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We study the thermal phase transitions of charged black holes in dimensionally continued gravity in
anti–de Sitter space. We find the van der Waals–like phase transition in the temperature-entropy plane of the
black holes with spherical horizons in even dimensions, and there is no such phase transition of the black
holes with flat and hyperbolic geometries. Near the critical inflection point, the critical exponent is
computed and its value does not depend on the dimension. The Maxwell equal area law is checked to be
fulfilled in the temperature-entropy diagram for the first order phase transition. In odd dimensions, there are
no thermal phase transitions for the black hole with any geometry of the horizon.
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I. INTRODUCTION

The black hole thermodynamics is a challenging topic in
black hole physics that has been studied for decades
because of its nonperturbative, quantum nature. The phase
diagrams of black holes exhibit rich structures that carry
information about stability of these systems and, for that
reason, have attracted more attention and effort with time.
Among them, the van der Waals–like behavior of black
holes has been widely studied because of its striking
similarity to the liquid-gas phase transition in the ordinary
thermodynamic systems.
The earliest analysis of first order phase transitions in

black hole systems can be found in Refs. [1,2], where the
authors studied the inverse temperature-horizon diagram. It
was found that, as the charge of the black hole decreases to
a critical value, the system undergoes a second order phase
transition, and below the critical charge, the black hole
always presents a first order phase transition. This process
is very similar to the one of the van der Waals liquid-gas
transition. Later, by treating the negative cosmological
constant as the pressure and the physical volume enclosed
by the black hole horizon as its thermodynamical con-
jugated quantity, and identifying the black hole mass as
enthalpy instead of internal energy, the black hole thermo-
dynamic is restudied in the extended phase space that
includes the pressure and volume [3–6], and the first law
agrees with the corresponding Smarr relation [7–9].
Further, first attempts to study the phase structure in the
pressure-volume, P − V, diagram was made for the charged
Reissner-Nördstrom (RN) anti–de Sitter (AdS) black hole
with fixed charge and the van der Waals–like phase
transition was observed in [10]. Namely, as the temperature
increases, the black hole undergoes the first order phase
transition and then the second order phase transition at the
critical point, until it arrives at a stable phase. This proposal

led to many generalizations in more general cases [11–16].
In particular, in Ref. [16], the PV criticality was discussed
in a general framework, based on the Smarr formula and the
first law of thermodynamics, revealing its universality.
In this work, we are interested in the phase structure of

charged black holes in dimensionally continued gravity
proposed in [17]. It is a higher-dimensional Lovelock AdS
theory which possesses a unique AdS vacuum [18], so that
the only parameters in the theory are the gravitational
constant, κ, and the AdS radius, l. In particular, this theory
becomes Chern-Simons AdS gravity in odd dimensions
[19] and Born-Infeld AdS gravity in even dimensions. The
theory possesses topological black hole solutions whose
properties and thermodynamics were studied in [17,20,21].
A full boundary series of counterterms that renders dimen-
sionally continued gravity finite in the IR region is
presented in Ref. [22].
In this work we will focus on thermal phase transitions in

the temperature-entropy, T − S, plane in ordinary black
hole phase space, rather than in the P − V plane in the
extended space, for the following two reasons. On the one
hand, it was argued in [23] that these two behaviors are dual
to each other because both of them stem from the same
equation, i.e., the expression for the Hawking temperature
of the black hole. However, working in one side of the
duality might be significantly simpler. For example, the
Maxwell’s equal area law for charged AdS black holes was
possible to solve exactly in the T − S plane, whereas the
solution was found only perturbatively around the critical
values in the P − V plane [23]. The van der Waals-like
phase transition in the T − S plane was also observed in
[24] and the references therein.
On the other hand, different from in general relativity, the

entropy of dimensionally continued black holes depends on
both the horizon rþ and the cosmological constant through
l. This leads to a highly nonlinear expression for the
pressure, making it technically very difficult to study phase
diagrams in the extended phase space of such nonlinear
objects. In fact, it is much more convenient to analyze the
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phase structure in the T − S plane, where the parameter l
does not vary, expecting that its phase structure is similar to
the one in the P − V plane due to the duality.
Let us also comment that, as nicely explained in a

footnote of Ref. [23], this conjectured duality of descrip-
tions in two different planes is analogous to the T duality of
string theory, where the spectrum of a closed string
wrapped around a compact dimension of some radius R
can be seen as the spectrum of a closed string wrapped
around a compact dimension of the inverse radius, 1=R.
The coupling constants in the corresponding dual theories
are inverse to each other. Similarly, in black hole thermo-
dynamics, the state equation can be understood either as the
Hawking temperature T for the black hole in a charged
background or as the pressure P of a van der Waals fluid
enclosed in a (specific) volume V and heated at the
temperature T. To consider the former treatment means
to focus on the T − S phase space, while the latter treatment
means to focus on the P − V phase space. Exchanging the
roles of P and T is analogous to exchanging Kaluza-Klein
momentum and winding modes in string theory. An
inversion of a coupling constant due to the duality in black
hole thermodynamics refers to the Boltzman constant
(kB → 1=kB).
In dimensionally continued gravity, we find that the van

der Waals–like phase transition only occurs in black holes
with spherical horizons in Born-Infeld AdS gravity in even
dimensions, and there are no such phase transitions in
Chern-Simons AdS gravity in odd dimensions. For the
black holes that exhibit a van der Waals–like behavior, our
results show that the critical exponent near the critical point
is consistent with that found in the mean field theory and
the Maxwell equal area law is satisfied for the first order
phase transition.
The rest of this paper is organized as follows. In Sec. II,

we briefly review dimensionally continued gravity and the
charged, topological black holes. We discuss the existence
of thermal phase transitions and their properties, such as
critical exponents and the Maxwell equal area law, in even
dimensions in Sec. III and odd dimensions in Sec. IV,
respectively. Section V contains our conclusions and
discussion.

II. CHARGED DIMENSIONALLY CONTINUED
BLACK HOLES

Lovelock gravity action is a linear combination of
dimensionally continued Euler densities [25,26],

IG ¼ κ

Z
dDx

ffiffiffiffiffiffi
−g

p Xn−1
p¼0

αp
2p

δ
μ1���μ2p
ν1���ν2p R

ν1ν2
μ1μ2 � � �Rν2p−1ν2p

μ2p−1μ2p ; ð2:1Þ

where an integer n is related to the spacetime dimension, so
that D ¼ 2n in even dimensions and D ¼ 2n − 1 in odd
dimensions, and κ describes the strength of gravitational

interaction. Here, δ
μ1���μ2p
ν1���ν2p ¼ det ½δμ1ν1δμ2ν2 � � � δμ2pν2p � is the com-

pletely antisymmetric product of 2p Kronecker’s deltas.
The gravitational action (2.1) is the most general one
leading to the second order field equations in the metric
field gμνðxÞ. In a special case of dimensionally continued
gravity (DCG) [17], the coefficients αp are fixed so that the
vacuum solution corresponds to the constant curvature
space, Rμν

αβ ¼ − 1
l2 δ

μν
αβ, with the AdS radius l. In the

notation of Ref. [18], the coefficients are1

αp ¼ −
�
n − 1

p

� ðD − 2p − 1Þ!
l2ðn−p−1Þ : ð2:2Þ

From (2.1) and (2.2), it is clear that the only parameters in
the theory are κ and l. To obtain charged solutions, one has
to couple gravity to the electromagnetic field,

I ¼ IG −
1

4e2

Z
dDx

ffiffiffiffiffiffi
−g

p
F2; ð2:3Þ

with e2 controlling the strength of electromagnetic inter-
action. Equations of motion obtained from the action
principle are the Maxwell equation,

∇νFμν ¼ 0; ð2:4Þ

and the gravitational equation for DCG,

− κ
Xn−1
p¼0

αp
2p−1

δ
νν1���ν2p
μμ1���μ2pR

μ1μ2
ν1ν2 � � �Rμ2p−1μ2p

ν2p−1ν2p

¼ 1

e2

�
1

2
δνμF2 − 2FμλFνλ

�
; ð2:5Þ

or equivalently

−
κ

2n−2
δνν2���ν2n−1μμ2���μ2n−1

�
Rμ2μ3
ν2ν3 þ

1

l2
δμ2μ3ν2ν3

�

� � �
�
Rμ2n−2μ2n−1
ν2n−2ν2n−1 þ

1

l2
δμ2n−2μ2n−1ν2n−2ν2n−1

�

¼ 1

e2

�
1

2
δνμF2 − 2FμλFνλ

�
: ð2:6Þ

From the above form of the gravitational equation it is clear
that, in the absence of the matter fields, the equation
ðRþ 1

l2 δ
½2�Þn−1 ¼ 0 yields, as a particular solution, a

maximally symmetric space with the unique AdS radius l.

1In this reference, the action IG ¼ κ
R P

n−1
p¼0 ~αpLp is written

in terms of differential forms Lp ¼ ϵa1���aDR
a1a2 � � �Ra2p−1a2p×

ea2pþ1 � � � eaD . The coefficients ~αp are related to αp as
αp ¼ − ~αpðD − 2pÞ!.
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The field equations (2.4) and (2.5) possess a static,
spherically symmetric solution. The electromagnetic poten-
tial Aμ ¼ ϕðrÞδtμ reads

ϕðrÞ ¼ ϕ∞ −
Q

ðD − 3ÞrD−3 ; ð2:7Þ

where Q is an electric charge of the black hole, with the
electric field Ftr ¼ Q=rD−4. The metric describes topo-
logical black holes,

ds2 ¼ −f2ðrÞdt2 þ dr2

f2ðrÞ þ r2dΣ2
D−2; ð2:8Þ

where dΣ2
D−2 ¼ γmnðyÞdymdyn is a constant curvature

transversal section with spherical (k ¼ 1), hyperbolic
(k ¼ −1), or planar (k ¼ 0) geometry, whose area is
ΩD−2. First integral of the equations of motion, with the
integration constant μ, is common for all Lovelock
gravities,

Xn−1
p¼0

αp
ðD − 2p − 1Þ!

�
k − f2

r2

�
p

¼ μ

rD−3 −
Q2

ðD − 3Þκe2r2D−6 ;

ð2:9Þ

and, in the DCG case, it becomes

�
1

l2
þ k − f2

r2

�
n−1

¼ μ

rD−1 −
Q2

ðD − 3Þκe2r2D−4 : ð2:10Þ

It is convenient to normalize the gravitational and electro-
magnetic constants as

κ ¼ 1

ΩD−2G
; e2 ¼ ΩD−2: ð2:11Þ

Then the mass of the black hole M and the integration
constant μ are related by [18]

μ ¼ 2GM þ δD;2n−1; ð2:12Þ

where the additive constant is chosen so that the black hole
horizon shrinks to a point for M → 0 and is nonvanishing
only in Chern-Simons gravity. The general solution
becomes [17,20]

f2ðrÞ ¼ kþ r2

l2

−
�
2GM þ δD;2n−1

rD−2nþ1
−

GQ2

ðD − 3Þr2ðD−n−1Þ

� 1
n−1
:

ð2:13Þ

In what follows, we will also set G ¼ 1.

III. EVEN-DIMENSIONAL CHARGED BLACK
HOLES AND THERMAL PHASE TRANSITIONS

In even dimensions D ¼ 2n, the spacetime of a charged
topological black hole in DCG is described by the metric
(2.8) with the metric function (2.13),

f2ðrÞ ¼ kþ r2

l2
−
�
2M
r

−
Q2

ðD − 3ÞrD−2

� 1
n−1
: ð3:1Þ

For n ¼ 2, the solution recovers the four-dimensional RN
AdS black hole.
The equation of the horizon, f2ðrþÞ ¼ 0, enables one to

express the black hole massM in terms of the horizon rþ as

M ¼ rþ
2

��
kþ r2þ

l2

�
n−1

þ Q2

ðD − 3ÞrD−2þ

�
: ð3:2Þ

The black hole temperature T is calculated in a standard
way, from the Euclidean continuation of the spacetime,
where the Euclidean period T−1 avoids a conical singularity
near the horizon if T ¼ 1

4π ∂rf2jrþ . Then the metric (3.1)
gives

T ¼ 1

4πðn − 1Þrþ

�
kþ ð2n − 1Þ r

2þ
l2

−
Q2

rD−2þ

�
kþ r2þ

l2

�
2−n�

;

ð3:3Þ

and the entropy has the form [20]

S ¼
Z

rþ

0

drþ
1

T

�∂M
∂rþ

�
Q
¼ πl2

��
kþ r2þ

l2

�
n−1

− k

�
:

ð3:4Þ

Thermal properties of these black holes have been dis-
cussed in [20,21]. In these papers, the authors studied
critical behavior of DCG black holes by identifying the
divergencies of thermal capacity, but no nature of these
transitions was discussed. They found that phase transitions
are possible only in even dimensions.
In the current study, we are interested in the van der

Waals–like phase transitions in the T − S plane. Namely,
the entropy (3.4) is a function of the horizon; thus from the
state equation (3.3), the temperature—which is a function
of the horizon rþ and the charge Q—can be seen as a
function of the entropy and the charge, T ¼ TðS;QÞ. The
T − S diagram corresponds to a curve in the T − S plane
when the charge is kept fixed.
First we focus on the case with compact horizon (k ¼ 1)

and work in the ensemble with the fixed charge Q.
Combining (3.3) and (3.4), we eliminate rþ from the

equations and obtain the temperature T in terms of the
entropy S expressed via the variable s ¼ S

πl2 þ 1,
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T ¼ −l2−2nQ2s
2−n
n−1 þ ðð2n − 1Þs 1

n−1 − 2nþ 2Þðs 1
n−1 − 1Þn−1

4πlðn − 1Þðs 1
n−1 − 1Þn−1

2

: ð3:5Þ

In the first few even dimensions, the state equation TðS;QÞ reads

n ¼ 2∶ T ¼ −Q2 þ 3l2s2 − 5l2sþ 2l2

4πl3ðs − 1Þ3=2 ;

n ¼ 3∶ T ¼ −Q2 þ 5l4s2 − 14l4s3=2 þ 13l4s − 4l4
ffiffiffi
s

p
8πl5

ffiffiffi
s

p ð ffiffiffi
s

p
− 1Þ5=2 ;

n ¼ 4∶ T ¼ −Q2 þ 7l6s2 − 27l6s5=3 þ 39l6s4=3 − 25l6sþ 6l6s2=3

12πl7s2=3ðs1=3 − 1Þ7=2 : ð3:6Þ

Similarly as in case of the van der Waals P − V diagram,
the critical point ðSc;Qc; TcÞ in the T − S plane is obtained
as the inflection point of the curve TðSÞ for constantQc that
satisfies the conditions

∂T
∂S

����
Q
¼ 0;

∂2T
∂S2

����
Q
¼ 0: ð3:7Þ

Requiring that the first derivative of (3.5) with respect to the
entropy (or the variable s) vanishes, we find the electric
charge as a function of entropy,

Q2
c ¼ −

l2n−2ð2n − 1Þs 1
n−1 − 2n

ð4n − 5Þs 1
n−1 − 2nþ 4

sðs 1
n−1 − 1Þn−1; ð3:8Þ

from where the temperature for critical Qc becomes

Tc ¼
2ð2n − 1Þs 2

n−1 − ð6n − 7Þs 1
n−1 þ 2ðn − 2Þ

2πlðs 1
n−1 − 1Þ12½ð4n − 5Þs 1

n−1 − 2ðn − 2Þ�
: ð3:9Þ

Then, taking the second derivative of (3.5) with respect to
the entropy and after that plugging in the solution for the
charge (3.8), we get

∂2T
∂S2

����
Qc

¼ πPnðs 1
n−1Þ

4lðn − 1Þ2s2n−3n−1 ðð4n − 5Þs 1
n−1 þ 4 − 2nÞðs 1

n−1 − 1Þ ;

ð3:10Þ

where the polynomial PnðxÞ is always cubic in x ¼ s
1

n−1 and
is given by

PnðxÞ ¼ ð2n − 1Þð4n − 5Þx3 þ
�
−16n2 þ 29n −

9

2

�
x2

þ 10nðn − 2Þx − 2nðn − 2Þ: ð3:11Þ

In the first few even dimensions, it has the form

P2ðxÞ ¼ 9x3 −
21

2
x2;

P3ðxÞ ¼ 35x3 −
123

2
x2 þ 30x − 6;

P4ðxÞ ¼ 77x3 −
289

2
x2 þ 80x − 16: ð3:12Þ

The inflection points are identified from Pn ¼ 0. We search
for strictly positive (real) solutions x. In four dimensions,
for example, we find

P2 ¼ 0 ⇒ x ¼ sc ¼
7

6
; ð3:13Þ

so that the critical value of the quantities obtained from
(3.8) and (3.5) are

Sc ¼
πl2

6
≃ 0.5236l2;

Qc ¼
l
6
≃ 0.1667l;

Tc ¼
1

πl

ffiffiffi
2

3

r
≃ 0.2599

l
: ð3:14Þ

An asymptotically flat limit of spacetime corresponds to
l → ∞. In that case, from (3.9), the critical temperature
vanishes, because the entropy parameter s is just a
dimensionless number obtained as a root of Pn. This
means that the van der Waals–like critical behavior occurs
only in a spacetime possessing a cosmological constant, as
it was observed in Ref. [10].
From now on, we shall set the AdS radius l ¼ 1, for the

sake of simplicity.
The critical points exist in higher dimensions as well, but

the polynomial Pn ¼ 0 is more difficult to solve analyti-
cally when n > 2. However, it can be checked that Pn has
the discriminant zero (n ¼ 2) or negative (n > 2), so there
is only one real root and it is always positive, which means
that there is always exactly one critical point in each even
dimension. We list the corresponding critical points in
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various even dimensions in Table I. We see that the larger
dimension increases the critical entropy, while it suppresses
the critical charge and temperature.
The S − T diagrams related to Eq. (3.6) for different even

dimensions are shown in Fig. 1. It is clear that each plot
possesses a boundary curve corresponding to the critical
charge Qc ¼ const (red dashed line), which shows an
inflection point describing a second order phase transition
at the critical point. The specific heat capacity is divergent
there. The lines below Qc (represented by a black dotted
line), with Q > Qc, are monotonous curves without
inflection points, which means there is no phase transition
in these cases. The isocharge lines above Qc (represented
by a blue line), with Q < Qc, are the lines which are not
monotonous, and their shape is similar to the one describ-
ing a van der Waals phase transition.
More specifically, for the solid lines in each plot with

fixed charge Q < Qc, there are three black holes sharing
one temperature but with different free energies to compete.

There exists a critical temperature Ts below which the
smallest black hole always has the lowest free energy and is
thermodynamically stable, and above which the largest
black is stable. For the dashed line with Q ¼ Qc, the two
black holes merge into one at Ts ¼ Tc. For the dotted line
with Q > Qc, there is no any competition. This phenome-
non is described in Fig. 2, where we show the relation
between the temperature and free energy,

F ¼ M − TS: ð3:15Þ

On the other hand, for a small charge with Q ¼
0.3Qc < Qc (blue lines), the free energy graph shows a
“swallow tail” in the F − T plane, which is typical for a
first order phase transition. The horizontal coordinates
of the black line in each plot denote the first order phase
transition temperature Ts with the related parameters.
Furthermore, for the critical charge Qc (red dashed
lines) at the inflection point where we have Ts ¼ Tc,
the curves show the second order phase transition
because Eq. (3.7) implies that the specific heat capacity
CQ ¼ T∂S

∂T jQ is divergent. The critical phenomena dis-
cussion from a divergence of CQ has also been devel-
oped in [27,28].
Near the critical inflection point ðQc; Sc; TcÞ, we can

calculate the critical exponent α, which characterizes a
behavior of the heat capacity near the critical point as
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T
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FIG. 1. T − S diagram for the black hole with fixed charge in different even dimensions. In each plot, the red dashed line corresponds
to the related critical charge Qc, listed in Table I. The blue line and black dotted line are related to the fixed charge which is smaller and
larger than Qc, respectively.
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FIG. 2. Free energy in terms of the temperature. The temperature of the crossing point in the blue line is the first order phase transition
temperature Ts for Q ¼ 0.3Qc. It shrinks into Ts ¼ Tc as Q increases to Qc, as the red dashed line shows.

TABLE I. The critical points with k ¼ 1 in different even
dimensions.

D n Sc Qc Tc

4 2 0.5236 0.1667 0.2599
6 3 0.9058 0.03583 0.1747
8 4 1.1366 0.007146 0.1391
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CQ ¼ T
∂S
∂T

����
Q
≃ AðT − TcÞα: ð3:16Þ

To determine α, we expand the temperature (3.6) near the
critical point Sc, when Qc is kept fixed,

T ¼ TðSc;QcÞ þ
∂T
∂S

����
c
ðS − ScÞ þ

1

2

∂2T
∂S2

����
c
ðS − ScÞ2

þ 1

6

∂3T
∂S3

����
c
ðS − ScÞ3 þOððS − ScÞ4Þ: ð3:17Þ

Here c denotes the point ðQc; ScÞ. The first term is
TðSc;QcÞ ¼ Tc, while from the conditions (3.7), the
second and third terms of (3.17) vanish. This yields near
the critical point

T − Tc ≃ 1

6

∂3T
∂S3

����
c
ðS − ScÞ3: ð3:18Þ

We also calculate ∂S
∂T jQ expanded near the critical point by

taking a partial derivative in S of the expression (3.18),

∂T
∂S ≃ 1

2

∂3T
∂S3

����
c
ðS − ScÞ2 ⇒

∂S
∂T ≃ 2

∂3T
∂S3

����
−1

c
ðS − ScÞ−2:

ð3:19Þ

Thus, the heat capacity expands as

CQ ¼ T
∂S
∂T

����
Q
≃ 2Tc

∂3T
∂S3

����
−1

c
ðS − ScÞ−2: ð3:20Þ

Now we invert the series (3.18),

S − Sc ≃
ffiffiffi
3

p
6
∂3T
∂S3

����
−1
3

c
ðT − TcÞ13; ð3:21Þ

and obtain

CQ ≃ AðT − TcÞ−2
3: ð3:22Þ

We conclude that the heat capacity diverges at the critical
point, as expected. The constant A ¼ 1

3

ffiffiffi
63

p
Tcð∂3

STÞ−1=3c can
be evaluated explicitly by taking derivatives of (3.5). We
read off the critical exponent α ¼ −2=3, which is inde-
pendent of the dimension. This exponent agrees with the
one found in the mean field theory. A general approach to
obtain a critical exponent of the black hole phase transition
has been proposed in Refs. [29,30], where it was shown
that the result does not depend on a particular black hole
solution.
For the first order phase transition with Q < Qc, the

physical T − S diagram should be modified by replacing
the oscillating part by an isobar with T ¼ Ts, where Ts is

the first phase transition temperature. Since, at the phase
transition point, the free energy does not change, the
integration of the first law of thermodynamics impliesH
SdT ¼ 0. This leads to Maxwell’s equal area law

TsðSl − SsÞ ¼
Z

Sl

Ss

TdS; ð3:23Þ

where Sl and Ss are the largest and smallest entropies of
three intersection points, respectively, between the S − T
diagram and the related isobar T ¼ Ts, i.e., the three
solutions ðSl; Sm; SsÞ of S to Eq. (3.6) with T ¼ Ts for
the fixed charge. We calculated both sides of Eq. (3.23)
with Q ¼ 0.3Qc, and the results are summarized in
Table II. It turns out that the Maxwell equal area law
(3.23) is satisfied in considered even dimensions, with an
acceptable error between analytical (left side) and numeri-
cal (right side) calculations.
So far, we have obtained that for the charged Born-Infeld

black hole with the spherical horizon (k ¼ 1), there exists a
critical inflection point ðQc; Sc; TcÞ, near which the critical
exponent matches the values in the mean field theory. The
system presents a van der Waals–like phase transition in the
T − S plane of the state equation and the Maxwell equal
area law is checked to be satisfied.
In cases with noncompact horizons (k ¼ −1 and k ¼ 0),

the state equation (3.5) generalizes to

T ¼ −Q2s
2−n
n−1 þ ðð2n − 1Þs 1

n−1 − ð2n − 2ÞkÞðs 1
n−1 − kÞn−1

4πðn − 1Þðs 1
n−1 − kÞn−1

2

;

ð3:24Þ

where s ¼ S
π þ k. Using the same analysis as above, we

write the inflection point equations (3.7) and find that there
are no positive solutions for Sc and Qc. Explicitly, in four
dimensions (n ¼ 2), we get analytically

Sc ¼
4k − 3

6
π;

Qc ¼
1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52k2 − 60kþ 9

p
; ð3:25Þ

TABLE II. The first order phase transition temperature with
fixedQ ¼ 0.3Qc and k ¼ 1 in different even dimensions, and the
values of (3.23) which show that the Maxwell area law is
satisfied. The columns ð3.23ÞL and ð3.23ÞR denote the values
of the left and right sides of Eq. (3.23).

D n Ts Sl Sm Ss ð3.23ÞL ð3.23ÞR
4 2 0.3020 2.5405 0.4121 0.009865 0.7534 0.7533
6 3 0.1870 2.8250 0.6703 0.09581 0.5104 0.5103
8 4 0.1448 2.7920 0.8563 0.2300 0.3709 0.3708
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so the entropy becomes negative when k ¼ 0 or −1. A
similar result holds in higher dimensions, as well. This
means that there are no van der Waals–like phase tran-
sitions in black holes with noncompact horizons. This
result that the existence of the van der Waals–like phase
depends on the topology of the horizon is also valid in the
extended phase space of RN AdS black holes [10].

IV. ODD-DIMENSIONAL CHARGED BLACK
HOLES AND THERMAL PHASE

TRANSITIONS

In odd dimensions D ¼ 2n − 1, the charged
Chern-Simons AdS black hole (2.13) with G ¼ 1 has
the form [17]

f2ðrÞ ¼ kþ r2

l2
−
�
2M þ 1 −

Q2

ðD − 3ÞrD−3

� 1
n−1
: ð4:1Þ

In three dimensions (n ¼ 2), this solution is the Banados-
Teitelboim-Zanelli (BTZ) black hole [31].
The Hawking temperature for an arbitrary n reads

T ¼ rþ
2πl2

−
Q2ðkþ r2þ

l2Þ
2−n

4πðn − 1Þr2n−3þ
; ð4:2Þ

and the entropy is given in the parametric form

S ¼ 4πðn − 1Þrþ
Z

1

0

du

�
kþ u2

r2þ
l2

�
n−2

: ð4:3Þ

We apply the same strategy as in the last section. Since
the equation SðrþÞ cannot be inverted in a simple way to
obtain rþðSÞ, it is convenient to calculate derivatives in
Eq. (3.7) as

∂T
∂S

����
Q
¼

∂T
∂rþ jQ

dS
drþ

: ð4:4Þ

We find (with l ¼ 1)

dS
drþ

¼ 4πðn − 1Þ
Z

1

0

du½kþ ð2n − 3Þu2r2þ�ðkþ u2r2þÞn−3

¼ 4πðn − 1Þðkþ r2þÞn−2; ð4:5Þ

as well as

∂T
∂rþ

����
Q
¼ 1

2π
þQ2½ð2n − 3Þkþ ð4n − 7Þr2þ�ðkþ r2þÞ1−n

4πðn − 1Þr2n−2þ
;

ð4:6Þ

which implies vanishing ∂T=∂SjQ for

Q2
c ¼ −

2ðn − 1Þr2n−2þ
½ð2n − 3Þkþ ð4n − 7Þr2þ�ðkþ r2þÞ1−n

;

rþ ≠ −k: ð4:7Þ

It is clear that Q2
c can be positive only for hyperbolic black

holes, so the planar ones are ruled out of having a phase
transition of the considered type. Setting k ¼ −1 and using
again the same method to calculate the second derivative
of the entropy, we obtain that ∂2T

∂S2 jQ replaced from (4.7)

vanishes when

ð8n2 − 26nþ 21Þr4þ − ð8n2 − 25nþ 20Þr2þ
þ 2n2 − 5nþ 3 ¼ 0: ð4:8Þ

The discriminant of this quadratic polynomial in r2þ is
always negative when n > 2, so there is no a real solution
for rþ and, therefore, there is no a critical point. When
n ¼ 2, the root is rþ ¼ 1, but this point is not allowed
because of the inequality in (4.7). An independent analysis
in three dimensions shows that Q2

c becomes negative, so
again there is no a critical point when n ¼ 2.
We conclude that, in all odd dimensions, Chern-Simons

AdS topological black holes, including the BTZ black hole,
do not admit a van der Waals–like phase transition for any
geometry of the horizon.

V. CONCLUSIONS AND DISCUSSION

We analyzed the thermal phase transitions of charged
dimensionally continued black holes in the T − S plane. In
even dimensions, we found that the critical inflection point
ðQc; Sc; TcÞ can exist only if the black hole has a spherical
horizon (with k ¼ 1), and not if it has a noncompact
geometry (k ¼ 0 or k ¼ −1). For k ¼ 1, near the critical
point, the critical exponent in the specific heat capacity is
always −2=3 in any even dimension, and this values agree
with that of the mean field theory. Moreover, we found
that the system goes through a van der Waals–like phase
transition. When the charge is smaller than the critical
charge, it undergoes the first order phase transition at
T ¼ Ts, below which the smallest black hole always has
the lowest free energy and is thermodynamically stable
while, above it, the largest black hole is thermodynamically
stable. The Maxwell equal area law has been checked to be
satisfied at the first order phase transition point in the first
few even dimensions.
We did not observe a van der Waals–like phase transition

in odd-dimensional black holes in the charged dimension-
ally continued gravity.
It is important to mention that, at first sight, two families

of DCG, Chern-Simons AdS and Born-Infeld AdS gravity,
seem similar, but they are intrinsically different. First,
Chern-Simons gravity comes from a Chern-Simons
form, whose exterior derivative is a topological invariant.
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In contrast, Born-Infeld gravity does not have a geometric
origin. Furthermore, in comparison to all Lovelock AdS
actions, Chern-Simons AdS features a symmetry enhance-
ment from a local Lorentz to a local AdS group, which
drastically changes its dynamic structure and a number of
local degrees of freedom. While all generic Lovelock
gravities have the same number of degrees of freedom
as general relativity [32], even a pure Lovelock [33] which
does not possess the linear in curvature term, this is no
longer true for Chern-Simons gravity [34]. From this point
of view, it is not surprising that its phase space structure is
drastically different from the one of Born-Infeld.
It is worthwhile to notice that, with the development

of holographic duality, it was observed in [35] that there
also exists the van der Waals–like phase transition in the
entanglement entropy-temperature (SE − T) diagram by
studying the holographic entanglement entropy (see [36]

for review) in a finite volume quantum system dual to a
charged AdS black hole with spherical geometry. More
related studies in [24,37–40] indicate that similar to thermal
entropy, the entanglement entropy also presents the van der
Waals–like phase behavior. Thus, it would be very inter-
esting and important to explore the holographic entangle-
ment entropy of the charged dimensional continued black
holes, especially the one with a spherical horizon in even
dimensions, in which the van der Waals–like phase tran-
sition in S − T has been observed. We will address this
question in the near future.
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