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Over the last few years, Planck-scale modifications to the dispersion relation of particles have been
deeply studied for the possibility to formulate some phenomenology of Planckian effects in astrophysical
and cosmological frameworks. There are some indications [F. Girelli, S. Liberati, and L. Sindoni, Phys.
Rev. D 75, 064015 (2007)] that Finsler geometry can provide some generalization of Riemannian geometry
which may allow us to account for the nontrivial (Planckian) structure of the relativistic particles’
configuration space. We investigate the possibility to formalize Planck-scale deformations to relativistic
models in curved spacetime, within the framework of Finsler geometry. We take into account the general
strategy of analysis of dispersion relations modifications in curved spacetimes proposed in [G. Rosati,
G. Amelino-Camelia, A. Marciano, and M. Matassa, Phys. Rev. D 92, 124042 (2015)], generalizing to the
de Sitter case the results obtained in [G. Amelino-Camelia, L. Barcaroli, G. Gubitosi, S. Liberati, and
N. Loret, Phys. Rev. D 90, 125030 (2014)] for deformed relativistic particle kinematics in flat spacetime
using Finsler formalism.
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I. INTRODUCTION

One of the most important definitions in Euclidean
geometry concerns the norm of a vector and the distance
between two points: they are defined using Pythagoras’s
theorem. In the 19th century, Riemann generalized
Gauss’s ideas, introducing the concept of the manifold,
and constructed the Riemannian geometry, in which
Pythagoras’s theorem would be only valid at a point
or along a line, but would no longer be the way of
measuring distances in an open set in the manifold;
instead, such a measure would be performed using a
general metric field. Euclidean geometry was the back-
ground of Newtonian mechanics and was invariant by
Galilean boosts and rotations, but the advent of special
relativity and a new kind of invariance group inspired the
use of a geometry that unified space and time in a way
that could keep invariant the interval between two events:
such was Minkowski geometry, in which the interval
represents a distance in such spacetime, that is measured
by a formula similar to the Euclidean one, but allowing
for positive, null, or negative norms of vectors: this is a
pseudo-Euclidean space. The next generalization, respon-
sible for a relativistic description of gravity, was per-
formed by Einstein by writing general relativity using a
generalization of the Minkowski space by the same terms
of the generalization from Euclidean to Riemannian
geometry: spacetime was defined as a differential mani-
fold endowed with a pseudo-Riemannian metric.

In the geometries just described, one uses a metric to
define the norm of vectors and covectors and then defines
the length of curves and the distance between points. An
important feature of special relativity that gains a geomet-
rical interpretation is the dispersion relation of particles,
i.e., the equation that relates energy, momentum, and mass;
it is defined as the norm of the four-momentum in
Minkowski spacetime. Therefore, the pseudo-Euclidean
nature of the Minkowski metric is what allows us to have
a dispersion relation of the form E2 − p2 ¼ m2. Such a
relation can be generalized to a curved spacetime, where
the dispersion relation is defined as the norm with the
curved metric, and the Minkowskian form is achieved in
normal coordinates.
On the other hand, some approaches to quantum gravity

phenomenology refer to the possibility of having a modi-
fied dispersion relation (MDR) as a property of the semi-
classical limit of quantum gravity theories, for example
m2 ¼ E2 − p2 þ lE3, where l is a deformation parameter
that depends on the model (which in some cases can be
assumed to be proportional to the Planck length [1]). Thus,
in this context, an immediate question arises: may a MDR
be a manifestation of a departure of the Riemannian1 nature
of spacetime at a scale sensible for quantum gravity?
If spacetime was non-Riemannian, in a sense that could

1For simplicity, from now on we remove the word “pseudo”
when referring to pseudo-Riemannian spaces.
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account for a nonquadratic norm of vectors, then we may
have a MDR, but the inverse is not necessarily true;
therefore, we can only speculate about it.
A known branch of differential geometry that fits

perfectly into this property is the so-called Finsler geometry
[2]. Basically, it is a rigorous formalization for possible
nonquadratic norms of vectors, which is achieved through
a four-velocity-dependent metric, but still preserving the
parametrization invariance of the arc length of curves in
the manifold through the requirement of having a metric
gðx; _xÞ, homogeneous in the four-velocities. The relations
between Finsler geometry and some approaches to the
Quantum Gravity problem have been widely investigated
[3], with special interest in models introducing some
modification to the particles’ dispersion relation (see for
instance Ref. [4] and references therein). In particular,
in [5], Girelli, Liberati, and Sindoni pointed out that
phenomenological models implementing some kind of
departure from Lorentz symmetries can be systematically
formalized within the framework of Finsler geometry,
hypothesizing that such a formalism may be also the
correct mathematical framework to describe the so-called
“rainbow metrics” approach [6].
It is still unclear whether the introduction of momentum-

dependent “Rainbow” metrics imposes some sort of break-
down of Lorentz symmetry or otherwise they may be
suitable for a scenario with a deformation of (local)
spacetime symmetries through a deformed Poincaré group
as in the deformed special relativity approach [7]. This
issue was preliminarily treated by the authors of Ref. [5] for
what concerns the fate of spacetime symmetries in MDR-
inspired Finsler geometries and was explicitly considered
in Ref. [8], in which it was shown that it is possible to
obtain a description of modified relativistic particle kin-
ematics satisfying both Finsler geometry and deformed
special relativity prescriptions within the so-called
κ-Poincaré framework [9,10], at least at first order in the
deformation parameter l ∼ 1=MP, where (in units such as
c ¼ ℏ ¼ 1) we can expect MP to be of the order of Planck
scale ∼1.2 · 1028 eV. It is worth mentioning that we are
focusing on a first order deformation in l for two different
reasons. For a general theoretical case, in which one might
consider exact Modified Dispersion Relations, the same
analysis would need one to be able to write each conjugate
momenta in terms of the four-velocities in order to perform
the Legendre transform, which in general, at all orders in l,
may not be possible. Moreover, given the small magnitude
of Planck-scale effects on physical observables it is in
general hard to outline some sort of phenomenology at
order ∼l2 (also first order effects clearly need some
magnification mechanism in order to define falsifiable
predictions). Therefore, in order to keep our approach
generic and to describe a few simple phenomenological
features it is sufficient to take into account deformations at
the leading order of the deformation parameter.

However satisfactory it may be for what concerns the
description of the particles’ kinematics in the flat-spacetime
limit, Ref. [8] leaves open the question of whether this
approach can be generalized to describe deformed relativity
particle phenomenology [11–14] within a curved back-
ground. We would like here to implement this aspect, using
as guidance some previous approaches [15] to l-deformed
particle kinematics in a totally symmetric curved space-
time, where we will denote the parameter of spacetime
curvature as H.
A clear aspect presented in [5] is the lack of a Finsler

metric that would be probed through spacetime inferences
with massless particles, because the massless limit of the
presented metric is ill behaved. For example, this behavior
prevents us from having a metric probed by neutrinos,
since, even being massive, for most practical reasons they
are considered massless due to their tiny rest mass. In this
paper, besides generalizing some results of Ref. [5,8], we
propose a different way of calculating a four-velocity-
dependent (and still partially homogeneous in the veloc-
ities) metric, that can reproduce the main features of the
standard Finsler case, like the dispersion relation, the
geodesics as worldlines, the presence of DSR symmetries,
and, furthermore, present a well-behaved massless limit,
thus allowing for a generalized Finsler-like metric for any
type of particle. Such generalization will allow us to
propose an expression that deepens the one of Jacob and
Piran [16] for the MDR-induced time delay for particles
with different energies, and to analyze the Finsler nature
of spacetime using photons and neutrinos as probes.
Furthermore, we will study in the last section the law of
interaction between elementary particles compatible with
DSR models, furnishing a description in terms of the
tangent space, thus being compatible with the Finsler
formalism.

A. Notations and the Hamiltonian operator

In this paper, in order to connect with the previous
literature [8,15] and express the mathematical and physical
concepts in an effective and comprehensible way, we will
need to rely on different notations and coordinate sets.
The first one is the comoving relative-locality coordinate
set for momentum-space pα and spacetime flat slicing
coordinates xβ, which satisfy the relation

fpα; xβg ¼ δβα: ð1Þ

In this coordinate set, the Hamiltonian which formalizes the
physics of particles embedded in a de Sitter–like curved
spacetime, with H the parameter of curvature and l the
deformation parameter due to Planck-scale effects, can be
written as

H ¼ p2
0 − p2

1e
−2Hx0 þ lðγp3

0 þ βp0p2
1e

−2Hx0Þ; ð2Þ
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the generic MDR obtained imposing the on-shell relation to
the Hamiltonian in (2) contains the most general deforma-
tions, being l the only scale available for deforming
the mass-shell relation, that one can consider without
having any implications on spacial rotations (no third
power deformations of momentum p1). This kind of
Hamiltonian has been studied in many phenomenological
explorations (mostly in conformal coordinates) such the
ones in Ref [15].
We stress that, for the sake of simplicity, we are working

in 1þ 1 dimensions at first order in l (since the same
kinematical results are preserved in a higher number
dimensions). In order to describe physics in an intuitive
way, we will also consider the so-called conformal time
coordinatization expressed by coordinates (Ω, Π) and
(η, x). The relation between the previous coordinate set
and this latter one is

η ¼ 1 − e−Hx0

H
; x ¼ x1; ð3Þ

Ω ¼ p0eHx0 ; Π ¼ p1: ð4Þ

One can verify the effectiveness of expressing physics in
conformal-time coordinates by noticing that the spacetime
line-element in this coordinatization can be expressed
simply as ds2η ¼ ð1 −HηÞ−2ds2flats−t. Previous works ana-
lyzing such deformed physical frameworks (see Ref. [15]),
express this same Hamiltonian (2) depending on canonical
variables (qμ, Pν), deformation parameters γ and β,
deformation parameter l, and cosmological constant H.
We define the energy and momentum, respectively,
as Pμ ¼ðΩ;ΠÞ and spacetime coordinates as qμ ¼ ðη; xÞ.
Therefore, in conformal coordinates, we have

HΩ ¼ ð1 −HηÞ2ðΩ2 − Π2Þ þ lð1 −HηÞ3ðγΩ3 þ βΩΠ2Þ:
ð5Þ

It is also easy to verify thatΩ and η (as well asΠ and x) still
are conjugate variables.
The last couple of variables which will have some

importance in this article are the ones composed by the
so-called natural momenta, i.e., those that have the same
functional dependence on local momenta as the charges of
the translation generators of our spacetime:

E ¼ p0 −Hx1p1 ¼ Ωð1 −HηÞ −HxΠ; ð6Þ

p ¼ p1 ¼ Π; ð7Þ

such charges can be easily obtained solving the
de Sitter–Killing equations; see, for more explanations,
Refs. [15,17,18]. Using those variables, the expression of
the Hamiltonian (2) becomes

HE ¼ E2 − p2 þ 2HpN þ lβEpðp − 2HN Þ
þ lγEðE2 þHpN Þ

¼ E2 − p2 þ 2HpN
�
1 − l

�
β −

γ

2

�
E

�

þ lðβEp2 þ γE3Þ: ð8Þ

The physics of particles described by the deformed
Hamiltonians defined in this section was widely explored
in Ref. [15], however many aspects of the formalization of
those phenomena are missing in such approaches to the
study of deformed relativistic frameworks, such as metric
formalism, Killing vectors and particle interactions. We
would like here to provide a first exploration on how the
integration of elements borrowed by the so-called deformed
momentum-space framework and Finsler geometry could
enrich this kind of approaches to the study of deformed
relativity theories, providing solid theoretical foundations
to the formalism and also new suggestions on the phe-
nomenological side.

II. INTRODUCTION ON DEFORMED
LAGRANGIAN FORMALISM AND SYMMETRIES

Finsler geometry has been introduced in previous articles
[5,8] to formalize deformed relativistic frameworks defin-
ing a so-called Finsler norm, a homogenous function F ð_xÞ
on tangent space. In order to define a Finsler function, we
can start writing down the particle’s action explicitly in
terms of the Hamiltonian

S ¼
Z

_xαpα − λðH −m2Þdτ; ð9Þ

where H is of course the Hamiltonian (2), and λ some
Lagrange multiplier. In general, a semiclassical metric
structure is effectively encoded in Finsler geometry. On
the other hand it turns out that κ-Poincaré group (that we are
here using as foundation of a Planck-scale deformed
particle dynamics in a maximally symmetric spacetime)
does describe the symmetries of particles living on a de
Sitter curved momentum-space [17,19–24] and flat space-
time. The form of the momentum-space metric is chosen by
imposing the invariant Hamiltonian to be the integration of
the momentum space line element, this procedure can be
easily generalized also at all orders in H (see appendix
for more details on momentum-space dynamics). Those
two different metric formalisms Finsler metric, gFμνð_xÞ and
momentum-space metric,

ζαβðpÞ ¼
�
1þ 2γlp0 0

0 −e−2Hx0ð1 − 2βlp0Þ

�
ð10Þ

could lead to confusion on the metric structures we refer to
when we will introduce concepts such as geodesics and
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invariant line-element. Therefore we may need here to
briefly review deformed-relativistic Lagrangian formalism
and the role that those different metrics play in it, in the
massless case for the sake of simplicity.
The minimization of (9) provide the relation between

momentum and four-velocity (here in 1þ 1D):

_xα ¼ λð_xÞfH; xαg; ð11Þ
then at first order in l is not hard to invert this relation,
finding some pð_xÞ, which makes possible to re-express the
Casimir in terms of four-velocities:

Hð_xÞ ¼ ζαβð_xÞ_xα _xβ; ð12Þ
where ζμνð_xÞ is the inverse of momentum-space metric
expressed in terms of _x. It is also possible now to find an
explicit solution for λð_xÞ, by imposing ∂L=∂λ ¼ 0. In the
massive case this leads to

λð_xÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζμν _xμ _xν

p
m

: ð13Þ

In the massless case, in general, it is not possible to solve
∂L=∂λ ¼ 0 with respect to λ, however taking into account
(12) and (13) we can find very naturally that in the limit
m → 0, λ → 1=2. In this limit then (11) in 1þ 1D become

�
_x0 ¼ p0 þ l

2
ðβp2

1e
−2Hx0 þ 3γp2

0Þ
_x1 ¼ −p1e−2Hx0ð1 − βlp0Þ

; ð14Þ

and their inversion gives

�
p0 ¼ _x0 − l

2
ðβð_x1Þ2e2Hx0 þ 3γð_x0Þ2Þ

p1 ¼ −_x1e2Hx0ð1þ βl_x0Þ
: ð15Þ

While this inversion operation is straightforward at first
order in l, in a nonperturbative scenario (at all orders in l)
the explicit expression of _xðpÞ may involve noninvertible
functions, which would make very hard (and in some cases
impossible) to find the exact form of pð_xÞ.
Using those last results we find that the Lagrangian of

our theory can be expressed as

L ¼ _xαpα −
1

2
ζμν _xμ _xν ¼

1

2
gσρð_xÞ_xσ _xρ; ð16Þ

where the Lagrangian metric g is not univocally deter-
mined, as we will better discuss later, and should be chosen
according to the requests of the theory. As we can see from
(16) in this kind of deformed-symmetry theories we loose
the uniqueness of the metric for spacetime and momentum-
space. Those different metrics play a different role in the
theory and one should be always careful to use the right one
in the right formula. For instance for Euler-Lagrange
derived relations, such as geodesic equations or Killing

equations we are referring to metric g. The light cone
structure is instead characterized in terms of momentum-
space metric, since the on-shell relation is ζμν _xμ _xν ¼ m2.
Intriguingly, this defines the invariant (see Refs. [8,23])
element for flat spacetime as Δs2 ¼ ζμνΔxμΔxν.
It may be disappointing to have lost the possibility to

express our theory with a unique metric, however from (16)
we can still identify a couple of interesting relations:

ζμνð_xÞ_xμ _xν ¼ gαβðpÞpαpβ; ð17Þ
ζαβðpÞpαpβ ¼ gμνð_xÞ_xμ _xν; ð18Þ

which highlight the duality between spacetime and momen-
tum-space of this theory, widely discussed in the literature
(see for instance [17]).
In order to fully understand whether deformed relativ-

istic frameworks and Finsler geometry are physically
equivalent, in [8] the symmetry transformations derived
within the Finsler framework were identified with the ones
generated by a deformed-Poincaré group. We want to show
here how those generators can be obtained a priori using
Finsler Killing equations with metric g. Hamiltonian (2) at
order zero in H is of course invariant under translations
since

fp0;Hg ¼ 0; fp1;Hg ¼ 0; ð19Þ
however if, always at zeroth order in H, we try to find the
representation of the boost imposing

fN ;Hg ¼ 0; ð20Þ
we obtain two possible solutions:

N ð1Þ ¼ x0p1 þ x1
�
p0 þ

�
β þ γ

2

�
lp2

0 þ β
l
2
p2
1

�
; ð21Þ

N ð2Þ ¼ x0p1

�
1 −

γ

2
lp0

�
þ x1

�
p0 þ βlp2

0 þ β
l
2
p2
1

�
;

ð22Þ

or maybe some combination of the two. The situation at all
orders in H is of course even more complicated, which
representation for the boost generator should one choose?
A solution to this problem can be provided by the powerful
Finsler formalism already explored in the formalization of
deformed relativistic frameworks in Ref. [5,8]. In Finsler
geometry it is, in fact, possible to define a deformed Killing
equation:

∂αgμνξα þ gαν∂μξ
α þ gμα∂νξ

α þ ∂gμν
∂ _xβ ∂αξ

β _xα ¼ 0: ð23Þ

One can try to solve those equations for a generic four-
velocity-dependent test metric such as
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gμν ¼
�

1 − γl_x0 −e2Hx0β2l_x1

−e2Hx0β2l_x1 −e2Hx0ð1þ β1l_x0Þ

�
: ð24Þ

Using (23), after a few complicated steps the boost generator can be identified (see appendix for an example on how to solve
the Finsler Killing equation in the flat spacetime case) as

N ¼
�
1 − e−2Hx0

2H
ð1 − γlðp0 −Hx1p1ÞÞ −

H
2
ðx1Þ2½1þ 2ðβ1 þ 2β2Þlp0�

�
p1

þ x1
�
p0 þ

�
β1 þ 2β2 þ

γ

2

�
lp2

0 þ
l
2
ðβ1 þ 2β2Þp2

1e
−2Hx0

�
−
lH
2

ðβ1 þ 2β2Þðp0 −Hx1p1Þp1ðx1Þ2; ð25Þ

which, in the flat spacetime limit H → 0, reduces to

N l ¼ x0p1ð1− lγp0Þ

þ x1
�
p0 þ

�
β1 þ 2β2 þ

γ

2

�
lp2

0 þ
l
2
ðβ1 þ 2β2Þp2

1

�
;

ð26Þ

in which we recognize a combination of the two candidates
N ð1Þ, N ð2Þ, while in the classical limit l → 0 gives back
the de Sitter boost generator (see, for instance, [18]):

N H ¼
�
1 − e−2Hx0

2H
−
H
2
ðx1Þ2

�
p1 þ x1p0: ð27Þ

The Hamiltonian satisfying fN ;Hg can be obtained
though the contraction of momenta with the metric ~gðpÞ:

H ¼ gαβðpÞpαpβ

¼ p2
0 − p2

1 þ lððβ1 þ 2β2Þe−2Hx0p0p2
1 þ γp3

0Þ: ð28Þ

In Eq. (28), we can recognize Hamiltonian (2), under the
condition β ¼ β1 þ 2β2, which introduces a freedom that we
will have to constrain based on the requests of the theory. In
general, an approach based on curved momentum spaces
work perfectly fine with a diagonal metric, i.e., β1 ¼ β,
β2 ¼ 0, as well as with other choices. On the other hand, in
order to formalize our theory (5) as a Finsler geometry we
will need a homogeneouslike metric, which will force us to
the choice β1 ¼ β2 ¼ β=3, as we will discuss further in this
article. The deformed de Sitter algebra of spacetime sym-
metry generators E, p, N at all orders in H is characterized
by the following Poisson brackets:

fE; pg ¼ Hp; fN ; Eg ¼ −pþHN þ γlpE ð29Þ

fN ; pg ¼ −E − l
�
β

2
p2 þ

�
β þ γ

2

�
E2 −Hðβ − γÞNp

�
:

ð30Þ

Of course those relations are, by definition, coherent with the
Poisson brackets between generators and Hamiltonian (8):

fE;HEg ¼ fp;HEg ¼ fN ;HEg ¼ 0:

It should be noticed in the end that the algebra described in
this section is compatible with the well-known q–de Sitter
algebra [18,25,26], at first order in l, under the choice
β ¼ −1, γ ¼ 0.

III. FROM HAMILTONIAN FORMALISM
TO A FINSLER GEOMETRY

We started with a nontrivial local structure of spacetime
that could be modeled by a curved momentum-space,
which is responsible for the definition of a modified
dispersion relation and a deformed picture of interactions
(that will be discussed in section V). Now, we can analyze
how a spacetime can emerge from these considerations, i.e.,
how the local structure can interfere with the geometry of
the effective manifold that these high-energetic particles
probe. We will follow a procedure that resembles the one
presented in Refs. [5,8]. In these references, the authors
perform a Legendre transformation that links the action of a
particle from the Hamiltonian to the Lagrangian formalism.
Since in special and general relativity one identifies the
action of a massive particle with the arc length of its
trajectory, the authors generalized this assumption to the
case of MDRs, defining a nonquadratic norm of the
particle’s four-velocity vector. This can be modeled by
the well-studied Finsler geometry, which is defined by a
four-velocity-dependent norm. The Finsler norm satisfies
the usual properties:

�
F ð_xÞ ≠ 0 if _x ≠ 0

F ðϵ_xÞ ¼ jϵjF ð_xÞ : ð31Þ

The second one is rather important, since it expresses the
homogeneity property of the norm, which in general
implies
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_xμ
∂F 2

∂ _xμ ¼ 2F 2: ð32Þ

In [5,8] it was formalized that a MDR theory can be well
expressed in terms of Finsler geometry, identifying the
Finsler norm from the action integral as

S ¼ m
Z

F ð_xÞdτ ¼ m
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gFμνð_xÞ_xμ _xν
q

; ð33Þ

where gFμν is of course the Finsler metric. As we will see,
this metric depends on the four-velocity and mass of the
particle, however, it will not have a smooth limit for
massless particles. Therefore, we propose an intermediate
procedure that allows to define an action that serves both
for the massive and massless cases, thus allowing a well-
defined, unique metric that may describe a generalized
Finsler spacetime, that is probed by high-energetic
particles.

A. Standard Finsler metric in de Sitter spacetime

In order to generalize the procedure just described to
fully symmetric curved spacetimes, our starting point is the
particle action in conformal coordinates with modified
dispersion relation HΩ ¼ m2,

S½q; p; λ� ¼
Z

dτ½_ηΩþ _xΠ − λðHΩ −m2Þ�: ð34Þ

This is the simple generalization of covariant mechanics in
de Sitter spacetime. The equations of motion are

_η − λlð1 −HηÞ3ð3γΩ2 þ βΠ2Þ − 2λð1 −HηÞ2Ω ¼ 0;

ð35Þ

_x − 2λlβð−HηÞ3ΩΠþ 2λð1 −HηÞ2Π ¼ 0; ð36Þ

_Ω − 2λHð1 −HηÞðΩ2 − Π2Þ
− 3λlHð1 −HηÞ2ðγΩ3 þ βΩΠ2Þ ¼ 0; ð37Þ

_Π ¼ 0: ð38Þ

Following the same procedures of [8], i.e., performing
the Legendre transformation, substituting p → _q, the
Lagrangian is now

Lðq; _q; λÞ ¼ _η2 − _x2

4λð1 −HηÞ2 −
l
8λ2

β_η_x2 þ γ _η3

ð1 −HηÞ3 þ λm2: ð39Þ

As we already commented in Sec. II, in order to carry out
this operation one needs the explicit expression of pð _qÞ,
which in general cannot be obtained at all orders in l. On
the other hand, the linearization guarantees that this is
possible for any deformation of the Hamiltonian, that is

why in the previous literature [5,8] the procedure linking
the MDR with the Finsler norm has always been performed
at the leading order. Minimizing this Lagrangian with
respect to λ we get

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_η2 − _x2

p
2mð1 −HηÞ − l

β_η_x2 þ γ _η3

2ð1 −HηÞð_η2 − _x2Þ ð40Þ

and thus we can identify the Finsler norm related to
Hamiltonian (5) as

F ðq; _qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_η2 − _x2

p
1 −Hη

−
ml
2

β_η_x2 þ γ _η3

ð1 −HηÞð_η2 − _x2Þ : ð41Þ

At this point we can make contact with geometry, iden-
tifying the semiclassical metric structure effectively
encoded in the Finsler formalism. The Finsler metric is
defined through a homogenous function on tangent space

gFμν ¼
1

2

∂
∂ _qμ

∂
∂ _qν F

2ðq; _qÞ; ð42Þ

so

gF00 ¼
1

ð1 −HηÞ2 −
ml
2

3β_ηð_xÞ4 − γð5_η3 _x2 − 2_η5 − 6_η_x4Þ
ð1 −HηÞ2ð_η2 − _x2Þ5=2 ;

ð43Þ

gF11 ¼ −
1

ð1 −HηÞ2 −
ml
2

βð2_η5 þ _η3 _x2Þ þ γð_η5 þ 2_η3 _x2Þ
ð1 −HηÞ2ð_η2 − _x2Þ5=2 ;

ð44Þ

gF01 ¼
ml
2

_x3
βð4_η2 − _x2Þ þ 3γ _η2

ð1 −HηÞ2ð_η2 − _x2Þ5=2 : ð45Þ

It furnishes the de Sitter metric if l ¼ 0 and furnishes the
metric of paper [8] for H ¼ 0, γ ¼ 0 and β ¼ −1.

1. Geodesics

The analysis done so far is valid for the case of massive
particles, m ≠ 0, since the limit m → 0 corresponds to a
singularity, implying that observables measured with such
metric involving observations with particles with tiny mass,
like neutrinos, would not be well defined.
Despite this fact, it is possible to solve the geodesic

equation for massless particles by making m ¼ 0 in the
geodesic solution just like was done in Ref. [8]. In fact, now
that we have a metric for a massive particle, we can
minimize the arc-length to find its world line. This way, just
as it is done in [8], even though the massless limit does not
exist for the definition of the metric, it is well behaved for
the expression of the geodesics.
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In fact, one could solve the geodesic equation that arises
by extremizing the action, which furnishes:

q̈α þ γαμν _qμ _qν þ
1

2
gμαF

d
dt

�� ∂
∂ _qμ g

F
γβ

�
_qγ _qβ

�

¼
_F
F

�
_qα þ 1

2
gμαF

� ∂
∂ _qμ g

F
γβ

�
_qγ _qβ

�
; ð46Þ

for

γαμν ¼
1

2
gαβF ðgFμβ;ν þ gFνβ;μ − gFμν;βÞ: ð47Þ

Using the known expressions from the Finsler geometry
literature, that follow from Euler theorem for homogenous
functions

_qα
∂gFμν
∂ _qα ¼ _qμ

∂gFμν
∂ _qα ¼ _qν

∂gFμν
∂ _qα ¼ 0; ð48Þ

we can write the geodesic equation as

q̈α þ γαμν _qμ _qν ¼
d
dt

ðlnF Þ _qα: ð49Þ

As this Finsler function does not depend on the coor-
dinate x, we conclude that Π=m ¼ ∂F=∂ _x is a first integral
to this problem, this is equivalent to equation (38). As this
formalism is invariant by reparametrization of the solution,
we can choose the gauge ηðτÞ ¼ τ. Doing it and substitut-
ing in the first constrain, we can solve the equation

Π ¼ −
m_x

ð1 −HηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_η2 − _x2

p −
m2lðβ þ γÞ_η3 _x

ð1 −HηÞð_η2 − _x2Þ2

¼ −
m_x

ð1 −HτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _x2

p −
m2lðβ þ γÞ_x

ð1 −HτÞð1 − _x2Þ2 : ð50Þ

Integrating this equation with initial condition xð0Þ ¼ x̄ we
obtain its simple solution in which incoming photons have
signature Π < 0:

xðηÞ − x̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Π2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Π2ð1 −HηÞ2

p
HΠ

þ lðβ þ γÞηΠ
�
1 −

Hη

2

�
: ð51Þ

The same worldline with spatial origin in x̄ can as well be
obtained upon integration from x̄ to xðηÞ, imposing the on-
shell relation to the Finsler norm. For a massless, on-shell
particle, m ¼ 0, jΠj ¼ ΩþOðlÞ, the above equation is

xðηÞ − x̄ ¼ η − lðβ þ γÞηΩ
�
1 −

Hη

2

�
: ð52Þ

This is exactly the worldline found in the literature from
the Hamiltonian (5), see Ref. [15]. As this is the
straightforward generalization of Refs. [5,8], it also
possesses the same kind of formal difficulties with respect
to the massless metric. However, it has been argued, for
example in Ref. [27], that physical observables calculated,
of course, by a macroscopic observer, should be per-
formed using the classical, Riemannian metric, and in this
case, there would be no problem in having such ill-defined
metric, because its effect (apart from its geodesic) would
be unobservable. But we raise the possibility that the
natural metric “seen” by a particle, like the one we found
with a Finslerian structure, should be the one considered
for the calculation of observables in the new geometrical
framework, since the act of expressing a metric probed by
such particle should only make sense if there is an
observer who probes such geometrical structure. Which
allows us to a deeper conclusion that observations
performed with particles with a nontrivial dispersion
relation (no matter the origin of this deformation) should
indicate a possible non-Riemannian structure of the
spacetime where it propagates. Thereby, by generalizing
the geometrical structure with which one describes a
spacetime, the physical observables should change
reciprocally.

B. Generalized Finsler-like metric

In the previous section we performed a Legendre
transformation on the action of a particle with a MDR
until we found a version of the action that we could
identify with the arc length of the particle’s trajectory in
a certain geometry. Since this was a nonquadratic
function, but still invariant under reparametrizations,
we could identify a Finsler function and derive a metric
from it. For the massive case, there was no problem in
the definition of the metric, but for the massless one, the
metric was ill defined. Such behavior is due to the fact
that the arc length is the Nambu-Goto-like version of the
action and it is well known that it can only properly
describe and only makes sense its extremization for
the massive case and since the metric that would be
found should depend on the mass of the particle, it is
natural that such kind of approach would be problematic
for m → 0 (which was not the case in Riemannian
geometry.
A possible solution for such impasse is the use of an

unique action for both cases. Therefore, we propose to
read a metric from the Polyakov-like action of a point
particle [28]. Such formalism was initially explored
in Ref. [29].
In fact, by performing the Legendre transformation in

(34), we ended up with the Lagrangian (39). As the
Lagrangian is an analytic function, the action can be
uniquely expressed by a Taylor expansion in the four-
velocities
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S½q; λ� ¼
Z

dτ

�
Lj _q¼0 þ

∂L
∂ _qμ

����
_q¼0

_qμ þ 1

2!

∂2L
∂ _qμ∂ _qν

����
_q¼0

_qμ _qν

þ 1

3!

∂3L
∂ _qμ∂ _qν∂ _qγ

����
_q¼0

_qμ _qν _qγ þ � � � þ λm2

�
; ð53Þ

where the zeroth and first order terms vanish as well as
those of higher than the third order, since the Lagrangian
(39) is a third-degree polynomial. Therefore the action can
be expressed as

S½q; λ� ¼
Z

dτ

�
1

4λ
~gμνðq; _q; λÞ _qμ _qν þ λm2

�
; ð54Þ

where

~gμνðq; _q; λÞ ¼ g0μνðqÞ þ g1μνðq; _q; λÞ; ð55Þ

and we have identified

1

4λ
g0μν ¼

1

2!

∂2L
∂ _qμ∂ _qν

����
_q¼0

;

1

4λ
g1μν ¼

1

3!

∂3L
∂ _qμ∂ _qν∂ _qγ

����
_q¼0

_qγ: ð56Þ

This defines a metric that depends on the point of the
manifold and the four-velocity. As we will see, the field λ
allows to distiguish between the massive and massless
cases.

1. Massive case

If m ≠ 0, λ is found to be (40). If we substitute it into the
action, we find

S½q� ¼ m
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~gμνðq; _qÞ _qμ _qν

q
; ð57Þ

where the metric is

~gμν ¼ ð1 −HηÞ−2
0
B@

1 − lγ m_ηffiffiffiffiffiffiffiffiffi
_η2−_x2

p − 1
3
lβ m_xffiffiffiffiffiffiffiffiffi

_η2−_x2
p

− 1
3
lβ m_xffiffiffiffiffiffiffiffiffi

_η2−_x2
p −1 − 1

3
lβ m_ηffiffiffiffiffiffiffiffiffi

_η2−_x2
p

1
CA:

ð58Þ

From this expression, one can already realize that such
metric is well defined in the massless limit, since the extra
terms behave like m=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_η2 − _x2

p
,2 whereas in the standard

Finsler case we had m=ð_η2 − _x2Þ5=2, which of course
explodes in the massless regime.
The extremization of this action furnishes the expected

geodesics (which is necessary for consistency), given by
Eq. (51),which coincidewith those obtained usingHamilton
equations for the Hamiltonian (5) subject to the mass-shell
condition H ¼ m2, in the same parametrization.

2. Massless case

For m ¼ 0, the Lagrange multiplier λ cannot be solved.
However, we can absorb it into the definition of the
parameter and define the usual affine parameter as
2λdτ ¼ ds. With this definition, the action assumes the
familiar form

S½q� ¼ 1

2

Z
ds~gμνðq; q0Þq0μq0ν; ð59Þ

where q0 ≐ dq=ds, generalizing the result obtained in (16)
to curved spacetimes, for the metric (24) and β1¼β2¼β=3.
Moreover, the extremization of this functional (taking into
account the massless condition as a fundamental one, i.e.,
the on-shell condition H ¼ 0 written in terms of the four-
velocities q0) furnishes the geodesic equation (52).

3. Energy-momentum-dependent metric

We have shown that a natural geometrical formalism that
describes the spacetime probed by particles with a
Modified Dispersion Relation consists in the use of a
four-velocity-dependent metric, such that the Riemannian
structure is recovered in the low-energy limit. To give
another appearance to this approach we can use the
definition of the conjugate momenta Pμ ¼ ∂L=∂ _qμ and
substitute the four-velocities that appear in the metric by the
energy-momentum of the particle. In fact, we end up with

~gμν ¼ f2ðηÞ
�
1 − lγΩ=fðηÞ 1

3
lβΠ=fðηÞ

1
3
lβΠ=fðηÞ −1 − 1

3
lβΩ=fðηÞ

�
; ð60Þ

where fðηÞ ¼ ð1 −HηÞ−1. This is how our formalism takes
the form of a “rainbow metric” [6], where the metric that an
observer assigns to the spacetime by using high-energetic
particles depends on its energy-momentum. As can be seen,
once the metric is written this way, it is evident the smooth
limit between the massless and massive cases, since the
dependence on the mass has disappeared, remaining just
the momenta one. This was not the case for the same
substitution in the standard Finsler case, as can be verified
in Ref. [8] already in the flat case, which is still true by
adding curvature to the spacetime.3

2It should be noticed that since the two terms go to zero with
the same velocity in the classical case, then at first order, in the
massless limit lm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_η2 − _x2

p
→ lþOðl2Þ and the metric ~gμν

has no singular behavior.

3Another realization of rainbow gravity using vector depen-
dent metrics can be found in [30] in the context of disformal
transformations.
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IV. DEFORMED RIEMANNIAN METRIC,
TIME DELAY AND REDSHIFT

The Finsler geometry is a formulation in which the arc
length functional plays a central role, and from it, one can
derive a metric tensor that depends homogeneously on
tangent-space elements. In the previous Section, we have
considered a way of defining a four-velocity-dependent
metric that shares many properties of the Finsler one, but is
derived from a Polyakov-like action for a particle that
obeys a Modified Dispersion Relation and generates the
same basic features, like the dispersion relation from a
norm and geodesics. One of our achievements is the
smooth limit that the metric presents when passing from
the massive to the massless case.
We would like to probe the effects of such metric

structure observing the travel-time through cosmological
distances of a particle sufficiently energetic. For the sake of
measurements, since they are performed using a macro-
scopic apparatus, it is usually considered the classical
Riemannian metric for the definition of observables [27],
for example, the proper time of an observer on Earth, which
is used to derive the expression for the time-delay of high
energetic photons emitted from a GRB [16]. The formalism
of Finsler geometry that we just described allows us to relax
this hypothesis, as we will see in this section.
The Finsler metric is a function that depends on

spacetime points and vector fields, id est to calculate the
inner product of two vectors at a given point, it is also
necessary to determine a direction or a third vector at that
point. Denoting gv the metric tensor that depends on
v ∈ ΓðTMÞ, then the inner product of vectors u and w
is gvαβuαwβ, it is then, necessary to specify the three vectors
(v, u, w) to measure the inner product. However, for
each fixed v0, we have that gv0 is a Riemannian metric.
Therefore, it is possible to calculate a vector-directed
Riemannian scalar product at a given point for a fixed
v0, if this vector is defined at that point. See for instance
Ref. [31] for an analysis of vector dependent tensor
calculus.
The formalism here described allows us to define a

Riemannian metric, induced by a Finsler one by fixing the
vector which the metric depends on as the tangent vector of
the integral curve of the particle that probes the “rainbow”
metric, i.e., ~g ≐ gv0 , where v0 is the particle’s four-velocity.
It is the Riemannian metric constructed by an observer
by means of measurements with a particle with four-
velocity v0.
To visualize the reasonability of this proposal, consider

the following example. Suppose that the Planck scale
was not so far from our experience, such that spacetime
inferences could always be performed with particles that
manifest modified dispersion relations. Since we are
hypothesizing that the spacetime probed by such particles
is deformed with respect to the standard Riemannian one by
means of a momentum-dependent metric, if an observer

Alice that makes inferences using these particles intends to
preserve the equivalence principle, she should assign such
metric structure to the spacetime manifold. For example,
the geometrical locus of the photon sphere of a Black Hole
(BH) is a property of the photon’s worldlines, and if she
wants to preserve the equivalence principle by representing
them as geodesics of a spacetime, they would need to be
compatible with the metric structure of the spacetime
surrounding a BH, which would be of rainbow nature.
In other words, the map of a spacetime constructed by such
observer would need to inform such energy-dependent
behavior.4

So, following this principle, another example consists in
the measurement of the proper-time, elapsed on Earth
from the emission of a particle from a cosmological source
up to its arrival at a terrestrial detector. As the spacetime
geometry inferred using a particle with the same energy is
determined by the deformed metric, the proper-time is
calculated as

R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~gμν _qμ _qν

p
dλ, which in the comoving frame

is
R ffiffiffiffiffiffi

~g00
p

dη, where ~g is the rainbow metric that depends on
the energy of the detected particle.5

Therefore, for the measurement of the time delay
between massless particles from GRBs [11,14] (which is
one of the standard sources of constrains for MDRs), we
define it analogously to the Shapiro delay [33]. In this case,
the delay was calculated as the difference in the proper time
of Earth between the time taken for a radar signal to reach a
target and return depending if there is a massive object that
deforms the spacetime geometry probed by the photon and
the observer; i.e., in the sending and receiving of the
signal, one compares the proper times calculated in first and
zeroth order in the mass parameter, for example, in a
Schwarzschild spacetime. Equivalently, in this model,
depending on the energy of the probed particle, the induced
metric will be the ordinary de Sitter one induced by a
standard dispersion relation or will manifest a first-order
correction if the particle is sufficiently energetic, induced
by the corresponding MDR. In our case, the parameter is
not the mass in the Schwarzschild metric, but it is the
Planck length l.

A. On the propagation time

What we define as a time delay for the arrival of photons
is the difference between the proper times (measured on
Earth) that record the time elapsed from the emission of
massless particles at A, to their arrival at the detector,
labeled as B. For each photon, the proper time elapsed is

4The study of the role of the equivalence principle in Finsler
geometry in theories with MDR is still at an early stage. An
interested reader may find some insight in Ref. [32].

5The effect of considering a deformed metric for this calcu-
lation can be equivalently cast by absorbing this contribution in a
redefinition of the emission or detection parameter η and
considering the standard Riemannian metric.

INVESTIGATION OF FINSLER GEOMETRY AS A … PHYSICAL REVIEW D 95, 046015 (2017)

046015-9



τ ¼
Z

B

A

ffiffiffiffiffiffi
~g00

p
dη: ð61Þ

In this case, ~g00 is the metric’s component in the deformed
Riemannian geometry induced by a Finsler-like metric that
the observer associates to the spacetime from Eq. (60),
where the photon’s four-velocity/momenta is the fixed
vector that induces the deformed Riemannian metric.
In the coordinates that we have been using ~g00 ¼
ð1 −HηÞ−2 − lγΩð1 −HηÞ−1. Integrating the proper time,

τ ¼ 1

H
ln

���� 1 −HηA
1 −HηB

���� − l
Ω
2
γðηB − ηAÞ: ð62Þ

For the sake of simplicity, we assume the classical
expression for the redshift z

1þ z ¼ aðtBÞ=aðtAÞ ¼
1 −HηA
1 −HηB

; ð63Þ

in order to keep explicit the Planck scale corrections in the
time-delay formulation. An approach assuming a nontrivial
expression for z can be found for instance in [26].

B. Calculating the time delay
for the perturbed metric

Now, consider that we have a hard and a soft massless
particle, for which Ωsl ≪ 1, and Ωhl≲ 1. Their world-
lines will be

xhðηÞ ¼ η − lðβ þ γÞðη − ηAÞΩh

�
1 −

Hðη − ηAÞ
2

�
; ð64Þ

xsðηÞ ¼ η: ð65Þ

Suppose that both particles are emitted simultaneously, i.e.,
ηsA ¼ ηhA ≐ −ηA, at the same spatial point xsðη ¼ ηAÞ ¼
xhðη ¼ ηAÞ ¼ xA (see Fig. 1). Let B be the point where the
detector on Earth is. The elapsed parameter necessary for
the soft particle to reach the detector, which is located at the
origin is ηA.
To determine the elapsed parameter, denoted by ηhB,

necessary for the hard trajectory to reach the same spacial
point, we consider

xhðηhBÞ ¼ 0

⇒ ηhB ¼ lðβ þ γÞΩh

�
1þHηA

2

�
ηA: ð66Þ

Since we normalize the scale-factor for ηB ¼ 0, and the
redshift z is an experimental parameter determined by soft
particles, it is natural to define it as

1þ z ¼ 1 −HηsA ¼ 1þHηA ⇒ ηA ¼ 1

H
z: ð67Þ

So, the proper time elapsed on Earth until the arrival of the
hard particle can be calculated using Eqs. (66) and (67) as

τh ¼
1

H
ln

���� 1 −HηhA
1 −HηhB

���� − l
Ωh

2
γðηhB − ηhAÞ

¼ 1

H
ln

���� 1þHηA
1 −HηhB

���� − l
Ωh

2
γðηhB þ ηAÞ

⇒ τh ≈ τs þ
lΩh

H

�
ðβ þ γÞ

�
zþ z2

2

�
−
γ

2
z

�
: ð68Þ

The time delay is defined as the difference between the
proper times τh and τs; therefore, it is

Δτ ≐ lΩh

H

�
ðβ þ γÞ

�
zþ z2

2

�
−
γ

2
z

�
: ð69Þ

Such expression contains the usual one used for the
calculation of time delays presented in [16], added to an
extra contribution due to the deformed metric that the
observer assigns to spacetime when performing measure-
ments with high-energetic particles. The previous approach
could not distinguish between the parameters γ and β,
since the effect appeared as a factor of γ þ β. Our new
proposal allows to distinguish them, and introduces a
phenomenological rule for the time delay in a more flexible
shape

ΔτðzÞ ¼ lΩh

H
ðξ1zþ ξ2z2Þ; ð70Þ

in our case, ξ1 ¼ β þ γ=2 and ξ2 ¼ ðγ þ βÞ=2.

0.0 0.2 0.4 0.6 0.8 1.0
0

5.0 107

1.0 108

1.5 108

2.0 108

t H 1

c

H
x

FIG. 1. Two massless particles, a high energetic one (blue lines)
and a low energetic one (red line), are emitted simultaneously at
the origin. We can observe that the high energetic particle
anticipates (dashed line) or follows (dotted line) the infrared
one, whether the sum of parameters β and γ is, respectively,
β þ γ < 0 or β þ γ > 0.

LOBO, LORET, and NETTEL PHYSICAL REVIEW D 95, 046015 (2017)

046015-10



In the de Sitter case, the use of Jacob and Piran’s ansatz
[16] (that does not make reference to a four-velocity-
dependent metric) predicts the time delay

ΔτJ−PðzÞ ¼
lΩh

H
ξ

�
zþ z2

2

�
; ð71Þ

for ξ ¼ β þ γ.

C. Energy-dependent redshift effect

Another interesting correction is the redshift of the
frequency of photons in this geometry. Different from
the previous case in which the metric played a central
role, for calculating this quantity it is only necessary to
consider the equations of motion of the photon. In fact, in
comoving coordinates,6 the equations of motion for
spacetime coordinates and the energy for a massless
particle are (14)

8>><
>>:

_x0 ¼ p0 þ l
2
ðβp2

1e
−2Hx0 þ 3γp2

0Þ
_x1 ¼ −p1e−2Hx0ð1 − βlp0Þ
_p0 ¼ −Hp2

0ð1þ lγp0Þ
: ð72Þ

The solution for the energy is

p0ðτÞ¼
p̄0

1þHp̄0τ
−lγ

p̄2
0

ð1þHp̄0τÞ2
lnð1þHp̄0τÞ; ð73Þ

where p̄0 is the energy of the photon for τ ¼ 0.
For on-shell massless particles we haveH ¼ 0, which is

simply

p2
1 ¼ e2Hx0p2

0½1þ lðβ þ γÞp0�: ð74Þ

Substituting Eqs. (73) and (74) )in the first equation of (72),
we find

Δx0ðτÞ ¼ 1

H
lnð1þHp̄0τÞ

þ l
p̄0

1þHp̄0τ

�
1

2
ðβþ γÞp̄0τþ

γ

H
lnð1þHp̄0τÞ

�
;

ð75Þ

which can be solved for the parameter τ as

τ ¼ eHΔx0 − 1

Hp̄0

− l
�
ðβ þ γÞ e

HΔx0 − 1

2H
þ γΔx0

�
: ð76Þ

Substituting this expression in the dependence of the
energy with the parameter τ given by (73), we derive
the cosmological redshift of the frequency of a photon that
obeys a modified dispersion relation (see Fig. 2)

p0 ¼ p̄0e−HΔx0 þ l
2
p̄2
0e

−2HΔx0ðβ þ γÞðeHΔx0 − 1Þ: ð77Þ

V. NONTRIVIAL MOMENTUM
COMPOSITION RULES

It was explained in [8], using an argument already
introduced in [24], that if one assumes deformed spacetime
symmetries, then if we assume that whenever two particles
interact, different observers must agree on the existence
of the interaction vertex, this latter may be deformed too.
This feature is formalized in the κ-Poincaré framework,
introducing a deformed composition law for momenta,

kμ ¼ ðp ⊕ qÞμ; ð78Þ

which we can imagine as describing the decaying of a
particle with momentum k in two different particles with
momenta p and q. At first order in the deformation
parameter l we can express all the possible composition
rules of momenta (requiring invariance under the parity
transformation p0 → p0, p1 → −p1, see [34]) relying just
on four parameters a, b, fg as

ðp ⊕ qÞ0 ¼ p0 þ q0 þ lðap0q0 þ bp1q1Þ; ð79Þ

ðp ⊕ qÞ1 ¼ p1 þ q1 þ lðfp0q1 þ gp1q0Þ: ð80Þ

Such deformed composition rules are known to be related
to the coproduct of translation generators. Then, in order to

0.0 0.2 0.4 0.6 0.8 1.0
0.03
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t H 1

p0
1

FIG. 2. Particles with different energies experience a different
cosmological redshift. The dashed-blue line shows the deforma-
tion effect for β þ γ > 0, while the dotted-blue one for β þ γ < 0.
The red line represents the classical undeformed cosmological
redshift effect, for a low-energetic particle.

6Now we use comoving coordinates because they are the
standard ones used in the literature to measure this effect [17].
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determine which coalgebric sector can be compatible with
our deformed boost generator (26), we need to find some
condition which would allow us to find some relations
between the composition rule parameters. Those relations
can be found by requiring the composition of the boosted
momenta to be invariant under the action of the boost

O0 ¼ Oþ ξfN ; Og: ð81Þ

However, before checking whether different (boosted)
observers agree on the existence of the particles’ vertex,
we should pay attention to the possibility to have the
so-called backreaction effect [24,34,35], since the rapidity
parameter ξ can in general change in a momentum-
dependent way, compatible with the coproducts of
momenta and the action of Lorentz transformations on
momenta themselves. This effect is defined as the right
action ◃ ∶R × Σ → R, that we can parametrize as

ξ1 ¼ ξ ◃ q ¼ ξð1þ lCq0 þ lDq1Þ;
ξ2 ¼ ξ ◃ p ¼ ξð1þ lBp0 þ lAp1Þ: ð82Þ

Therefore, in general, we will have

ðp ⊕ qÞ0μðξÞ ≠ p0ðξÞ ⊕ q0ðξÞ; ð83Þ

ðp ⊕ qÞ0μðξÞ ¼ p0ðξ ◃ qÞ ⊕ q0ðξ ◃ pÞ: ð84Þ

Now, imposing the complete parametrization of vertex
transformation (84) with (81) and (82), we are able to
find four relations between our eight parameters
a; b; f; g; A; B; C;D, which ensure the existence of the
vertex for any observer:

8>>>>>>>>><
>>>>>>>>>:

A ¼ 0

D ¼ 0

a ¼ −γ
b ¼ β − B − C

f ¼ β − C

g ¼ β − B

: ð85Þ

Those relations are perfectly compatible with the
Hamiltonian invariance under boost,

Hðp ⊕ qÞ ¼ HðkÞ ¼ H0ðkÞ ¼ Hðk0Þ
¼ Hðp0ðξ ◃ qÞ ⊕ q0ðξ ◃ pÞÞ; ð86Þ

which shows a posteriori the coherence of those compo-
sition laws with the curved momentum-space framework. It
can be noticed that our results (85) are compatible with
those in Eqs. (19) and (20) of Ref. [34] in the 1þ 1-
dimensional case.7 The problem concerns wheth the Finsler

geometry is compatible with such a “deformed sum.” In
Finsler geometry, in fact, the particle trajectory depends
on spacetime coordinates xα and four-velocities _xβ, which
live in a flat tangent space to the curved spacetime. On the
other hand, in relative locality [17,20,22] momenta are
the fundamental observables and spacetime is defined as
the cotangent bundle to the curved momentum-space. If the
deformation of momenta composition law fits very well
with the curved momentum-space framework, one should
not give for granted for this to happen also in the Finsler
case. However in this section we showed that nontrivial
composition laws are imposed by the deformation of
spacetime symmetries that arise from our theory. The
impossibility to express this feature also for Finsler
formalism would then jeopardise our entire argument.

A. Four-velocity tangent space

From our perspective, the problem of the tangent space
flatness is not a real problem. In fact every local observer is
flat, and curvature arises only when confronting observa-
tions between different reference frames. Assuming then
(78), we are treating different particles as different refer-
ence frames in momentum-space, which can be charac-
terized also as a nontrivial composition for four-velocities,
formalizing the relations between the different locally
flat reference frames. This feature can be obtained taking
into account a two-parameters family of coproducts and
momenta compositions that we can obtain from (85):

Δp0 ¼ p0 ⊗ 1þ 1 ⊗ p0

− lðγp0 ⊗ p0 − ðβ − B − CÞp1 ⊗ p1Þ; ð87Þ

Δp1 ¼ p1 ⊗ 1þ 1 ⊗ p1

þ lððβ − CÞp0 ⊗ p1 þ ðβ − BÞp1 ⊗ p0Þ; ð88Þ

and

ðp⊕ qÞ0 ¼ p0þq0−lðγp0q0− ðβ−B−CÞp1q1Þ; ð89Þ

ðp ⊕ qÞ1 ¼ p1 þ q1

þ lððβ − CÞp0q1 þ ðβ − BÞp1q0Þ: ð90Þ

Then, using the expression of four-velocities with respect to
momenta (14) with (89) and (90), in the massless case, we
can easily obtain the composition laws for _x:

7Equations (19) and (20) of Ref. [34] in terms of
our parameters are, in fact, a ¼ −γ, β ¼ f þ g − b and
γ þ β þ aþ b − f − g ¼ 0, which are trivially satisfied by (85).
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_x0ðpÞ ⊕_x _x0ðqÞ ¼ _x0ðp ⊕ qÞ
¼ _x0ðpÞ þ _x0ðqÞ þ 2γl_x0ðpÞ_x0ðqÞ
þ lð2β − B − CÞ_x1ðpÞ_x1ðqÞ; ð91Þ

_x1ðpÞ ⊕_x _x1ðqÞ ¼ _x1ðp ⊕ qÞ
¼ _x1ðpÞ þ _x1ðqÞ − lB_x1ðpÞ_x0ðqÞ
− lC_x0ðpÞ_x1ðqÞ: ð92Þ

Those laws satisfy the relation

_xαððp ⊕ qÞ0ðξÞÞ ¼ _xαðk0Þ ¼ _xαðp0ðξ ◃ qÞ ⊕ q0ðξ ◃ pÞÞ
¼ ð_xαðpÞÞ0ðξ ◃ qÞ ⊕_x ð_xαðqÞÞ0ðξ ◃ pÞ
¼ ð_xαðpÞ ⊕_x _xαðqÞÞ0ðξÞ; ð93Þ

where the backreaction has the exact same form of the one
described in the previous section. A trivial consequence of
the definition of velocity and the composition rules (91)
and (92), that we can be found a posteriori, in the massless
case is

_x1ðpÞ ⊕_x _x1ðqÞ
_x0ðpÞ ⊕_x _x0ðqÞ ¼ 1 − ðβ þ γÞlðp0 þ q0Þ

≡ vðp ⊕ qÞ; ð94Þ

in which v is the velocity that we already found in our
massless worldlines (52). This structure of relations
between different tangent spaces allows us to identify
the phase-space invariant element as:

ζαβðp ⊕ qÞ_xαðp ⊕ qÞdxβ
¼ ζαβðp0 ⊕ q0Þ_xαðp0 ⊕ q0ÞdðxβÞ0
¼ ζαβððp ⊕ qÞ0Þ_xαððp ⊕ qÞ0ÞdðxβÞ0
¼ ζαβððp ⊕ qÞ0Þðð_xðpÞÞ0 ⊕_x ð_xðqÞÞ0ÞαdðxβÞ0: ð95Þ

The doubt we had at the beginning of this section was
whether it is possible to express departures from Poincaré
symmetries, often formalized in the literature as a deformed
Hamiltonian framework (l-deformed phase space), within
the context of the Lagrange-Finsler geometry (tangent
space). As commented in [5], Finsler geometry could be
used to describe both breakdown and deformation of
spacetime symmetries. However we have showed here
that this symmetry deformation implies the necessity to
characterize velocities as living in a tangent space with
nontrivial translation laws. Those laws moreover result to
be compatible with the phase-space deformation of the
theory (2).

VI. CONCLUSIONS

The question of what may be the nature of the spacetime
emerging from a semiclassical limit of a quantum descrip-
tion of the gravitational degrees of freedom is still open.
Possibly, we may have a dimensional reduction coming
from CDT, Hořava-Lifshitz gravity and others (see [36] and
references therein), nonlocal metrics [37], Rainbowlike
metrics coming from a quantization of geometrical and
matterlike degrees of freedom [27] and, as we have shown,
a possible Finsler nature coming from a MDR. In all these
cases there exists a common point: the non-Riemannian
nature of spacetime. Which is not a complete surprise, after
all there is no a priori request for nature of spacetime to be
limited to Riemannian geometry at all scales, despite the
abundance of well-defined geometrical structures (not to
mention those that are still to be discovered).
In this paper, we analyzed the possibility of having a

deformed dispersion relation within a curved background,
investigatingwhat kind ofmanifold could be themost natural
to “host” them. We generalized the results presented in [5,8]
and we proposed a solution for the massless limit problem;
i.e., we found a candidate partially homogeneous metric,
using themost important properties that a proper geometrical
model for the description of elementary particles should
provide, such as the geodesic equation and the dispersion
relation, which are possible to formalize. The presence of
such a unified Finsler structure that an observer would assign
to spacetime, when performing measurements observing
high-energetic particles, allowed us to formalize the usual
phenomenology of time delays of photons fromGRBs due to
the energy-dependent speed of light presented in [16], plus a
correction of the order of the Planck length originated from
the non-Riemannian structure of spacetime, with both of
these contributions having the same geometrical origin. One
may also wonder whether the possibility of expressing some
Planck-scale-deformed Hamiltonian formalism as a Finsler
geometry is an artifact of the linearization with respect to l.
We know, for sure, that at first order in the deformation
parameter, this formalization is exact; however, we have no
elements to state that this should also be the case at all orders.
Then, in order to investigate such an exact theory, one may
need to further generalize the Finsler picture. However, since
our investigation relies on the Legendre transform to switch
from the Hamiltonian formalism to the Lagrangian one, an
all-orders exploration is now not possible, in general, andwe
should leave this concern to further investigations.
We estimated the correction that such a model could bring

to the cosmological redshift effect. In this context, it would be
extremely interesting to test such an effect using cosmologi-
cal data; however, unfortunately, the best observations on
some kind of energy dependence for the cosmological
redshift yet published [38] do not have the sensitivity to
discriminate the kind of effect we found here. The authors
found no energy dependence with a precision of Δz ∼ 10−6;
whereas, in the visible range of electromagnetic radiation
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(∼5000Å), the effect we take into account would be of the
order of Δz ∼ 10−28 on the redshift magnitude. In any case,
we need phenomenological analysis with more energetic
particles.
The last open issue we explored is the deformation of

the velocities composition law in the Finsler tangent space
that symmetrical l-deformed theories require (as already
pointed out in [8]), in order to allow to different observers
to agree on the occurrence (or not) of some interaction
event. We found that introducing a slightly more compli-
cated formalism inspired by the Hopf algebra literature, it is
still possible to obtain a full relativistic description for
particle interactions.
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APPENDIX A: CONNECTION
WITH RELATIVE LOCALITY

First of all let us define a generic8 momentum-space
metric depending on our two parameters β, γ, at first order
in the deformation parameter l:

ζμνl ðPÞ ¼
�
1þ 2γlP0 0

0 −e−2Hx0ð1 − 2βlP0Þ

�
: ðA1Þ

As is well established in the literature [17,22,23], we can
find the Hamiltonian by integrating the momentum-space
invariant line element

Dp ¼
Z

1

0

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζαβðPÞ _Pα

_Pβ

q
; ðA2Þ

where the momentum-space geodesics PðsÞ are defined by
the geodesic equation,

P̈α þ Γβγ
α _Pβ

_Pγ ¼ 0; ðA3Þ
in which the connections are our usual momentum-space
Christoffel symbols:

Γμν
λ ¼ 1

2

� ∂
∂pμ

ζσν þ ∂
∂pν

ζσμ −
∂

∂pσ
ζμν

�
: ðA4Þ

Given our generic metric, then, we just have to solve the
following equations:

P̈0 þ lðγ _P2
0 − βe−2Hx0 _P2

1ÞÞ ¼ 0;

P̈1 − 2lβ _P0
_P1 ¼ 0: ðA5Þ

Since P
…
∼Oðl2Þ, we observe that, in our case, the geodesic

can be expressed as

PαðsÞ≃ p̄α þ s _Pα

����
s¼0

þ 1

2
s2P̈α

����
s¼0

: ðA6Þ

Let us now impose the initial values for the geodesic as
Pαð0Þ ¼ 0 and Pαð1Þ ¼ pα. It is easy to notice that they
imply p̄α ¼ 0 and pα ¼ _Pαjs¼0 þ 1

2
P̈αjs¼0. We have now

all we need in order to solve our equations, i.e.,

_P0js¼0 ¼ p0 þ
l
2
ðγp2

0 − βe−2Hx0p2
1Þ;

_P1js¼0 ¼ p1 − lβp0p1; ðA7Þ

and also

P̈0js¼0 ¼ −lðγp2
0 − βe−2Hx0p2

1Þ;
P̈1js¼0 ¼ þ2lβp0p1: ðA8Þ

Therefore we are now able to solve integral (A2), and find
the generic Hamiltonian expression:

H ¼ p2
0 − p2

1e
−2Hx0 þ lðγp3

0 þ βp0p2
1e

−2Hx0Þ: ðA9Þ

APPENDIX B: SOLVING THE
KILLING EQUATIONS IN THE

FLAT-SPACETIME LIMIT

In the introductory section we have shown that the
Lagrangian-Hamiltonian Legendre transformation defines
the relation

ζμν _xμ _xν ¼ 2pα _xα − ~gρσ _xρ _xσ: ðB1Þ

Since Eq. (12) basically states that the first term of (B1)
must be invariant under boost, then we have that

δð2pα _xα − ~gρσ _xρ _xσÞ ¼ fN ;Hð_xÞg ¼ 0: ðB2Þ

Therefore,

δð~gμν _xμ _xνÞ ¼ 2pαδð_xαÞ: ðB3Þ
8This one, of course, is not the most generic momentum-space

metric one can possibly define; however, for the purposes of this
article, we will not need any further parametrization.
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However as already noticed in [8], being spacetime flat we
have _pμ ¼ 0, and then the second term of the last equation
is just a total derivative,

pμδ_xμ ¼
d
dτ

ðpμδxμÞ ¼
d
dτ

�∂L
∂ _xμ δx

μ

�
; ðB4Þ

which can be eliminated during the integration procedure.
The Killing equation of our theory is then equivalent to
(23), of course in the flat spacetime limit, being

δð~gμνdxμdxνÞ ¼ 0; ðB5Þ

excepted total derivative terms.
Given this, from Killing equation (23), we find the

system of differential equations we need to solve in order to
find our symmetry generators:

8>><
>>:

~g0μ∂0ξ
μ þ 1

2
∂ ~g00
∂ _x0 ∂αξ

0 _xα ¼ 0

~g1μ∂1ξ
μ þ 1

2
∂ ~g11∂ _x0 ∂αξ

0 _xα ¼ 0

~gμ1∂0ξ
μ þ ~g0ν∂1ξ

ν þ ∂ ~g01
∂ _x1 ∂αξ

1 _xα ¼ 0

: ðB6Þ

We look for perturbative solutions at first order in l, such as

ξ0 ¼ ξ0ð0Þ þ lξ0ðlÞ; ξ1 ¼ ξ1ð0Þ þ lξ1ðlÞ; ðB7Þ

in which the 0th-order solutions are the Minkowskian ones:

ξ0ð0Þ ¼ c0 þ kx1; ξ1ð0Þ ¼ c1 þ kx0: ðB8Þ

This leads to

8>><
>>:

∂0ξ
0
l ¼ ðγ

2
þ β2Þk_x1

∂1ξ
1
ðlÞ ¼ −ðβ2 þ β1

2
Þk_x1

∂0ξ
1
ðlÞ − ∂1ξ

0
ðlÞ ¼ −ðβ1 þ β2 þ γÞk_x0

: ðB9Þ

From the first and second equation of system (B9), we
just obtain that the generalized Killing vector components
should have the form

ξ0ðlÞ ¼ κ0ðx1; _xÞ þ
�
γ

2
þ β2

�
_x1x0;

ξ1ðlÞ ¼ κ1ðx0; _xÞ −
�
β2 þ

β1
2

�
_x1x1: ðB10Þ

Now using the results obtained in (B10) with the third
equation, and rederiving this one, we get

κ0ðx1; _xÞ ¼ C0ð_xÞ þ κ0ð_xÞx1; ðB11Þ

κ1ðx0; _xÞ ¼ C1ð_xÞ þ κ1ð_xÞx0: ðB12Þ

Then, using (B12) again with the third equation of system
(B9), we obtain the relation between κ0 and κ1, which is

κ0ð_xÞ ¼ κ1ð_xÞ þ ðβ1 þ β2 þ γÞk_x0: ðB13Þ

We can now express the complete solutions for the ξαðlÞ as

ξ0ðlÞ ¼ C0ð_xÞ þ κ1ð_xÞx1

þ k

�
ðβ1 þ β2 þ γÞ_x0x1 þ

�
γ

2
þ β2

�
_x1x0

�
; ðB14Þ

ξ1ðlÞ ¼ C1ð_xÞ þ κ1ð_xÞx0 − k

�
β2 þ

β1
2

�
_x1x1: ðB15Þ

The natural choice C0ð_xÞ ¼ C1ð_xÞ ¼ κ1ð_xÞ ¼ 0 gives us
the total charge; in fact, it is easy to verify that, in this case,

Ql ¼ ξμpμ

¼ c0p0 þ c1p1 þ k

�
x1p0 þ ðβ1 þ β2 þ γÞlx1 _x0p0

−
l
2
ðβ1 þ 2β2Þx1 _xp1 þ x0p1 þ l

�
γ

2
þ β2

�
x0 _x1p0

�

≃ c0p0 þ c1p1 þ k

�
x0p1

�
1 − l

�
β2 þ

γ

2

�
p0

�

þ x1
�
p0 þ ðβ1 þ β2 þ γÞlp2

0 þ
l
2
ðβ1 þ 2β2Þp2

1

��
:

ðB16Þ

The choice κ1ð_xÞ ¼ 0 works fine in the diagonal case
metric. However, the Finsler formalism relies on homo-
geneous metrics, which in general have nonzero off-
diagonal terms. The total charge general expression impos-
ing no particular condition to our parameters at first order in
l has the form

Ql ¼ ξμpμ ≃ ðc0 þ lC0ð_xÞÞp0 þ ðc1 þ lC1ð_xÞÞp1

þ ðkþ lκ1ð_xÞÞN ; ðB17Þ

in which p0, p1, and N are the deformed-Poincaré algebra
generators in 1þ 1 dimensions. In order to obtain a
coherent physical framework (i.e., invariant Casimir and
particle worldlines) also in the Finsler case, we need then to
impose κ1ð_xÞ ¼ ðβ2 − γ

2
Þ_x0. This choice eliminates any

direct sign of the metric’s off-diagonal terms in the boost
representation (26).
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