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The coefficient of the dimensionally regularized two-loop R3 divergence of (nonsupersymmetric)
gravity theories has recently been shown to change when nondynamical three-forms are added to the
theory, or when a pseudoscalar is replaced by the antisymmetric two-form field to which it is dual. This
phenomenon involves evanescent operators, whose matrix elements vanish in four dimensions, including
the Gauss-Bonnet operator which is also connected to the trace anomaly. On the other hand, these effects
appear to have no physical consequences for renormalized scattering processes. In particular, the
dependence of the two-loop four-graviton scattering amplitude on the renormalization scale is simple.
We explain this result for any minimally-coupled massless gravity theory with renormalizable matter
interactions by using unitarity cuts in four dimensions and never invoking evanescent operators.
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I. INTRODUCTION

Recent results show that the ultraviolet structure of gravity
is much more interesting and subtle than might be antici-
pated from standard considerations. One example of a new
ultraviolet surprise is the recent identification of “enhanced
ultraviolet cancellations” in certain supergravity theories
[1,2], which are as yet unexplained by standard symmetries
[3]. Another recent example is the lack of any simple link
between the coefficient of the dimensionally regularized
two-loop R3 ultraviolet divergence of pure Einstein gravity
[4,5] and the renormalization-scale dependence of the
renormalized theory [6]. Related to this, when gravity is
coupled to matter fields, while the value of the divergence is
altered by a Hodge duality transformation that maps anti-
symmetric tensor fields into scalars, the renormalization-
scale dependence is unchanged. In contrast, for the textbook
case of gauge theory at one loop the divergence and the
renormalization-scale dependence—the beta function—are
intimately linked. In Ref. [6], a simple formula for the
renormalization-scale dependence of quantum gravity at two
loops was found to hold in a wide variety of gravity theories.
In this paper we explain this formula via unitarity.
As established by the seminal work of ’t Hooft and

Veltman [7], pure gravity has no ultraviolet divergence at
one loop. This result follows from simple counterterm
considerations: after accounting for field redefinitions, the
only independent potential counterterm is equivalent to the
Gauss-Bonnet curvature-squared term. However, in four
dimensions this term is a total derivative and integrates to
zero for a topologically trivial background, so no viable
counterterm remains. Hence pure graviton amplitudes are
one-loop finite. Amplitudes with four or more external
matter fields are, however, generally divergent.

At two loops pure gravity does diverge, as demonstrated
by Goroff and Sagnotti [4] and confirmed by van de Ven [5].
The pure-gravity counterterm, denoted by R3, is cubic in the
Riemann curvature. The two-loop divergence was recently
reaffirmed in puregravity [6], andwas also studied in avariety
of other theories, by evaluating the amplitude for four
identical-helicity gravitons. The actual value of the
dimensionally regularized R3 divergence changes when
three-forms are added to the theory, even though they are
not dynamical in four space-timedimensions.Moregenerally,
when matter is incorporated into the theory, the coefficient of
the R3 divergence changes under a Hodge duality trans-
formation. However, such transformations appear to have no
physical consequences for renormalized amplitudes [6].
The dependence of the two-loop divergence on duality

transformations is closely connected to the well-known
similar dependence of the one-loop trace anomaly [8].
One-loop subdivergences in the computation include those
dictated by the Gauss-Bonnet term, whose coefficient is the
trace anomaly [6]. Duff and van Nieuwenhuizen showed that
the trace anomaly changes under duality transformations of
p-form fields, suggesting that theories related through such
transformations might be quantum-mechanically inequiva-
lent [8]. Others have argued that these effects are gauge
artifacts [9–11]. For graviton scattering at two loops in
dimensional regularization, quantum equivalence can be
restored, but only after combining the bare amplitude and
counterterm contributions [6].
The surprising dependence of the two-loop R3 diver-

gence in gravity on choices of field content outside of four
dimensions emphasizes the importance of focusing on the
renormalization-scale dependence of renormalized ampli-
tudes as the proper robust quantity for understanding the
ultraviolet properties. The divergence itself, of course,
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never directly affects physical quantities since it can be
absorbed into a counterterm. In contrast, the renormaliza-
tion-scale dependence does affect physical quantities
because it controls logarithmic parts of the scaling behavior
of the theory. While this is well known, what is surprising is
that, in contrast to gauge theory, the two-loop divergences
of pure gravity are not linked in any straightforward way to
the scaling behavior of the theory. An underlying cause is
that evanescent operators, such as the Gauss-Bonnet term,
contribute to the leading two-loop R3 divergence of
graviton amplitudes [6].
Evanescent operators are well studied in gauge theory

(see e.g. Ref. [12]), where they can modify subleading
corrections to anomalous dimensions or beta functions. A
standard one-loop subdivergence is associated with the
one-loop matrix element of a non-evanescent operator;
integrating over the remaining loop momentum generates a
double pole 1=ϵ2 in the dimensional regulator ϵ¼ð4−DÞ=2.
When the operator is evanescent, the matrix element is
suppressed in the four-dimensional limit, typically reducing
the double pole to a simple pole, but still leaving a
contribution to the anomalous dimension. A key property
that is special to the two-loop gravity computation is that the
divergent evanescent contribution begins at the same order
as the first divergence. However, similar effects could appear
in other contexts. For example, in the effective field theory
of flux tubes with a large length L, there is an evanescent
operator which would otherwise contribute to the energy at
order 1=L5 [13]; presumably it will have to be taken into
account in a dimensionally regularized computation of
ðlnLÞ=L7 corrections to the energy.
In contrast to the divergence, the renormalization-scale

dependence does appear to be robust and unaltered by
duality transformations or other changes in regularization
scheme. Indeed, a simple formula was proposed [6] for the
R3 contribution to this dependence at two loops, which is
proportional to the number of four-dimensional bosonic
minus fermionic degrees of freedom. Yet in Ref. [6] this
simple formula only arose after combining the dimension-
ally regularized two-loop amplitude with multiple counter-
term contributions. Intermediate steps involved evanescent
operators and separate contributions did not respect Hodge
duality; nor would they have respected supersymmetry if
we had treated fermionic contributions in the same way.
The purpose of this paper is to explain the simple

renormalization-scale dependence in terms of unitarity
cuts in four dimensions. This approach turns a two-loop
computation effectively into a one-loop one, it manifestly
respects Hodge duality and supersymmetry, and evanescent
operators never appear.
This paper is organized as follows: in Sec. II we

summarize the previous approach of Ref. [6], along with
the surprisingly simple formula found for the renormaliza-
tion-scale dependence of the four-graviton amplitude at two
loops. Then in Sec. III we derive the formula purely from

four-dimensional unitarity cuts. Our conclusions are given
in Sec. IV.

II. REVIEW OF PREVIOUS APPROACH

Pure gravity is described by the Einstein-Hilbert
Lagrangian,

LEH ¼ −
2

κ2
ffiffiffiffiffiffi
−g

p
R; ð1Þ

where κ2 ¼ 32πGN ¼ 32π=M2
P and the metric signature

is ðþ−−−Þ. While we are primarily interested in pure
gravity, it is insightful to include matter as well, as in
Ref. [6], by coupling gravity to n0 scalars, n2 two-forms,
and n3 three-forms, as well as fermionic fields, n1=2 of spin
1=2 and n3=2 of spin 3=2.
At one loop, graviton amplitudes do not diverge in four

dimensions, because no viable counterterms are available
after accounting for field redefinitions and the Gauss-
Bonnet (GB) theorem [7]. Divergences do occur if we
allow the fields to live outside of four dimensions [4,8,14].
The Gauss-Bonnet counterterm is given by

LGB ¼ 1

ð4πÞ2
1

ϵ

�
53

90
þ n0
360

þ 91n2
360

−
n3
2
þ 7n1=2

1440
−
233n3=2
1440

�

×
ffiffiffiffiffiffi
−g

p ðR2 − 4R2
μν þR2

μνρσÞ: ð2Þ

At one loop, matter self-interactions cannot affect this
graviton counterterm. The divergence represented by
Eq. (2) vanishes for any one-loop amplitude with four-
dimensional external gravitons. Amplitudes with four
external matter states generically have divergences in four
dimensions, starting at one loop. We neglect such diver-
gences in this paper because they do not affect the two-loop
four-graviton divergence.
In the context of dimensional regularization, evanescent

operators, whose matrix elements vanish in four dimen-
sions, can contribute to higher-loop divergences. Indeed,
the Gauss-Bonnet term generates subdivergences at two
loops, because the momenta and polarizations of internal
lines can lie outside of four dimensions [6,15].
The coefficient in front of Eq. (2) has a rather interesting

story, because it is proportional to the trace anomaly [4,8,14].
The connection comes about because the calculations of the
ultraviolet divergence and the trace anomaly are essentially
identical, except that in the latter calculation we replace one
of the four graviton polarization tensors with a trace over
indices. As already noted, the trace anomaly has long been
known to have the rather curious feature that it is not
invariant under duality transformations [8] that relate two
classical theories in four dimensions. In more detail, under a
Hodge duality transformation, in four dimensions the two-
form field is equivalent to a scalar and the three-form field is
equivalent to a cosmological-constant contribution:
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Hμνρ ↔
iffiffiffi
2

p εμνρα∂αϕ; Hμνρσ ↔
2ffiffiffi
3

p εμνρσ

ffiffiffiffi
Λ

p

κ
: ð3Þ

Equation (2) shows that the trace anomaly, and hence the
associated evanescent divergence, change under duality
transformations: the coefficients in front of n2 and n0 differ,
and the one in front of n3 is nonzero. Correspondingly,
subdivergences in two-loop amplitudes depend on the field
representation used.
In contrast to one loop, at two loops pure gravity in four

dimensions does diverge in dimensional regularization,
as shown by Goroff and Sagnotti [4] and confirmed by
van de Ven [5]. In the MS scheme, with ϵ ¼ ð4 −DÞ=2, the
divergence is given by

Ldiv
R3 ¼ −

209

1440

�
κ

2

�
2 1

ð4πÞ4
1

ϵ

ffiffiffiffiffiffi
−g

p
Rαβ

γδRγδ
ρσRρσ

αβ: ð4Þ

In this computation, a mass regulator was introduced, in
addition to the dimensional regulator, in order to deal with
certain infrared singularities. This procedure introduces
regulator dependence which is removed by subtracting
subdivergences, integral by integral. The subdivergence
subtraction also properly removes the Gauss-Bonnet sub-
divergences, leaving only the two-loop divergence.
In Ref. [6], the same R3 divergence (4) was extracted

from a four-graviton scattering amplitude with all helicities
positive, M2-loop

4 ðþþþþÞ. This helicity amplitude is par-
ticularly simple to calculate, making it a useful probe of
the two-loop ultraviolet structure. It is sensitive to the R3

operator because the insertion of R3 into the tree amplitude
gives a nonvanishing result. For a single insertion of the
Lagrangian term

LR3 ¼ cR3ðμÞ ffiffiffiffiffiffi
−g

p
Rαβ

γδRγδ
ρσRρσ

αβ; ð5Þ

the identical-helicity matrix element is [16]

M4ðþþþþÞ ¼ −60icR3ðμÞ
�
κ

2

�
4

T 2s12s23s13; ð6Þ

where

T ¼ ½1 2�½3 4�
h1 2ih3 4i ; ð7Þ

and s12¼ðk1þk2Þ2, s23¼ðk2þk3Þ2, and s13 ¼ ðk1 þ k3Þ2
are the usual Mandelstam invariants. The factor T is a pure
phase constructed from the spinor products habi and ½ab�,
defined in e.g. Ref. [17].
Although no mass regulator was used in Ref. [6], the

Gauss-Bonnet operator (2) contributes nonvanishing sub-
divergences, because internal legs of the two-loop ampli-
tude propagate in D dimensions. Figure 1 illustrates the
complete set of counterterm contributions required to
renormalize the dimensionally regulated four-graviton
amplitude at two loops. Besides the bare amplitude in
Fig. 1(a), there is the single insertion of the GB operator
into a one-loop amplitude in Fig. 1(b) and the double-GB-
counterterm insertion into a tree amplitude, Fig. 1(c).
Finally, the two-loop R3-counterterm insertion is shown
in Fig. 1(d). All contributions shown are representative
ones, out of a much larger number of Feynman diagrams;
for example, the bare contribution also includes nonplanar
diagrams.
For pure gravity, assembling the contributions from

Figs. 1(a)–1(c), the divergence in the two-loop four-
graviton amplitude and the associated renormalization-
scale dependence is [6]

M2-loop
4 ðþþþþÞjðaÞ–ðcÞ
¼

�
κ

2

�
6 i
ð4πÞ4 s12s23s13T

2

�
209

24ϵ
−
1

4
ln μ2

�
þ finite:

ð8Þ

In a minimal subtraction prescription, the effect of the
R3 counterterm in Fig. 1(d) is simply to remove the
209=24 × 1=ϵ term. Including matter fields, the ultraviolet
divergence changes under duality transformations [6]. This
change might not be surprising, given that the coefficient of
the one-loop Gauss-Bonnet subdivergence (2) is not invari-
ant under duality transformations [8]. For example, adding
n3 three-forms, which do not propagate in four dimensions,
changes the coefficient of the infinity in Eq. (4) to

(a) (b) (c) (d)

FIG. 1. Representative four-point diagrams for (a) the bare contribution, and (b) the single-GB-counterterm, (c) double-GB-
counterterm, and (d) R3-counterterm insertions needed to remove all divergences.
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209

1440ϵ
→

209

1440ϵ
−

1

8ϵ
n3; ð9Þ

while the coefficient of ln μ2 is unaltered. Also, the value of
the leading infinity depends nontrivially on the details of
the regularization procedure, while the coefficient of the
ln μ2 term does not.
The fact that the two numerical coefficients in Eq. (8) are

rather different, and that one changes under duality trans-
formations but not the other, implies that they are not
directly linked. This is rather curious. From the textbook
computation of the one-loop beta function in Yang-Mills
theory, we are used to the idea that they are linked. In that
case, the analog of Fig. 1 is Fig. 2. To renormalize the on-
shell amplitudes in the theory at one loop, we need the bare
one-loop amplitude, with a representative diagram shown
in Fig. 2(a), and a single insertion of the Fa

μνFaμν counter-
term into a tree-level amplitude, with a representative
diagram shown in Fig. 2(b).
Schematically, these two contributions depend on the

renormalization scale μ as follows:

CðaÞ

ϵ
ðμ2Þϵ þ CðbÞ

ϵ
¼ ðCðaÞ þ CðbÞÞ 1

ϵ
þ CðaÞ ln μ2 þ � � � ;

ð10Þ

where the ðμ2Þϵ factor in the bare amplitude compensates
for the dimension of the loop integration measure d4−2ϵl,
where l is the loop momentum. In a minimal subtraction
scheme, one chooses CðbÞ ¼ −CðaÞ to cancel the 1=ϵ pole.
Because the counterterm insertion has no factor of ðμ2Þϵ,
the leading divergence CðaÞ is tied directly to the renorm-
alization-scale dependence of the coupling, i.e. the beta
function, independent of the details of the regularization
procedure.
What about gravity at two loops? As explained in

Ref. [6], the disconnect between the divergences and the
renormalization-scale dependence happens because of an
interplay between the bare terms and the evanescent
subdivergences. The analog of Eq. (10) for the divergence
and ln μ2 dependence of the two-loop gravity amplitude is

CðaÞ

ϵ
ðμ2Þ2ϵ þ CðbÞ

ϵ
ðμ2Þϵ þ CðcÞ

ϵ
þ CðdÞ

ϵ

¼ ðCðaÞ þ CðbÞ þ CðcÞ þ CðdÞÞ 1
ϵ

þ ð2CðaÞ þ CðbÞÞ ln μ2 þ � � � : ð11Þ

The differing powers of μ for each contribution follow from
dimensional analysis of the integrals, after accounting for
the fact that the counterterm insertions do not carry factors
of ðμ2Þϵ.
The coefficient of the R3 counterterm CðdÞ cancels the

two-loop divergence in Eq. (11), as a consequence of
the renormalization conditions,CðdÞ ¼ −CðaÞ − CðbÞ − CðcÞ.
In the amplitude computed in Ref. [6], the value of the
coefficient of the two-loop R3 counterterm depends on
duality transformations, while the coefficient in front of the
ln μ2, namely 2CðaÞ þ CðbÞ, does not. The fact that different
combinations of coefficients appear in the divergence and
in the ln μ2 term explains why the two-loop divergence and
the renormalization-scale dependence do not have to be
simply related. As we discuss in the next section, the
coefficient of the logarithm can be computed directly in
four dimensions, completely avoiding the issue of evan-
escent operators. On the other hand, the divergence is
exposed to the subtleties of evanescent operators and
dimensional regularization. More remarkably, as found
in a variety of examples [6], the ln μ2 coefficient satisfies
a simple formula, which we explain in the next section.
The disconnect between the divergence and the renorm-

alization-scale dependence could lead to situations where
an explicit divergence is present, yet there is no associated
running of a coupling or other physical consequences.
As an example, we have computed the divergence in
N ¼ 1 supergravity with one matter multiplet using the
same techniques. It is convenient to include a matter
multiplet because for this theory we can construct the
two-loop integrand straightforwardly using double-copy
techniques [18]. Even though this theory is supersymmet-
ric, the trace anomaly is nonvanishing [19]. Therefore
there are subdivergences of the form of Fig. 1(b), as well as
Fig. 1(c). We have computed the four contributions
corresponding to Fig. 1. They are given by

CðaÞ ¼ 11

16
; CðbÞ ¼ −

11

8
;

CðcÞ ¼ 363

32
; CðdÞ ¼ −

341

32
; ð12Þ

where the normalization corresponds toCðaÞ þCðbÞ þCðcÞ ¼
209=24 for pure gravity; see Eq. (8). So the divergence
from terms (a)–(c) in Eq. (11) is nonzero, but the ln μ2

coefficient vanishes, 2CðaÞ þ CðbÞ ¼ 0. In fact, it turns out
that all logarithms ln sij in the amplitude cancel as well.
The polynomial terms can be canceled by the same R3

(a)

2F

(b)

FIG. 2. Renormalization of on-shell Yang-Mills amplitudes at
one loop requires (a) the bare amplitude and (b) an F2 counter-
term, for which representative contributions are shown.
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counterterm but with a finite coefficient (or equivalently, an
order ϵ correction to CðdÞ).
The upshot is that for thisN ¼ 1 supergravity theory, the

divergence and the associated trace anomaly have the
curious effect of violating the supersymmetry Ward identity
[20] that requires the identical-helicity amplitude to vanish.
The appearance of a divergence is due to the breaking of
supersymmetry by the trace anomaly, which induces
subdivergences even when supersymmetry implies that
no divergences can be present [21]. To restore the super-
symmetry Ward identities requires adding an R3 counter-
term to the theory, with both a 1=ϵ and a finite coefficient,
which fixes the two-loop amplitude uniquely. This pro-
cedure is possible only because the ln μ2 coefficient
vanishes. That is, in this case there is no loss of predictivity,
even though there is a 1=ϵ divergence. If the ln μ2

coefficient is nonvanishing, as in the case of pure gravity,
then there must be an arbitrary finite constant in the
renormalization procedure, associated with fixing the R3

coupling at different choices of renormalization scale,
leading to the usual loss of predictivity of nonrenormaliz-
able theories.
This discussion applies more generally. Suppose there is

a hidden symmetry that would enforce finiteness if it can be
preserved. Yet if that symmetry is broken by the trace
anomaly, or more generally by the regularization pro-
cedure, we might conclude that the theory’s divergence
implies a loss of predictivity. It is therefore always crucial
to inspect the renormalization-scale dependence.
In contrast, one might even imagine a regularization

prescription that eliminates the 1=ϵ divergence, for exam-
ple by making the perverse choice n3 ¼ 8 · 209=1440 in
Eq. (9) for the case of pure gravity. However, since the
ln μ2 coefficient is nonvanishing in this case, there is still
an arbitrariness in the finite R3 counterterm associated
with different choices for μ, and an associated loss of
predictivity. The theory is no better than an ultraviolet-
divergent theory, even if the 1=ϵ divergence is arranged to
cancel.
From now on we focus entirely on the renormalization-

scale dependence. For the two-loop graviton identical-
helicity scattering amplitude with various matter content,
Ref. [6] found the following simple form:

M2-loop
4 ðþþþþÞjln μ2 ¼ −

�
κ

2

�
6 i
ð4πÞ4 s12s23s13

× T 2
Nb − Nf

8
ln μ2; ð13Þ

where Nb and Nf are the number of physical four-
dimensional bosonic and fermionic states in the theory.
Using Eq. (6), this result is equivalent to the running of the
R3 coefficient according to

μ
∂cR3

∂μ ¼
�
κ

2

�
2 1

ð4πÞ4
Nb − Nf

240
: ð14Þ

Because the number of physical four-dimensional states
does not change under duality transformations, this equation
is automatically independent of such transformations and
of the details of the regularization scheme. In fact, the result
was only confirmed in Ref. [6] for minimally-coupled
scalars, antisymmetric tensors, and (non-propagating)
three-form fields. The generalization to fermionic contribu-
tions was based on the previously mentioned supersymmetry
Ward identities. It is quite remarkable that such a simple
formula for the renormalization-scale dependence emerges
from the computations carried out in Ref. [6]. How did this
happen? We answer this in the next section.

III. RENORMALIZATION-SCALE DEPENDENCE
DIRECTLY FROM FOUR-DIMENSIONAL

UNITARITY CUTS

In this section we explain the simple form of the
renormalization-scale dependence in Eq. (13) using four-
dimensional unitarity cuts. We show that it holds for any
massless theory with minimal couplings to gravity and
renormalizable matter interactions. From simple dimen-
sional considerations, contributions to the R3 operator
necessarily involve couplings with the dimension of the
gravitational coupling κ, which carries the dimension of
inverse mass, 1=MP. Renormalizable matter interactions
are either dimensionless or carry the dimension of mass,
so they can contribute only to lower-dimension operators
than R3 at two loops, and therefore they are not relevant at
this order. We will also explain why dilatons and anti-
symmetric tensors—whose minimal couplings to gravitons
have two derivatives, as does pure gravity—also respect
Eq. (13), as found in the computations of Refs. [6,22].
Unitarity cuts are not directly sensitive to the ln μ2

dependence. However, in a massless theory, simple dimen-
sional analysis relates the coefficient of ln μ2 to the coef-
ficients of logarithms of kinematic invariants, ln sij, because
the arguments of all logarithms need to be dimensionless.
Because the coefficient of ln μ2 is finite, we can evaluate the
unitarity cuts in four dimensions (after subtracting a uni-
versal infrared divergence). Thus we automatically avoid
evanescent operators, such as the Gauss-Bonnet term (2).
Our approach greatly clarifies the essential physics, showing
that duality transformations cannot change the logarithms in
the scattering amplitude, because in four dimensions, unlike
D dimensions, duality does not change the Lorentz proper-
ties or the number of physical states. The calculation of the
logarithms using unitarity cuts was carried out long ago by
Dunbar and Norridge [23]. Recently a similar technique has
been applied to two-loop identical-helicity amplitudes in
gauge theory by Dunbar et al. [24]. Here we repeat the two-
loop four-graviton calculation, but in a way that completely
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avoids dimensional regularization and focuses on the con-
sequences and interpretation of the renormalization scale.
We obtain the kinematical logarithms of the all-plus

helicity amplitude from the four-dimensional unitarity cuts.
At two loops, there are cuts where two particles cross the
cut, illustrated in Fig. 3, and where three particles cross the
cut, shown in Fig. 4. In four dimensions, many contribu-
tions to these cuts vanish, because the tree amplitude on one
side of a cut vanishes.
In pure gravity, all contributions to the three-particle cuts

shown in Fig. 4 vanish, because they contain a either a tree
amplitude with all identical helicities, or one with one leg of
opposite helicity. Such five-graviton tree amplitudes van-
ish. Adding minimally-coupled matter does not alter this
conclusion. As already noted, adding matter with renor-
malizable self couplings cannot affect the coefficient of the
R3 operator. Similarly, dilatons and antisymmetric tensors,
with their minimal couplings to each other and to gravity,
also cannot contribute, because their amplitudes have
similar vanishings as the pure-gravity case, where a pair
of external (pseudo)scalar states should be assigned one
plus and one minus helicity. All of these vanishings can be
understood from the fact that all such amplitudes can be
constructed from minimally-coupled gauge theory via
the Kawai-Lewellen-Tye (KLT) relations [25], which all
have the corresponding vanishings. Alternatively, such tree
amplitudes can be embedded into N ¼ 8 supergravity,
and then the supersymmetry Ward identities [20] imply the
required vanishings.
The two-particle cut does have nonvanishing contribu-

tions; however, the cut lines have to be gravitons, with
the helicity configurations displayed in Fig. 3. If a massless
particle other than a graviton crosses the cut with this

helicity configuration, then the tree amplitude entering the
cut necessarily vanishes. These vanishings can be under-
stood in various ways. The KLT decomposition offers one
such way. Consider the KLT decomposition of the gravi-
tational tree amplitude on the right-hand side of Fig. 3(a)
into a product of two gauge-theory amplitudes [25],

Mtreeðl1;−l2; 3; 4Þ ¼ s12Atreeðl1;−l2; 3; 4Þ
× Atreeðl1;−l2; 4; 3Þ; ð15Þ

where Mtreeð1; 2; 3; 4Þ is the gravitational tree amplitude
and Atreeð1; 2; 3; 4Þ is a color-ordered Yang-Mills tree
amplitude. (In this expression the couplings are stripped
off.) If legs 3 and 4 of the gravitational amplitude are
positive-helicity gravitons in an all-outgoing convention,
then the corresponding legs in the gauge-theory amplitudes
are positive-helicity gluons, so that the spins match. For
gauge-theory amplitudes where legs 3 and 4 are positive-
helicity gluons, the only nonvanishing configuration is
where the remaining two legs are negative-helicity gluons.
The KLT relations then imply that the only nonvanishing
gravity tree amplitude is when the two legs labeled by l1

and −l2 in the unitarity cut are gravitons with negative
helicity. Other configurations, corresponding to particles
other than negative-helicity gravitons, vanish because at
least one of the corresponding gauge-theory amplitudes
vanishes.
A consequence of these restrictions is that the one-loop

amplitude appearing on the other side of the two-particle
cut must be an all-plus helicity amplitude with only external
gravitons. Such amplitudes are remarkably simple [23].
This simplicity enormously streamlines the calculation of
the cut. There are two contributions to the s12-channel cut,
shown in Figs. 3(a) and 3(b), depending on whether the
loop amplitude is located on the left or right side of the cut.
However, they give equal contributions, because Fig. 3(b)
can be mapped back to Fig. 3(a) by relabeling the momenta
by ki → kiþ2, where the indices are modulo 4, and we will
see that the cut is invariant under this operation. In addition
to the s12-channel cut displayed in Fig. 3, there are also
cuts in the s23 and s13 channels, which can be obtained from
the s12 channel by Bose symmetry, permuting k1 ↔ k3 and
k1 ↔ k4, respectively.
The required one-loop amplitude with four identical-

helicity gravitons is [23]

M1-loopð1þ; 2þ; 3þ; 4þÞ ¼ −
i

ð4πÞ2
Nb − Nf

240

�
κ

2

�
4

× T 2ðs212 þ s214 þ s224Þ; ð16Þ

where the permutation-invariant, pure-phase spinor combi-
nation T is defined in Eq. (7). The one-loop external
graviton amplitude is unaffected by any interactions of the
matter fields in a minimally-coupled theory: at one loop

(a) (b)

FIG. 3. The s-channel two-particle cuts (a) and (b) from which
we can extract the logarithmic parts of the two-loop four-point
identical-helicity four-graviton amplitude. The exposed lines are
placed on shell and are in four dimensions.

FIG. 4. Representative contributions to the three-particle cut.
This cut generates no new ln μ2 contributions to the R3 operator
for the identical-helicity four-graviton amplitude.
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with all external gravitons there are no diagrams containing
matter self-interactions.
In Yang-Mills theory, Bardeen and Cangemi [26]

argued that the corresponding identical-helicity amplitude
is nonvanishing because of an anomaly in the infinite-
dimensional symmetry of the self-dual sector of the theory.
Presumably, the same holds in gravity. It is quite interesting
that this anomaly-like behavior appears crucial for
obtaining a nonvanishing one-loop four-graviton ampli-
tude, which as we will see below leads to a nonvanishing
coefficient of the ln μ2 term.
We also need the four-graviton tree amplitude. It is easily

obtained from the KLT relation [25],

Mtreeð1−; 2−; 3þ; 4þÞ

¼ −i
�
κ

2

�
2

s12Atreeð1; 2; 3; 4ÞAtreeð1; 2; 4; 3Þ

¼ i

�
κ

2

�
2

s12
h1 2i3

h2 3ih3 4ih4 1i
h1 2i3

h2 4ih4 3ih3 1i : ð17Þ

We now calculate the unitarity cut in Fig. 3(a). The
cut integrand is given by the relabeled product of
Eqs. (16) and (17),

C12 ¼ N s12ðs212 þ s21l1 þ s22l1Þ
� ½1 2�½l2ð−l1Þ�
h1 2ihl2ð−l1Þi

�
2

×
hl1ð−l2Þi3

hð−l2Þ 3ih3 4ih4l1i
hl1ð−l2Þi3

hð−l2Þ 4ih4 3ih3l1i
; ð18Þ

where the labels follow Fig. 3(a) and the normalization
factor is

N ¼ 1

ð4πÞ2
Nb − Nf

240

�
κ

2

�
6

: ð19Þ

Rearranging the spinor products and using the identity
1=ha bi ¼ ½b a�=ðka þ kbÞ2 gives

C12 ¼ NT 2s12ðs212 þ s21l1 þ s22l1Þ

×
hl1 l2i½l2 3�h3 4i½4l1�hl1 l2i½l2 4�h4 3i½3l1�
ðl2 − k3Þ2ðl1 þ k4Þ2ðl2 − k4Þ2ðl1 þ k3Þ2

:

ð20Þ

The net effect of replacing −l1 and −l2 with l1 and l2 is a
factor ofþ1. We can simplify C12 further by observing that
the numerator forms a trace,

hl1 l2i½l2 3�h3 4i½4l1�hl1 l2i½l2 4�h4 3i½3l1�

¼ 1

2
tr½ð1 − γ5Þl1l2k3k4l1l2k4k3�

¼ ðl1 þ k3Þ2ðl1 þ k4Þ2s234; ð21Þ

where we used l2 ¼ l1 þ k3 þ k4 and the on-shell con-
ditions l2

1 ¼ l2
2 ¼ 0 to simplify the trace. Thus, the

numerator cancels the (doubled) propagators leaving

C12 ¼ NT 2s312
s212 þ s21l1 þ s22l1

ðl2 − k3Þ2ðl2 − k4Þ2
¼ −NT 2s212ðs212 þ s21l1 þ s22l1Þ

×

�
1

ðl1 þ k4Þ2
þ 1

ðl1 þ k3Þ2
�
: ð22Þ

This expression for the cut actually has an infrared
divergence when integrated over phase space. However,
this divergence is harmless because infrared singularities of
gravity theories are relatively simple [27]. The source of
the singularity is from exchange of soft virtual gravitons
with momentum l1 þ k3 or l1 þ k4; the soft limit is when
l1 → −k4 or l1 → −k3, for the first or second term in
Eq. (22), respectively. To remove the infrared singularity,
we simply subtract the soft limit of the integrand, replacing
C12 by

~C12 ¼ −NT 2s212
s21l1

þ s22l1 − s214 − s224
ðl1 þ k4Þ2

þ ðk3 ↔ k4Þ:

ð23Þ
The subtraction terms correspond to cut scalar triangle
integrals. Since the triangle integrals that are subtracted
converge in the ultraviolet, the subtraction has no effect
on the ultraviolet logarithms with which we are con-
cerned here.
The discontinuity is obtained by integrating over the

Lorentz-invariant phase space,

I12 ¼
Z

dLIPS ~C12 ¼ −NT 2s312Î12 þ ðk3 ↔ k4Þ; ð24Þ

where

Î12 ¼
Z

dLIPS
ð2k1 · l1Þ2 þ ð2k2 · l1Þ2 − s214 − s224

s12ð2k4 · l1Þ
:

ð25Þ

We perform the phase-space integration in the center-of-
mass frame, parametrizing the external momenta as

k1 ¼
ffiffiffi
s

p
2

ð−1; sin θ cosϕ; sin θ sinϕ; cos θÞ;

k2 ¼
ffiffiffi
s

p
2

ð−1;− sin θ cosϕ;− sin θ sinϕ;− cos θÞ;

k3 ¼
ffiffiffi
s

p
2

ð1; 0; 0; 1Þ;

k4 ¼
ffiffiffi
s

p
2

ð1; 0; 0;−1Þ; ð26Þ
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and the internal momentum as

l1 ¼
ffiffiffi
s

p
2

ð−1; sin θ̂ cos ϕ̂; sin θ̂ sin ϕ̂; cos θ̂Þ; ð27Þ

while −l0
2 ¼ l0

1 and −~l2 ¼ −~l1. The on-shell conditions

enforce the constraints jl0
i j ¼ j~lij ¼

ffiffiffi
s

p
=2, i ¼ 1, 2. The

standard two-body phase-space measure is

Z
dLIPS ¼ 1

2

1

8π

Z
1

−1

d cos θ̂
2

Z
2π

0

dϕ
2π

: ð28Þ

There is an extra Bose symmetry factor of 1=2 because two
identical-helicity gravitons cross the cut. Substituting the
momentum parametrization into Eq. (25) gives an expres-
sion for Î12 purely in terms of angular variables, which can
be integrated easily,

Î12 ¼
1

16π

Z
1

−1

d cos θ̂
2

Z
2π

0

dϕ̂
2π

1

1 − cos θ̂

×

�
cos2θsin2θ̂ − sin2θsin2θ̂cos2ðϕ − ϕ̂Þ

−
1

2
sin 2θ sin 2θ̂ cosðϕ − ϕ̂Þ

�

¼ 1

16π

Z
1

−1

d cos θ̂
2

1

1 − cos θ̂

�
cos2θsin2θ̂ −

1

2
sin2θsin2θ̂

�

¼ 1

16π

�
cos2θ −

1

2
sin2θ

� Z
1

−1

d cos θ̂
2

½1þ cos θ̂�

¼ 2 − 3sin2θ
32π

: ð29Þ

Using s13s23 ¼ ðs212=4Þ × sin2θ, we can re-express the
answer in a Lorentz-invariant form:

Î12 ¼
1

16π

s212 − 6s13s23
s212

: ð30Þ

Since this result is invariant under k3 → k4, the exchange
contribution in Eq. (24) just gives a factor of 2.
Putting it all together, we have

~C12 ¼ −
NT 2

8π
s12ðs212 − 6s13s23Þ ð31Þ

¼ 2πi

�
i

ð4πÞ4
Nb − Nf

240

�
κ

2

�
6

T 2s12ðs212 − 6s13s23Þ
�
:

ð32Þ

We extracted a factor of 2πi because the analytic continu-
ation of lnð−sij=μ2Þ from below the cut (sij → sij − iε) to
above the cut (sij → sij þ iε) is

ln

�
−sij
μ2

�
→ ln

�
−sij
μ2

�
− 2πi: ð33Þ

Thus, the s12-channel discontinuity we computed is related
to the coefficient of ln μ2 by

M2-loopjln μ2 ¼
1

2πi
M2-loopjdisc × ln μ2: ð34Þ

We also need to multiply by a factor of 2 for the
contribution of Fig. 3(b), and include the contributions
of the other two channels, using

s12ðs212 − 6s13s23Þ þ ðk1 ↔ k3Þ þ ðk1 ↔ k4Þ
¼ s312 þ s323 þ s313 − 18s12s23s13

¼ −15s12s23s13: ð35Þ

We obtain

M2-loopðþ þ þþÞjln μ2

¼ −
�
κ

2

�
6 i
ð4πÞ4 s12s23s13T

2
Nb − Nf

8
ln μ2: ð36Þ

Thus, we have derived the simple renormalization-scale
dependence of the two-loop four-graviton amplitude [6],
but now in a way that avoids reliance on evanescent
operators or other subtleties of dimensional regularization.
Given that only four-dimensional quantities were used,
duality transformations manifestly cannot affect the
renormalization-scale dependence.

IV. CONCLUSIONS

In this paper we explained the simple form of the
renormalization-scale dependence of two-loop gravity
amplitudes proposed in Ref. [6]. While the two-loop
ultraviolet divergence in dimensional regularization
changes under duality transformations, and is afflicted
by evanescent subdivergences, the renormalization-scale
dependence is remarkably simple [6]. In order to explain
its simple form, we used four-dimensional unitarity cuts,
which effectively converted the two-loop computation into
a one-loop one. As in Ref. [6], we studied the identical-
helicity amplitude, because it is particularly simple to
evaluate, yet is sensitive to the two-loop R3 ultraviolet
divergence. While the renormalization scale ln μ2 does not
itself have a unitarity cut, on dimensional grounds its
coefficient must balance the coefficients of the logarithms
of kinematic variables, thus allowing us to extract the ln μ2

coefficient directly from the unitarity cuts. This method
avoids the need for ultraviolet regularization, as well as all
subtleties associated with evanescent operators. A trivial
integral over the two-body phase space for intermediate
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gravitons is all that is required to explain the simple
formula (36) of Ref. [6].
A rather interesting property of the gravity divergence is

that it appears to be tied to an anomaly. In Yang-Mills
theory, the nonvanishing of the one-loop identical helicity
amplitude has been tied to an anomaly in the conserved
currents of self-dual Yang-Mills theory [26]. We expect
gravity to be similar. Integrability has been used to
construct classical self-dual solutions to Einstein’s equa-
tions [28]. It is natural to conjecture that a quantum
anomaly in the conservation of the associated currents of
self-dual gravity [29] could be responsible for the non-
vanishing one-loop amplitude (16) which underlies the
two-loop ln μ2 dependence. In any case, not only the two-
loop divergence but the nonvanishing of the one- and
two-loop identical-helicity amplitudes can be traced to an
ϵ=ϵ effect in dimensional regularization, similar to the way
that chiral and other anomalies arise. It would be quite
enlightening if we could link the pure-gravity divergence,
or more importantly, the nonvanishing renormalization-
scale dependence, more directly to an anomaly.
It is noteworthy that the leading four-loop divergence

of N ¼ 4 supergravity [30] also seems to be linked to an
anomaly, whose origin is directly tied to the nonvanishing
of the one-loop identical-helicity amplitude of Yang-Mills
theory [31]. (Extensive checks in Ref. [30] imply that in
this case all subdivergences cancel, so the coefficient of the
renormalization-scale dependence should be proportional
to the four-loop divergence.)
In this paper we considered the identical-helicity ampli-

tude, because it is the simplest helicity configuration that
is sensitive to the R3 divergence. It would be interesting to
evaluate the other helicity configurations to corroborate
our understanding. The other helicity configurations are
significantly more complicated, because the three-particle
cut no longer vanishes in four dimensions. However, the

ð−þþþÞ helicity configuration, which also receives con-
tributions from the R3 operator, should be tractable using
four-dimensional unitarity cuts.
Usually in field theory, the first dimensionally regulated

divergence that is encountered is directly related to the
renormalization-scale dependence of either a coupling (i.e.
the beta function) or the coefficient of an operator (i.e. its
anomalous dimension). Pure Einstein gravity at two loops
provides an explicit counterexample to this expectation,
but it is probably not the only one. As we discussed in
Sec. II, the key feature is that a candidate operator for a first
divergence is evanescent, vanishing in four dimensions but
not inD dimensions. The different μ dependence associated
with the bare and counterterm contributions spoils the
textbook relation between the pole in ϵ and the renorm-
alization-scale dependence at the following loop order.
Another place this might happen is in the effective field
theory of long flux tubes [13]. The key lessons are that
ultraviolet divergences in dimensional regularization have
to be treated with caution in certain circumstances, and that
it is safer to focus on the more physical renormalization-
scale dependence of the renormalized theory.
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