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A spacetime interpretation of deformed relativity symmetry groups was recently proposed by resorting
to Finslerian geometries, seen as the outcome of a continuous limit endowed with first-order corrections
from the quantum gravity regime. In this work, we further investigate such connections between deformed
algebras and Finslerian geometries by showing that the Finsler geometries associated with the
generalization of the Poincaré group (the so-called κ-Poincaré Hopf algebra) are maximally symmetric
spacetimes which are also of the Berwald type: Finslerian spacetimes for which the connections are
substantially Riemannian, belonging to the unique class for which the weak equivalence principle still
holds. We also extend this analysis by considering a generalization of the de Sitter group (the so-called
q–de Sitter group) and showing that its associated Finslerian geometry reproduces locally the one from
the κ-Poincaré group, and that it itself can be recast in a Berwald form in an appropriate limit.
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I. INTRODUCTION

The weak equivalence principle (WEP) and local Lorentz
invariance (LI) represent thebuildingblocksofmetric theories
of gravity, being at the basis of the Einstein equivalence
principle (together with the local position invariance) [1].
Departure from standard LI has been considered in

essentially all quantum gravity (QG) scenarios, as it
represents a major source of phenomenological investiga-
tion (see Ref. [2]). At least three ways of dealing with LI at
high energy have been taken into account in the literature:
preservation of standard Lorentz invariance at every energy
scale (for instance, in causal set theory [3]); hard Lorentz-
invariance violations (LIVs) at high energy (e.g., Hořava-
Lifshitz gravity [4]); and deformations of the relativity
group (or deformed special relativity, DSR [5]), where the
relativity principle is preserved and a new invariant mass
scale (often taken to be the Planck mass) is introduced
besides the speed of light.
In all of these possibilities a crucial role is played by

modified dispersion relations (MDR) for elementary par-
ticles, which can generically be written in the following
form:

E2 ¼ m2 þ p2 þ
X∞
n¼1

anðμ;MÞpn; ð1Þ

where p ¼
ffiffiffiffiffiffiffiffi
j~pj2

p
, an are dimensional coefficients, μ is

some particle-physics mass scale, and M is the mass scale
characterizing the physics responsible for the departure from
standard LI (usually identified with the Planck mass).
While the most stringent constraints have been put on

coefficients associated with Lorentz-violating operators (in
an effective field theory approach), the same cannot be said

about effects related to DSR which, furthermore, have
been mostly described within momentum space in the
Hamiltonian formalism.
In the context of gravitational theories, a way to

introduce LIV is to consider models in which the “ground
state” configuration possesses fewer symmetries than
Minkowski spacetime. This is the case, for example, of
Einstein-Aether theory (see Ref. [6]), where such a state is
given by the Minkowski spacetime with a fixed-norm
timelike vector field that breaks boost invariance. On the
other hand, in an attempt to provide a spacetime description
of the deformed symmetries à la DSR, it would be
interesting to understand if these can be related to some
new local structure of spacetime, possibly described by
some maximally symmetric background generalizing a
pseudo-Riemannian structure and Minkowski spacetime.
A concrete example of (quantum) deformation of the

ordinary Poincaré group is represented by the κ-Poincaré
(κP) Hopf algebra [7–9]. κP symmetries have been shown
to characterize the kinematics of particles living on a flat
spacetime and nontrivial momentum space with a de Sitter
geometry [10–13], and they have been shown to naturally
emerge in the context of (2þ 1)-dimensional QG coupled
to point particles (see e.g. Ref. [14]).
In some recent papers [15,16], a strong link is established

between the momentum-space analysis, usually carried out
when dealingwith κP symmetries (and the associatedMDR)
and the spacetime picture provided by Finsler geometry (a
generalization of Riemannian geometry whose properties
will be reviewed in Sec. II).1 The Finsler geometry asso-
ciated with κP represents an instance of the kind of

*mletizia@sissa.it
†liberati@sissa.it

1See also Ref. [17] for a spacetime description of particles with
MDR and the relation between the spacetime metric and the
momentum-space metric.
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spacetimes we were discussing earlier—i.e., a flat, max-
imally symmetric spacetime that is not Minkowski.
Among all the possible Finsler structures, a particular

case is given by Berwald spaces. These are the Finsler
spaces that are the closest to being Riemmanian. (We will
provide a more precise definition in Sec. II.) If a Finsler
space is of the Berwald type, then any observer in free fall
looking at neighboring test particles would observe them
moving uniformly over straight lines according to the weak
equivalence principle [18]. Interestingly enough, the
Finsler metric correspondent to the κP symmetries found
in Ref. [16] appears to be a member of this class. However,
we shall see that this comes about in a somewhat trivial way
as a straightforward consequence of the flatness of themetric
in coordinate space. With this in mind, it would be
interesting to consider examples of curved metrics associ-
ated with more general deformed algebras in order to check
whether, for these, the local structure of spacetime reduces
not to the Minkowski spacetime but rather to the Finsler
geometry with κP symmetries—and furthermore, to check
whether these geometries are also of the Berwald type.
Absent a definitive derivation of such hypothetical

curved deformed geometries based on some quantum
gravity model, one has to resort in this case as well to
studying a case for which a deformed symmetry group is
available and a Finslerian metric can be derived. In this
sense, a case of particular interest is the q–de Sitter (qdS)
Hopf algebra [19,20], a quantum deformation of the
algebra of isometries of the de Sitter spacetime. It repre-
sents a case in which curvature of momentum space is
present together with curvature in spacetime in the context
of a well-defined relativistic framework.2 As such, this
represents the perfect arena for our analysis.
Let us stress that such models of Finslerian spacetimes,

embodying a new group of symmetries, do not have to be
considered as definitive proposals for the description of
quantum gravitational phenomena at a fundamental level.
We take here the point of view for which, between the full
quantum gravity regime and the classical one, there is an
intermediate phase where a continuous spacetime can be
described in a semiclassical fashion. In particular, if the
underlying QG theory predicts that spacetime is in some
way discrete, then we assume that a meaningful continuum
limit can be performed, and that this limit is not equivalent
to a classical limit. The outcome of this hypothetical
procedure would be a spacetime that can be described as
continuum but still retaining some quantum features of the
fundamental theory. Then the departure from the purely
classical theory will be weighed by a nonclassicality
parameter (potentially involving the scale of Lorentz
breaking/deformation), and in the limit in which this
parameter goes to zero, the completely classical description

of spacetime is recovered (see e.g. Refs. [22,23] for a
concrete example of such a construction).
The purpose of this paper is then twofold: In the first part,

wewill show that there exists a Finsler spacetime associated
with the mass Casimir of qdS following a procedure that is
analogous to the one presented in Ref. [15] and explicitly
compute the associate Finsler metric and Christoffel sym-
bols. We will then discuss how, in the limit in which the
curvature goes to zero, one recovers the Finsler structure of
κP, thus providing an example of a curved Finsler spacetime
whose local limit is not trivially given by the Minkowski
spacetime. In the second part, we will discuss how, in a
particular limit, the Finsler structure associated with qdS
becomes of the Berwald type. Finally, we will discuss what
are the consequences of these results and speculate about
possible phenomenological studies.

II. FINSLER GEOMETRY AND MODIFIED
DISPERSION RELATIONS

Let us begin by reviewing some basic notions concerning
Finsler geometry, loosely following Ref. [15]. Given a
manifold M of dimension D, Finsler geometry is a
generalization of Riemannian geometry where, instead of
defining an inner product structure over the tangent bundle
TM, one defines a norm F. This norm is a real function
Fðx; vÞ, with v ∈ TxM (the tangent space at the point x of
the manifold), and it satisfies the following properties:

(i) Fðx; vÞ ≠ 0 for v ≠ 0.
(ii) Fðx; αvÞ ¼ jαjFðx; vÞ for α ∈ R.

The Finsler metric can be defined as

gμνðx; vÞ ¼
1

2

∂2F2ðx; vÞ
∂vμ∂vν ; ð2Þ

and, using the Euler theorem for homogeneous functions, it
can be shown that the relation above is equivalent to

Fðx; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνðx; vÞvμvν

q
: ð3Þ

Therefore, gμνðx; vÞ is homogeneous of degree 0 in v.
Given that, by definition, gμν is nondegenerate, the inverse
exists, and it satisfies gμνðx; vÞgνρðx; vÞ ¼ δρμ. Moreover,
since F2 is a homogeneous function of degree 2 in the
velocities, the metric satisfies the following relations:

vα
∂gμν
∂vα ¼ vμ

∂gμν
∂vα ¼ vν

∂gμν
∂vα ¼ 0: ð4Þ

It is clear that the Riemannian case is obtained when F is
quadratic in v and it is defined by an inner product with a
velocity-independent metric tensor. Using the norm F, one
can naturally introduce a notion of distance. Indeed, as in
Riemannian geometry, one can define the length of an arc
of curve as

2See Ref. [21] for a description of particles with a modified
dispersion relation in the context of Hamilton geometry.
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lðCÞ ¼
Z

τ2

τ1

Fðx; vÞdτ; ð5Þ

where τ is a parameter for the curve C. Because of the
homogeneity properties of the norm, the expression above
is reparametrization invariant. Taking two points p; q ∈ M,
and considering all the curves connecting these two points,
the minimum of the lengths of all these curves defines a
distance between the two points.
This construction is usually carried out in Euclidean

signature. We will assume that the extension to Lorentzian
signature (Finsler spacetimes or pseudo-Finsler geometry)
can be done, as that is the case in many examples (see
anyway the appendix of Ref. [24] for additional comments,
and see Refs. [25–27] for a precise definition of indefinite
Finsler spaces). From now on, for the sake of brevity, we
will omit the prefix “pseudo-,” and we will always
implicitly consider the Lorentzian case.

A. Derivation of Finsler geometries from modified
dispersion relations

In this section, we review the procedure introduced in
Ref. [15] for deriving the Finsler geometry associated with
a particle with a modified dispersion relation.
Let us start by considering the action of a particle with a

constraint imposing the on-shell relation MðpÞ ¼ m2:

I ¼
Z

½_xμpμ − λðMðpÞ −m2Þ�dτ; ð6Þ
where λ is a Lagrange multiplier that transforms appropri-
ately under an arbitrary change of time parameter to ensure
reparametrization invariance of the action; i.e., λðτÞdτ ¼
λðτ0Þdτ0. In order to find the explicit expression of the
Lagrangian, we use Hamilton’s equations that read as

pμ ¼ λ
∂M
_xμ

: ð7Þ
If the relation above is invertible, one is able to rewrite the
action in terms of velocities and the multiplier, hence
obtaining3

I ¼
Z

Lðx; _x; λÞdτ: ð8Þ

We can also eliminate the multiplier using the equation of
motion obtained by varying the actionwith respect to it, so as
to get the expression of the Lagrangian in terms of velocities
only: Lðx; _x; λðx; _xÞÞ.
Finally, we can identify the Finsler norm through the

following relation:

Lðx; _x; λðx; _xÞÞ ¼ mFðx; _xÞ; ð9Þ

and the Finsler metric is then given by the Hessian matrix of
F2 as in Eq. (2). Since the action (6) is reparametrization
invariant by construction, the norm (9) is homogeneous of
degree 1 in the velocities.
At this point, the action can be written as

I ¼ m
Z

Fdτ ¼ m
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνðx; _xÞ_xμ _xν
q

dτ; ð10Þ

which corresponds to the action of a free relativistic particle
propagating on a spacetime described by a velocity-
dependent metric.
Using the definition of generalized momentum, one

can now simply relate the four-momentum to the Finsler
norm as

pμ ¼ m
∂F
∂ _xμ ¼ m

gμν _xν

F
: ð11Þ

Moreover, using the inverse metric gμν, one recovers the
dispersion relation in a simple way as

m2 ¼ gμνð_xðpÞÞpμpν: ð12Þ
In the last parts of this section, we will introduce the

notion of Berwald spaces, and we will recap some known
results regarding the Finsler structure associated with the
κP group.

B. Berwald spaces and normal coordinates

Berwald spaces are Finsler spaces that are just a bit more
general than Riemannian and locally Minkowskian spaces.
They provide examples that are more properly Finslerian,
but only slightly so [28].
The statement above is a good intuitive description of

what Berwald spaces are. One of the (equivalent) technical
characterizations of Berwald spaces is the following [28]:
The quantities ∂2

_xðGμÞ, with Gμ ≔ Γμ
ρσðx; _xÞ_xρ _xσ , do not

depend on _xμ. The objects Γμ
ρσ are the usual Christoffel

symbols, defined as

Γμ
ρσðx; _xÞ ¼ 1

2
gμνð∂ρgσν þ ∂σgρν − ∂νgρσÞ; ð13Þ

that for a general Finsler metric depend on _xμ. The
coefficients Gμ are called spray coefficients, and they
appear in the geodesic equations, obtained by minimizing
the action (5) [or (10)], as

ẍσ þ 2Gσ ¼
_F
F
_xσ; ð14Þ

where the right-hand side is vanishing for a constant-speed
parametrization. In other words, a Finsler space is of the
Berwald type when the Gμ’s are purely quadratic in the
velocities.4

3The symbols x and _x, when taken as arguments of functions,
generically refer to both the time and spatial components of the
coordinates and the velocities.

4For an introduction to the various kind of connections that one
can define in Finsler geometry, see Ref. [28].
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In pseudo-Riemannian geometry, normal coordinates
can be defined in the neighborhood of a point p (Fermi
coordinates along a curve γ), such that the Christoffel
symbols of the connection vanish at p (along γ) [29]. This
procedure fails in pseudo-Finsler geometry if the space is
not Berwald (see Refs. [28,30] and references therein).
Therefore, in Finsler geometry, the existence of free-falling
observers looking at nearby free-falling particles moving in
straight lines is not guaranteed.5 In this respect, Berwald
spaces play an important role in determining whether a
given Finsler structure violates the weak equivalence
principle (WEP).

C. Results for κ-Poincaré

In this section, we will briefly review the results obtained
in Ref. [16], regarding the Finsler structure associated with
the κP group. The mass Casimir of the κP algebra, at first
order in the deformation parameter l, is given by6

Cl ¼ p2
0 − p2

1ð1þ lp0Þ: ð15Þ

Following the procedure outlined in the previous section,
the associated Finsler norm reads as

Fl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 − _x2

p
þ lm

2

_t_x2

_t2 − _x2
; ð16Þ

and, using (2), the Finsler metric is

gFl
μν ðx; _xÞ ¼

0
BB@

1þ 3ml_t_x4

2ð_t2 − _x2Þ5=2
ml_x3ð_x2 − 4_t2Þ
2ð_t2 − _x2Þ5=2

ml_x3ð_x2 − 4_t2Þ
2ð_t2 − _x2Þ5=2 −1þml_t3ð2_t2 þ _x2Þ

2ð_t2 − _x2Þ5=2

1
CCCA:

ð17Þ

It can be easily checked that the metric above satisfies the
relations (4) and that it can be rewritten in momentum space
as follows:

gFl
μν ðx;pÞ¼

0
BB@

1þ3

2

lp0p4
1

m4
−
l
2

p3
1ðp2

1−4p2
0Þ

m4

−
l
2

p3
1ðp2

1−4p2
0Þ

m4
−1þl

2

p3
0ð2p2

0þp2
1Þ

m4

1
CCA:

ð18Þ

Using this expression, the dispersion relation can be simply
given as

gμνFl
pμpν ¼ p2

0 − p2
1ð1þ lp0Þ: ð19Þ

In Ref. [16], it was also shown that the Killing vectors
associated with the metric (17) are compatible with the κP
symmetries.
Interestingly enough, it can be easily proven that the

Finsler metric associated with κP has vanishing Christoffel
symbols and that the relation Γμ

ρσ ¼ 0 trivially satisfies the
conditions for a Berwald space. This was expected, since in
Ref. [16], a deformation of a special-relativistic particle was
considered, and in that case the metric had no dependence
on coordinates, meaning that the spacetime geometry
was flat.
The subsequent question is whether that was a coinci-

dence or not. In other words, since all locally Minkowskian
spacetimes are Finsler spacetimes of the Berwald type [28],
do Berwald spaces play an important role regarding the
local structure of spacetime with DSR-like symmetries, or
is it just a trivial consequence of local flatness? To answer
this question, we shall then examine the Finsler geometry
of a spacetime related to the qdS mass Casimir that reduces
to the κP Finsler geometry when the curvature goes to zero.
Before moving to the next section, it is worth mentioning

that, when dealing with Finsler spacetimes, geometrical
objects, like the norm or the curvature, might not be
well defined along certain directions. For instance,
Eq. (16) is singular for _t2 ¼ _x2. This seems to be a
consequence of dealing with a nonhomogeneous mass
Casimir while working in a reparametrization-invariant
framework. Nonhomogeneous terms in the Casimir gen-
erate additional terms in the norm, but the requirements of
homogeneity in the velocities coming from the theory of
Finsler spaces (see the first part of Sec. II) only allow for
normalized tangent vectors to appear, causing the presence
of the singular denominators. These kinds of issues will
also be present in our analysis in the following sections.
One way to avoid this problem is to use a Hamiltonian
formulation of the system, as is done in Ref. [21]. In the
Hamiltonian framework, one typically loses full repara-
metrization invariance in exchange for a nonzero
Hamiltonian (directly identified with the mass Casimir).
It can be shown that this analysis can be recast in terms of a
Lagrangian functional without singular denominators.
Unfortunately, by following this path, one also loses the
homogeneity properties required to correctly identify a
Finsler norm. It is also possible that such singular behaviors
might be solved by performing a nonperturbative study. A
full discussion on these themes is beyond the purposes of
our investigation.

III. Q–DE SITTER–INSPIRED FINSLER
SPACETIME

In what follows, we shall explicitly investigate the
Finsler metric associated with a q–de Sitter Hopf algebra
and consider its local limit to prove that it reproduces the

5See, however, Refs. [18] and [31] for a generalization of
normal coordinates which is adapted to the framework of Finsler
geometry that shares most of the properties of the standard
definition.

6The κP algebra can be derived from the qdS algebra in an
appropriate limit (see Sec. III A). See also Ref. [10].
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κ-Poincaré Finsler geometry. We shall then also investigate
if q–de Sitter Finsler geometry is per se of the
Berwald type.

A. q–de Sitter

Let us start by denoting the key features of the ð1þ 1ÞD
qdS Hopf algebra [32]. Using the notation of Ref. [32], the
commutators among the symmetry generators are

½P0;P� ¼HP; ½P0;N� ¼P−HN;

½P;N� ¼ coshðw=2Þ1−e
−2wP0

H

2w=H
−
1

H
sinhðw=2Þe−wP0

H Θ; ð20Þ

where

Θ ¼ ½ewP0
H ðP −HNÞ2 −H2e

wP0
H N2�; ð21Þ

and P0, P, and N refer to the generators of time translation,
space translation, and boost, respectively. H is the Hubble
rate, and w is the deformation parameter.
For the coproducts, which are used to express the

conservation of momentum when dealing with multiple
particles, one has

ΔðP0Þ ¼ 1 ⊗ P0 þ P0 ⊗ 1;

ΔðPÞ ¼ e
−wP0
H ⊗ Pþ P ⊗ 1;

ΔðNÞ ¼ e
−wP0
H ⊗ N þ N ⊗ 1; ð22Þ

while the antipodes are

SðP0Þ¼−P0; SðPÞ¼ e
wP0
H P1; SðNÞ¼ e

wP0
H N: ð23Þ

Finally, the mass Casimir is

CqdS ¼ H2
coshðw=2Þ

w2=4
sinh2

�
wP0

2H

�
−
sinhðw=2Þ

w=2
Θ: ð24Þ

The parameter w is usually assumed to be a dimensionless
combination of a fundamental length scale l and the dS
radius H−1. There are various possible choices (see, for
example, Ref. [33]), and we will focus on the one that gives
back the classical dS algebra for l → 0 and the κP algebra
for H → 0; i.e., w ¼ Hl.
Upon introducing a representation of the phase-space

coordinates xμ ¼ ft; xg and pμ ¼ fp0; p1g, with the ordi-
nary symplectic structure given by

fxμ; xνg ¼ 0;

fxμ; pνg ¼ −δμν ;

fxμ; xνg ¼ 0; ð25Þ
the generators are represented, at first order in l; H
and Hl, by

P0 ¼ p0 −Hxp;

P1 ¼ p1;

N ¼ p1tþ p0x −H

�
p1t2

p1x2

2

�
− lx

�
p2
0 þ

p2
1

2

�

þHlp1x

�
p1tþ

3

2
p0x

�
; ð26Þ

and the Casimir reads as

CqdS ¼ p2
0 − p2

1ð1þ lp0Þð1 − 2HtÞ: ð27Þ
From the expression above, as previously anticipated,
taking the limit H → 0, one recovers the Casimir of the
κP algebra, while in the limit l → 0, the Casimir of the
classical de Sitter algebra is obtained.

B. Finsler spacetime from the q–de Sitter mass Casimir

We start by considering the action of a free particle with a
constraint imposing the mass shell condition in terms of the
Casimir (27), and it is given by

I ¼
Z

½_xμpμ − λðτÞðCqdS −m2Þ�dτ; ð28Þ

where λðτÞ is a Lagrange multiplier enforcing the on-shell
condition that we rewrite as

CqdS ¼ m2 → p2
0 ¼ m2 þ a−2ðtÞp2

1ð1þ lp0Þ; ð29Þ
where aðtÞ ¼ eHt ¼ 1þHtþOðH2Þ is the classical dS
scale factor.
The associated equations of motion are given by

_t ¼ λ½2p0 − la−2p2
1�; ð30aÞ

_x ¼ −2λa−2p1ð1þ lp0Þ; ð30bÞ
and they can be inverted to give7

p0 ¼
_t
2λ

þ la2
_x2

8λ2
; ð31aÞ

p1 ¼ −
a2 _x
2λ

�
1 − l

_t
2λ

�
: ð31bÞ

Therefore, the Lagrangian in (28) written in terms of
velocities and the Lagrange multiplier reads as

L ¼ _t2 − a2 _x2

4λ
þ l

a2_t_x2

8λ2
þ λm2: ð32Þ

In the limit aðtÞ → 1, we recover the Lagrangian in
Ref. [16], as expected. The Lagrangian above can be
minimized with respect to λ to give

7Assuming λ ∼Oð1Þ.
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λ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 − a2 _x2

p

m
þ l

2

a2_t_x2

_t2 − a2 _x2
: ð33Þ

The Lagrangian (32) can now be written in terms of
velocities only, and it reads as

L ¼ m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 − a2 _x2

p
þ lm

2

a2_t_x2

_t2 − a2 _x2

�
: ð34Þ

The expression above is of degree 1 in the velocities, and
therefore it defines the following Finsler norm:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 − a2 _x2

p
þ lm

2

a2_t_x2

_t2 − a2 _x2
: ð35Þ

According to the relation (2), a Finsler metric can be
derived from (35), and it reads as

gFμνðx; _xÞ ¼

0
B@ 1þ 3a4ml_t_x4

2ð_t2−a2 _x2Þ5=2
mla4 _x3ða2 _x2−4_t2Þ

2ð_t2−a2 _x2Þ5=2
mla4 _x3ða2 _x2−4_t2Þ

2ð_t2−a2 _x2Þ5=2 −a2 þ mla2_t3ð2_t2þa2 _x2Þ
2ð_t2−a2 _x2Þ5=2

1
CA:

ð36Þ
When l → 0, the metric above reduces to that of a classical
de Sitter space in coordinate time, and for aðtÞ → 1, the
Finsler metric associated with κP is recovered. The norm
(35) and the metric (36) satisfy all the identities of a proper
Finsler spacetime introduced in Sec. II.
Using (33), one can rewrite (30) to get

p0 ¼
m_tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_t2 − a2 _x2
p −

lm2a2 _x2ða2 _x2 þ _t2Þ
2ð_t2 − a2 _x2Þ2 ; ð37aÞ

p1 ¼ −
ma2 _xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 − a2 _x2

p þ lm2a2_t3 _x
ð_t2 − a2 _x2Þ2 ; ð37bÞ

and the following relations can be found as well:

m_tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 − a2 _x2

p ¼ p0 þ
la−2p2

1

2m2
ða−2p2

1 þ p2
0Þ; ð38aÞ

ma_xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 − a2 _x2

p ¼ −a−1p1

�
1þ l

m2
p3
0

�
: ð38bÞ

Using the relations above, one recovers the mass shell
condition as

m2 ¼
�

m_tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 − a2 _x2

p
�

2

−
�

ma_xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_t2 − a2 _x2

p
�

2

¼ p2
0 − a−2p2

1ð1þ lp0Þ; ð39Þ
and the Finsler metric (36) can be rewritten in terms of
momenta as

gFμνðx;pÞ¼
0
@ 1þ 3

2

lp0p4
1

m4 −a
2

lp3
1
ðp2

1
−4p2

0
Þ

m4

−a
2

lp3
1
ðp2

1
−4p2

0
Þ

m4 −a2þ a2
2

lp3
0
ð2p2

0
þp2

1
Þ

m4

1
A: ð40Þ

By comparing (35) with the Finsler norm associated with
the κP symmetries in Ref. [16], it can be noted that the two
are conformally related as in the classical case.
Using (37) and (38), it can be shown that the inverse

metric satisfies the following relations:

gμνF ðx; _xÞpμð_xÞpνð_xÞ ¼ m2; ð41aÞ
gμνF ðx; pÞpμpμ ¼ p2

0 − a−2p2
1ð1þ lp0Þ: ð41bÞ

We have shown so far that a particle with the qdS mass
Casimir can be described in terms of a Finsler geometry
through the norm (35) and the metric (36), (40), and we
noticed that this structure is conformally related to that of
κP introduced in Ref. [16].8

In the tangent space, the corrections to the ordinary
Minkowski norm (or metric) are given by terms which are
of the form lmfð_xÞ or lmgðp=mÞ in momentum space,
with f and g some functions of velocities and momenta,
respectively. These kinds of corrections are typical of
rainbow gravity scenarios [35] (see also Ref. [17]).
Similar results were also found in Refs. [22,23], where
the propagation of particles in a quantum geometry was
analyzed, and the deviations from the classical results were
given in terms of a dimensionless nonclassicality parameter
β, involving expectation values of the geometrical operators
over a state of the quantum geometry, and functions of
p=m, without an explicit dependence on any fundamental
scale. In the framework presented here, the analogous
parameter would be represented by the dimensionless
combination lm, which makes manifest the presence of
a fundamental scale.
In the following section, we will explicitly derive the

worldline of a particle propagating on this Finsler geometry
associated with the dispersion relation CqdS ¼ m2, and we
will study the associated Christoffel symbols.

C. Christoffel symbols and geodesic equations

Worldlines in Finsler geometry can be derived using
Euler-Lagrange equations, which is equivalent to comput-
ing the geodesic equations given by

ẍμ þ Γμ
ρσðx; _xÞ_xρ _xσ ¼ 0 ð42Þ

once the parameter τ has been chosen to be affine.
The Christoffel symbols are defined as in Riemannian
geometry:

Γμ
ρσðx; _xÞ ¼ 1

2
gFμνðx; _xÞð∂ρgFσν þ ∂σgFρν − ∂νgFρσÞ; ð43Þ

8The analysis of the Killing equation, needed to prove full
equivalence between the symmetries of the Finsler geometry
compatible with the qdS mass Casimir and that compatible with
the qdS Hopf algebra, is not among the objectives of this work.
See, however, Ref. [34].
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but now they depend on the velocities through the metric
tensor.
They are explicitly given by

Γ0
00 ¼

3Hml_ta4 _x4ð4_t2 þ a2 _x2Þ
4ð_t2 − a2 _x2Þ7=2 ; ð44aÞ

Γ0
01 ¼

Hmla4 _x3ð4_t2 − a2 _x2Þ
2ð_t2 − a2 _x2Þ5=2 ; ð44bÞ

Γ1
00 ¼ −

Hmla2 _x3ð16_t4 − 2a2_t2 _x2 þ a4 _x4Þ
2ð_t2 − a2 _x2Þ7=2 ; ð44cÞ

Γ0
11¼Ha2−

1

4

Hmla2_tð4_t6þ10_t4a2 _x2þ7_t2a4 _x4−6a6 _x6Þ
ð_t2−a2 _x2Þ7=2 ;

ð44dÞ

Γ1
01 ¼ H −

3Hmla2_t3 _x2ð4_t2 þ a2 _x2Þ
4ð_t2 − a2 _x2Þ7=2 ; ð44eÞ

Γ1
11 ¼ −

Hmla4 _x3ða2 _x2 − 4_t2Þ
2ð_t2 − a2 _x2Þ5=2 : ð44fÞ

In the limit l → 0, they reduce to the Christoffel symbols
of a classical de Sitter space, while for H → 0, they vanish
in agreement with the fact that in this limit the Finsler
metric of κP is recovered. We also notice that the correction
terms to the classical results are proportional to the
combination Hl.
With the parametrization F ¼ 1 applied to the norm (35),

the geodesic equations are specifically given by

̈tþHa2 _x2ð1 − 2lm_tÞ ¼ 0; ð45aÞ
ẍþH _xð2_tþ lma2 _x2Þ ¼ 0; ð45bÞ

and their dependence on the mass m signals a violation of
the WEP.

In order to explore the consequences of these corrections,
one can expand Eq. (44) up to second order inH, obtaining

Γ0
00≃3Hlm_t

�
4_t2 _x4þ _x6

4ð_t2− _x2Þ7=2þ
Htð16_t4 _x4þ18_t2 _x6þ _x8Þ

4ð_t2− _x2Þ9=2
�
;

ð46aÞ

Γ0
11 ≃H þ 2H2t −Hlm_tð4_t

6 þ 10_t4 _x2 þ 7_t2 _x4 − 6_x6

4ð_t2 − _x2Þ7=2 þ

þHtð8_t8 þ 60_t6 _x2 þ 72_t4 _x4 − 41_t2 _x6 þ 6_x8Þ
4ð_t2 − _x2Þ9=2 Þ;

ð46bÞ

Γ1
01≃H−3Hlm_t3 _x2

×

�
4_t2þ _x2

4ð_t2− _x2Þ7=2þ
Htð8_t4þ24_t2 _x2þ3_x4Þ

4ð_t2− _x2Þ9=2
�
; ð46cÞ

and similarly for the other components. One finds terms
that are purely of order Hl and others that are of order
HlHt. If t is at most OðH−1Þ, the second kind of
corrections is never bigger than the first one, and this is
true also for the higher-order corrections, since they are all
multiplied by coefficients of the type HlðHtÞn−1.
Therefore, if one neglects correction terms which are

proportional to Hl, the Christoffel symbols become
independent of _xμ, and this condition is preserved as long
as t is not larger thanH−1. In this limit, the Finsler structure
associated with qdS is approximately of the Berwald type,
and the Christoffel symbols are the same as those of a
classical dS spacetime.
What happens at the metric tensor in this limit?

Expanding (36) up to first order in H, one gets

gFμνðx; _xÞ≃
0
B@ 1þ 3lm_t_x4

2ð_t2−_x2Þ5=2 þ
3Htlm_t_x4ð4_t2þ_x2Þ

2ð_t2−_x2Þ7=2 − lm_x3ð4ð4Htþ1Þ_t4−ð2Htþ5Þ_x2_t2þðHtþ1Þ_x4Þ
2ð_t2−_x2Þ7=2

− lm_x3ð4ð4Htþ1Þ_t4−ð2Htþ5Þ_x2_t2þðHtþ1Þ_x4Þ
2ð_t2−_x2Þ7=2 −1þ 2Htþ lm_t3

2

�
ð2_t2þ_x2Þ
ð_t2−_x2Þ5=2 þ

Htð4_t4þ10_x2_t2þ_x4Þ
ð_t2−_x2Þ7=2

�
1
CA: ð47Þ

In the metric above, the constant H always comes together
with the coordinate time t, and this is also true for higher-
order terms that would come with coefficients of the type
ðHtÞn. Therefore, while at the level of the Christoffel
symbols, these terms can be neglected as long as t≲H−1,
this is not true for the metric tensor, as one would get terms
which are of the same order as the terms of OðlÞ—i.e.,
lðHtÞn ∼ l for t ∼H−1. The metric is, therefore, still of
Finslerian-type form.
Having said that, at first order in H and l and ignoring

terms proportional to Hl not enhanced by a factor of t, the
geodesic equations (42) are now the same as those one

would obtain from a classical dS spacetime.9 They are
given by

̈tþH _x2 ¼ 0; ð48aÞ
ẍþ 2H_t _x ¼ 0; ð48bÞ

where any dependence on the mass has disappeared.
Comparing (48) with (45), it is clear that in the former
case, the additional mass-dependent term behaves like a

9Note that analogous conclusions can be obtained in the
framework presented in Ref. [21] under a similar hypothesis.
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force carrying the particle away from the classical geodesic
motion.
On the other hand, the chronometric structure will still be

velocity dependent, and it will contain information on both
the fundamental scale l and the curvature scale H. For
example, in the equations above, the derivatives are
performed with respect to an affine parameter. In this
respect, with the usual definition of proper time, from the
metric (40) one obtains

Δτ ¼
Z

t2

t1

ffiffiffiffiffiffi
gF00

q
dt ¼

Z
t2

t1

�
1þ 3

2

lp0p4
1

m4

�
dt

¼ Δt
�
1þ 3

2

lp0p4
1

m4

�
; ð49Þ

where we chose dx ¼ 0, so that no other components of the
metric need to be considered and p0 ¼ const. (In this
frame, there are no effects associated with H.) Therefore,
the proper time turns out to be momentum (or velocity)
dependent, and particles with different energies will expe-
rience different elapsed proper time intervals Δτ, given the
same coordinate time interval Δt.
Let us now compute the trajectory of a particle as a

function of coordinate time to show that indeed the non-
trivial structure of momentum space is not lost. Since the
Lagrangian (34) does not depend on the spatial coordinate
x, Euler-Lagrange equations tell us that the generalized
momentum (37b) is conserved; i.e., _p1 ¼ 0. Therefore,
Eq. (37b) can be integrated, in the gauge τðtÞ ¼ t with the
condition xð0Þ ¼ 0, and the result is given by

xðtÞ ¼ p1tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þm2

p
�
1 −

Ht
2

�
1þ m2

p2
1 þm2

��

− lp1tð1 −HtÞ ð50Þ
for an incoming particle. The derivative of (50) gives the
speed of propagation that reads as10

vðtÞ¼ p1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1þm2

p
�
1−Ht

�
1þ m2

p2
1þm2

��

−lp1ð1−2HtÞ !m
2→0

vðtÞ¼ 1−Ht−lp1ð1−2HtÞ:
ð51Þ

Before going to the conclusion, let us briefly recap the
results of this section. Equation (46) shows that, in general,
the qdS Finsler geometry is not of the Berwald type, since
the spray coefficients (defined in Sec. II B) are not
quadratic in the velocities. However, it turns out that, in
the specific regime t≲H−1, the Christoffel symbols
become velocity independent and identical to those of a
classical dS spacetime, and the Finsler geometry is

approximately of the Berwald type.11 Yet the chronometric
structure of the model does not become classical, and the
nontrivial structure of the Finsler metric is maintained.

IV. CONCLUSIONS AND OUTLOOK

In this work, we extended the relationship between
theories with deformed relativistic symmetries and
Finsler geometry by including the presence of spacetime
curvature. In the first part, we showed that the propagation
of particles with deformed de Sitter symmetries, given by
the qdS Hopf algebra, can be described in terms of a
velocity and coordinate dependent of the Finsler norm, and
we noted that the latter is conformally related to the kP
Finsler norm introduced in Ref. [16]. Then, we studied the
affine structure of the model by computing the generalized
Christoffel symbols and pointing out that in general, they
remain velocity dependent. This allowed us to conclude
that the qdS Finsler spacetime is not in general of the
Berwald type, and therefore the WEP is violated.
Nevertheless, we have shown that when the correction

terms proportional to Hl (the product of the inverse of the
curvature scale and the fundamental length scale) can be
disregarded, the affine structure becomes classical, at least
for a time scale which is at most comparable with the
Hubble time H−1. In this limit, the Finsler structure
becomes of the Berwald type, and the WEP is recovered.
On the other hand, in the same regime, the chronometric
structure does not become completely classical. Indeed, the
typical DSR effects, such as momentum-dependent speeds
of propagation for massive and massless particles, are still
present, and they come with both Planck scale and
curvature corrections.
Deformations of the standard Poincaré algebra have been

largely considered in the literature in the last twenty years,
but they are mostly used to describe kinematical properties
of particles with modified dispersion relations in a well-
defined relativistic framework. Whether these symmetry
groups can be used to construct families of momentum-
dependent (metric) theories of gravity, which would modify
GR incorporating some QG features, is currently an open
question. In the absence of concrete and realistic proposals
for such kinds of theories, the study of deformed symmetry
groups of nonflat spacetimes is a first step in understanding
if such theories can be constructed.
As we anticipated in the Introduction, two fundamental

ingredients of any metric theory of gravity are LI and the
WEP. The former can somehow be extended to include
deformed symmetry groups, and we have shown that
indeed the qdS Finsler spacetime locally reduces to the
flat κP Finsler spacetime introduced in Ref. [16]. Therefore,
one may think of building a theory of gravity whose
solutions locally look like a flat spacetime with κP

10This result is in agreement with what has been found in
Refs. [32,34].

11Taking this limit is equivalent to ignoring correction terms
proportional to ðHlÞn which are not enhanced by a factor of tn.
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symmetries; e.g., the κP Finsler spacetime. However, the
WEP is broken in qdS. Indeed, we found that the
corrections to the ordinary geodesic equations come with
a mass dependence. This additional component is negli-
gible in the limit of small curvature and for typical time
scales smaller than the Hubble time. In this limit, the
Finsler structure associated with qdS becomes of the
Berwald type, which represents a subclass of Finsler spaces
for which free-falling (Fermi) normal coordinates can be
defined, and any free-falling observer looking at neighbor-
ing free-falling particles observes them moving uniformly
over straight lines (formally implementing the idea of
Einstein’s elevator; see also Refs. [18] and [31]).
Therefore, comparing the geodesic equations in this limit
to the ones obtained without any approximation, we
realized that the correction terms can be interpreted as
forcelike contributions.
The most stringent bounds on violations of the WEP

come from high-precision Eötvös-type experiments, but
they are mostly performed in the gravitational field pro-
duced by the Earth and for macroscopic, composite bodies
(see Ref. [1] and references therein). The relevant param-
eter used to constrain violations of the WEP is the so-called
Eötvös ratio η that measures the fractional difference in
acceleration between two bodies, and it is currently
bounded to be less than or equal to about 10−13.
Obviously, this bound cannot be directly applied to the
present framework, and tests of the WEP on cosmological
scales would be more appropriate.
On the other hand, assuming that today’s total energy

density can be completely associated with the cosmological
constant, and that the Universe is described by the qdS
Finsler geometry, one can try to estimate how good the
Berwald approximation is. Today’s value of the Hubble
parameter is approximately given byH0 ≃ 68ðkm=sÞ=Mpc,
which corresponds, in seconds, to H0 ≃ 2.2 × 10−18s−1.
Assuming that l is of the order of the Planck length
lP ≃ 1.6 × 10−35 m, the dimensionless combination lH,
in natural units, is given by lH ≃ 3.7 × 10−62 ≪ 1. Since
this is the combination driving the correction terms in the

geodesic equations,we expect theviolation of theWEP to be
very much suppressed in this context.
At this point, one may wonder whether the effective

gravitational dynamics for this theory can be described in
terms of a sort of metric-affine theory of gravity12 (at least
for a time scale t≲ tH), where the connections are the ones
associated with a classical dS spacetime, while the chro-
nometric properties are given by the velocity-dependent
Finsler metric of qdS. In this case, the Ricci tensor would
be constructed solely on the basis of the classical con-
nections, and the Ricci scalar would be the contraction of
the Finsler metric with the Ricci tensor. Still, it would be
interesting to have a definite model providing such a
dynamics.
Finally, one can also speculate that similar effects would

be present in some kind of κP-like deformation of the
spherically symmetric gravitational field generated by a
mass M. This would actually provide a framework to
realistically test DSR models through tests of the WEP, as
a bound on η could imply a bound on the fundamental scale
l.13We hope to further develop these themes in futureworks.
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