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We study the evolution of holographic screens, both generally and in explicit examples, including
cosmology and gravitational collapse. A screen H consists of a one-parameter sequence of maximal
surfaces called leaves. Its causal structure is nonrelativistic. Each leaf can store all of the quantum
information on a corresponding null slice holographically at no more than one bit per Planck area.
Therefore, we expect the screen geometry to reflect certain coarse-grained quantities in the quantum gravity
theory. In a given spacetime, there are many different screens, which are naturally associated with different
observers. We find that this ambiguity corresponds precisely to the free choice of a single function on H.
We also consider the background-free construction of H, where the spacetime is not given. The evolution
equations then constrain aspects of the full spacetime and the screen’s embedding in it.
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I. INTRODUCTION

In the search for a quantum theory of gravity in general
spacetimes, the study of holographic screens [1] has
recently led to interesting new results. An area theorem
was proven for past and future holographic screens in any
spacetime satisfying the null curvature condition [2,3]. The
semiclassical extension of this theorem led to the first
rigorous formulation of a universal generalized second law
[4], applicable in cosmology and other highly dynamical
spacetimes. In the present paper, we will study the classical
evolution of holographic screens in more detail.
A holographic screen H can be associated with a null

foliation of a spacetime M, i.e., a foliation of M into 2þ 1
dimensional hypersurfaces NðRÞ, each with two spatial and
one lightlike direction. (See Fig. 1.) The screen consists
of a sequence of two-dimensional surfaces σðRÞ called
leaves. Each leaf is the spatial cross section of largest area
on the corresponding slice NðRÞ. A holographic screen is
called future (past) if the area of each leaf is decreasing
(increasing) in the opposite lightlike direction, i.e., if every
σðRÞ is marginally trapped (antitrapped). Future screens
appear inside black holes or near a big crunch. Past
holographic screens exist in an expanding universe, for
example, in ours.
The covariant entropy bound (Bousso bound) [5,6]

implies that all of the information about the quantum state
on each null slice NðRÞ can be stored on the corresponding
leaf σðRÞ at a density of no more than one bit per Planck
area. This suggests that the holographic principle [7–9]
applies in all spacetimes. (Several precise semiclassical
versions of this conjecture have recently been formulated

and, in some cases, proven rigorously [10–14].) The
holographic relation between quantum information and
geometry substantially involves both GN and ℏ, Newton’s
and Planck’s constants. Its origin can only lie in a quantum
theory of gravity, so one expects the structure of holo-
graphic screens to reflect aspects of the underlying theory.
In spacetimes with conformal boundaries, all or parts of

the screen lie on it [1,15]. For example, in asymptotically
anti–de Sitter spacetimes, the screen is located on the
conformal boundary at spatial infinity. This is consistent
with the AdS=CFT correspondence providing a full quan-
tum description.
It is therefore of interest to study holographic screens in

more realistic spacetimes, where quantum gravity remains a
mystery. (An interesting recent approach explores a gen-
eralization of the stationary-surface conjecture [16,17] for
computing entanglement entropy [18–20].) In particular, it
is important to understand the dynamics of holographic
screens in cosmology and in the collapsing regions inside
of black holes.
Future holographic screens have already been studied in

some detail under the guise of “dynamical horizons” [21] or
“future outer-trapped horizons” [22], as interesting candi-
dates for quasilocal boundaries of black holes. Strictly, the
latter objects are more restrictive: dynamical horizons
correspond only to the spacelike portions of future holo-
graphic screens. For the purposes of proving an area
theorem, the restriction to spacelike portions is significant:
the area theorem is trivial for dynamical horizons, but
highly nontrivial for future holographic screens. This is
because without the spacelike assumption, the area theorem
relies on a global property that is hard to prove: the (unique)
foliation of a given screen H into leaves σðRÞ uniquely
defines a foliation of a (portion of) the spacetime M into
null slices NðRÞ.
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Here we will be interested in studying the evolution of
local quantities, the metric and extrinsic curvature of the
leaves. For this purpose, the spacelike assumption yields no
significant simplification. In fact, a number of authors have
studied the local evolution problem for dynamical horizons
[21,23–27], and some noted that the spacelike assumption
is not required for the validity of the evolution equations.
For completeness, we offer a simplified derivation of the
evolution equations in Appendix C. In the main text, our
focus will be on their interpretation. In particular, we will
emphasize the role of a gauge choice which corresponds
geometrically to a choice of null foliation, and which has a
natural interpretation as reflecting a choice of observer.
In Sec. II, we establish conventions, and we define the

screen variables: local geometric quantities that can be
associated to a holographic screen. They include the metric
and null extrinsic curvatures of the leaves, a tangent vector
field to the leaves describing the relative evolution of the
two null normals, and a tangent vector field normal to the
leaves describing the “slope” and “rate” of the screen’s
progress through the spacetime it is embedded in. We also
identify one “global” and one “gauge” transformation,
which leave the screen invariant but act nontrivially on
some of the above variables.
In Sec. III, we present the evolution equations for the

screen variables. We then analyze them from three different
perspectives. First, in Sec. III A, we regard both the
spacetime M and the screen H as given. This viewpoint

has been examined previously, and it has led to suggestions
that the screen evolution can be interpreted as fluid
dynamics. We identify a number of problems with this
interpretation.
Next, in Sec. III B,we regard the spacetimeM as given but

consider the evolution equations as a tool for constructingH.
We find that the equations are underdetermined by one
function α on H. We show that this function corresponds
precisely to the ambiguity in choosing a null slicing; see
Fig. 1. More precisely, given a partially constructed screen
up to some leaf σðRÞ, we show that α can be regarded as a
lapse function that describes howmuch the infinitesimal step
R advances the slicing away from each point on σðRÞ. This
defines a new null slice NðRþ dRÞ, and ultimately a new
leaf σðRþ dRÞ, in an α-dependent way.
We can regard α as encoding a kind of generalized

observer dependence of the screen in the following sense.
Consider a worldline, and consider the future light-cone
from each point on the worldline. If the worldline is in a
collapsing region (e.g., inside a black hole), then there will
be a cross section of maximum area on this light-cone: a
marginally trapped surface. The sequence of such surfaces
defined by the above construction yields a holographic
screen, H.
Now consider a different observer, whose worldline

coincides in some interval with the previous one but then
departs from it. The above construction still works, and in
the region where the worldlines agree, it will yield the same

FIG. 1. Left: A future holographic screen, H (blue line). Points represent topological spheres. The dashed lines are 2þ 1 dimensional
null slices N orthogonal to the leaves σ of H (blue dots) along the direction ka. H can be constructed leaf by leaf using a “zig-zag”
procedure. First, deform the leaf σðRÞ along the other orthogonal null vector, l, by an infinitesimal step αðR; ϑ;φÞla (green downward
arrow). The function α < 0 can be chosen arbitrarily; it reflects a kind of observer dependence of the holographic screen. Thus, one
obtains a new surface σ̄ðRþ dRÞ (red), and from it, a new null slice NðRþ dRÞ orthogonal to σ̄. The next leaf σðRþ dRÞ is the surface
of maximal area on NðRþ dRÞ at some infinitesimal distance βka along N from σ̄ (orange arrow). Right: A past holographic screen
(same color coding). In this case α > 0; the area of the leaves grows towards the future. We show the same construction, with only
one spatial direction suppressed to offer a different visualization. The leaves σðRÞ are by definition the maximal area cross sections of
NðRÞ, despite what the figure shows.
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leaves. Therefore, the holographic screens will also agree
on those leaves. But the leaves constructed from the light
cones of points where the worldlines do not agree will
differ. Therefore, there is no unique future evolution for a
holographic screen, even if we are given part of the screen
and the entire spacetime M.
This mathematical description of the observer depend-

ence of holographic screens, as a choice of the function α, is
the central result of this paper. It would be nice to explore this
further. For example, infinitesimally nearby screens encode
nearly the same subset of M. The transformation relating
them may correspond either to a change of variables in the
underlying theory or to a change of the prescription for
reconstructing spacetime from those variables.
Finally, in Sec. III C, we consider the evolution equations

from a “background-free” perspective, where neitherM nor
H are given. In this case, we can regard the screen variables
as given. What was previously regarded as their evolution
equations now determines aspects of the spacetime M and
of how H is embedded inM. However, from this viewpoint
the equations are highly underdetermined. This is not
surprising, since the screen variables can at most represent
a coarse-grained subset of the information in the underlying
quantum gravity theory.
In Sec. IV, we illustrate our general analysis with some

examples. We construct screens explicitly for black holes
and for cosmological solutions, and we compute the screen
variables. In particular, we construct two different screens
for the same cosmology, only one of which is spherically
symmetric. This illustrates the observer dependence asso-
ciated with a choice of different worldlines and null slicings.
Our analysis builds on earlier studies of dynamical

horizons and future outer-trapped horizons, such as
Refs. [21–23,28–30]. In many of these works, an analogue
of the first law of black hole thermodynamics was sought.
(The second law holds trivially for dynamical horizons.)
However, it is not clear that physically meaningful intrinsic
and extrinsic variables, such as total energy and temper-
ature, can be uniquely defined. We do not pursue this
direction here, though we note in Sec. IV that a certain local
geometric quantity κ limits to the usual surface gravity of an
event horizon, in all examples where a sensible comparison
can be made.
Here we focus on local parameters that arise naturally

from the geometry of holographic screens. In Sec. III we
take as our starting point the evolution equations of
Gourgoulhon and Jaramillo [25–27]. (For completeness,
their derivation is given in Appendix C.) In Sec. IV, we
make use of the work of Booth et al. [31], who explicitly
constructed dynamical horizons for spherical dust collapse.

II. KINEMATICS OF HOLOGRAPHIC SCREENS

A future (past) holographic screen, H, is a hypersurface
(not necessarily of definite signature) that is foliated by
marginally trapped (antitrapped) codimension-2 spatial

surfaces called leaves. For simplicity we will take space-
time to have four dimensions in what follows, and we
consider future screens unless otherwise noted; however, all
results are easily generalized. By a surface we shall mean a
smooth two-dimensional achronal surface. We will con-
sider only regular screens, which satisfy a set of further
mild technical conditions [3] such as the generic condition,
Eq. (62) below. In this section, we will discuss the
kinematic structure underlying holographic screens and
establish a number of conventions.

A. Tangent and Normal Vectors

In a Lorentzian manifold, every two-dimensional spatial
surface has two future-directed orthogonal null vector
fields, ka and la. It is convenient to choose their normali-
zation such that

kala ¼ −1: ð1Þ

This allows for arbitrary rescalings l → γl, k → γ−1k,
where γ is an arbitrary positive function on the screen
H. We show below that this gives rise to a Uð1Þ gauge
symmetry.
A surface is marginally trapped if

θðkÞ ¼ 0; θðlÞ < 0: ð2Þ

By the above definition, a future holographic screen can be
thought of as a one-parameter sequence of such surfaces, its
leaves σðRÞ. In principle, any parameter can be used. For
example, the existence of an area theorem for holographic
screens [2,3] makes it possible to choose R to be a
monotonic function of the area of the leaves.
Next, we wish to define a vector field h which is tangent

to H and normal to each leaf σðRÞ. The latter condition
implies that

ha ¼ αla þ βka: ð3Þ

A key intermediate result in the proof of the area theorem
[3] is that α < 0 everywhere onH (in our convention where
l is future-directed). That is, the evolution of leaves of a
future holographic screen is towards the past or the spatial
exterior.
The parameter β corresponds to the “slope” of the

holographic screen. By Eq. (3), the screen is past-directed
if β < 0 and spatially outward-directed if β > 0. The
generic condition of Ref. [3] prevents h from becoming
collinear with k, so β is always finite. However, β has no
upper bound. In the limit as β → ∞, H approaches an
isolated horizon. For example, H can approach the event
horizon of a black hole from the inside.
Because β can have any sign, H need not be of definite

signature. Thus, we cannot require that h have unit norm
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haha ¼ −2αβ: ð4Þ

Instead, we normalize h by requiring that

hðRÞ ¼ haðdRÞa ¼ 1; ð5Þ

where R is the (arbitrary) foliation parameter. We also
define a vector normal to H and to every leaf,

na ¼ −αla þ βka; ð6Þ

which satisfies hana ¼ 0 and nana ¼ 2αβ.
There are two ways to think about this normalization,

corresponding to different perspectives on screen evolution.
In one viewpoint, we consider a given screen H in a given
spacetime M. Then, it is natural to choose a foliation
parameter R, which fixes the product αβ via the above two
equations. The ratio β=α is fixed by the slope of the screen’s
embedding in M.
Alternatively, we may consider only the spacetime M as

given, and consider it our task to construct the screen H. In
this case, the screen will not be unique. Even if some
portion of the screen is known (as a set of leaves associated
with a finite range of R), this does not determine the
remainder of the screen. We shall see that the ambiguity is
precisely associated with a choice of a negative function α
on H (at fixed choice of l). This corresponds to a choice of
null foliation of M, or physically, to a choice of observer
associated with the screen. We will later identify a con-
straint equation that determines β as a function of α and
other data, Eq. (61) below. The parameter R is then
determined by Eq. (5).
The induced metric on the screen H is not always well

defined,

γab ¼ gab −
1

2αβ
nanb; ð7Þ

This is ill-defined on null portions of H, i.e., when β
vanishes, and it changes signature when β changes sign.
But we will not need this metric below.
By contrast, the induced spatial metric on a leaf σðRÞ is

always well defined,

qab ¼ gab þ kalb þ lakb: ð8Þ

B. Extrinsic Curvature and Acceleration

We are interested in the extrinsic curvature of the leaves
σðrÞ in the spacetime, rather than the extrinsic curvature of
the screenH. Since the leaves are of codimension 2, the full
extrinsic curvature data consists of the following objects:
the null extrinsic curvatures in the k and l directions,
respectively; and the so-called Weingarten map, which
measures how the null normals vary with respect to each
other.

The null extrinsic curvatures are defined by

BðkÞ
ab ¼ qcaqdb∇ckd; ð9Þ

BðlÞ
ab ¼ qcaqdb∇cld: ð10Þ

The expansion and shear are given by

θðkÞ ¼ BðkÞ
ab q

ab; ð11Þ

σðkÞab ¼ BðkÞ
ðabÞ −

1

2
θðkÞqab; ð12Þ

and similarly for l. We recall that by definition of a future
holographic screen, θðkÞ ¼ 0 and θðlÞ < 0.
Analogously, one can define extrinsic curvature, expan-

sion, and shear for any vector field orthogonal to σ, such as
ha or na. Since the definitions are linear, Eq. (3) implies,
e.g.,

θðhÞ ¼ αθðlÞ þ βθðkÞ ¼ αθðlÞ; ð13Þ

θðnÞ ¼ −αθðlÞ þ βθðkÞ ¼ −αθðlÞ: ð14Þ

From the 1-form −lb∇akb, one can construct the normal
1-form by projection along the leaf,

Ωa ≡ qacð−lb∇ckbÞ; ð15Þ

and the acceleration ~κ by projection along the evolution
vector field,

~κ ≡ hcð−lb∇ckbÞ: ð16Þ

This quantity is called “surface gravity” in Refs. [25–27]
and is denoted as κ there. We will reserve that term and
notation for a different, closely related quantity defined in
Eq. (18) below because we find that it better matches the
surface gravity of event horizons.
It is easy to see that the following expressions are

equivalent to Eq. (16): ~κ ¼ kbha∇alb ¼ hbha∇akb ¼
−lbha∇aðhb=βÞ. Yet another equivalent expression for ~κ
can be given by extending the null vector fields k and l into
a neighborhood of H (which was not needed above)
according to the following prescription: l is parallel trans-
ported along itself, and k is parallel transported but rescaled
so as to satisfy kala ¼ −1 everywhere. With this choice,
one finds

ka∇akb ¼ κkb; ð17Þ

where
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κ ≡ ~κ

β
: ð18Þ

At points where β ¼ 0, the above prescription fails to
extend l into an open neighborhood of such points, leading
to a divergence.
Notably, Eq. (17) takes the same form as the definition of

the surface gravity of a Killing horizon. However, the
acceleration κ is not invariant under certain allowed
rescalings of k, which we will discuss shortly. For
Killing horizons, there is a similar ambiguity, which would
also rescale the surface gravity. But in some cases (e.g.,
asymptotically flat spacetimes), a preferred normalization
of the Killing vector field kKH exists [32]. In our case, by
contrast, the normalization is set by the choice of evolution
parameter R, which is ambiguous.
In Sec. IV we will consider a particularly simple choice

of parametrization. Remarkably, we will find for a large
class of dynamical solutions that the acceleration defined in
Eq. (17) agrees with the standard Killing surface gravity of
the corresponding static solutions.

C. Gauge and reparametrization transformations

There are two kinds of transformations that do not
change the screen and preserve the conventions of
Eqs. (1) and (5). The first transformation is analogous to
a global symmetry in that it does not depend on the
position. The second is a Uð1Þ gauge symmetry.
The first symmetry is a trivial reparametrization of the

label R of the leaves. There are certain geometrically
motivated choices one could consider in order to fix R,
for example, by linking it to the area A of the leaves, e.g.,
via A ¼ 4πR2 or A ¼ expðRÞ. Here we will insist only that
R grow monotonically with A. Then, we can consider any
transformation R → R0 with

exp½γðRÞ�≡ dR0

dR
> 0: ð19Þ

Note that γ can only depend on R, not on the angular
position on each leaf. The above conventions and defi-
nitions imply the following transformation properties:

h → e−γh; ð20Þ

n → e−γn; ð21Þ

l → e−γl; ð22Þ

k → eγk; ð23Þ

β → e−2γβ; ð24Þ

Ωa → Ωa; ð25Þ

~κ → e−γð~κ þ γ0ðRÞÞ: ð26Þ

The extrinsic curvature tensors, Bðh;n;k;lÞ
ab , and their compo-

nents (expansion and shear), transform like h, k, n, l,
respectively.
A second symmetry arises from rescaling α by an

arbitrary positive function of R and of the angular position
while holding h, n, and R fixed. This requires taking
l → e−Γl and, by Eq. (1), k → eΓk. The remaining screen
parameters transform as1

α → eΓα; ð27Þ

β → e−Γβ; ð28Þ

~κ → ~κ þ _Γ; ð29Þ

Ωa → Ωa þDaΓ: ð30Þ

Note that the combination

Ω̂a ≡ hbqac∇cnb; ð31Þ

¼ −2αβΩa þ βDaα − αDaβ ð32Þ

is invariant under the gauge symmetry.
Again, it is possible to gauge-fix this symmetry. For

example, we can insist that α ¼ −1 everywhere, or that
θðlÞ ¼ −1. Below we find that different choices are con-
venient in different applications. However, the most general
evolution equations we display in the next section will be
invariant under any of the above transformations.

III. DYNAMICS AND OBSERVER DEPENDENCE

A holographic screen is a codimension-1 hypersurface in
spacetime. Hence, it must obey the constraint equations of
general relativity,

Gabnb ¼ 8πTabnb: ð33Þ
These four equations are usually expanded in a 3þ 1
formalism, as one energy constraint plus three momentum
constraints on the 3-metric and 3-extrinsic curvature.
Here we are dealing with a hypersurface of indefinite

signature but with the additional structure of a 2þ 1
decomposition, the foliation into leaves. Thus, it is natural
to express Eq. (33) in terms of the kinematic quantities
defined in the previous section, which are adapted to this
foliation. One finds

1Note that ð~κ;ΩaÞ transform like ðA0;AÞ, the electric and
magnetic potential, under a gauge transformation Γ. It would be
nice to relate this to a shift by Γ in the phase of a nonrelativistic
wave function ψ [33–35] that is part of the quantum gravity
theory on the screen.
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αðL̂h þ ~κÞθðlÞ þDaΩ̂a ¼ 8πTabnahb þ BðhÞ
ab B

ba
ðnÞ; ð34Þ

ðL̂h þ θðhÞÞΩc −Dc ~κ þ αDcθ
ðlÞ ¼ 8πTabnaqbc −DaB

ðnÞa
c ;

ð35Þ

−
α

2
Rþ αΩaΩa − αDaΩa − 2ΩaDaαþDaDaα

¼ 8πTabnakb þ βσðkÞab σ
ab
ðkÞ; ð36Þ

where we have used θðkÞ ¼ 0 to simplify the equations.
Recall that Ω̂a is not an independent variable but given by
Eq. (32). HereR is the Ricci scalar associated with the leaf
metric, qab. In addition, there is a dynamical equation for
the metric on the leaves,

L̂hqab ¼ BðhÞ
ab : ð37Þ

The evolution operator L̂h acts on the tensors which are
purely tangent to the leaf as [25]

L̂hAab…c ≡ qa
0

a qb
0

b …qc
0
c LhAa0b0…c0 ; ð38Þ

where we consider Lh as an operator on H.
This system of equations is invariant under the sym-

metries described in Sec. II C. We have displayed intrinsic
quantities associated with the screen on the left side.
Extrinsic quantities that act like sources appear on the
right hand side. We will now describe three ways in which
one might interpret this system of equations using different
gauge choices.

A. Viscous fluid analogy

We begin by regarding both the spacetime M and the
screenH as fixed. In this case, we are merely expressing the
3D intrinsic and extrinsic curvatures of H as the evolution
of 2D screen variables along H. This may nevertheless be
interesting if it throws new light on the system. In fact, the
evolution equations bear some similarity to fluid equations.
We will identify a number of problems with the fluid
interpretation, however.
To obtain fluidlike equations, we will set α ¼ −1 to

gauge-fix the Uð1Þ symmetry. We do not gauge-fix the
screen parameter R. Equations (34)–(37) become

ðL̂h þ θðhÞÞθðhÞ þ ð~κ − θðhÞÞθðhÞ − BðhÞ
ab B

ba
ðnÞ þDaΩ̂a

¼ 8πTabnahb; ð39Þ

ðL̂h þ θðhÞÞΩc −Dcð~κ − θðhÞÞ þDaB
ðnÞa
c ¼ 8πTabnaqbc;

ð40Þ
1

2
R − ΩaΩa þDaΩa − βσðkÞab σ

ab
ðkÞ ¼ 8πTabnakb; ð41Þ

L̂hqab ¼ BðhÞ
ab : ð42Þ

We expand the extrinsic curvature terms using Eqs. (11)
and (12) to obtain2

L̂hθ
ðhÞ þ θðhÞ2 ¼ −~κθðhÞ þ 1

2
θðhÞ2 þ σðhÞab σ

ðnÞba

−DaΩ̂a þ 8πTabhanb; ð43Þ

L̂hΩc þ θðhÞΩc ¼ Dcð~κÞ −Daσ
ðnÞa
c

−
1

2
Dcθ

ðhÞ þ 8πTabna ~qbc; ð44Þ

−
1

2
Rþ ΩaΩa −DaΩa ¼ 8πTabnakb þ βσðkÞab σ

ab
ðkÞ; ð45Þ

L̂hqab ¼
1

2
θðhÞqab þ σðhÞab ; ð46Þ

with the definitions

Πc ≡ −
1

8π
Ωc momentum density; ð47Þ

ϵ≡ 1

8π
θðhÞ energy density; ð48Þ

P≡ 1

8π
ð~κ − θðhÞÞ pressure; ð49Þ

Qc ≡ 1

8π
Ω̂c heat current; ð50Þ

ζ≡ 1

16π
bulk viscosity; ð51Þ

μ≡ 1

8π
shear viscosity; ð52Þ

fc ≡ −Tabna ~qbc external force density; ð53Þ

q≡ Tabnahb external heat source: ð54Þ

Equation (44) resembles the Navier-Stokes equation for
the momentum density,

2The equations appear slightly simpler than in Ref. [25–27]
due to a difference in conventions. There, the evolution vector
h satisfies hala ¼ 1 (in our notation). This convention is not
well-defined when β ¼ 0, i.e., at points where the screen
changes signature. The convention we adopt in this subsection,
haka ¼ 1, is everywhere well-defined; this follows from the area
theorem [2].
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L̂hΠc þ θðhÞΠc ¼ −DcPþ μDaσ
ðnÞa
c þ ζDcθ

ðnÞ þ fc;

ð55Þ

and Eq. (43) resembles an equation governing the flux of
the internal energy,

L̂hϵþθðhÞϵ¼−PθðhÞ þζθðhÞθðnÞ þμσðhÞab σ
ðnÞba−DaQaþq:

ð56Þ

First, let us note that the bulk viscosity is positive. This
contrasts with the negative (hence unstable) bulk viscosity
of the event horizon fluid in the membrane paradigm of
Price and Thorne [36]. This is simply because we absorbed
an additional term proportional to θðhÞ into the definition of
the pressure. With an analogous definition of pressure, one
would also find a positive bulk viscosity in [36]. We do not
regard this as a success, however. Rather, the fact that
pressure and bulk viscosity terms cannot be uniquely
identified is a first sign that the fluid analogy fails. We
will discuss additional problems below.
Note that Refs. [25–27] also obtain a positive bulk

velocity, but for a different reason: by defining the pressure
to be ~κ and taking θðhÞ rather than θðnÞ to be the expansion
rate relevant to the bulk viscosity. However, the same tensor
should define both the expansion and the shear. Since σðnÞ
appears in the shear viscosity term of Eq. (55), we require
that θðnÞ, and not θðhÞ, appear in the bulk viscosity term. Yet,
this requirement, too, appears inconsistent since the expan-
sion that controls the dilution of the energy and momentum
densities is θðhÞ.
These ambiguities and contradictions lead us to recog-

nize that the viscous fluid analogy has multiple, serious
shortcomings:
(1) There is no equation of state that would determine

the pressure ~κ from other dynamical parameters
intrinsic to the fluid.

(2) There is no dynamical equation for the number
density or mass density of fluid particles analogous
to the continuity equation.

(3) Therefore, there is no well-defined velocity vector
field (“vb”).

(4) Therefore, the rates of shear and expansion cannot
be computed from the dynamical equations (via
“Davb”). Rather, these rates are an arbitrary external
input variable.

(5) The dissipation term μσðhÞab σ
ðnÞba in Eq. (56) corre-

sponds neither to a Newtonian nor properly to a non-

Newtonian fluid. σðhÞab is entirely independent of σðnÞab ,
so the viscous stresses are not a function of fluid
variables alone.

Some of this criticism also applies to the fluid description
of event horizons in the membrane paradigm [36,37], as has
also been noted by Strominger and collaborators [38].

Finally, it is not clear what the interpretation of the
remaining Eqs. (45) and (46) is in the fluid picture. They
state that not all external input parameters are completely

independent, such as σðkÞab and σðhÞab , qab and Tnk.
Alternatively, we may regard Eq. (45) as a constraint
equation determining the parameter β.
To conclude, we do not find the interpretation of screen

evolution as fluid dynamics to be plausible. Moreover, the
above analysis, with M and H fixed, actually ignores a
crucial degree of freedom, as we shall see next.

B. Observer dependence

An instructiveway to think about the evolution equations
is to consider only the 4D spacetimeM as given. Our task is
to construct a holographic screen,H. Once we have started,
the equations tell us how to find the (infinitesimally)
next leaf.
This task is ambiguous, because each leaf is associated

with a null slice, there are many ways of picking a null
foliation ofM. We can regard α < 0 as a free parameter that
determines a choice of a null foliation (for a fixed, arbitrary
choice of null vector field l at every leaf). There is no
equation determining α because it is a genuine ambiguity,
corresponding to the “observer dependence” of holographic
screens.
Let us define an effective stress tensor

8πT̄ab ≡ 8πTab þ kakbBcd
ðlÞB

ðlÞ
cd þ lalbBcd

ðkÞB
ðkÞ
cd ; ð57Þ

¼ 8πTab þ kakb

�θ2ðlÞ
2

þ σcdðlÞσ
ðlÞ
cd

�
þ lalbσcdðkÞσ

ðkÞ
cd :

ð58Þ

This takes a form similar to the effective stress energy of
gravitational radiation in linearized gravity. In general, no
local definition of energy can be given for gravitational
degrees of freedom, but here the holographic screen
provides additional structure analogous to a preferred
background. Thus, T̄ab can be interpreted as incorporating
stress energy associated with gravitational radiation cross-
ing the leaf orthogonally.3

Thus, Eqs. (34)–(36) become

αðL̂h þ ~κÞθðlÞ þDað−2αβΩa þ βDaα − αDaβÞ
¼ 8πT̄abnahb; ð59Þ

3In [39], Hayward derives a stress tensor for the gravitational
radiation in a “quasispherical” approximation. We do not work in
this approximation, but we note that his result takes the same
form as our definition in Eq. (58).
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ðL̂h þ θðhÞÞΩc −Dc ~κ þ αDcθ
ðlÞ ¼ 8πT̄abnaqbc −DaB

ðnÞa
c ;

ð60Þ

−
α

2
Rþ αΩaΩa − αDaΩa − 2ΩaDaαþDaDaα

þ 8παT̄abkalb ¼ 8πβT̄abkakb: ð61Þ

Equation (37) is trivial from this viewpoint, so we have
not listed it again.
Geometrically, we can think of the role of α and β by

considering the forward evolution of the screen by an
infinitesimal “time” step dR (see Fig. 1). In order to find the
next leaf after σðRÞ, we transport the leaf σðRÞ infinitesi-
mally along αl to a nearby surface σ̄ðRþ dRÞ. In general,
this surface will not be marginally trapped, but it does
define a new null slice, NðRþ dRÞ, generated by the k
lightrays orthogonal to σ̄ðRþ dRÞ. Then, we find the cut
with θðkÞ ¼ 0 on NðRþ dRÞ. This gives the new leaf
σðRþ dRÞ.
Equation (61) can be regarded as a constraint equation

that allows us to short-circuit this construction. It can be
solved for β because the generic condition of Refs. [2,3]
requires that

T̄abkakb > 0: ð62Þ

Then, σðRþ dRÞ can be obtained directly by transporting
the surface σðRÞ along the vector h ¼ αlþ βk. Thus, the
parameter β tells us how far to slide up or downNðRþ dRÞ
to get from the “wrong” surface σ̄ðRþ dRÞ to get to the
correct new leaf σðRþ dRÞ.
The remaining Eqs. (59) and (60) describe the evolution

of the vector fields k and lwhich are linked by the condition
kala ¼ −1. They provide additional structure beyond the
given spacetime M, associated with the screen H. As
shown in Appendix A, the failure of k and l to be parallel-
transported into themselves along H by h is captured by ~κ,
α, β, and the vector field Ωc,

hb∇bka ¼ ~κka þDaα − αΩa; ð63Þ

hb∇bla ¼ −~κla þDaβ þ βΩa: ð64Þ

Note that both θðlÞ and its derivative are fully determined by
the arbitrary choice of the “length” of l at each leaf. Here
we take the “length” of l as input, so Eq. (59) acts as a
constraint that determines ~κ. [Alternatively, we could
specify ~κ and thus fix the length of l via Eq. (59).]
Finally, Eq. (60) is a dynamical evolution equation for Ωc.

C. Background-free description

Finally, we consider an interpretation where neither M
nor H are given. Then, we may regard Eqs. (34)–(37) as a
nonrelativistic system evolving with the time variable R.

The advantage of this viewpoint is that it makes no
reference to the spacetime that the screen is embedded
in or even to an induced 2þ 1 metric on the screen. This
minimal approach may be appropriate if we regard the
screen as a (partially) pregeometric object that arises from
an underlying quantum gravity theory in an appropriate
regime. It may be natural for the screen to be constructed as
a first step before reconstructing the entire 4D geometry
and fields. Eqs. (34)–(37) constrain this construction.
In this case, it is convenient to choose a gauge in which

θðlÞ ¼ −1, so that Eqs. (34)–(37) reduce to

−α~κ −Da

�
αβ

�
2Ωa þDa log

β

α

��
¼ 8πT̄abnahb; ð65Þ

_Ωc − αΩc −Dc ~κ þ
1

2
Dcα ¼ 8πT̄abnaqbc −Daσ

ðnÞa
c ; ð66Þ

α

�
ΩaΩa −DaΩa − 2ΩaDa log α −

R
2
þ α−1DaDaα

�

¼ 8πT̄abnakb; ð67Þ

_qab ¼ −
α

2
qab þ ασðlÞab þ βσðkÞab : ð68Þ

We have replaced the Lie derivatives with dots since in
this viewpoint they are simple time derivatives. Objects
such as k, l, h, n are now considered to emerge in the
reconstruction of the geometry. For example, the length of
integral curves of h is related to the evolution parameter R
by ðdL=dRÞ2 ¼ −2αβ, where positive values correspond to
a spacelike signature. Similarly, ~κ and Ω allow us to
reconstruct the null vector fields k and l by integration
of Eqs. (63) and (64). None of these geometric concepts is
intrinsic to the above equations, but they can be recon-
structed from them.
We may regard α; β; κ;Ωc, and the 2D metric qab as

intrinsic quantities of the holographic screen, but they are

highly underdetermined. It is not clear whether σðk;lÞab and
Tabnb are best regarded as input (which happens to
correspond to the matter-stress tensor and gravitational
waves in the reconstructed 4D spacetime) or rather whether
the above equations should be viewed as determining
certain components of the stress tensor and the shear,
given arbitrary input for the screen quantities α; β; κ;Ωc.
One parameter (most naturally α) is associated with a null
foliation of the 4D spacetime. For each leaf of the screen,
microscopic data should determine the quantum state on
the associated null slice.

IV. EXAMPLES OF HOLOGRAPHIC SCREENS

In this section, we work out a number of detailed
examples of physical interest. Several of the holographic
screens we will construct are spherically symmetric.
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Therefore, we will begin by listing general results that
apply to all spherical screens, before specializing further.

A. Implications of spherical symmetry

Consider a screen H embedded in a spacetime M such
that both are invariant under spherical symmetry. In this
case, we shall choose the area radius as the evolution
parameter R,

A ¼ 4πR2: ð69Þ

We shall further choose the convention that

α ¼ −1; ð70Þ

which can be regarded as gauge-fixing the rescaling
symmetry of l. The metric qab is of the form

qab ¼ R2sab; ð71Þ

where sab is the metric on the unit two-sphere. Using the
above conventions of R and α, one finds

θðlÞ ¼ θðnÞ ¼ −θðhÞ ¼ −
d
dR

logA ¼ −
2

R
: ð72Þ

The shears and the normal 1-form would break spherical
symmetry and so must vanish,

σðk;l;h;nÞcd ¼ 0; Ωc ¼ 0: ð73Þ

Since haha ¼ 2β, the induced 3-metric on H is

ds2H ¼ 2βdR2 þ R2dΩ2; ð74Þ

Again, this is only well-defined piecewise on portions with
definite sign of β, and we will not consider this metric
further.
The only nontrivial intrinsic quantities associated with

screen evolution are the slope, β, and the acceleration, κ.
They are determined entirely by certain stress-tensor
components and by R since Eqs. (34) and (36) reduce to

~κ ¼ 4πRTabnahb; ð75Þ

β ¼ ð8πR2Þ−1 − Tabkalb

Tabkakb
: ð76Þ

We have usedR ¼ 2=R2. The former equation is somewhat
reminiscent of a first law, if we write it as

~κ

2π

dðA=4Þ
dR

¼
I

d2ϑ
ffiffiffi
q

p
Tabnahb: ð77Þ

The equation for β can also be written as a constraint
linking the radius to a stress-tensor component,

1

8πR2
¼ Tabnakb: ð78Þ

B. Expanding universe

Let M be a flat Friedmann-Robertson-Walker (FRW)
universe with fixed equation of state p ¼ wρ, −1 < w ≤ 1;
see Fig. 2. The stress tensor is

Tab ¼ ρtatb þ pðgab þ tatbÞ: ð79Þ

The metric is

FIG. 2. Penrose diagrams for a spatially flat FRW universe dominated by matter (left) and radiation (middle). The right diagram is an
approximation to de Sitter spacetime; it contains a fluid with positive energy and equation of state close to that of vacuum energy. To
construct a past holographic screen H, we consider the past light cones (dotted lines) of a comoving observer at r ¼ 0 (left edge). The
surfaces of maximum area on each of these light cones (black dots) are the leaves of the screen H (blue curve). Note that H approaches
the event horizon (red line) at late times, in the near-de Sitter case. We find that the surface gravity κ approaches that of de Sitter space in
the limit.
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ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2dΩ2Þ ð80Þ

with

aðtÞ ¼ tq ð81Þ

and

q ¼ 2

3

1

1þ w
: ð82Þ

To generate a null foliation of M, we consider the past
light cone of each point on the worldline r ¼ 0; see Fig. 6.
On each cone, there is a cross section of maximal area
(since A → 0 as the big bang is approached). This surface
has vanishing expansion, θðkÞ ¼ 0, by construction. The
relevant spheres lie at ðr; tÞ subject to the condition [1,15]

r _aðtÞ − 1 ¼ 0: ð83Þ

The proper area radius is R ¼ raðtÞ. The future-directed
outgoing congruence from any sphere in this geometry is
obviously expanding, so this is a past holographic screen.
Therefore [2], we have α > 0.
In order for the screen to stay centered on the comoving

worldline r ¼ 0, we must take α to be independent of angle,
for example,

α ¼ 1: ð84Þ

We will make a different, angle-dependent choice in
Sec. IV E below, corresponding to the construction of a
nonspherical screen in the same spacetime (see Sec. III B).
The null normals k, l satisfying kala ¼ −1, θðlÞ ¼ 2=R

are

ka ¼
� ∂
∂t
�

a
−

1

aðtÞ
� ∂
∂r

�
a
; ð85Þ

la ¼ 1

2

� ∂
∂t
�

a
þ 1

2aðtÞ
� ∂
∂r

�
a
: ð86Þ

The vectors normal and tangent to the screen are
n ¼ −lþ βk and h ¼ lþ βk with

β ¼ q −
1

2
¼ 1

6

1 − 3w
1þ w

: ð87Þ

This implies, for example, that the screen is timelike in a
matter-dominated universe (q ¼ 2=3, w ¼ 0, β ¼ 1=6) and
null for a radiation-dominated universe (q ¼ 1=2, w ¼ 1=3,
β ¼ 0). For stiffer fluids, the screen will be spacelike.

The screen acceleration is

~κ ¼ q − 1

R
: ð88Þ

The “surface gravity” defined in Eq. (18) is

κ≡ ~κ

β
¼ 2q − 2

2q − 1

1

R
: ð89Þ

For example, κ ¼ −2=R for the matter-dominated universe.
Notably, in the limit as w → −1 (q → ∞), this approaches
the surface gravity of the de Sitter Killing hori-
zon: κ → 1=R.

C. Collapsing star

One can model a collapsing star by a finite, spherical,
homogeneous dust ball. This is described by the
Oppenheimer-Snyder solution [40]; see Fig. 3. It can be
constructed as a portion r < r� of a time-reversed
Friedmann-Robertson-Walker cosmology glued to a por-
tion of the vacuum Schwarzschild solution. However, in
order to satisfy the generic condition, Eq. (62), we will
study the more general collapse of spherically symmetric
dust with density ρðrÞ. We can take ρðrÞ to become
arbitrarily small outside some characteristic radius r�.
The holographic screens in such collapse scenarios were

computed by Booth et al. in Ref. [31]. Here we reproduce
the relevant analysis and compute the screen quantities β
and ~κ.

FIG. 3. Penrose diagram for collapsing dust. The dark-shaded
region is the dense region, r < r�. The light shaded region
contains arbitrarily dilute matter to satisfy the generic condition.
We construct a holographic screen H using the future light cones
(dotted lines) of an observer at r ¼ 0. Note that H changes
signature and approaches the event horizon (red line) from the
inside. We find that κ approaches the Schwarzschild surface
gravity there.
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The metric describing the collapse is

ds2 ¼ −dτ2 þ R0ðτ; rÞ2
1 − 2mðrÞ=r dr

2 þ R2ðdθ2 þ sin2 θdϕ2Þ;

ð90Þ

where τ is the proper time along the dust particles, and

mðrÞ ¼ 4π

Z
r

0

dr0r02ρðr0Þ: ð91Þ

The stress tensor is

Tab ¼
r2ρðrÞ

R2ðτ; rÞR0ðτ; rÞ ðdτÞaðdτÞb: ð92Þ

The future holographic screen satisfies [31]

Rðτ; rÞ ¼ 2mðrÞ: ð93Þ

The null normals such that kala ¼ −1 and θðlÞ ¼ −2=R are

ka ≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2mðrÞ
r

r � ∂
∂τ
�

a
þ 1 − 2mðrÞ

r

R0ðτ; rÞ
� ∂
∂r

�
a
; ð94Þ

la ≅
1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðrÞ

r

q
� ∂
∂τ
�

a
−

1

2R0ðτ; rÞ
� ∂
∂r

�
a
; ð95Þ

where ≅ means that we impose the constraint Eq. (93)
while evaluating the right hand side. The slope β and the
surface gravity κ are

β ≅
1

2m0ðrÞ
R0 −m0ðrÞ
1 − 2mðrÞ=r ; ð96Þ

κ ≅
1

2mðrÞ
m0ðrÞ
R0ðτ; rÞ

�
4β2ð1 − 2mðrÞ=rÞ2 − 1

4βð1 − 2mðrÞ=rÞ
�
: ð97Þ

As an example, we consider the “Fermi-Dirac distribution”
for ρðrÞ,

ρðrÞ ¼ M

−8πq3Li3ð−er�=qÞ
1

expð
r−r�
q Þ þ 1

; ð98Þ

where the overall normalization is such thatM is the ADM
mass. This reduces to the standard Oppenheimer-Snyder
solution in the limit q → 0. In the following, we fix r� ¼ 1
and q ¼ 1=20.
The profile of the mass is shown in Fig. 4. It shows that

most of the mass is in r < r�. We call this region dense
region.
Figure 4 also shows the plots of 1=β and 4mðrÞκ. Note

that β is negative for small r and then becomes positive.
This implies a change in the signature of the screen. From
the plot of 4mðrÞκ, we learn that the surface gravity quickly
saturates to the Schwarzschild value in the near-vacuum
region,

κ →
1

4M
: ð99Þ

D. Charged black holes

Next, we consider the Vaidya-Bonnor solution [41,42],
which describes the formation of a black hole by an
arbitrary sequence of charged spherical null shells,

ds2 ¼ −fdv2 þ 2dvdrþ r2dΩ2; ð100Þ

where

fðr; vÞ ¼ 1 −
2mðvÞ

r
þ e2ðvÞ

r2
ð101Þ

and mðvÞ ≥ jeðvÞj are integrable differentiable functions
with

_m≡ ∂m
∂v > 0; mð∞Þ < ∞: ð102Þ

An example is shown in Fig. 5. The stress tensor is

FIG. 4. Collapsing dust cloud: plots of the radial mass profile (left), the slope parameter β (middle), the surface gravity κ (right) for
r� ¼ 1, q ¼ 1=20, and M ¼ 1=100. The region r < r� is the dense region. The change in the sign of β indicates the change in the
signature of H from timelike to spacelike. The surface gravity saturates to 1=4M in the dilute region.
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Tab ¼ −
1

8πr
_fðr; vÞðdvÞaðdvÞb þ TðEMÞ

ab ; ð103Þ

where

TðEMÞ
ab ¼ −

1

8π

e2ðvÞ
r4

ðgab − 2r2sabÞ ð104Þ

is the stress tensor of the point charge of magnitude eðvÞ,
and sab is the metric on the unit two-sphere.
The holographic screen, H, consists of marginally

trapped surfaces, with k the future and outward-directed
null vector. The condition θðkÞ ¼ 0 implies r ¼ R and
fðR; vÞ ¼ 0, and thus

R ¼ mðvÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðvÞ − e2ðvÞ

q
: ð105Þ

The null vectors normal to the leaves are found to be

ka ¼
� ∂
∂v

�
a
; ð106Þ

la ¼ −
� ∂
∂r

�
a
: ð107Þ

Their linear combinations tangent and normal to H,
h ¼ −lþ βk and n ¼ lþ βk, are determined by

β ¼ dv
dR

¼ R −mðvÞ
R _mðvÞ − eðvÞ_eðvÞ : ð108Þ

The acceleration is

~κ ¼ ðR −mðvÞÞ2
R2ðR _mðvÞ − eðvÞ_eðvÞÞ ; ð109Þ

the surface gravity, ~κ=β, is

κ ¼ mðvÞ
R2

−
e2ðvÞ
R3

: ð110Þ

Note that this result has the same form as the surface
gravity of a Reissner-Nordstrom black hole with mass m
and charge e. Moreover, let us define an electric potential in
the usual way,

Φ ¼ eðvÞ
R

: ð111Þ

Then, Eq. (77) takes a form similar to the first law of
thermodynamics for a Reissner-Nordstrom black hole,

κ

8π

dA
dR

¼ dm
dR

−Φ
de
dR

; ð112Þ

where we have used Eq. (108) and the chain
rule, β _f ¼ v0ðRÞ _f ¼ f0.

E. Nonspherical screen in cosmology

We again consider the expanding universe of Sec. IV B
and specialize to the matter-dominated universe: p ¼ 0.
The metric is

ds2 ¼ a2ðηÞð−dη2 þ dx2 þ dy2 þ dz2Þ; ð113Þ

with

aðηÞ ¼ η2=9: ð114Þ

We pick an observer whose worldline is given by

z ¼ vη ð115Þ

for −1 < v < 1. To construct the past screen, we shoot past
light cones from each point on this worldline and find the
cross section of maximal area on each of these light cones;
see Fig. 6. The collection of all these cross sections, that is
the past screen, satisfies the condition

�
z −

3

2
η

�
2

þ x2 þ y2 −
η2

4
¼ 0: ð116Þ

We choose to work in the coordinate system

z ¼ 3

2
vηþ r cos θ; ð117Þ

x ¼ r sin θ cosϕ; ð118Þ

FIG. 5. The Penrose diagram for Vaidya solution. We show the
uncharged case, eðvÞ ¼ 0. The mass function is mðvÞ ¼ 0 for
v < v0 and _mðvÞ ≥ 0 for v > v0. The green dashed lines are the
ingoing null shells. The red line is the event horizon. The blue
line is the future holographic screen constructed from future light
cones centered at r ¼ 0.
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y ¼ r sin θ sinϕ; ð119Þ

η ¼ η: ð120Þ

In this coordinate system, Eq. (116) simplifies to

r −
η

2
¼ 0: ð121Þ

The area radius of the leaf of the screen is

R ¼ raðηÞ ¼ η3

18
: ð122Þ

We pick an orthogonal basis for the 1-forms tangent to the
leaf,

êð1Þa ¼ −
3v sin θ

η
ðdηÞa þ ðdθÞa; ð123Þ

êð2Þa ¼ðdϕÞa; ð124Þ

where qabê
ðiÞ
b ¼ êðiÞa for i ¼ f1; 2g, and êð1Þ · êð2Þ ¼ 0.

Similarly, we pick an orthogonal basis for vectors normal
to the leaf,

χað1Þ ¼
� ∂
∂η

�
a
−
3v cos θ

2

� ∂
∂r

�
a
þ 3v sin θ

η

� ∂
∂θ

�
a
;

ð125Þ

χað2Þ ¼
� ∂
∂r

�
a
; ð126Þ

where qabχbðiÞ ¼ 0 for i ¼ f1; 2g, and χð1Þ · χð2Þ ¼ 0. The

null vectors normal to the leaf, normalized such that kala ¼
−1 and θðlÞ ¼ 2=R, are

ka ¼ 1

aðηÞ ðχ
a
ð1Þ − χað2ÞÞ; ð127Þ

la ¼ 1

2aðηÞ ðχ
a
ð1Þ þ χað2ÞÞ: ð128Þ

The tangent and normal vectors to the screen are ha ¼
αla þ βka and na ¼ −αla þ βka, where

α ¼ 1þ v cos θ; ð129Þ

β ¼ 1

6
ð1 − 3v cos θÞ: ð130Þ

The normal 1-form and the acceleration are

Ωa ¼ 0; ð131Þ

Ω̂a ¼ −
2v sin θ

3
êð1Þa ; ð132Þ

~κ ¼ −
1

3R
ð1þ 3v cos θÞ: ð133Þ

One can easily combine this construction with that of
Sec. IV B. For example, we can use the worldline r ¼ 0 up
to some conformal time η� to construct a portion of the
screen which is centered at r ¼ 0. We can then consider
continuing this worldline to that of a moving observer by
substituting η → η − η� in Eq. (116) and below. This
corresponds to choosing α as in Eq. (129), instead of
α ¼ 1, for η > η�. We thus obtain a nonspherical screen
(above η�), corresponding to the fact that the observer’s
worldline (and the associated null foliation) violates the
spherical symmetry, above η�. This illustrates how the
observer dependence of H is captured by a choice of α, as
advertised in Sec. III B.
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APPENDIX A: PARALLEL TRANSPORT OF
NULL VECTORS

Here we present a derivation of Eq. (63); Eq. (64) can be
derived similarly. We start with the ansatz

FIG. 6. Two past holographic screens in the same expanding
universe, associated with two different observers (thick black
worldlines). Left: Spherically symmetric screen constructed from
a comoving observer at r ¼ 0 (see Sec. IV B). Right: Screen
constructed from the past light cones of a noncomoving observer
(Sec. IV E).
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hb∇aka ¼ Aka þ Bla þ Ca; ðA1Þ

where Ca is the projection of hb∇bka onto the leaf. The
constant A is

A ¼ −lahb∇bka ¼ ~κ; ðA2Þ

where we have used Eq. (16). The constant B is

B ¼ −kahb∇bka ¼ 0: ðA3Þ

To determine Ca, we consider an arbitrary vector field, ϕa,
tangent to the leaf and contract it to our ansatz

ϕaCa ¼ ϕahb∇bka; ðA4Þ

¼ −kaLhϕ
a þ ϕaðDaα − αΩaÞ; ðA5Þ

where we have used Eq. (15). A consequence of the
normalization Eq. (5) is that for every vector field ϕa

tangent to the leaf, Lhϕ
a is also tangent to the leaf [25]

qabϕb ¼ ϕa ⇒ qabLhϕ
b ¼ Lhϕ

a: ðA6Þ

This with the fact that ϕa is arbitrary implies

Ca ¼ Daα − αΩa: ðA7Þ

Equation (A1) thus reduces to the desired result

hb∇bka ¼ ~κka þDaα − αΩa: ðA8Þ

APPENDIX B: CROSS-FOCUSING EQUATIONS

Here we derive the cross-focusing equations [22,29]

la∇aθ
ðkÞ ¼ −θðlÞθðkÞ −

1

2
Rþ ΩaΩa −DaΩa −

2

α
ΩaDaα

þ 1

α
DaDaαþ 8πTabkalb; ðB1Þ

ka∇aθ
ðlÞ þ κθðlÞ ¼ −θðlÞθðkÞ −

1

2
Rþ ΩaΩa þDaΩa

þ 2

β
ΩaDaβ þ

1

β
DaDaβ þ 8πTabkalb;

ðB2Þ

which will be useful in the derivation of the screen
equations in Appendix C. Note that these equations (unlike
the screen equations) are highly sensitive to how we extend
the null vectors, ka and la, into a neighborhood of the
holographic screen. We do this by demanding

lb∇bla ¼ 0; ðB3Þ
kb∇bka ¼ κka; ðB4Þ

laka ¼ −1: ðB5Þ
With these extensions, Eq. (63) reduces to

lb∇bka ¼
1

α
Daα −Ωa: ðB6Þ

We decompose ∇alb and ∇akb as

∇alb ¼ BðlÞ
ab þ κlalb − laΩb − lbΩa −

1

β
laDbβ; ðB7Þ

∇akb ¼ BðkÞ
ab − κlakb þ kaΩb þ kbΩa −

1

α
kaDbα: ðB8Þ

Now using θðkÞ ¼ qab∇akb, we get

la∇aθ
ðkÞ ¼ la∇aðqbc∇bkcÞ; ðB9Þ

¼ qbc∇bðla∇akcÞ − qbcð∇blaÞð∇akcÞ
þ ðla∇aqbcÞð∇bkcÞ þ Rabcdlaqbckd; ðB10Þ

¼ ΩaΩa −DaΩa − BðlÞ
abB

ab
ðkÞ −

2

α
ΩaDaα

þ 1

α
DaDaαþ Rabcdlaqbckd: ðB11Þ

With the help of the Gauss-Codazzi equation for codi-
mension-2 spatial surfaces [43],

1

2
Rþ θðlÞθðkÞ − BðlÞ

abB
ab
ðkÞ ¼

1

2
Rabcdqacqbd; ðB12Þ

we get

la∇aθ
ðkÞ ¼ −θðlÞθðkÞ −

1

2
Rþ ΩaΩa −DaΩa −

2

α
ΩaDaα

þ 1

α
DaDaαþ 1

2
Rabqab: ðB13Þ

To get Eq. (B1), we use the Einstein equations

1

2
Rabqab ¼

�
Rab −

1

2
Rgab

�
kalb ¼ 8πTabkalb: ðB14Þ

Equation (B2) can be derived in a similar fashion.

APPENDIX C: DERIVATION OF SCREEN
EQUATIONS

Here we present a derivation of the nontrivial screen
equations, (34)–(36). Equation (36) was derived for the
dynamical horizons in Refs. [21,23]. The derivation made
use of the Gauss-Codazzi constraint equations which relate
the extrinsic curvature of a hypersurface with the Ricci tensor
of the background spacetime. This can only be done for a
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hypersurfacewith definite signature.Hence, thismethod does
not obviously apply to a holographic screen. In Sec. C 1, we
will present a derivationofEq. (36) in away thatmakes it clear
that the signature ofH (and indeed, anything but the 2D leaf)
is irrelevant. Equation (34) was derived in Ref. [26]; in
Sec. C 2, we present a simplified derivation. In Sec. C 3, we
derive Eq. (35) following Ref. [25].

1. Tabnakb equation

We begin by deriving Eq. (36). On the holographic
screen, ha∇aθ

ðkÞ ¼ 0. Expanding this equation, we get

0 ¼ αla∇aθ
ðkÞ þ βka∇aθ

ðkÞ: ðC1Þ

Replacing the first term on the right hand side with the
cross-focusing Eq. (B1), and the second term with
Raychaudhuri’s equation,

ka∇aθ
ðkÞ ¼ κθðkÞ −

1

2
θðkÞ2 − σðkÞab σ

ab
ðkÞ − 8πTabkakb; ðC2Þ

we find

−
α

2
Rþ αΩaΩa − αDaΩa − 2ΩaDaαþDaDaα

¼ 8πTabnakb þ βσðkÞab σ
ab
ðkÞ: ðC3Þ

2. Tabnahb equation

Next, we derive Eq. (34). By Eq. (3),

αL̂hθ
ðlÞ ¼ α2la∇aθ

ðlÞ þ αβka∇aθ
ðlÞ: ðC4Þ

We replace the second term on the right hand side with the
cross-focusing Eq. (B2), and the first term with
Raychaudhuri’s equation

la∇aθ
ðlÞ ¼ −

1

2
θðlÞ2 − σðlÞabσ

ab
ðlÞ − 8πTablalb: ðC5Þ

As a result, we get

αðL̂h þ ~κÞθðlÞ ¼ −α2BðlÞ
abB

ab
ðlÞ −

1

2
αβRþ αβΩaΩa

þ αβDaΩa þ 2αΩaDaβ

þ αDaDaβ þ 8παTabnalb: ðC6Þ

We eliminate R from this equation by using Eq. (C3),

αðL̂h þ ~κÞθðlÞ ¼ Dað2αβΩa − βDaαþ αDaβÞ þ BðhÞ
ab B

ab
ðnÞ

þ 8πTabnahb: ðC7Þ

Rearranging the terms and using Eq. (32) leads to Eq. (34).

3. Tabnaqbc equations

Here we closely follow the derivation by Gourgoulhon
[25]. We start with the identity

Rabnaqbc ¼ qcbð∇a∇b −∇b∇aÞna: ðC8Þ
Using na ¼ −αla þ βka and Eqs. (B7)–(B8), we get

∇anb ¼ BðnÞ
ab − κlahb þ haΩb þ hbΩa þ

α

β
laDbβ

−
β

α
kaDbα − lb∇aαþ kb∇aβ: ðC9Þ

The first term on the right hand side of Eq. (C8)
becomes

qcb∇a∇bna ¼ qcbha∇aΩb þ ΩaBðhÞ
ac þ θðhÞΩc − θðlÞDcα

þ qcb∇aBab
ðnÞ − BðnÞ

ca

�
1

β
Daβ þ 1

α
Daα

�

−Dcðla∇aα − ka∇aβÞ; ðC10Þ

where we have repeatedly use Eqs. (B3)–(B8). Similarly,
the second term becomes

qcb∇b∇ana ¼ Dcð~κÞ − θðlÞDcα − αDcθ
ðlÞ

−Dcðla∇aα − ka∇aβÞ: ðC11Þ

Combining these two results, we get

Rabnaqbc ¼ qcbha∇aΩb þΩaBðhÞ
ac þ θðhÞΩc

−Dc ~κ þ αDcθ
ðlÞ þ qcb∇aBab

ðnÞ

− BðnÞ
ca

�
1

β
Daβ þ 1

α
Daα

�
: ðC12Þ

By making use of

DaB
ðnÞa
c ¼ qcb∇aB

ðnÞa
b − BðnÞb

c

�
1

β
Dbβ þ

1

α
Dbα

�
ðC13Þ

and

L̂hΩc ¼ qcbha∇aΩb þ ΩaBðhÞ
ac ; ðC14Þ

Eq. (C12) reduces to

Rabnaqbc ¼ L̂hΩc þ θðhÞΩc −Dc ~κ þ αDcθ
ðlÞ þDaB

ðnÞa
c :

ðC15Þ

Finally we use Einstein’s equation to obtain Eq. (35),

ðL̂h þ θðhÞÞΩc −Dc ~κ þ αDcθ
ðlÞ ¼ 8πTabnaqbc −DaB

ðnÞa
c :

ðC16Þ

DYNAMICS AND OBSERVER DEPENDENCE OF … PHYSICAL REVIEW D 95, 046005 (2017)

046005-15



[1] R. Bousso, Holography in general space-times, J. High
Energy Phys. 06 (1999) 028.

[2] R. Bousso and N. Engelhardt, New Area Law in General
Relativity, Phys. Rev. Lett. 115, 081301 (2015).

[3] R. Bousso and N. Engelhardt, Proof of a new area law in
general relativity, Phys. Rev. D 92, 044031 (2015).

[4] R. Bousso and N. Engelhardt, Generalized second law for
cosmology, Phys. Rev. D 93, 024025 (2016).

[5] R. Bousso, A covariant entropy conjecture, J. High Energy
Phys. 07 (1999) 004.

[6] E. E. Flanagan, D. Marolf, and R. M. Wald, Proof of
classical versions of the Bousso entropy bound and of
the generalized second law, Phys. Rev. D 62, 084035
(2000).

[7] G. ’t Hooft, Dimensional reduction in quantum gravity,
arXiv:gr-qc/9310026.

[8] L. Susskind, The world as a hologram, J. Math. Phys. (N.Y.)
36, 6377 (1995).

[9] W. Fischler and L. Susskind, Holography and cosmology,
arXiv:hep-th/9806039.

[10] R. Bousso, H. Casini, Z. Fisher, and J. Maldacena, Proof of
a quantum Bousso bound, Phys. Rev. D 90, 044002 (2014).

[11] R. Bousso, H. Casini, Z. Fisher, and J. Maldacena, Entropy
on a null surface for interacting quantum field theories and
the Bousso bound, Phys. Rev. D 91, 084030 (2015).

[12] R. Bousso, Z. Fisher, S. Leichenauer, and A. C. Wall,
Quantum focusing conjecture, Phys. Rev. D 93, 064044
(2016).

[13] R. Bousso, Z. Fisher, J. Koeller, S. Leichenauer, and A. C.
Wall, Proof of the quantum null energy condition, Phys.
Rev. D 93, 024017 (2016).

[14] J. Koeller and S. Leichenauer, Holographic proof of the
quantum null energy condition, Phys. Rev. D 94, 024026
(2016).

[15] R. Bousso, The holographic principle, Rev. Mod. Phys. 74,
825 (2002).

[16] S. Ryu and T. Takayanagi, Holographic Derivation of
Entanglement Entropy from AdS=CFT, Phys. Rev. Lett.
96, 181602 (2006).

[17] V. E. Hubeny, M. Rangamani, and T. Takayanagi, A
covariant holographic entanglement entropy proposal, J.
High Energy Phys. 07 (2007) 062.

[18] F. Sanches and S. J. Weinberg, A holographic entanglement
entropy conjecture for general spacetimes, Phys. Rev. D 94,
084034 (2016).

[19] F. Sanches and S. J. Weinberg, Refinement of the Bousso-
Engelhardt area law, Phys. Rev. D 94, 021502 (2016).

[20] Y. Nomura, N. Salzetta, F. Sanches, and S. J. Weinberg,
Spacetime equals entanglement, Phys. Lett. B 763, 370
(2016).

[21] A. Ashtekar and B. Krishnan, Dynamical Horizons: Energy,
Angular Momentum, Fluxes and Balance Laws, Phys. Rev.
Lett. 89, 261101 (2002).

[22] S. A. Hayward, General laws of black-hole dynamics, Phys.
Rev. D 49, 6467 (1994).

[23] A. Ashtekar and B. Krishnan, Dynamical horizons and their
properties, Phys. Rev. D 68, 104030 (2003).

[24] A. Ashtekar and B. Krishnan, Isolated and dynamical
horizons and their applications, Living Rev. Relativ. 7, 10
(2004).

[25] E. Gourgoulhon, Generalized Damour-Navier-Stokes equa-
tion applied to trapping horizons, Phys. Rev. D 72, 104007
(2005).

[26] E. Gourgoulhon and J. L. Jaramillo, Area evolution, bulk
viscosity, and entropy principles for dynamical horizons,
Phys. Rev. D 74, 087502 (2006).

[27] E. Gourgoulhon and J. L. Jaramillo, New theoretical
approaches to black holes, New Astron. Rev. 51, 791
(2008).

[28] S. A. Hayward, Energy Conservation for Dynamical Black
Holes, Phys. Rev. Lett. 93, 251101 (2004).

[29] S. A. Hayward, Energy and entropy conservation for
dynamical black holes, Phys. Rev. D 70, 104027 (2004).

[30] I. Booth and S. Fairhurst, Horizon energy and angular
momentum from a Hamiltonian perspective, Classical
Quantum Gravity 22, 4515 (2005).

[31] I. Booth, L. Brits, J. A. Gonzalez, and C. Van Den Broeck,
Marginally trapped tubes and dynamical horizons, Classical
Quantum Gravity 23, 413 (2006).

[32] R. Bousso and S. W. Hawking, Pair creation of black holes
during inflation, Phys. Rev. D 54, 6312 (1996).

[33] D. T. Son, Newton-Cartan geometry and the quantum hall
Effect, arXiv:1306.0638.

[34] K. Jensen, On the coupling of Galilean-invariant field
theories to curved spacetime, arXiv:1408.6855.

[35] M. Geracie, K. Prabhu, and M.M. Roberts, Fields and fluids
on curved non-relativistic spacetimes, J. High Energy Phys.
08 (2015) 042.

[36] R. H. Price and K. S. Thorne, Membrane viewpoint on black
holes: Properties and evolution of the stretched horizon,
Phys. Rev. D 33, 915 (1986).

[37] T. Damour, Quelques propriétés mécaniques, électromag-
nétiques, thermodynamiques et quantiques des trous noirs,
Thése de Doctorat d‘Etat, Université Pierre et Marie Curie,
Paris VI, 1979.

[38] I. Bredberg, C. Keeler, V. Lysov, and A. Strominger, From
Navier-Stokes to Einstein, J. High Energy Phys. 07 (2012)
146.

[39] S. A. Hayward, Gravitational wave dynamics and black hole
dynamics: Second quasispherical approximation, Classical
Quantum Gravity 18, 5561 (2001).

[40] J. R. Oppenheimer and H. Snyder, On continued gravita-
tional contraction, Phys. Rev. 56, 455 (1939).

[41] P. Vaidya, The gravitational field of a radiating star, Proc.
Indian Acad. Sci. A 33, 264 (1951).

[42] W. Bonnor and P. Vaidya, Spherically symmetric radiation
of charge in Einstein-Maxwell theory, Gen Relativ. Gravit.
1, 127 (1970).

[43] S. A. Hayward, Quasilocal gravitational energy, Phys. Rev.
D 49, 831 (1994).

RAPHAEL BOUSSO and MUDASSIR MOOSA PHYSICAL REVIEW D 95, 046005 (2017)

046005-16

http://dx.doi.org/10.1088/1126-6708/1999/06/028
http://dx.doi.org/10.1088/1126-6708/1999/06/028
http://dx.doi.org/10.1103/PhysRevLett.115.081301
http://dx.doi.org/10.1103/PhysRevD.92.044031
http://dx.doi.org/10.1103/PhysRevD.93.024025
http://dx.doi.org/10.1088/1126-6708/1999/07/004
http://dx.doi.org/10.1088/1126-6708/1999/07/004
http://dx.doi.org/10.1103/PhysRevD.62.084035
http://dx.doi.org/10.1103/PhysRevD.62.084035
http://arXiv.org/abs/gr-qc/9310026
http://dx.doi.org/10.1063/1.531249
http://dx.doi.org/10.1063/1.531249
http://arXiv.org/abs/hep-th/9806039
http://dx.doi.org/10.1103/PhysRevD.90.044002
http://dx.doi.org/10.1103/PhysRevD.91.084030
http://dx.doi.org/10.1103/PhysRevD.93.064044
http://dx.doi.org/10.1103/PhysRevD.93.064044
http://dx.doi.org/10.1103/PhysRevD.93.024017
http://dx.doi.org/10.1103/PhysRevD.93.024017
http://dx.doi.org/10.1103/PhysRevD.94.024026
http://dx.doi.org/10.1103/PhysRevD.94.024026
http://dx.doi.org/10.1103/RevModPhys.74.825
http://dx.doi.org/10.1103/RevModPhys.74.825
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1088/1126-6708/2007/07/062
http://dx.doi.org/10.1088/1126-6708/2007/07/062
http://dx.doi.org/10.1103/PhysRevD.94.084034
http://dx.doi.org/10.1103/PhysRevD.94.084034
http://dx.doi.org/10.1103/PhysRevD.94.021502
http://dx.doi.org/10.1016/j.physletb.2016.10.045
http://dx.doi.org/10.1016/j.physletb.2016.10.045
http://dx.doi.org/10.1103/PhysRevLett.89.261101
http://dx.doi.org/10.1103/PhysRevLett.89.261101
http://dx.doi.org/10.1103/PhysRevD.49.6467
http://dx.doi.org/10.1103/PhysRevD.49.6467
http://dx.doi.org/10.1103/PhysRevD.68.104030
http://dx.doi.org/10.12942/lrr-2004-10
http://dx.doi.org/10.12942/lrr-2004-10
http://dx.doi.org/10.1103/PhysRevD.72.104007
http://dx.doi.org/10.1103/PhysRevD.72.104007
http://dx.doi.org/10.1103/PhysRevD.74.087502
http://dx.doi.org/10.1016/j.newar.2008.03.026
http://dx.doi.org/10.1016/j.newar.2008.03.026
http://dx.doi.org/10.1103/PhysRevLett.93.251101
http://dx.doi.org/10.1103/PhysRevD.70.104027
http://dx.doi.org/10.1088/0264-9381/22/21/006
http://dx.doi.org/10.1088/0264-9381/22/21/006
http://dx.doi.org/10.1088/0264-9381/23/2/009
http://dx.doi.org/10.1088/0264-9381/23/2/009
http://dx.doi.org/10.1103/PhysRevD.54.6312
http://arXiv.org/abs/1306.0638
http://arXiv.org/abs/1408.6855
http://dx.doi.org/10.1007/JHEP08(2015)042
http://dx.doi.org/10.1007/JHEP08(2015)042
http://dx.doi.org/10.1103/PhysRevD.33.915
http://dx.doi.org/10.1007/JHEP07(2012)146
http://dx.doi.org/10.1007/JHEP07(2012)146
http://dx.doi.org/10.1088/0264-9381/18/24/316
http://dx.doi.org/10.1088/0264-9381/18/24/316
http://dx.doi.org/10.1103/PhysRev.56.455
http://dx.doi.org/10.1007/BF03173260
http://dx.doi.org/10.1007/BF03173260
http://dx.doi.org/10.1007/BF00756891
http://dx.doi.org/10.1007/BF00756891
http://dx.doi.org/10.1103/PhysRevD.49.831
http://dx.doi.org/10.1103/PhysRevD.49.831

