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Two-loop gravity amplitudes from four dimensional unitarity
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We compute the polylogarithmic parts of the two-loop four- and five-graviton amplitudes where the
external helicities are positive and express these in a simple compact analytic form. We use these to extract
the In(u?) terms from both the four- and five-point amplitudes and show that these match the same R

counterterm.
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I. INTRODUCTION

Computing the scattering amplitudes of a quantum
theory using its singular and analytic structure has a long
history with many notable successes [1]. Recently the five-
point all-plus helicity amplitude has been computed in
QCD: first the integrands were determined using the
method of maximal cuts [2] and D-dimensional unitarity,
and then the integrals were evaluated yielding a compact
analytic form [3]. In D-dimensional unitarity the cuts are
computed in D = 4 — 2¢ dimensions where, typically, the
components of the cuts are considerably more complicated
than in four dimensions. In [4] it was demonstrated that
four dimensional unitarity techniques [5,6] blended
with a knowledge of the singular structure of the amplitude
could reproduce this form in a straightforward way. The
four dimensional approach was also used to calculate
the six-point amplitude [7,8] which was subsequently
verified [9].

Here we apply these techniques to gravity amplitudes
with a particular emphasis on their ultraviolet (UV)
behavior. Understanding the UV structure of quantum
gravity necessitates studying the two-loop amplitude. ’t
Hooft and Veltman [10] demonstrated the one-loop finite-
ness of on-shell amplitudes in quantum gravity by showing
the available counterterms in four dimensions made no
contribution to perturbative amplitudes. This cancellation
does not persist to two loop, and Goroff and Sagnotti
[11,12] in a landmark calculation were able to compute a
UV infinity of the form

(1.1)

where AR is the functional form generated by an R’
counterterm. A feature of the computation was the appear-
ance of subdivergences which were canceled diagram by
diagram. In [13] this computation was revisited using
evanescent operators which arise at one-loop to remove
the subdivergences in the four-point two-loop amplitude.
For gravity coupled to various matter multiplets they found
UV terms
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and noted that the coefficient of In(y?), a,, was more robust
and simpler than a;. Specifically, when coupled to nj
(nonpropagating) three form fields a; obtained a contribu-
tion proportional to n; but a, did not. Additionally
when coupled to scalars and vectors, a, was simply propor-
tional to the difference between the number of bosonic and
fermionic degrees of freedom. As was argued in Ref. [13],
the coefficient a, has physical content since after renorm-
alization the amplitude depends upon a, but not a;.

In this article we explore and compute, up to rational
terms, the four- and five-point two-loop amplitudes in
quantum gravity where all the external gravitons have
positive helicity. We use the techniques which have proven
successful for the gluon amplitude: the amplitude is
organized using a knowledge of its singularity structure,
and then four dimensional unitarity is used to determine the
logarithmic and dilogarithmic parts. Since In(x?) only
appears in the combination In(K?/u?) we can extract the
coefficient of In(x?) using unitarity. We obtain the same
coefficient of In(u?) for the four-point amplitude as in
Ref. [13]. We also obtain the coefficient of In(u?) for the
five-point amplitude and show that this matches the same
R? counterterm.

II. STRUCTURE OF THE AMPLITUDE

As a convention we remove the coupling coLnstant factors
from the full n-point L-loop amplitude, M ") using

B l'(K./2)n—2+2L(rl_)L

M) (1,...,n)= () L)

MP(1,....n),

(2.1)

where rp = T?(1 —e)T'(1 +¢€)/T(1 = 2e).

We then organize the amplitude according to its singu-
larity structure. The amplitude has both infrared (IR) and
UV singularities in the dimensional regulation parameter e.
The all-plus amplitudes, which are finite at one-loop, can
be divided as
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MY =M1V + 6P+ FP +RP +06), (22)

where the first term contains the IR singularities of the

amplitude. The function I is [14-17]
(1 LI EGAN
i<j € Sij

and M 511) is the all-e form of the one-loop amplitude [with

si; = (k; + k;)?]. The leading singularity of 1V is only ™!
since

1 (& 1
i<j

by momentum conservation, and the leading singularity

is then

(2.5)

—>< (Zsuln

i<j

z]//’t > X Mﬁl”

The amplitude also has finite logarithmic terms. In our four
dimensional formulation these arise in two-particle cuts and
have the form of one-loop bubble integral functions,

Zc,, ( ) (2.6)

i<j
where ¢;; are rational functions of 1; and /_Ik.l
The all-plus two-loop amplitude in QCD does not

contain this term [19]. This gives rise to ¢! and In(u?)
terms in the combination
(Zc,]> ( +In(u )) (2.7)
i<j

There may be other sources of e~! terms not directly
(2)

determined by unitarity. The function F,’ contains the

remaining polylogarithms of the amplitude and R con-
tains the remaining rational terms. In dimensional regu-
larization the internal momenta lie in D = 4 — 2¢, and it is
really D-dimensional unitarity which should be used to
reconstruct the amplitude. Consequently, four dimensional
unitarity is not sensitive to the rational terms; however, it
does give considerable simplification. The rational terms

'As usual, a null momentum is represented as a pair of two
component spinors p¥ = GZO.{/I"Z"‘ . For real momenta A = +1* but
for complex momenta 4 and / are independent [18]. We are using
a spinor helicity formalism with the usual spinor products (ab) =

€ap/ly and [ab] = —¢, ﬁﬁgz”
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may be computed by complementary methods such as
recursion. For the case of QCD, the rational terms for

n =135, 6 were computed by recursion starting from the

four-point amplitude. We will not compute Rgz)

being necessary for our analysis and Rf)

available.
The all-plus two-loop amplitude is a particularly simple
amplitude. The all-plus helicity tree amplitude vanishes,

here: it not

not being

MY (1+,2%, .. nt) =0. (2.8)
This can be seen as a consequence of supersymmetric Ward
identities [20]. These imply that this amplitude vanishes to
all orders in perturbation theory in supersymmetric theo-
ries. Since the n-graviton amplitudes for pure gravity
coincide with those for supersymmetric theories at tree
level, then the gravity tree amplitude also vanishes.

Thezone-loop four-point amplitude for pure gravity
is [21]

M (1+,2% 3+ 4%)

st 2(s>+ 12 +u?)

(
_<<12> (23)(34) <41>> 120

+ O(e),
(2.9)

and the n-point amplitude can be expressed as [22]

MV (1,275,340t

(=1
960

> h(a.M.b)h(b.N.a)tr*(aMbN) + O(e),
a,b,M.N

(2.10)

where h(a, M, b) are the “half-soft” functions of Ref. [22].
The summation is over pairs of legs (a, b) and partitions
(M, N) of the remaining legs where both the sets M and N
have at least one element. The half-soft functions we need
for the five-point amplitude are

o
(ac)*(cb)*”

1 [cd] 1
(ac)(ad) {cd) (cbY(db)

When coupled minimally to additional bosons and
fermions these amplitudes are multiplied by a factor
(Np—=Np)/2 where Ng,p is the total number of bosonic/
fermionic degrees of freedom. A key feature of the one-
loop amplitudes is that they are, to order €, rational

h(a,{c}.b) =

h(a,{c,d},b) =

(2.11)

2 . . .
We use for four-point kinematics s = sy,, = sy4, and
u==s83.
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FIG. 1.
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Four dimensional cuts of the two-loop all-plus amplitude involving an all-plus one-loop vertex (indicated by the solid circles).

Contributions can arise from (a) boxes, (b) two-mass triangles, (c) one-mass triangles, and (d) bubbles.

functions and as such have no cuts in four dimensions.
Thus if computing amplitudes using cuts in four dimen-
sions, they are indivisible and can be treated as a vertex.
The only four dimensional cuts of the n-point all-plus
amplitude are shown in Fig. 1. For this helicity amplitude
the only tree amplitudes necessary to compute the cuts are
the three-point amplitudes and the maximally-helicity-
violating (MHV) tree amplitudes [23].

The four dimensional calculation gives the coefficient of

1 ,(11) tobe M ,(,1> to leading order in €. As in the QCD case, we
promote this to the all-¢ form. The all-plus one-loop
amplitudes in Eq. (2.2) for four and five points are known
to all orders in e [22,24],

M‘(‘U(1+’2+’3+’4+)

2 2
=2 (Pl 125+ 1),

MY (1+,2+ 3+ 4% 5+)

+ Perms, (2.12)
where

Proyas) = —[122[23°A(1,{4.5}.3)  (2.13)
and I,[u3"] are the n-point integral functions with u3"
inserted where p, are the —2¢ coordinates in dimensional
regularization, [ dPx = [d*xd=*‘u,. The superscripts
denote the ordering and clustering of the external legs.

These are related to scalar integrals in higher dimensions
[24,25],

I, [,u%’] =—e(l1—=¢)---(r—1—¢)(dn)" 1D=4+2r=2¢ (2.14)

III. THE FOUR-POINT ALL-PLUS
HELICITY AMPLITUDE

The four-point all-plus helicity amplitude has some
significant simplifications. Specifically, the quadruple cuts

vanish® and there are only one-mass triangle and bubble
contributions. In fact, this amplitude is sufficiently simple
that using the one-loop amplitude as a vertex both the
triangle and bubble functions can be obtained simply from
the two-particle cuts [21] with the result

MP (17 2+ 3+ 4%)

2(=8)' +2(=0)' " +2(~w)'*
2

:M§‘>(1+,2+,3+,4+)x<

€

2s(3u® 431> —25) (—s/pu*)~¢

GET €

21(3s*+3u? =217) (—t/u*)~¢

(PPl €

_2u(3+35% = 2u?) (/) +rational terms) .
(s + 12 +u?)

(3.1)

This expression contains ¢~ and the In(y?) terms in the
combination,

30stu 1
(s> + 12+ u?) x <E + ln(y2)>
RV

() <o (g +m00).
(3.2)

M (1F,2% 3+, 4%) x

If gravity is coupled to matter with Ny —2 additional
bosonic degrees of freedom and N fermionic degrees of
freedom, the one-loop all-plus amplitude is multiplied by a
factor of (N — Ny)/2 and the calculation follows through
as above. The all-plus amplitude in this theory is thus the
expression above with the replacement

1 Ng— Ny
_t ., _Np=Nr

. . (3.3)

*In computing the quadruple cuts for a four-point amplitude
the only nonvanishing product of cut amplitudes has alternating
MHYV and MHV three-point vertices at the corners. This pre-
cludes any box functions for the four-point all-plus amplitude.
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which matches the result of [13]. Consequently, we note
that four dimensional unitarity gives the correct amplitude
up to rational terms although, as was known in Ref. [21],
the coefficient of ¢~! does not match the field theory
calculation.

IV. THE FIVE-POINT ALL-PLUS AMPLITUDE

This amplitude contains functions, particularly dilogar-
ithms, that are not present in the four-point amplitude.
These are contained in the box contributions shown in
Fig. 2. The box contribution is readily evaluated using a
quadruple cut [26].

With the labeling of Fig. 2 the cut momenta are

_ P
fl — Cd> A’dﬂg, fz — <C| de|ﬂg,
(ec) ec)
(e|Pql (ed) -
£y = b, L= 0., 4.1
3 <€C> c 4 <€C> d ( )

giving the coefficient of the box function,

1. a 0, -
Clutpeae =5 M (@ 0% =) x MY (=I5 ¢+ I})

x MY (=15, d", 1) x MY (=1 e%, I5)

e ([ab]6[cd]2[ed]2)

~ 240 (ec)*
x ({ab)?{ec)* + (ae)?(bc)? + (ac)*(be)?).
(4.2)
This is the coefficient of the integral function
I{™ (Sca Sae- Sap) Where [27]
II™(S, T, M?)
2 (I'l2€)2 —€ —€ —€
S A S GORRIC RN
, M? , M*\ 1, (S\ =
+L12<1 —T) +L12<1 —7) +§ln2<?> +€:|
+ O(e), (4.3)

<Z C{a,b},c,d,elzltm + Z C{a,b,c}d.elé 4 Z C{a,b},c,{d,e}lgm> .

where M gl),go (a*,b*,cT,d", e")is the order €° truncation
of the one-loop amplitude. A key step is to promote
the coefficient of these terms to the all-e form of the
one-loop amplitude, which then gives the correct singular
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at
€+ — £2 +
+ H
0
& A i

FIG. 2. The labeling and internal helicities of the quadruple cut.

and overall factors have been removed according to the
normalization of Eq. (2.1).

This integral function splits into singular terms plus a
remainder /}™ = ;™R 4 [1mF where

Iim:lR(S, T,Mz)

= 2[R e (cryem o)) @)
The one-mass integral function is
I g2y W)2 2\—l1-¢
IR =¥ Ry, (45)
and the two-mass triangle function is
P,k = WREKD = (K)o

e (-K})-(-K3)

The boxes, one-mass triangles, and two-mass triangles all
have IR infinite terms of the form

()2

€2

(—K?). (4.7)

The coefficients of the triangle contributions can be evalu-
ated using triple cuts [28-31] and a canonical basis [32].
Summation over the box and triangle contributions gives an

0
overall coefficient of Mgl).e (at,b*,ct,dr et), ie.,

(1) ~ 1 #\©
:M5 ’ (a+,b+,C+,d+,€+)XZ——2§U<—> s

i<j

|

structure of the amplitude. We have confirmed relationship
(4.8) for the n-point amplitude by computing the triple
and quadruple cuts at specific kinematic points up to
n = 10.
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Consequently, we can obtain the compact explicit
analytic form for the dilogarithmic remainder part of the
amplitude

[ab)®[cd)? ed]
5 T 240 Z( (ec)* )

x ((ab)?{ec)? + (ae)?(bc)? + (ac)?*(be)?)
(2l ) (-3
() 2]

where the permutation sum is over the 30 independent
permutations of the legs ({a, b}, ¢, d, e) after factoring out
for the symmetries ({a,b},c,d,e) = ({b,a},c,d,e)=
({a,b},e,d,c).

Note that the coefficients in the F @) term contain (ec)
singularities. On this singularity the integral function

vanishes and F§2> has (ec)™ singularities. These are

spurious and not present in the full amplitude. They cancel
against the ng)

next section.

(4.9)

-4

terms as we will discuss at the end of the

V. COEFFICIENT OF In(s/u?)

We determine the presence of the In(s,,/u*) functions
using two-particle cuts. The coefficient has two contribu-
tions as shown in Fig. 3.

We determine these using canonical forms. The canoni-
cal basis approach [32] is a systematic method to determine
the coefficients of triangle and bubble integral functions in
a one-loop amplitude from the three- and two-particle cuts.
A two-particle cut is of the form

C =i / &8V (2, a, ... b, E)

XAthee<—f2,...,f1). (51)
The product of tree amplitudes appearing in the two-
particle cut can be decomposed in terms of canonical
forms H;,

AV(—f,, . ) X AT (=, .. )
= ZeiHi<pk’fj)v (5.2)
a™ 4 a™ s
(a) * (b) *
bt = b* T
FIG. 3. Contributions to the two-loop amplitudes involving an

all-plus loop (indicated by the solid circle). Contributions arise
from (a) five-point and (b) four-point all-plus one-loop insertions.
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where the e; are coefficients independent of £;. We then use
substitution rules to replace the H;(p;.#;) by rational
functions H;[p;, P] to obtain the coefficient of the bubble
integral function as

(5.3)

ZeiHi[ple]

Here we use this technique treating the one-loop all-plus
vertex as a tree amplitude.
The canonical forms we need and their substitutions are

H?’I(A,C;a’c’fl’fz) =

— HY |[A.C;a.c; P

(A1) (Ct)
_ (Ce)[C|Pla) | (Ac)[AlP|a)
(CA)[CIP|C) ~ (AC)[A|PIA)’
B _(B1£1){(C£y) B
ng<A’Bva1flf2)=W HY [A;By;Cy; P
_ [A[P|B)[A[P|Cy)
= ear oG9

where P is the cut-momentum P = k, + ...k;,. We take the
product of amplitudes in the cut and split them into a sum of
terms of type in Eq. (5.4) using partial fractioning,

j’;{@ﬂxﬂ_ - IYX;) o IR G'L
(Y _;<Hz¢i<YzYi>> (€Y;) _; vy
(5.5)

For the five-point amplitude the cuts have P = k, + k.
Working specifically with s,, = s45, the two-particle cut
has two contributions,

AMO (14,24 3+ 15.07) x MY (44,50, 11 1),

B:MV" (14,24 3+ 1. 1) x MO (4,55, 17.17). (5.6

From the term A we obtain a contribution to the
coefficient of

3

Cis=> ¢,y > apiHY [Al a}; BS, bS; P]

r=12 i=1 j=1j#i
2
+ Y e, > apiHS [A; BS, bY; P (5.7)
r=1.2 i=1
with
l Hl;éi< [AT) l Hz;ei(a?“Q
where
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_ [451°[23] _ 45112
= Tomaas)’ 2T oy O
and
{ADY={11).12).13)},  {IA})}={12).13).1D)},
{lap}={11).12)}, {ai}={12).13)},
(B} ={15).15).—Kas]},  {IB7)} ={[5).I5),—Kas[3]},
{IpH={1pi}={14).14)}. (5.10)

Contributions from the second configuration are more
complicated, but using relationships between the different
terms to simplify the final expression we obtain

Crs =TTo34s5+ 151345+ 50045  (5.11)
with

B
T1,2345

120 23

<Z Z a;piHY | [i, j;Aq, By, {4,5}]

i=2 j=2,j#i

+ ZaiﬂiH(Z)x[i;Aéthh {4,5}]>, (5.12)
i=2
where
o — TTi 1 (A
Y [lepsasy—n (i)’
[ B
= , 5.13
b [lier23a5-173 U0 G-13)
and
{lA0} ={IB} = {I1), K[1] K|1], K1]}. (5.14)
Thus the amplitude contains
1
4+ et (L)) (519

The full amplitude thus has e~!' and In(u?) terms of

1
Z(CA+CB ) In(s;; +Z (Ch+CP) (€+ln(;ﬂ)).

i<j i<j

(5.16)

We have determined the above expression using four
dimensional unitarity which isolates the coefficient of
In(s;;). The value of In(x?) then follows. The coefficient

of ¢~ in this is tied to the In(x?) but is, presumably, not the

PHYSICAL REVIEW D 95, 046012 (2017)

value which would be obtained from a field theory
calculation.

The bubble coefficients contain spurious (ec)™ singu-
larities which must cancel [33] against the singularities in

-3
the F ? term. Specifically the singularities are of the form

x {In(s,), In(s4.), In(s,4) + permutations}, (5.17)

1
(ec)?
where the permutations are of a, b, d. The F gz) term
contains dilogarithms, but near the point (ec) =0 these
simplify and

_ @ (0 + s, {10 (5,5, 1n(542) In(5,g)

+ permutations} + O(s2,)). (5.18)

We have explicitly checked that within F{* + G both the
{ec)™ and (ec)™ singularities cancel, leaving the full
amplitude free of spurious singularities: this is a strong
consistency check. We have also checked the collinear limit
of the five-point amplitude.

VI. COUNTERTERM LAGRANGIAN

In this section we enumerate the possible independent
counterterms for pure gravity in four dimensions. In
general, graviton scattering amplitudes, in D dimensions
at L loops, require the introduction of counterterms of
the form

VrR™, (6.1)
where n+2m = (D —2)L + 2 and we have suppressed
the indices on R. R may stand for the Riemann tensor,
R peqs the Ricci tensor, R, = ¢g°“R,.pq; Or the curvature
scalar, R = g*’R,,. Although there are a large number of
tensor structures which may appear, fortunately, the sym-

metries of the Riemann tensor reduce these considerably.
First, there are the basic symmetries of R4

Rapea = =Rpaca = —Rabac = Redabs (6.2)
and the cyclic symmetry,
Rapea + Racap + Raave = 0. (6.3)
Second, we have the Bianchi identity for V,R ;.4
VRupea + VeRapie + VaRapee = 0. (6.4)

There are also “derivative identities” which involve two

covariant derivatives,
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Ve ViRubea = ViVeRapea = R e fRypea + R peRagea
+ RYcefRapga + R%gefRapeys
V2R apea = 2R 4eeRE apy — 2R oo RC oy
— R 4apRee + R capRae
+ Ve ViR = V. ViR
-V,V,R,. +V,V,R,..
(6.5)
These symmetries will be used to determine the minimal
set of inequivalent counterterms.
From power counting the possible two-loop counter-

terms in D = 4 are of the form R? or V2R?. The indepen-
dent terms involving R,;.s, R,;, and R are [34,35]

T,=V,RV°R, T,=V,R, VR,
T3 - VeRabcheR“de, T4 - VCRabva“C,
T5 :R3, T6 :RRabRab,

T7=RRupcaR™!,  Tg=RupcaR"“RY,
T9 = RabcdRacRbd’ TlO = RabRbcRcaﬂ

Ty =R R R iy, Tia=RapeaR® sR"Y . (6.6)
For the case of pure gravity, the counterterm structure can
be represented as a single counterterm with a numerical
coefficient. We review the argument leading to the con-
clusion that a single counterterm is sufficient. (When matter
is coupled to gravity, this is no longer the case.)
For pure gravity the equation of motion is

Rab - O (67)
Hence terms involving the Ricci tensor or curvature
scalar will not contribute to the S-matrix, and such terms
can be discarded when calculating the counterterms. (If
calculating an off-shell object, such counterterms can,
and do, appear.) Ignoring such terms leaves us with three
tensors—1713, Ty, and T;,. The term T35,

T3 = veRabcdveRath = _Rabcdszath’ (68)
can be rearranged using the identity in Eq. (6.5) into terms
involving the Ricci tensor plus cubic terms in the Riemann
tensor. Thus for pure gravity this term is equivalent to a
combination of Ty; and 7'}, and can be eliminated from the
list of inequivalent counterterms.

Finally, in six dimensions the scalar topological density
can be written

abedef mn Pq rs
5[mnpqrs]R abR CdR ef>

(6.9)

which implies that the combination

PHYSICAL REVIEW D 95, 046012 (2017)

(6.10)

is topological for some coefficients a; in dimensions D < 6.
Hence for pure gravity amplitudes we can replace 7', with
T (or vice versa). Thus we are led to the fact that the
counterterm can be taken as a single tensor with a
coefficient. Thus the counterterm can be chosen to be

CR3 K 2 1 4
= V=GR . REIR! 11
60 X <2> (4ﬂ)4/d X g cdef ab (6 )

with the free coefficient Cps.
Computing with this Lagrangian, the parts of the four-
point amplitudes proportional to Cgs are [36]

ME(1+,2+, 3+, 4+)
K\ 0 1 st 2
~ e (E) * (n)? <<12> (23)(34) <41>> e
ME(17,2+,3F 4%)
- K\ 6 1 (2425 2t
= Ce X <§> " an) ([12]<23><34>[41]> 105’

ME(17,27,3%,4%) = Cps X 0. (6.12)

Comparing this to the coefficient of In(x?) in Eq. (3.2)
we find

1

Cp=—7. (6.13)

We also require the five-point amplitude computed using
the above Lagrangian. Perturbative gravity calculations
based upon Feynman diagrams are notoriously difficult;
however, we can compute the higher point functions using
recursion.

The original Britto, Cachazo, Feng and Witten (BCFW)
shift [37],

-1

/11‘ —’ﬂi+Z/1j, j

j _j - Zzi, (614)

does not lead to an expression with the correct symmetry;
however, the shift [38,39]

A = Ao = Ay + 2]bclh,,
Ay = Ay = Ay + 2[cald,,

Ae = Az = Ao + z]abli,, (6.15)

where 4, is an arbitrary spinor does. Using this shift we can
obtain an expression for the five-point amplitude. The
amplitude has two factorizations,
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Mgree(aJr’dJr’ K‘) % % M§3(2+,€'+,d+, —K*),

R 1
My (b, et K™) x — x MY (a*,d*,e*,—K*)  (6.16)

with six terms of the first type and three of the second.
With (a,b,c,d,e) = (1,2,3,4,5) we find that the first
term gives

[14] [53][52] [23]*

(14) (1) (4n) (45)

X [5|K1a|n) 2K 1aln) 3K 1aln).

which is symmetric under 2 <> 3. The second is

A _
T1,2,3,4,5 =Ny

(6.17)

T?,2.3,4.5
o [VAJ[IS][23][1]K s n)? (S| K s |n) [4] K 3| [45)]
! (23)(21)* (3n)? (45)’
(6.18)

which is symmetric under 2 <> 3 and 4 <> 5. The nor-

malization is
K\ © 1
Ny,= |- X —— X Chps.
! (2) (4r)t = K

The resultant contribution to the amplitude is

(6.19)

ME(17,2+,3% 4+, 5%)
=N, <ZT?,2,3,4,5 + ZT?,2,3,4,5> s (620)
P Ps3

where the summation is over the six independent 74 and
the three independent T2.

The expression for M§3(1+, 27,37, 4%57) is

(i) Fully crossing symmetric between external legs;
(i1) Independent of the spinor #.

These are strong indicators that we have computed the
correct expression. We have checked this construction for
the n-point all-plus amplitude up to n = 10.

Additionally

(i) As z — oo for the BCFW shift the amplitude does not
vanish but behaves as z>. This is the reason why the
shift (6.14) does not generate this amplitude.

(i) The expression has soft limits with

1 1 1 :
ME = (;S(m 38U 4 (2>>Mf§’ +0(#).
(6.21)

where S() are the leading, subleading, and sub-
subleading soft operators [40]. As a two-loop
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amplitude, there is a possibility that the sub-sublead-
ing would not satisfy this so we regard this as a feature
of the constructed amplitudes rather than as a neces-
sary constraint.

Comparing expression (6.20) with (5.16) we find

(S tsas+ SThsas) =4 L€k + ).
Pg Py i<j

(6.22)
and we therefore obtain Cgs = —1/4. The counterterm is

thus consistent with that required for the four-point
amplitude.

VII. CONCLUSION

Computing quantum gravity amplitudes is notoriously
difficult. Only a small number of on-shell scattering
amplitudes have been computed analytically. For pure
gravity only the four- and five-point one-loop amplitudes
have been presented for all helicity configurations with all-
n expressions for the all-plus and single-minus amplitudes.
Progress beyond one-loop has been confined to theories
which are supersymmetric where the enhanced symmetries
significantly simplify the amplitudes.

In this article we have shown how four dimensional
cutting techniques allow us to compute large and interest-
ing parts of two-loop pure gravity amplitudes and have
obtained the (poly)logarithmic parts of the all-plus helicity
amplitude for four and five points in compact analytic
forms. We also obtain the associated In(u?) terms which as
argued in Ref. [13] determine the nonrenormalizability of
the amplitudes. We have matched these to the same R*
counterterm for both the four- and five-point amplitudes.
Given that the In(u?) terms are key to renormalizability, this
technique provides a straightforward method to study the
UV behavior of gravity theories.

Our approach has been entirely based upon physical on-
shell amplitudes and is very different from a field theory
approach where the one-loop renormalization utilizes
“evanescent” operators [13]. We do not obtain the ¢!
term found there, but we do reproduce the four-point
renormalized amplitude and present a five-point amplitude
correctly renormalized.
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