðqΔÞ coefficient cðkeff ÞΔ is plotted toffiffiffiffiffiffiffi
keff

p
for ðN;ΔÞ ¼ ð2; 1Þ; ð3; 1Þ; ð3; 2Þ; ð4; 1Þ and (4,2). The solid

lines denote the Cardy formula including the subleading correc-
tions, which is explicitly written in (37).
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keff ¼ 4 is equal to conjectural J-function by Witten [16]
and suggests that there is no boundary fermions for
keff ¼ 4. Thus we propose that the boundary fermions
exist only in the large k limit.
We have also assumed that the summation over the

topologies in the quantum higher spin gravity has the
contributions only from the topology of the solid torus. Our
localization argument shows that the higher spin gravity
partition function is given by configurations around the
localization locus F μν ¼ 0, which is the same as the
classical equation motion of the higher spin gravity
including the Einstein equation. Since all the known
solutions of the 3D Einstein equation have the
topology of the solid torus, this would justify our
assumption.
Note that all of the localization locus F μν ¼ 0 which

contribute to our final expression for the partition function
are BTZ black holes. In other words, since the partition
function (4) corresponds to the zero chemical potential for
higher spin charge, our results are expressed in terms of
summing over higher-spin-charge neutral black holes, and
small fluctuations around those are characterized by WN
algebra. These small fluctuations give exactly the one-loop
partition function of the higher spin gravity on AdS3 [35]
and contains nonzero higher-spin-charge states. The
appearance of the WN-symmetry is natural since this is
the same as the asymptotic symmetry of the higher spin

gravity [11,12]. The coefficients cðkeffÞΔ of the character
expansion are positive integer and exhibit the Cardy
formula in the large k limit.
It is interesting to introduce nonzero higher-spin-charge

chemical potentials. Then, the localization locus contrib-
uting to the final answer are black holes with nonzero
higher-spin-charges. For example, let us consider intro-
ducing a chemical potential for the spin-3-charge. The
effects of introducing such a chemical potential is reflected
as the change of the boundary condition for the gauge
fields. More concretely, Eq. (15), which we use for the case
of zero chemical potential, must be replaced by Eq. (3.13)
of [9] for the case with nonzero spin-3-charge chemical
potential [36], where L and W in Eq. (3.13) are related to
the spin-3-charge chemical potential μ and temperature τ by
Eq. (3.25) of that reference. As we diagonalize all the
components of these boundary condition from Eq. (15) to
Eq. (16), we now need to diagonalize the new boundary
condition, which corresponds to Eq. (3.13) of [9]. Note that
due to the commutativity of ½az; az̄� ¼ 0 as shown in
Eq. (3.14) of [9], it is possible to diagonalize all the
components of these boundary gauge fields. Once we
obtain the diagonalized values, which should replace our
Eq. (17), then the rest of the calculation is straightforward
and we can obtain the final partition function. However we
will not produce the rest of calculation here.

In this paper, we choose the principal embedding but it
would also be interesting to study nonprincipal embedding
and how the results are modified by that. Finally but not
lastly, it is interesting to generalize our analysis to
supergravity.
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APPENDIX: DERIVATION OF
THE FORMULA (18)

Here, we derive the formula (18) from (12). For
ðc; dÞ ¼ ð1; 0Þ, we take aφ; atE as (17), and

Z1;0 ¼ e
ikπ
τ

P
N
m¼1

λ2m
Y

1≤m<n≤N
ðeiπ

τ ðλm−λnÞ − e−
iπ
τ ðλm−λnÞÞ

¼ e
2πi
τ

k
24
NðN2−1Þ Y

1≤m<n≤N
e
πiðn−mÞ

τ ð1 − e−
2πiðn−mÞ

τ Þ

¼ e
2πi
τ

k
24
NðN2−1Þ YN−1

l¼1

YN−l

m¼1

e
πil
τ ð1 − e−

2πil
τ Þ

¼ e
2πi
τ
kþ2
24
NðN2−1Þ YN−1

l¼1

ð1 − e−
2πil
τ ÞN−l: ðA1Þ

Here we change the product form and n into l andm, where
l ¼ n −m from the second equality to the third equality.
Finally, we rewrite the product as

YN−1

l¼1

ð1 − e−
2πil
τ ÞN−l ¼

YN
s¼2

Ys−1
l¼1

ð1 − e−
2πil
τ Þ: ðA2Þ

This is just reordering the product. It can be understood by
the following table.

ðs ¼ 2Þ l ¼ 1

ðs ¼ 3Þ l ¼ 2 l ¼ 1

ðs ¼ 4Þ l ¼ 3 l ¼ 2 l ¼ 1

… … … … …

ðs ¼ NÞ l ¼ N − 1 l ¼ N − 2 l ¼ N − 3 … l ¼ 1

In this table, we arrange (N − 1) number of l ¼ 1 in the
diagonal slots, and (N − 2) number of l ¼ 2 in second slots,
etc. (A2) can be understood from this table. The left-hand
side is products for diagonal elements and the right-hand
side is products for row elements.
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