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We compute the polylogarithmic parts of the two-loop four- and five-graviton amplitudes where the
external helicities are positive and express these in a simple compact analytic form. We use these to extract
the lnðμ2Þ terms from both the four- and five-point amplitudes and show that these match the same R3

counterterm.
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I. INTRODUCTION

Computing the scattering amplitudes of a quantum
theory using its singular and analytic structure has a long
history with many notable successes [1]. Recently the five-
point all-plus helicity amplitude has been computed in
QCD: first the integrands were determined using the
method of maximal cuts [2] and D-dimensional unitarity,
and then the integrals were evaluated yielding a compact
analytic form [3]. In D-dimensional unitarity the cuts are
computed in D ¼ 4 − 2ϵ dimensions where, typically, the
components of the cuts are considerably more complicated
than in four dimensions. In [4] it was demonstrated that
four dimensional unitarity techniques [5,6] blended
with a knowledge of the singular structure of the amplitude
could reproduce this form in a straightforward way. The
four dimensional approach was also used to calculate
the six-point amplitude [7,8] which was subsequently
verified [9].
Here we apply these techniques to gravity amplitudes

with a particular emphasis on their ultraviolet (UV)
behavior. Understanding the UV structure of quantum
gravity necessitates studying the two-loop amplitude. ’t
Hooft and Veltman [10] demonstrated the one-loop finite-
ness of on-shell amplitudes in quantum gravity by showing
the available counterterms in four dimensions made no
contribution to perturbative amplitudes. This cancellation
does not persist to two loop, and Goroff and Sagnotti
[11,12] in a landmark calculation were able to compute a
UV infinity of the form

∼
209

80ϵ
× AR; ð1:1Þ

where AR is the functional form generated by an R3

counterterm. A feature of the computation was the appear-
ance of subdivergences which were canceled diagram by
diagram. In [13] this computation was revisited using
evanescent operators which arise at one-loop to remove
the subdivergences in the four-point two-loop amplitude.
For gravity coupled to various matter multiplets they found
UV terms

�
a1
ϵ
þ a2 lnðμ2Þ

�
× AR ð1:2Þ

and noted that the coefficient of lnðμ2Þ, a2, was more robust
and simpler than a1. Specifically, when coupled to n3
(nonpropagating) three form fields a1 obtained a contribu-
tion proportional to n3 but a2 did not. Additionally
when coupled to scalars and vectors, a2 was simply propor-
tional to the difference between the number of bosonic and
fermionic degrees of freedom. As was argued in Ref. [13],
the coefficient a2 has physical content since after renorm-
alization the amplitude depends upon a2 but not a1.
In this article we explore and compute, up to rational

terms, the four- and five-point two-loop amplitudes in
quantum gravity where all the external gravitons have
positive helicity. We use the techniques which have proven
successful for the gluon amplitude: the amplitude is
organized using a knowledge of its singularity structure,
and then four dimensional unitarity is used to determine the
logarithmic and dilogarithmic parts. Since lnðμ2Þ only
appears in the combination lnðK2=μ2Þ we can extract the
coefficient of lnðμ2Þ using unitarity. We obtain the same
coefficient of lnðμ2Þ for the four-point amplitude as in
Ref. [13]. We also obtain the coefficient of lnðμ2Þ for the
five-point amplitude and show that this matches the same
R3 counterterm.

II. STRUCTURE OF THE AMPLITUDE

As a convention we remove the coupling constant factors
from the full n-point L-loop amplitude, MðLÞ

n , using

MðLÞ
n ð1;…;nÞ¼ iðκ=2Þn−2þ2LðrΓÞL

ð4πÞLð2−ϵÞ MðLÞ
n ð1;…;nÞ; ð2:1Þ

where rΓ ¼ Γ2ð1 − ϵÞΓð1þ ϵÞ=Γð1 − 2ϵÞ.
We then organize the amplitude according to its singu-

larity structure. The amplitude has both infrared (IR) and
UV singularities in the dimensional regulation parameter ϵ.
The all-plus amplitudes, which are finite at one-loop, can
be divided as
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Mð2Þ
n ¼ Mð1Þ

n Ið1Þn þGð2Þ
n þ Fð2Þ

n þ Rð2Þ
n þOðϵÞ; ð2:2Þ

where the first term contains the IR singularities of the

amplitude. The function Ið1Þn is [14–17]

Ið1Þn ¼
�
−
Xn
i<j

1

ϵ2
sij

�
μ2

−sij

�
ϵ
�
; ð2:3Þ

and Mð1Þ
n is the all-ϵ form of the one-loop amplitude [with

sij ¼ ðki þ kjÞ2]. The leading singularity of Ið1Þn is only ϵ−1

since

1

ϵ2

�Xn
i<j

sij

�
¼ 1

ϵ2
× 0 ð2:4Þ

by momentum conservation, and the leading singularity
is then

1

ϵ
×

�Xn
i<j

sij lnð−sij=μ2Þ
�
×Mð1Þ

n : ð2:5Þ

The amplitude also has finite logarithmic terms. In our four
dimensional formulation these arise in two-particle cuts and
have the form of one-loop bubble integral functions,

Gð2Þ
n ¼

Xn
i<j

cij
1

ϵ

�
μ2

−sij

�
ϵ

: ð2:6Þ

where cij are rational functions of λk and λ̄k.
1

The all-plus two-loop amplitude in QCD does not
contain this term [19]. This gives rise to ϵ−1 and lnðμ2Þ
terms in the combination

�X
i<j

cij

�
×

�
1

ϵ
þ lnðμ2Þ

�
: ð2:7Þ

There may be other sources of ϵ−1 terms not directly

determined by unitarity. The function Fð2Þ
n contains the

remaining polylogarithms of the amplitude and Rð2Þ
n con-

tains the remaining rational terms. In dimensional regu-
larization the internal momenta lie in D ¼ 4 − 2ϵ, and it is
really D-dimensional unitarity which should be used to
reconstruct the amplitude. Consequently, four dimensional
unitarity is not sensitive to the rational terms; however, it
does give considerable simplification. The rational terms

may be computed by complementary methods such as
recursion. For the case of QCD, the rational terms for
n ¼ 5, 6 were computed by recursion starting from the

four-point amplitude. We will not compute Rð2Þ
5 here: it not

being necessary for our analysis and Rð2Þ
4 not being

available.
The all-plus two-loop amplitude is a particularly simple

amplitude. The all-plus helicity tree amplitude vanishes,

Mð0Þ
n ð1þ; 2þ;…; nþÞ ¼ 0: ð2:8Þ

This can be seen as a consequence of supersymmetric Ward
identities [20]. These imply that this amplitude vanishes to
all orders in perturbation theory in supersymmetric theo-
ries. Since the n-graviton amplitudes for pure gravity
coincide with those for supersymmetric theories at tree
level, then the gravity tree amplitude also vanishes.
The one-loop four-point amplitude for pure gravity

is [21]2

Mð1Þ
4 ð1þ; 2þ; 3þ; 4þÞ

¼ −
�

st
h12ih23ih34ih41i

�
2 ðs2 þ t2 þ u2Þ

120
þOðϵÞ;

ð2:9Þ

and the n-point amplitude can be expressed as [22]

Mð1Þ
n ð1þ;2þ; 3þ;…; nþÞ

¼ ð−1Þn
960

X
a;b;M;N

hða;M; bÞhðb;N; aÞtr3ðaMbNÞ þOðϵÞ;

ð2:10Þ

where hða;M; bÞ are the “half-soft” functions of Ref. [22].
The summation is over pairs of legs (a, b) and partitions
(M, N) of the remaining legs where both the sets M and N
have at least one element. The half-soft functions we need
for the five-point amplitude are

hða; fcg; bÞ ¼ 1

haci2hcbi2 ;

hða; fc; dg; bÞ ¼ 1

hacihadi
½cd�
hcdi

1

hcbihdbi : ð2:11Þ

When coupled minimally to additional bosons and
fermions these amplitudes are multiplied by a factor
ðNB−NFÞ=2 where NB=F is the total number of bosonic/
fermionic degrees of freedom. A key feature of the one-
loop amplitudes is that they are, to order ϵ0, rational

1As usual, a null momentum is represented as a pair of two
component spinors pμ ¼ σμα _αλ

αλ̄ _α. For real momenta λ ¼ �λ̄� but
for complex momenta λ and λ̄ are independent [18]. We are using
a spinor helicity formalism with the usual spinor products habi ¼
ϵαβλ

α
aλ

β
b and ½ab� ¼ −ϵ _α _βλ̄

_α
aλ̄

_β
b.

2We use for four-point kinematics s≡ s12, t≡ s14, and
u≡ s13.
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functions and as such have no cuts in four dimensions.
Thus if computing amplitudes using cuts in four dimen-
sions, they are indivisible and can be treated as a vertex.
The only four dimensional cuts of the n-point all-plus
amplitude are shown in Fig. 1. For this helicity amplitude
the only tree amplitudes necessary to compute the cuts are
the three-point amplitudes and the maximally-helicity-
violating (MHV) tree amplitudes [23].
The four dimensional calculation gives the coefficient of

Ið1Þn to beMð1Þ
n to leading order in ϵ. As in the QCD case, we

promote this to the all-ϵ form. The all-plus one-loop
amplitudes in Eq. (2.2) for four and five points are known
to all orders in ϵ [22,24],

Mð1Þ
4 ð1þ;2þ;3þ;4þÞ

¼ 2
½12�2½34�2
h12i2h34i2 ðI

1234
4 ½μ80� þ I12434 ½μ80� þ I14234 ½μ80�Þ;

Mð1Þ
5 ð1þ;2þ;3þ;4þ;5þÞ

¼ β123ð45ÞI
123ð45Þ
4 ½μ80�− 2

½12�½23�½34�½45�½51�
h12ih23ih34ih45ih51iI

12345
5 ½μ100 �

þPerms; ð2:12Þ

where

β123ð45Þ ¼ −½12�2½23�2hð1; f4; 5g; 3Þ ð2:13Þ

and In½μ2m0 � are the n-point integral functions with μ2m0
inserted where μ0 are the −2ϵ coordinates in dimensional
regularization,

R
dDx ¼ R

d4xd−2ϵμ0. The superscripts
denote the ordering and clustering of the external legs.
These are related to scalar integrals in higher dimensions
[24,25],

Im½μ2r0 � ¼−ϵð1− ϵÞ � � �ðr−1− ϵÞð4πÞrID¼4þ2r−2ϵ
m : ð2:14Þ

III. THE FOUR-POINT ALL-PLUS
HELICITY AMPLITUDE

The four-point all-plus helicity amplitude has some
significant simplifications. Specifically, the quadruple cuts

vanish3 and there are only one-mass triangle and bubble
contributions. In fact, this amplitude is sufficiently simple
that using the one-loop amplitude as a vertex both the
triangle and bubble functions can be obtained simply from
the two-particle cuts [21] with the result

Mð2Þ
4 ð1þ;2þ;3þ;4þÞ

¼Mð1Þ
4 ð1þ;2þ;3þ;4þÞ×

�
2ð−sÞ1−ϵþ2ð−tÞ1−ϵþ2ð−uÞ1−ϵ

ϵ2

−
2sð3u2þ3t2−2s2Þ

ðs2þ t2þu2Þ
ð−s=μ2Þ−ϵ

ϵ

−
2tð3s2þ3u2−2t2Þ

ðs2þ t2þu2Þ
ð−t=μ2Þ−ϵ

ϵ

−
2uð3t2þ3s2−2u2Þ

ðs2þ t2þu2Þ
ð−u=μ2Þ−ϵ

ϵ
þ rational terms

�
:

ð3:1Þ

This expression contains ϵ−1 and the lnðμ2Þ terms in the
combination,

Mð1Þ
4 ð1þ; 2þ; 3þ; 4þÞ × 30stu

ðs2 þ t2 þ u2Þ ×
�
1

ϵ
þ lnðμ2Þ

�

¼ −
1

4

�
st

h12ih23ih34ih41i
�

2

× stu ×

�
1

ϵ
þ lnðμ2Þ

�
:

ð3:2Þ
If gravity is coupled to matter with NB − 2 additional

bosonic degrees of freedom and NF fermionic degrees of
freedom, the one-loop all-plus amplitude is multiplied by a
factor of ðNB − NFÞ=2 and the calculation follows through
as above. The all-plus amplitude in this theory is thus the
expression above with the replacement

−
1

4
→ −

NB − NF

8
; ð3:3Þ

FIG. 1. Four dimensional cuts of the two-loop all-plus amplitude involving an all-plus one-loop vertex (indicated by the solid circles).
Contributions can arise from (a) boxes, (b) two-mass triangles, (c) one-mass triangles, and (d) bubbles.

3In computing the quadruple cuts for a four-point amplitude
the only nonvanishing product of cut amplitudes has alternating
MHV and ¯MHV three-point vertices at the corners. This pre-
cludes any box functions for the four-point all-plus amplitude.
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which matches the result of [13]. Consequently, we note
that four dimensional unitarity gives the correct amplitude
up to rational terms although, as was known in Ref. [21],
the coefficient of ϵ−1 does not match the field theory
calculation.

IV. THE FIVE-POINT ALL-PLUS AMPLITUDE

This amplitude contains functions, particularly dilogar-
ithms, that are not present in the four-point amplitude.
These are contained in the box contributions shown in
Fig. 2. The box contribution is readily evaluated using a
quadruple cut [26].
With the labeling of Fig. 2 the cut momenta are

l1 ¼
hcdi
heci λ̄dλe; l2 ¼

hcjPdej
heci λe;

l3 ¼
hejPcdj
heci λc; l4 ¼

hedi
heci λ̄dλc; ð4:1Þ

giving the coefficient of the box function,

Cfa;bg;c;d;e ¼
1

2
Mð1Þ

4 ðaþ; bþ;lþ
3 ;−l

þ
2 Þ ×Mð0Þ

3 ð−l−3 ; cþ; lþ4 Þ

×Mð0Þ
3 ð−l−4 ; dþ; l−1 Þ ×Mð0Þ

3 ð−lþ1 ; eþ; l−2 Þ

¼ 1

240

�½ab�6½cd�2½ed�2
heci4

�

× ðhabi2heci2 þ haei2hbci2 þ haci2hbei2Þ:
ð4:2Þ

This is the coefficient of the integral function
I1m4 ðscd; sde; sabÞ where [27]

I1m4 ðS; T;M2Þ

¼ −
2

ST

�
−
ðμ2ϵÞ2
ϵ2

½ð−SÞ−ϵ þ ð−TÞ−ϵ − ð−M2Þ−ϵ�

þ Li2

�
1 −

M2

S

�
þ Li2

�
1 −

M2

T

�
þ 1

2
ln2

�
S
T

�
þ π2

6

�

þOðϵÞ; ð4:3Þ

and overall factors have been removed according to the
normalization of Eq. (2.1).
This integral function splits into singular terms plus a

remainder I1m4 ¼ I1m∶IR
4 þ I1m∶F

4 where

I1m∶IR
4 ðS;T;M2Þ

≡−
2

ST

�
−
ðμ2ϵÞ2
ϵ2

½ð−SÞ−ϵþð−TÞ−ϵ− ð−M2Þ−ϵ�
�
: ð4:4Þ

The one-mass integral function is

I1m3 ðK2Þ ¼ ðμ2ϵÞ2
ϵ2

ð−K2Þ−1−ϵ; ð4:5Þ

and the two-mass triangle function is

I2m3 ðK2
1; K

2
2Þ ¼

ðμ2ϵÞ2
ϵ2

ð−K2
1Þ−ϵ − ð−K2

2Þ−ϵ
ð−K2

1Þ − ð−K2
2Þ

: ð4:6Þ

The boxes, one-mass triangles, and two-mass triangles all
have IR infinite terms of the form

ðμ2ϵÞ2
ϵ2

ð−K2Þ−ϵ: ð4:7Þ

The coefficients of the triangle contributions can be evalu-
ated using triple cuts [28–31] and a canonical basis [32].
Summation over the box and triangle contributions gives an

overall coefficient of Mð1Þ;ϵ0
5 ðaþ; bþ; cþ; dþ; eþÞ, i.e.,

�X
Cfa;bg;c;d;eI1m4 þ

X
Cfa;b;cg;d;eI1m3 þ

X
Cfa;bg;c;fd;egI2m3

�
IR

¼ Mð1Þ;ϵ0
5 ðaþ; bþ; cþ; dþ; eþÞ ×

Xn
i<j

−
1

ϵ2
sij

�
μ2

−sij

�
ϵ

;

ð4:8Þ

whereMð1Þ;ϵ0
5 ðaþ; bþ; cþ; dþ; eþÞ is the order ϵ0 truncation

of the one-loop amplitude. A key step is to promote
the coefficient of these terms to the all-ϵ form of the
one-loop amplitude, which then gives the correct singular

structure of the amplitude. We have confirmed relationship
(4.8) for the n-point amplitude by computing the triple
and quadruple cuts at specific kinematic points up to
n ¼ 10.

FIG. 2. The labeling and internal helicities of the quadruple cut.
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Consequently, we can obtain the compact explicit
analytic form for the dilogarithmic remainder part of the
amplitude

Fð2Þ
5 ¼ 1

240

X
P30

�½ab�6½cd�2½ed�2
heci4

�

× ðhabi2heci2 þ haei2hbci2 þ haci2hbei2Þ

×

�
−

2

scdsde

��
Li2

�
1 −

sab
scd

�
þ Li2

�
1 −

sab
sde

�

þ 1

2
ln2

�
scd
sde

�
þ π2

6

�
; ð4:9Þ

where the permutation sum is over the 30 independent
permutations of the legs ðfa; bg; c; d; eÞ after factoring out
for the symmetries ðfa; bg; c; d; eÞ≡ ðfb; ag; c; d; eÞ≡
ðfa; bg; e; d; cÞ.
Note that the coefficients in the Fð2Þ

5 term contain heci−4
singularities. On this singularity the integral function

vanishes and Fð2Þ
5 has heci−3 singularities. These are

spurious and not present in the full amplitude. They cancel

against the Gð2Þ
5 terms as we will discuss at the end of the

next section.

V. COEFFICIENT OF lnðs=μ2Þ
We determine the presence of the lnðsab=μ2Þ functions

using two-particle cuts. The coefficient has two contribu-
tions as shown in Fig. 3.
We determine these using canonical forms. The canoni-

cal basis approach [32] is a systematic method to determine
the coefficients of triangle and bubble integral functions in
a one-loop amplitude from the three- and two-particle cuts.
A two-particle cut is of the form

C2 ≡ i
Z

d4l1δðl2
1Þδðl2

2ÞAtree
1 ð−l1; a;…; b;l2Þ

× Atree
2 ð−l2;…;l1Þ: ð5:1Þ

The product of tree amplitudes appearing in the two-
particle cut can be decomposed in terms of canonical
forms Hi,

Atree
1 ð−l1;…;l2Þ × Atree

2 ð−l2;…;l1Þ
¼

X
eiHiðρk;ljÞ; ð5:2Þ

where the ei are coefficients independent of lj. We then use
substitution rules to replace the Hiðρk;ljÞ by rational
functions Hi½ρk; P� to obtain the coefficient of the bubble
integral function as

X
i

eiHi½ρk; P�: ð5:3Þ

Here we use this technique treating the one-loop all-plus
vertex as a tree amplitude.
The canonical forms we need and their substitutions are

H0
1;1ðA;C;a;c;l1;l2Þ≡ hal1i

hAl1i
hcl2i
hCl2i

→H0
1;1½A;C;a;c;P�

¼ hCci½CjPjai
hCAi½CjPjCiþ

hAci½AjPjai
hACi½AjPjAi ;

H0
2xðA;B1;C1;l1;l2Þ≡ hB1l1ihC1l2i

hAl1ihAl2i
→H0

2x½A;B1;C1;P�

¼ ½AjPjB1i½AjPjC1i
½AjPjAi2 ; ð5:4Þ

where P is the cut-momentum P ¼ ka þ…kb. We take the
product of amplitudes in the cut and split them into a sum of
terms of type in Eq. (5.4) using partial fractioning,

Q
n−1
j¼1hlXjiQ
n
i¼1hlYii

¼
Xn
i¼1

�Qn−1
j¼1hYiXjiQ
l≠ihYlYii

�
×

1

hlYii
¼
Xn
i¼1

αi
1

hlYii
:

ð5:5Þ

For the five-point amplitude the cuts have P ¼ ka þ kb.
Working specifically with sab ¼ s45, the two-particle cut
has two contributions,

A∶Mð0Þ
5 ð1þ; 2þ; 3þ; l−2 ; l−1 Þ ×Mð1Þ

4 ð4þ; 5þ; lþ1 ; lþ2 Þ;
B∶Mð1Þ

5 ð1þ; 2þ; 3þ; lþ2 ; lþ1 Þ ×Mð0Þ
4 ð4þ; 5þ; l−1 ; l−2 Þ: ð5:6Þ

From the term A we obtain a contribution to the
coefficient of

CA
45 ¼

X
r¼1;2

cr
X3
i¼1

X2
j¼1;j≠i

αriβ
r
jH

0
1;1½Ar

i ; a
r
j;B

r
3; b

r
3;P�

þ
X
r¼1;2

cr
X2
i¼1

αriβ
r
iH

0
2x½Ar

i ;B
r
3; b

r
3;P� ð5:7Þ

with

αri ¼
Q

2
l¼1hBr

lA
r
i iQ

l≠ihAr
lA

r
i i

; βri ¼
hbr1ari iQ
l≠iharl ari i

; ð5:8Þ

where

FIG. 3. Contributions to the two-loop amplitudes involving an
all-plus loop (indicated by the solid circle). Contributions arise
from (a) five-point and (b) four-point all-plus one-loop insertions.
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c1 ¼ −
½45�6½23�

120h23ih13i ; c2 ¼
½45�6½12�

120h12ih13i ; ð5:9Þ

and

fjA1
i ig¼fj1i;j2i;j3ig; fjA2

i ig¼fj2i;j3i;j1ig;
fja1i ig¼fj1i;j2ig; fa2i g¼fj2i;j3ig;
fjB1

i ig¼fj5i;j5i;−K45j1�g; fjB2
i ig¼fj5i;j5i;−K45j3�g;

fjb1i ig¼fjb2i g¼fj4i;j4ig: ð5:10Þ

Contributions from the second configuration are more
complicated, but using relationships between the different
terms to simplify the final expression we obtain

CB
45 ¼ TB

1;2;3;4;5 þ TB
2;1;3;4;5 þ TB

3;2;1;4;5 ð5:11Þ

with

TB
1;2;3;4;5

¼ ½23�½45�
120h23ih45i

�X5
i¼2

X5
j¼2;j≠i

αiβjH0
1;1½i; j;A4; B4; f4; 5g�

þ
X5
i¼2

αiβiH0
2x½i;A4; B4; f4; 5g�

�
; ð5:12Þ

where

αi ¼
Q

3
k¼1hiAkiQ

l∈f2;3;4;5g−fighili
;

βj ¼
Q

3
k¼1hjBkiQ

l∈f2;3;4;5g−fjghjli
; ð5:13Þ

and

fjAkig ¼ fjBkig ¼ fj1i; Kj1�; Kj1�; Kj1�g: ð5:14Þ

Thus the amplitude contains

ðCA
45 þ CB

45Þ
�
1

ϵ
− lnðs45=μ2Þ

�
: ð5:15Þ

The full amplitude thus has ϵ−1 and lnðμ2Þ terms of

X
i<j

ðCA
ij þ CB

ijÞ lnðsijÞ þ
X
i<j

ðCA
ij þ CB

ijÞ
�
1

ϵ
þ lnðμ2Þ

�
:

ð5:16Þ

We have determined the above expression using four
dimensional unitarity which isolates the coefficient of
lnðsijÞ. The value of lnðμ2Þ then follows. The coefficient
of ϵ−1 in this is tied to the lnðμ2Þ but is, presumably, not the

value which would be obtained from a field theory
calculation.
The bubble coefficients contain spurious heci−3 singu-

larities which must cancel [33] against the singularities in

the Fð2Þ
5 term. Specifically the singularities are of the form

1

heci3 × flnðsabÞ; lnðsdcÞ; lnðsedÞ þ permutationsg; ð5:17Þ

where the permutations are of a, b, d. The Fð2Þ
5 term

contains dilogarithms, but near the point heci ¼ 0 these
simplify and

Fð2Þ
5 ¼ 1

heci4 ð0þ secflnðsabÞ; lnðsdcÞ; lnðsedÞ

þ permutationsg þOðs2ecÞÞ: ð5:18Þ

We have explicitly checked that within Fð2Þ
5 þGð2Þ

5 both the
heci−3 and heci−2 singularities cancel, leaving the full
amplitude free of spurious singularities: this is a strong
consistency check. We have also checked the collinear limit
of the five-point amplitude.

VI. COUNTERTERM LAGRANGIAN

In this section we enumerate the possible independent
counterterms for pure gravity in four dimensions. In
general, graviton scattering amplitudes, in D dimensions
at L loops, require the introduction of counterterms of
the form

∇nRm; ð6:1Þ

where nþ 2m ¼ ðD − 2ÞLþ 2 and we have suppressed
the indices on R. R may stand for the Riemann tensor,
Rabcd; the Ricci tensor, Rab ≡ gcdRacbd; or the curvature
scalar, R≡ gabRab. Although there are a large number of
tensor structures which may appear, fortunately, the sym-
metries of the Riemann tensor reduce these considerably.
First, there are the basic symmetries of Rabcd,

Rabcd ¼ −Rbacd ¼ −Rabdc ¼ Rcdab; ð6:2Þ

and the cyclic symmetry,

Rabcd þ Racdb þ Radbc ¼ 0: ð6:3Þ

Second, we have the Bianchi identity for ∇eRabcd,

∇eRabcd þ∇cRabde þ∇dRabec ¼ 0: ð6:4Þ

There are also “derivative identities” which involve two
covariant derivatives,
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∇e∇fRabcd −∇f∇eRabcd ¼ Rg
aefRgbcd þ Rg

befRagcd

þ Rg
cefRabgd þ Rg

defRabcg;

∇2Rabcd ¼ 2Rf
aceRe

dbf − 2Rf
bceRe

daf

− Re
dabRce þ Re

cabRde

þ∇c∇aRbd −∇c∇bRad

−∇d∇aRbc þ∇d∇bRac:

ð6:5Þ

These symmetries will be used to determine the minimal
set of inequivalent counterterms.
From power counting the possible two-loop counter-

terms in D ¼ 4 are of the form R3 or ∇2R2. The indepen-
dent terms involving Rabcd, Rab, and R are [34,35]

T1¼∇aR∇aR; T2 ¼∇aRbc∇aRbc;

T3¼∇eRabcd∇eRabcd; T4 ¼∇cRab∇bRac;

T5¼R3; T6¼RRabRab;

T7¼RRabcdRabcd; T8 ¼RabcdRabceRd
e;

T9¼RabcdRacRbd; T10¼Ra
bRb

cRc
a;

T11¼Rab
cdRcd

efRef
ab; T12¼RabcdRa

e
c
fRbedf: ð6:6Þ

For the case of pure gravity, the counterterm structure can
be represented as a single counterterm with a numerical
coefficient. We review the argument leading to the con-
clusion that a single counterterm is sufficient. (When matter
is coupled to gravity, this is no longer the case.)
For pure gravity the equation of motion is

Rab ¼ 0: ð6:7Þ

Hence terms involving the Ricci tensor or curvature
scalar will not contribute to the S-matrix, and such terms
can be discarded when calculating the counterterms. (If
calculating an off-shell object, such counterterms can,
and do, appear.) Ignoring such terms leaves us with three
tensors—T3, T11, and T12. The term T3,

T3 ¼ ∇eRabcd∇eRabcd ≡ −Rabcd∇2Rabcd; ð6:8Þ

can be rearranged using the identity in Eq. (6.5) into terms
involving the Ricci tensor plus cubic terms in the Riemann
tensor. Thus for pure gravity this term is equivalent to a
combination of T11 and T12 and can be eliminated from the
list of inequivalent counterterms.
Finally, in six dimensions the scalar topological density

can be written

δabcdef½mnpqrs�R
mn

abRpq
cdRrs

ef; ð6:9Þ

which implies that the combination

X12
i¼5

aiTi ≡ 0 ð6:10Þ

is topological for some coefficients ai in dimensionsD ≤ 6.
Hence for pure gravity amplitudes we can replace T12 with
T11 (or vice versa). Thus we are led to the fact that the
counterterm can be taken as a single tensor with a
coefficient. Thus the counterterm can be chosen to be

CR3

60
×

�
κ

2

�
2 1

ð4πÞ4
Z

d4x
ffiffiffiffiffiffi
−g

p
Rab

cdRcd
efR

ef
ab ð6:11Þ

with the free coefficient CR3 .
Computing with this Lagrangian, the parts of the four-

point amplitudes proportional to CR3 are [36]

MR3

4 ð1þ; 2þ; 3þ; 4þÞ

¼ CR3 ×

�
κ

2

�
6

×
1

ð4πÞ4
�

st
h12ih23ih34ih41i

�
2

stu;

MR3

4 ð1−; 2þ; 3þ; 4þÞ

¼ CR3 ×

�
κ

2

�
6

×
1

ð4πÞ4
� ½24�2st2
½12�h23ih34i½41�

�
2 t
10su

;

MR3

4 ð1−; 2−; 3þ; 4þÞ ¼ CR3 × 0: ð6:12Þ

Comparing this to the coefficient of lnðμ2Þ in Eq. (3.2)
we find

CR3 ¼ −
1

4
: ð6:13Þ

We also require the five-point amplitude computed using
the above Lagrangian. Perturbative gravity calculations
based upon Feynman diagrams are notoriously difficult;
however, we can compute the higher point functions using
recursion.
The original Britto, Cachazo, Feng and Witten (BCFW)

shift [37],

λi → λi þ zλj; λ̄j → λ̄j − zλ̄i; ð6:14Þ

does not lead to an expression with the correct symmetry;
however, the shift [38,39]

λa → λâ ¼ λa þ z½bc�λη;
λb → λb̂ ¼ λb þ z½ca�λη;
λc → λĉ ¼ λc þ z½ab�λη; ð6:15Þ

where λη is an arbitrary spinor does. Using this shift we can
obtain an expression for the five-point amplitude. The
amplitude has two factorizations,
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Mtree
3 ðâþ; dþ; K−Þ × 1

K2
×MR3

4 ðb̂þ; ĉþ; dþ;−KþÞ;

Mtree
3 ðb̂þ; ĉþ; K−Þ × 1

K2
×MR3

4 ðâþ; dþ; eþ;−KþÞ ð6:16Þ

with six terms of the first type and three of the second.
With ða; b; c; d; eÞ ¼ ð1; 2; 3; 4; 5Þ we find that the first
term gives

TA
1;2;3;4;5 ¼ N4

½14�
h14i

½53�½52�
h1ηi2h4ηi

½23�2
h45i

× ½5jK14jηi½2jK14jηi½3jK14jηi; ð6:17Þ
which is symmetric under 2 ↔ 3. The second is

TB
1;2;3;4;5

¼ −N4

½14�½15�½23�½1jK23jηi2½5jK23jηi½4jK23jηi
h23ih2ηi2h3ηi2

½45�
h45i ;

ð6:18Þ
which is symmetric under 2 ↔ 3 and 4 ↔ 5. The nor-
malization is

N4 ¼
�
κ

2

�
6

×
1

ð4πÞ4 × CR3 : ð6:19Þ

The resultant contribution to the amplitude is

MR3

5 ð1þ; 2þ; 3þ; 4þ; 5þÞ

¼ N4

�X
P6

TA
1;2;3;4;5 þ

X
P3

TB
1;2;3;4;5

�
; ð6:20Þ

where the summation is over the six independent TA and
the three independent TB.
The expression for MR3

5 ð1þ; 2þ; 3þ; 4þ; 5þÞ is
(i) Fully crossing symmetric between external legs;
(ii) Independent of the spinor η.
These are strong indicators that we have computed the

correct expression. We have checked this construction for
the n-point all-plus amplitude up to n ¼ 10.
Additionally

(i) As z → ∞ for the BCFW shift the amplitude does not
vanish but behaves as z2. This is the reason why the
shift (6.14) does not generate this amplitude.

(ii) The expression has soft limits with

MR3

5 ¼
�
1

t3
Sð0Þ þ 1

t2
Sð1Þ þ 1

t
Sð2Þ

�
MR3

4 þOðt0Þ;

ð6:21Þ
where SðiÞ are the leading, subleading, and sub-
subleading soft operators [40]. As a two-loop

amplitude, there is a possibility that the sub-sublead-
ing would not satisfy this so we regard this as a feature
of the constructed amplitudes rather than as a neces-
sary constraint.

Comparing expression (6.20) with (5.16) we find

�X
P6

TA
1;2;3;4;5 þ

X
P3

TB
1;2;3;4;5

�
¼ −4 ×

X
i<j

ðCA
ij þ CB

ijÞ;

ð6:22Þ

and we therefore obtain CR3 ¼ −1=4. The counterterm is
thus consistent with that required for the four-point
amplitude.

VII. CONCLUSION

Computing quantum gravity amplitudes is notoriously
difficult. Only a small number of on-shell scattering
amplitudes have been computed analytically. For pure
gravity only the four- and five-point one-loop amplitudes
have been presented for all helicity configurations with all-
n expressions for the all-plus and single-minus amplitudes.
Progress beyond one-loop has been confined to theories
which are supersymmetric where the enhanced symmetries
significantly simplify the amplitudes.
In this article we have shown how four dimensional

cutting techniques allow us to compute large and interest-
ing parts of two-loop pure gravity amplitudes and have
obtained the (poly)logarithmic parts of the all-plus helicity
amplitude for four and five points in compact analytic
forms. We also obtain the associated lnðμ2Þ terms which as
argued in Ref. [13] determine the nonrenormalizability of
the amplitudes. We have matched these to the same R3

counterterm for both the four- and five-point amplitudes.
Given that the lnðμ2Þ terms are key to renormalizability, this
technique provides a straightforward method to study the
UV behavior of gravity theories.
Our approach has been entirely based upon physical on-

shell amplitudes and is very different from a field theory
approach where the one-loop renormalization utilizes
“evanescent” operators [13]. We do not obtain the ϵ−1

term found there, but we do reproduce the four-point
renormalized amplitude and present a five-point amplitude
correctly renormalized.
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