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Recently a new class of asymptotically AdS ultra-spinning black holes has been constructed with a
noncompact horizon of finite area [R. A. Hennigar, D. Kubiznak, and R. B. Mann, Super-Entropic Black
Holes, Phys. Rev. Lett. 115, 031101 (2015).], in which the asymptotic rotation is effectively boosted to the
speed of light. We employ this technique for four-dimensional Uð1Þ4 and five-dimensional Uð1Þ3 gauged
supergravity black holes. The obtained new exact black hole solutions for both cases possess a noncompact
horizon; their topologies are a sphere with two punctures. We then demonstrate that the ultra-spinning limit
commutes with the extremality condition as well as the near horizon limit for both black holes. We also
show that the near horizon extremal geometries of the resulting ultra-spinning gauged supergravity black
holes lead to the well-known result which contains an AdS2 throat. We then obtain the ½ðd − 1Þ=2� central
charges of the dual CFTs. By assuming the Cardy formula, we show that despite the noncompactness of the
horizon, microscopic entropy of the dual CFT is precisely equivalent to the Bekenstein-Hawking entropy.
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I. INTRODUCTION

The first solution of Einstein field equations, which is
their only 4D spherically symmetric vacuum solution,
describing the first black hole was given by the
Schwarzschild metric. Moreover, many other black hole
solutions have been found. Black holes possess a special
null surface called the event horizon that is generated by a
null Killing vector field, where no object behind it can
escape to infinity. Bekenstein discovered that to prevent the
violation of the second law of thermodynamics in the
presence of a black hole, it must be viewed as a thermo-
dynamic object with entropy. Hawking showed that the
black hole acts as a blackbody with finite temperature that
can radiate away its mass. The thermodynamic behavior of
black holes points to the existence of an underlying black
hole microstate structure. One of the main curiosities is
how these microstates can explain the macroscopic
Bekenstein-Hawking entropy from a statistical viewpoint.
A complete answer has not been given yet, but in string
theory, for a large class of extremal supersymmetric black
holes, this question has been answered [1]: Bekenstein-
Hawking entropy can indeed be reproduced from a stat-
istical entropy as the logarithm of the degeneracy of BPS
states [2]. Recently the horizon fluffs proposal was dem-
onstrated in [3] to identify the microstates of three-
dimensional Bañados–Teitelboim–Zanelli (BTZ) black
holes as states that are marked by the conserved charges
related to the nontrivial dieomorphisms on the near horizon
region. Also this proposal evaluated in [4] for the general
AdS3 black holes in the class of Bañados geometries.

The Kerr/CFT correspondence [5] provides a rich
setup, supporting the idea that whatever the states of
quantum gravity are in the near horizon region of an
extremal Kerr-AdS black hole, they are holographically
dual to quantum states of a two-dimensional chiral (left-
moving part) CFT. Since then many further examples [6,7]
have been investigated for a large class of black hole
solutions. In all cases the statistical microscopic entropy
of the dual CFTusing the Cardy formula [8] precisely agrees
with the Bekenstein-Hawking entropy of the black holes.
There is a classification of black hole solutions based

on their horizon topology. In particular, the famous
Hawking theorem for stationary, asymptotically flat vac-
uum Einstein black hole solutions in four dimensions
asserts that their horizon topologies necessarily are S2.
By relaxing some of the Hawking theorem’s assumptions,
one may come up with some classes of black hole solutions
with different horizon topologies, such as S3 and S2 × S1

(black ring solutions) horizon topologies in five dimen-
sions. Also in asymptotically AdS spacetimes, the horizon
of a black hole may have a compact Riemann surface of
any genus g instead of spherical horizons [9], as well as
black ring solutions with horizon topology S1 × Sd−3. In
the case of adding a rotation to them, the horizon would
then be noncompact and the obtained geometries would
describe a rotating black membrane with horizon topology
H × Sd−4. It was shown in four dimensions in [10] and
elaborated upon in [11] that in Einstein-Maxwell-Lambda
theory or, more generally, in the presence of a scalar
potential for N ¼ 2 gauged supergravity, one can obtain
black hole solutions with a noncompact horizon topology
with a finite area, which can be topologically viewed as
spheres with two punctures. Other examples of this kind of
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topology were constructed in [12,13] by performing an
ultra-spinning (superentropic) limit to Kerr-AdS and
d-dimensional multispinning Myers-Perry black holes.
The first effort to study ultra-spinning black holes was

made by Emparan and Myers [14] for exploring the stability
of Myers-Perry black holes at any arbitrarily large angular
momentum while keeping mass fixed, in which the rotation
parametera → ∞. One result is that area decreases as angular
momentum increases, and in higher dimensional d, area
shrinks to zero.By capturing the null geodesics in the plane of
rotation one can realize that the horizon of this kind of ultra-
spinning black hole is highly spread out in the plane of
rotationwhile it shrinks in the perpendicular direction.Also it
was argued that a Gregory-Laflamme-type instability can be
seen for these solutions. The analogue limit can be used in the
case of rotating AdS black holes in d ≥ 6 by taking the
rotation parameter a. It approaches the AdS radius l, which
gives the geometry of a blackmembrane by keeping themass
of the black hole fixed [15]. In [16] another technique was
proposed by which one can also perform a → ∞ while
restricting the ratio a=l to remain fixed. Furthermore,
Caldarelli et al. constructed a new type of solution with
horizon topologyH2 × Sd−4 bykeeping the horizon radius rþ
fixedwhile zooming in to the pole and takinga → l, which is
called the hyperboloid membrane limit [15,17]. Recently a
simple ultra-spinning (superentropic) limit was introduced in
[12,13] for Kerr-Newman-AdS and d-dimensional multi-
spinning Myers-Perry black holes. This technique begins
with the Kerr-AdS black hole in an asymptotically rotating
frame and then boosts this rotation to the maximum value
a → l while keeping the metric finite by introducing a
change to the corresponding azimuthal coordinate, and
finally one can compactify this new coordinate to generate
a new rapid black hole solution.The resulting black hole has a
noncompact horizon but finite area, which is an interesting
feature. Also it was shown in the context of an extended
thermodynamic phase space where the cosmological con-
stant can vary [18] that the entropy of some of these new
solutions violates the reverse isoperimetric inequality, so
such black holes are called “superentropic” [12,13].1

The aim of this work is to find new rotating black hole
solutions by taking the recent ultra-spinning (superentropic)
limit [12] on some existing black holes. The interesting
geometry of resulting ultra-spinning black holes motivated
us to further explore the applicability of this limit for some
gauged supergravity black holes in four and five dimensions
to generate a new type of black hole solution. Since
supergravity solutions correspond to consistent string theory
backgrounds, microscopic degeneracy of states can be
investigated using the AdS=CFT correspondence, providing

more motivation for their study in the ultra-spinning limit.
We will focus specifically on two gauged supergravity
solutions in N ¼ 2 and N ¼ 4. After that, the Kerr/CFT
correspondence for obtaining gauged supergravity ultra-
spinning black holes are investigated. It was shown in
[20] that despite the noncompactness of event horizons
there exists this correspondence for the ultra-spinning Kerr-
Newmann-AdS black holes as well as the ultra-spinning
limit of minimal gauged supergravity black holes in five
dimensions.
This paper is organized as follows. In Sec. II, we consider

Uð1Þ4 gauged supergravity black holes in four dimensions
and we discuss the geometry of the obtained ultra-spinning
limit version.We then explore extremality conditions and the
near horizon limit under the ultra-spinning limit for this
black hole, indicating that both of them commute with the
ultra-spinning limit. Next we provide a brief review of Kerr/
CFT correspondence, followed by finding the microscopic
entropy via the Cardy formula, which is exactly equal to the
black hole entropy. In Sec. III we have presented a similar
analysis for a multispinning Uð1Þ3 gauged supergravity
black hole in five dimensions. Our conclusions with some
remarks are given in Sec. IV.

II. FOUR-DIMENSIONAL Uð1Þ4 GAUGED
SUPERGRAVITY WITH PAIRWISE

EQUAL CHARGE

Here, we consider a four-dimensional rotating gauged
supergravity black hole with pairwise-equal charge, which
was constructed first in [21] as a Uð1Þ ×Uð1Þ Abelian
subgroup of the SOð4Þ gauged N ¼ 4 supergravity. This
solution can be consistently embedded in N ¼ 8 gauged
supergravity, in which two independent electromagnetic
charges can be carried by fields inUð1Þ subgroups of the two
SUð2Þ sectors in SOð4Þ ∼ SUð2Þ × SUð2Þ. Its relevant
bosonic Lagrangian as a truncation of theN ¼ 4 is given by

L4 ¼R �1− 1

2
�dφ∧ dφ−

1

2
e2φ �dχ ∧ dχ

−
1

2
e−φ �Fð2Þ2 ∧Fð2Þ2−

1

2
χFð2Þ2 ∧Fð2Þ2

−
1

2ð1þ χ2e2φÞ ðe
φ �Fð2Þ1 ∧Fð2Þ1 − e2φχFð2Þ1 ∧Fð2Þ1Þ

− g2ð4þ 2coshφþ eφχ2Þ �1; ð2:1Þ

where φ is the dilaton and χ is the axion.2 Indeed
this special solution is a Uð1Þ2 subset of Uð1Þ4

1It was shown in [19] that for a black hole of a given
thermodynamic volume, the entropy inside a horizon is saturated
for a (charged) Schwarzschild-AdS black hole. If the entropy of a
black hole exceeds its expected maximal entropy, it will be
denoted as superentropic.

2In [21] a formalism has been proposed in ungauged N ¼ 2
supergravity coupled to three vector multiplets for generating
the 4D solutions with four independent charges. The gauged
pairwise-equal charges solution comes up by subtraction of the
scalar potential from the ungauged bosonic Lagrangian with
φ2 ¼ φ3 ¼ χ2 ¼ χ3 ¼ 0.
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which arises by setting the two electric charges equal
ðδ2 ¼ δ4Þ and taking the two magnetic charges as equal
ðδ1 ¼ δ2Þ as well. For more details we refer the reader
to [21].
Four field strengths can be written in terms of the

potentials as

Fð2Þ1 ¼ dAð1Þ1; Fð2Þ2 ¼ dAð1Þ2; ð2:2Þ

and g denotes the gauge-coupling constant, which is related
to the AdS radius l by g ¼ l−1. Its nonextremal black hole
solution in an asymptotic rotating frame (ARF) is given
by [21]

ds2 ¼ −
Δr

W

�
dt −

asin2θ
Ξ

dϕ
�

2

þW
�
dr2

Δr
þ dθ2

Δθ

�
þ Δθsin2θ

W

�
adt −

r1r2 þ a2

Ξ
dϕ

�
2

; ð2:3Þ

where

Δr ¼ r2 þ a2 − 2mrþ 1

l2
r1r2ðr1r2 þ a2Þ;

Δθ ¼ 1 −
a2

l2
cos2θ; W ¼ r1r2 þ a2cos2θ;

ri ¼ rþ 2ms2i ¼ rþ qi; Ξ ¼ 1 −
a2

l2
;

si ¼ sinh δi; ci ¼ cosh δi: ð2:4Þ

Also the axion, dilaton, and gauge potentials read

eφ ¼ r21 þ a2cos2θ
W

; χ ¼ aðr2 − r1Þcos2θ
r21 þ a2cos2θ

;

Að1Þ1 ¼
2

ffiffiffi
2

p
mðdt − asin2θΞ−1dϕÞ

W
s1c1r2; Að1Þ2 ¼

2
ffiffiffi
2

p
mðdt − asin2θΞ−1dϕÞ

W
s2c2r1: ð2:5Þ

The coordinate change ~ϕ ¼ ϕþ ag2t yields an asymptotically static frame (ASF). The Hawking temperature, entropy,
angular velocity, and electrostatic potentials on the horizon (in the asymptotically rotating frame) are

TH ¼ r2þ − a2 þ a2=l2ðr2þ − q1q2Þ þ ðrþ þ q1Þðrþ þ q2Þð3r2þ þ q1rþ þ q2rþ − q1q2Þ=l2

4πrþ½ðrþ þ q1Þðrþ þ q2Þ þ a2� ;

S ¼ π½ðrþ þ q1Þðrþ þ q2Þ þ a2�
Ξ

; Ω ¼ Ξa
ðrþ þ q1Þðrþ þ q2Þ þ a2

;

Φ1 ¼ Φ2 ¼
2ms1c1ðrþ þ q2Þ

ðrþ þ q1Þðrþ þ q2Þ þ a2
; Φ3 ¼ Φ4 ¼

2ms2c2ðrþ þ q1Þ
ðrþ þ q1Þðrþ þ q2Þ þ a2

; ð2:6Þ

where rþ is the largest root of Δr ¼ 0 as the outer horizon.
The charge quantities including mass, angular momen-

tum, and pairwise electric potentials were constructed in
[22] and are

E ¼ m
Ξ2

ð1þ s21 þ s22Þ ¼
2mþ q1 þ q2

2Ξ2
;

J ¼ ma
Ξ2

ð1þ s21 þ s22Þ ¼
að2mþ q1 þ q2Þ

2Ξ2
;

Q1 ¼ Q2 ¼
ms1c1
2Ξ

; Q3 ¼ Q4 ¼
ms2c2
2Ξ

: ð2:7Þ

In the next subsection we use the ultra-spinning
(superentropic) limit upon the metric (2.3) in order to
obtain a new charged-AdS black hole solution in gauged
supergravity.
This novel ultra-spinning (superentropic) limit can be

interpreted as a simple method to generate a new black hole
solution in which the rotation parameter a reaches its
maximum amount, equal to the AdS radius l. This
procedure limit consists of three steps.

(i) Transforming the metric to an asymptotic rotating
frame to avoid a singular metric in the ultra-spinning
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limit. We then need only define a new azimuthal
coordinate φ ¼ ϕ=Ξ afterward.

(ii) This rotation has to be boosted effectively to the
speed of light, namely, by taking the a → l limit.

(iii) In the final step, we compactify the new azimuthal
direction φ [12].

We note that employing an asymptotically rotating
coordinate should be assumed as a crucial point in the
ultra-spinning limit technique. The uniqueness of the
choice of ARF to have a nonsingular black hole solution
has been discussed in [13]. In fact, avoiding starting from
an ARF leads us to a singular limit.

A. Ultra-spinning limit

Since the metric (2.3) is already written in an asymp-
totically rotating frame, we therefore need only to introduce
a new azimuthal coordinate φ ¼ ϕ=Ξ, followed by taking
the limit a → l. Hence we straightforwardly obtain the
following solution,

ds2 ¼ −
~Δr

~W
ðdt − lsin2θdφÞ2 þ ~W

�
dr2

~Δr

þ dθ2

sin2θ

�

þ sin4θ
~W

½ldt − ðr1r2 þ l2Þdφ�2; ð2:8Þ

where ~Δr and ~W are given by (2.4) as a → l. To exclude a
conical singularity in the φ direction, one can identify it
with the period 2π=Ξ. Since the new azimuthal coordinate
φ is noncompact, we now compactify it by requiring

φ ∼ φþ μ; ð2:9Þ

where the parameter μ is dimensionless. Note that there is
still an axial Killing vector ∂φ in the new coordinate
direction φ. Therefore, it is straightforward to show that the
obtained metric (2.8) appears as a new exact solution. Also
we can easily find the dilaton, axion, and gauge fields in
this limit as

e ~φ ¼ r21 þ l2cos2θ
~W

; ~χ1 ¼
lðr2 − r1Þ cos θ
r21 þ l2cos2θ

;

~Að1Þ1 ¼
2

ffiffiffi
2

p
ms1c1r2ðdt − lsin2θdφÞ

~W
; ~Að1Þ2 ¼

2
ffiffiffi
2

p
ms2c2r1ðdt − lsin2θdφÞ

~W
: ð2:10Þ

1. Horizon geometry

To ensure that the new solution (2.8) is describing a
black hole, we examine the largest root of ~Δr in (2.8),
which is supposed to demonstrate the location of the
horizon as rþ. It is required now to check ~Δ0

r ≥ 0. We
therefore find the following mass bound:

m ≥ m0 ≡
ffiffiffi
3

p

18l2
½ðq1 − q2Þ2 − 4l2�32 − q1 þ q2

2
;

jq2 − q1j ≥ 2l: ð2:11Þ

Form > m0 a horizon exists, while form < m0 there exists
a naked singularity. Also to ensure that our obtained
geometry would be free of any closed timelike curves
(CTC), we examine gφφ ≥ 0:

gφφ ¼ l2sin4θ½ð2mþ rþðq1 þ q2Þ þ q1q2�
ðrþ þ q1Þðrþ þ q2Þ þ l2cos2θ

: ð2:12Þ

Apparently gφφ is positive in the entire spacetime.
Now, let us take a deeper look at the geometry of the

horizon. The induced metric on a constant ðt; rÞ surface
yields

ds2h ¼
~Wþ

sin2θ
dθ2 þ sin4θ

ððrþ þ q1Þðrþ þ q2Þ þ l2Þ2
~Wþ

dφ2;

ð2:13Þ

where ~Wþ ¼ ~Wjrþ . However, this geometry seems to be
singular in θ ¼ 0 and π, so we will show that the symmetry
axis θ ¼ 0; π is actually not part of the spacetime. For a
precise study about these poles, one can probe the metric in
the small θ ¼ 0 limit by introducing the change of variables
similar to [13],

k ¼ lð1 − cos θÞ: ð2:14Þ

The horizon metric (2.13) for small k becomes

ds2h ¼ ðrþ þ q1Þðrþ þ q2Þ
�
dk2

4k2
þ 4k2

l2
dφ2

�
; ð2:15Þ

which shows clearly a metric of constant negative curvature
on a quotient of the hyperbolic space H2. Note that, due to
the symmetry, the θ ¼ π limit gets the same result. Thus,
there is no true singularity at these two points, but some sort
of boundary. Therefore topologically, the event horizon is a
sphere with two punctures, which implies that our newly
obtained black hole enjoys a finite area but noncompact
horizon.
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In order to visualize the geometry of the horizon (2.13)we
can embed it in aEuclidean 3-space as a surface of revolution
[10]. We then identify the induced metric on the horizon
(2.13) by using a flat metric in cylindrical coordinates as

ds23 ¼ dz2 þ dR2 þ R2dΦ2; ð2:16Þ

and we consider z ¼ zðθÞ, R ¼ RðθÞ. Setting Φ ¼ 2π
μ φ, one

gets

R2ðθÞ ¼
�
μ

2π

� ½ðrþ þ q1Þðrþ þ q2Þ þ l2�2
ðrþ þ q1Þðrþ þ q2Þ þ l2cos2θ

sin4θ;

ð2:17Þ

�
dzðθÞ
dθ

�
2

þ
�
dRðθÞ
dθ

�
2

¼ ðrþ þ q1Þðrþ þ q2Þ þ l2cos2θ
sin2θ

;

ð2:18Þ
which is a differential equation for dz=dθ. We integrated
(2.18) numerically for the values l ¼ 1, μ ¼ 2π, and
rþ ¼ 0.8, by choosing different amounts of q1 and q2.
The resulting surfaces of revolution are shown in Fig. 1.

2. Conformal Boundary

Let us here find the conformal boundary of our newly
obtained black hole solution (2.8) (the conformal factor is
l2=r2):

ds2bdry ¼ −dt2 þ lsin2θdtdφþ 1

sin4θ
dθ2: ð2:19Þ

It appears that the new coordinate φ would be a null one on
the conformal boundary. Now we study this metric near the
pole θ ¼ 0 using (2.14). For small k we have then

ds2bdry ¼ −dt2 þ 2kdtdφþ 1

4k2
dk2: ð2:20Þ

This metric can be interpreted as an AdS3 written in Hopf-
like fibration overH2. It means again that the poles θ ¼ 0; π
are indeed not parts of the spacetime, and they are being
removed from the boundary. However, to answer what
happens precisely at θ ¼ 0 and π, we should study the
behavior of the geodesics in the entire spacetime. To do
that, it should be shown that no outgoing null geodesics
from inside the horizon would not be able to reach to the
symmetry axis θ ¼ 0 in a finite affine parameter, similar to
the strategy taken in [13]. This study of course is not in the
scope of the current paper, so we postpone studying it to
another further work.
As we recall, the AdS=CFT viewpoint hints at exploring

a dual three-dimensional CFT that exists on the AdS3
conformal boundary (2.20). We note that, depending on the
choice of the AdS coordinate slicing, different manifolds
may be achieved such that one can found a dual CFT that
lives on the correspondence slicing. Each coordinate indeed
covers the whole or a part of the AdS boundary; for
instance, in global coordinates the dual CFT lives on the
R × Sp geometry, while in the patch the CFT exists on the
Rp;1 manifold. Therefore, in the slicing (2.20) one may
expect the dual CFT to reside on an AdS3 geometry. These
CFTs can be viewed as possible deformations around the
conformal fixed point, which may be related to each other
by the Wilsonian renormalization group flow equation.

FIG. 1. Horizon embeddings in 4D. Plots show two-dimensional noncompact horizons embedded in R3 as a surface of revolution,
displaying the topology of a sphere with two punctures. We have set μ ¼ 2π, rþ ¼ 0.8, and l ¼ 1 for all diagrams, with q1 ¼ 10, q2 ¼ 0
(left); q1 ¼ 10, q2 ¼ 5 (middle); and q1 ¼ 3, q2 ¼ 6 (right).
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3. Thermodynamic quantities

Although the event horizon of the newly obtained ultra-spinning black hole (2.8) is noncompact, it has a finite area and
entropy as

S ¼ μ

2
½ðrþ þ q1Þðrþ þ q2Þ þ l2�: ð2:21Þ

For the solution (2.8) we extract the Hawking temperature, electrostatic potentials, and angular velocity on the horizon. Our
results are

TH ¼ 2r2þ − l2 − q1q2 þ ðrþ þ q1Þðrþ þ q2Þð3r2þ þ q1rþ þ q2rþ − q1q2Þ=l2

4πrþ½ðrþ þ q1Þðrþ þ q2Þ þ l2� ;

Φ1 ¼ Φ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ð2mþ q1Þ

p ðrþ þ q2Þ
ðrþ þ q1Þðrþ þ q2Þ þ l2

; Φ3 ¼ Φ4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ð2mþ q2Þ

p ðrþ þ q1Þ
ðrþ þ q1Þðrþ þ q2Þ þ l2

;

Ω ¼ l
ðrþ þ q1Þðrþ þ q2Þ þ l2

: ð2:22Þ

The electric potential is computed usingΦI ¼ KμAI
μ, where

Kμ ¼ ∂t þΩs∂φ is the null Killing vector generating the
horizon. We then calculated the following conserved
charges as

E ¼ 2mþ q1 þ q2
2

; J ¼ lð2mþ q1 þ q2Þ
2

Q1 ¼ Q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ð2mþ q1Þ

p
4

;

Q3 ¼ Q4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ð2mþ q2Þ

p
4

: ð2:23Þ

Angular momentum can be obtained by using the Komar
integral based on the angular Killing vector ∂φ; also the
electric charges are calculated by using the Gaussian
integrals. For computing mass we use the conformal
approach of Ashtekar, Magnon, and Das (AMD) [23]. In
the AMD method, the electric part of the Weyl tensor
plays an essential role: its spatial conformal boundary
integral gives us the mass. It was shown that for a large

variety of gauged supergravity black holes this mass
exactly agrees with the first law of thermodynamics
calculation [24].

4. Extremality under ultra-spinning limit

For an extremal black hole, the inner and outer horizons
coincide to a single horizon at r0, with vanishing Hawking
temperature and generically nonzero entropy.
Here, in order to answer whether the extremality con-

dition will be preserved under the ultra-spinning limit or
not, we consider two different approaches:

(i) Finding the extremality condition of a given black
hole and then applying the ultra-spinning limit, and

(ii) Performing the ultra-spinning limit for a given
geometry, and then finding the extremality condition
of the obtained ultra-spinning black hole afterwards.

Firstly, let us to start from situation (i). The extremality
conditions of metric (2.3) can be found by using (2.6) and
(2.4), imposing THjr¼r0 ¼ 0 and Δr ¼ 0. Hence the degen-
erate horizon r0 reads

r0 ¼
1

6

�
ð3B þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3 þ B

p
Þ1=3 − A

ð3B þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3 þ B

p
Þ1=3 − 3ðq1 þ q2Þ

�
; ð2:24Þ

where A ¼ 32=3½2ða2 þ l2Þ − ðq1 − q2Þ2� and B ¼ 9l2ð2mþ q1 þ q2Þ. Also the following constraints between param-
eters of solution and r0 are achieved:

q1 ¼
a2q2 − 4r20ðr0 þ q2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðr20 − q22Þ½−a2l2 þ r20ða2 þ l2 þ q22 þ 4q2r0 þ 3r20Þ�

p
2ðr20 − q22Þ

;

m ¼ a4q2 þ 4l2q2ðr0 − q2Þ þ 2ðr0 þ q2Þ2½2r0ðr0 þ q2Þ2 þ χÞ� − a2½4l2ðq2 − r0Þ þ 4r0ðr0 þ q2Þ2 þ χ�
4l2ðr0 − q2Þ2

; ð2:25Þ

where χ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4q22 þ 4ðr0 þ q2Þðr20ðq2 þ r0Þððq2 þ r0Þ2 − a2Þ þ 4l2ðq2 − r0Þðr20 − a2ÞÞp

.
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Now, upon taking the limit a → l, one easily gets

q1 ¼
l2q2 − 4q2r2 − 4r3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r20ðq2 þ r0Þ4 þ l4ð−3q22 þ 4r20Þ − 8l2r30ðq2 þ r0Þ

q
2ðr20 − q22Þ

;

m ¼ l4ð−3q2 þ 4r0Þ þ 2ðq2 þ r0Þ2½2r0ðq2 þ r0Þ2 þ χs� − l2½4r20ð3q2 þ r0Þ þ χs�
4l2ðr0 − q2Þ2

; ð2:26Þ

where χs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r20ðr0 þ q2Þ4 þ l4ð4r20 − 3q22Þ − 8l2r30ðr0 þ q2Þ

q
. The horizon is also obtained as

r0 ¼
1

6

"�
3B þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~A3 þ B

q �
1=3

−
~A

ð3B þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~A3 þ B

p
Þ1=3

− 3ðq1 þ q2Þ
#
; ð2:27Þ

where ~A ¼ 32=3½2l2 − ðq1 − q2Þ2�.
Now, we examine approach (ii). In this way we only

need to find the extremality condition of our obtained ultra-
spinning black hole (2.8) by using (2.22). Our resulting
conditions are exactly the same as (2.26) and (2.27). It
means that the extremality conditions commute with the
ultra-spinning limit for a four-dimensional Uð1Þ4 gauged
supergravity (2.3) black hole.

B. Near horizon geometry

Extremal black holes have several interesting character-
istics. One of them is that the near horizon region of extremal
black holes intuitively can be interpreted as an isolated
geometry and isolated thermodynamical system. It has been
discussed in [25,26] that focusing on the near horizon
geometry of extremal black holes leads to a new class of
solutions to the same theory of gravity, in which their
conserved charges are the same as the ones of the original
blackhole.Nearhorizonextremalgeometries (NHEG)haveno
horizon and no singularity, unlike black holes, with enhanced
SLð2;RÞ ×Uð1ÞN symmetry, and their asymptotic behaviors
are different. Analogues to black hole thermodynamics, the
laws of NHEG dynamics, have been derived in [27], in which
despite the absence of a event horizon in NHEG there is an
entropy associated to them as a Noether charge. However, in
this case the system cannot be excited while it keeps SLð2; RÞ
isometry [28,29]. Furthermore, it was provided a proof in
[30,31] that the AdS2 sector appears in the near horizon
geometry of any regular stationary extremal black hole.
In this section we try to find the near horizon geometry of

the obtained ultra-spinning black hole (2.8) in the extremal
limit. Now we can write the near horizon expansion as

~Δr ¼ Xðr − r0Þ2 þOðr − r0Þ3;
where

X ¼ 2þ 1

l2
ð6r20 þ 6q1r0 þ 6q2r0 þ q21 þ q22 þ 4q1q2Þ:

ð2:28Þ

Now, in order to find the near horizon geometry in the
extremal limit, we use the following dimensionless coor-
dinate changes ðt̂; ρ; θ̂; φ̂Þ to extract the NHEG as an exact
solution:

r ¼ r0ð1þ λr̂Þ; φ ¼ φ̂þ Ω0
Ht̂;

t ¼ t̂
2πT 0

Hr0λ
; θ̂ ¼ θ: ð2:29Þ

Here, the quantityΩ0
H is the angular velocity on the horizon

in the extremal limit, which is a shift for the coordinate φ to
attain the comoving coordinate of the horizon. In these new
coordinates the Killing vector ξ ¼ λ=r0∂t is the horizon
generator. Also the quantity T 00

H is defined as

T 00
H ¼ ∂TH

∂r̂þ
				
r̂þ¼r0

: ð2:30Þ

Now upon taking the limit λ → 0, the near-horizon
metric reads

ds2 ¼
~W0

X

�
−r̂2dt̂2 þ dr̂2

r̂2

�
þ

~W0

sin2θ
dθ̂2;

þ sin4θ

l2 ~W0

½ðr0 þ q1Þðr0 þ q2Þ þ l2�2ðdφ̂þ kr̂dt̂Þ2;

ð2:31Þ

where

k ¼ lð2r0 þ q1 þ q2Þ
X½ðr0 þ q1Þðr0 þ q2Þ þ l2� ; ð2:32Þ

and ~W0 ¼ ~Wjr̂¼r0 . This metric can be viewed as the direct
product of AdS2 × S2, in which the AdS sector is written
here by Poincaré-type coordinates ðt̂; r̂Þ. It appears that the
NHEG of the ultra-spinning black hole (2.8) gives the well-
known result, which contains an AdS2 sector. The metric
(2.31), similar to the horizon geometry, seems to be
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singular in θ ¼ 0; π. We showed in previous subsections
that these points are not truly singularities but some kind of
boundary. Therefore the S2 sector of NHEG (2.31) inherits
the noncompactness characteristic and then topologically it
would be a sphere with two punctures.
Metric (2.31) can be cast into the general form of the

NHEG constructed in [7], which is calculated for the most
general gauged extremal and stationary supergravity black
holes as follows:

ds2 ¼ ΓðθÞ
�
−ρ2dt2 þ dρ2

ρ2
þ αðθÞdθ2

�
þ γðθÞðdϕþ kρdtÞ2;

AI ¼ fðθÞðdϕþ kρdtÞ þ eprdt; ð2:33Þ

where ΓðθÞ, γðθÞ, and αðθÞ are extracted from (2.31).
Additionally, to explore the behavior of the gauge fields in
the near horizon limit (2.29), we should carry out a new
gauge transformation AI → AI þ dΛI on parameter Λ [32]:

Λ ¼ ΦI ext
e

λ
r0t̂; ð2:34Þ

whereΦI ext
e are the electrostatic potentials on the horizon in

the extremal limit. This gauge transformation can be
realized as a simple embedding of a Uð1Þ gauge field in
a higher-dimensional auxiliary spacetime [32].

C. A quick review of Kerr/CFT

Here, we test the conjectured Kerr/CFT correspondence
and its extensions for our noncompactness horizon black
hole. Kerr/CFT explains that there exists a duality between
the near horizon states of a 4D extremal Kerr black hole and
a certain d ¼ 2 chiral conformal field theory [5]. The
general NHEG (2.33), by imposing a set of consistent
boundary conditions, admits an enhanced SLð2; RÞR ×
Uð1ÞnL isometry group [5,33]. Indeed it includes all the

symmetries of AdS2 plus translations in φi coordinates. The
symmetry generators are given by the following Killing
vector fields:

ξ1 ¼ ∂t; ξ2 ¼ t∂t − r∂r;

ξ3 ¼
1

2

�
1

r2
þ t2

�
∂t − tr∂r −

Xn
i¼1

ki
r
∂i
ϕ; ξ̄i ¼ ∂i

ϕ:

ð2:35Þ
One can write a relation between the SLð2; RÞ and Uð1Þn
symmetry generators [27],

niξi ¼ kiξ̄i; ð2:36Þ
where ni is the unit vector normal to AdS2.
Therefore, because of the exact similarity between the

NHEG of our solutions (2.29) and (2.33), one can deduce
that the metric (2.31) is invariant under diffeomorphisms
generated by ξ̄1 and ξ1;2;3. Therefore an asymptotic sym-
metry group (ASG) associated to every consistent set of
boundary conditions can be found. Asymptotic symmetries
of (2.31) may contain diffeomorphisms ζ and a Uð1Þ gauge
transformation such that [6]

δζgμν ¼ Lζgμν; δζAμ ¼ LζAμ; δΛA ¼ dΛ: ð2:37Þ

The infinitesimal field variations are defined by aμ ¼ δAμ

and hμν ¼ δgμν. The combined transformation ðζ;ΛÞ has an
associated charge Qζ;Λ defined in [33], which generates the
symmetry ðζ;ΛÞ under Dirac brackets.
The charge Qζ;Λ must be finite for all field variations,

required to satisfy a consistent boundary condition. Now
we choose the same boundary conditions as in [5]. The
method used in [5] assumed that ∂ϕ is proportional to the
zero mode of a nontrivial Virasoro algebra, as well as
indicating the boundary conditions in terms of power law
falloff of the components of the metric fluctuations hμν as

0
BBB@

htt ¼ Oðr2Þ htφ ¼ Oð1Þ htθ ¼ Oð1=rÞ htr ¼ Oð1=r2Þ
hφφ ¼ Oð1Þ hφθ ¼ Oð1=rÞ hφr ¼ Oð1=rÞ

hθθ ¼ Oð1=rÞ hθr ¼ Oð1=r2Þ
hrr ¼ Oð1=r3Þ

1
CCCA: ð2:38Þ

Also, the boundary condition for the gauge field
reads

aμ ¼ O
�
r;
1

r
; 1; 1=r2

�
: ð2:39Þ

The most general diffeomorphisms ζm that preserve the
above boundary conditions are given by

ζϵ ¼ ϵðϕÞ∂ψ − rϵ0ðϕÞ∂r; ζ̄ ¼ ∂t; ð2:40Þ

and the Virasoro algebra can be extracted as

i½ζm; ζn� ¼ ðm − nÞζmþn; ϵnðϕÞ ¼ −e−inϕ: ð2:41Þ

The gauge field transformation A under ζϵ does not satisfy
the boundary condition (2.39). So to restore δAφ ¼ Oð1=rÞ
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we must impose a suitable compensating Uð1Þ gauge
transformation as Λ ¼ −fðθÞϵðϕÞ [6]. The Virasoro alge-
bra with vanishing central charge of ASG reads

½Λm;Λn�ζ ¼ ζμm∂μΛn − ζμn∂μΛm;

i½ðζm;ΛmÞ; ðζn;ΛnÞ�ζ ¼ ðm − nÞðζmþn;ΛmþnÞ: ð2:42Þ

The gauge transformation ðζn;ΛnÞ and charges Qn asso-
ciated to them satisfy a similar algebra up to a central
extension. Using (2.33), we can derive the Dirac brackets
algebra of Qn as [6,33]

ifQζϵ;Λ; Qζϵ̄; ~Λ
gDB

¼ iQðζϵ;ΛÞ;ðζϵ̄; ~ΛÞ −
ik
16π

Z
dθdφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðθÞγðθÞ
ΓðθÞ

s

× ðfðθÞΛ~ϵ0 þ ΓðθÞϵ0 ~ϵ00 þ ½fðθÞ2 þ γðθÞ�ϵ~ϵ0

− ðϵ;Λ ↔ ~ϵ; ~ΛÞÞ: ð2:43Þ

The algebra of the charge Qn associated to ASG generators
ðζn;ΛnÞ from (2.43) is

ifQm;QngDB ¼ ðm − nÞQmþn þ
c
12

ðm3 − αmÞδmþn;0:

ð2:44Þ

We note that α is a constant and can be absorbed into Q0.
The central charge cL has combinations of kgrav and kgauge

as c ¼ cgrav þ cgauge. They can be nicely calculated in the
manner described in [6,7] as

cgrav ¼
3ki
2π

Z
π

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓðθÞαðθÞγðθÞ

p
; cgauge ¼ 0; ð2:45Þ

where the constant ki’s are given by the corresponding
Frolov-Thorne temperatures as below:

ki ¼
1

2πTi
: ð2:46Þ

Here, Ti’s refer to the left- and right-moving temperatures
of the quantum field theory coming from the Frolov-Thorne
vacuum, restricted to an extreme Kerr black hole [5,34]. In
order to determine these temperatures, one can use a scalar
field expansion in terms of eigenstates of the asymptotic
energy E and angular momentum J:

Φ ¼
X
E;J;l

ϕEJle−iEt̂þiJφ̂flðr; θÞ: ð2:47Þ

In the near horizon region (2.29) we have

e−iEt̂þiJφ̂ ¼ e−iðE−Ω0
HJÞt̂r0=λþiJφ̂ ¼ e−inRt̂þnLφ̂; ð2:48Þ

where nR ¼ ðE −Ω0
HJÞr0=λ and nL ¼ J are the left and

right charges associated to ∂ϕ and ∂t in the near horizon
metric. We have found a diagonal density matrix associated
to the vacuum by tracing (2.47) over the region inside the
horizon. The Boltzmann weighting factor in the energy-
angular momentum eigenbasis reads

e−
ðE−ΩHJÞ

TH : ð2:49Þ

In the nonrotating ðΩH ¼ 0Þ case, this vacuum reduces to
the Hartle-Hawking vacuum. One can hence write the
Boltzmann factor in terms of nL, nR, and Ti as

e−
ðE−ΩHJÞ

TH ¼ e−
nL
TL
−nR
TR : ð2:50Þ

Dimensionless Frolov-Thorne temperatures Ti were first
defined for higher-dimensional Kerr-AdS black holes in
[35] and are

TL ¼ lim
rþ→r0

T0
H

Ω0
H − ΩH

¼ −
∂TH=∂rþ
∂ΩH=∂rþ

				
rþ¼r0

;

TR ¼ r0
λ
THjrþ¼r0 : ð2:51Þ

For an extremal solution, the right temperature vanishes,
while there are ½ðd − 1Þ=2� left temperatures associated to
the 2d CFTs for each azimuthal φ coordinate. However, the
extreme Kerr black hole has vanishing Hawking temper-
ature, but quantum field states outside the horizon live in a
thermal state.
We recall that (2.47) can also be extended using the first

thermodynamics law for a charged rotating black hole:

TdS ¼ dM − ðΩHdJ þ ΦdQÞ: ð2:52Þ

Now by imposing the extremality constraint TexdS ¼ 0, it
gets finally

dS ¼ dJ
TL

þ dQ
Te

: ð2:53Þ

Also the Boltzmann factor can be extended to

e−nR=TR−nL=TL−Q=Te : ð2:54Þ

D. Ultra-spinning/CFT description

In this section we shall study the Kerr/CFT correspon-
dence for our obtained extremal ultra-spinning Uð1Þ4
gauged supergravity black hole (2.8). Our strategy, besides
confirming the existence of the CFT dual, will be to verify
that the ultra-spinning limit and the Kerr-CFT limit
commute with each other. It has been shown in [13] that
the ultra-spinning limit commutes with the near horizon
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limit for 5D Kerr-AdS and minimal gauged supergravity
black holes.
Here, we consider two different procedures to explore

Kerr/CFT for our ultra-spinning black hole: (i) beginning
with an extremal ultra-spinning black hole and then taking
near horizon limit into account and (ii) finding the near
horizon limit of an extremal black hole and then applying
the ultra-spinning limit afterwards. These two different
ways are clearly shown in Fig. 2.
Let us here start the lower path in Fig. 2. The resulting

geometry is already obtained in (2.31). To find the central
charge associated to metric (2.31), we need to write the
extended version of the first law as

TdS ¼ dM −ΩHdJ −
X
i

ΦidQi − Kdμ: ð2:55Þ

Here, we consider μ as a thermodynamic parameter shown
as a chemical potential [12]. It was explained in [36] that
the compactified null length can be signified as a chemical
potential. Since the new coordinate φ is a compact null
coordinate on the conformal boundary that becomes
compactified by μ, then μ is assumed to be a chemical
potential, and its thermodynamic conjugate is denoted by
K. Note that μ is a dimensionless quantity, so in the Smarr
formula there is no Kμ. Considering the extremality
constraint on (2.55) gives

TdS ¼ −
�
ðΩH −Ωex

H ÞdJ

þ
X4
i¼1

ðΦi − Φex
i ÞdQi þ ðK − KexÞdμ

�
: ð2:56Þ

Then the Boltzmann factor (2.50) in the extremal limit
takes the following form,

e−nR=TR−nL=TL−
P

4

i¼1
Qi=Ti;e−μ=Tμ ; ð2:57Þ

where nR ¼ðE−Ωex
H J−

P
iΦ

ex
i Qi−KexμÞr0=λ and nL ¼ J.

Also TR and TL are given by (2.51). The Frolov-Thorne
temperatures Te and Tμ are defined as

Te;i ¼ −
∂TH=∂rþ
∂Φi=∂rþ

				
rþ¼r0

; Tμ ¼ −
∂TH=∂rþ
∂K=∂rþ

				
rþ¼r0

:

ð2:58Þ

Now, using (2.51) and (2.58) we obtain following left- and
right-moving temperatures,

TR ¼ 0; TL ¼ 1

2πk
¼ X½ðr0 þ q1Þðr0 þ q2Þ þ l2�

2πlð2r0 þ q1 þ q2Þ
;

ð2:59Þ

and finally using (2.45) we find the central charge as

c ¼ 3
μ

π

lð2r0 þ q1 þ q2Þ
X

: ð2:60Þ

We emphasize that the left-moving part of the CFT
identifies the quantum field states on the near horizon
region (2.31). Namely, in the extremal limit the vacuum
state in the bulk reduces to a mixed density matrix on the
CFT side. The Boltzmann weighting factor reads

ρ ¼ e−
J
TL
−
P

i
Q

Te;i
− μ
Tμ : ð2:61Þ

Indeed, the CFT dual of the generalized Hartel-Hawking
vacuum has temperature TL. Now we apply the thermo-
dynamic Cardy formula that counts microstates of a unitary
and modular invariance CFT at large T and gives the
entropy of CFT relating to its temperature and central
charge [8]:

S ¼ π2

3
cLTL: ð2:62Þ

This relation confirms that c can be viewed as a measure of
degrees of freedom and it determines the asymptotic
density of states.
Now, using (2.59) and (2.60) we obtain the microscopic

entropy of the dual CFT,

SCFT ¼ μ

2
½ðrþ þ q1Þðrþ þ q2Þ þ l2�; ð2:63Þ

which agrees precisely with the macroscopic Bekenstein-
Hawking entropy (2.21). So this remarkable result confirms
the Kerr/CFT conjecture again.
Now, we turn to the upper path in Fig. 2. In the first step

we have to find the near horizon geometry of the metric
(2.3) in the extremal limit, and then take the ultra-spinning
limit on the NHEG. In [7] the NHEG of the metric (2.3) has
been constructed. Its ultra-spinning limit can easily be
calculated by replacing the new coordinate φ ¼ ϕ

Ξ, setting

FIG. 2. This diagram illustrates two different order limits for
a general rotating AdS black hole (R-AdS BH). Horizontal
arrows (blue) represent the near horizon (NH) limit, to provide
a Kerr-CFT limit. Also the vertical ones (red) show the ultra-
spinning (US) limit. We show that in both paths the resulting
limits (US-KCFT) are exactly the same.
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a → l, and finally compactifying the new coordinate φ
with period μ. One can easily check that the final result is
exactly the same as (2.31). So we can conclude that their
CFT dual and central charge are the same too.
Hence these two results from procedures (i) and (ii)

confirm that the ultra-spinning and the near horizon limits
commute with each other for a 4D gauged supergravity
black hole solution.
Another issue that can also be discussed is that in black

hole (2.8), the angular momentum J is not independent of
the massM. As we see in Eq. (2.22), they are related by the
chirality-type condition M ¼ J=l. We follow the thermo-
dynamic interpretation as that in [11]; thus we can define
L0 and ~L0 in terms of M and J as

L0 ¼
ðM þ J=lÞ

2
; ~L0 ¼

ðM − J=lÞ
2

: ð2:64Þ

So in order to derive the Smarr formula in terms of L0 and
~L0, we should consider M ¼ MðL0; ~L0; Q; μÞ. Since in our
case ~L0 vanishes, the first law becomes

TdS ¼ ð1 −ΩÞdLþ −
X
i

ΦdQ − Kdμ; ð2:65Þ

and the chirality condition M ¼ J=l states that the black
hole microstates can be explained by chiral excitations of a
3D conformal field theory.

III. FIVE-DIMENSIONAL Uð1Þ3 GAUGED
SUPERGRAVITY BLACK HOLES

In this section we consider a charged rotating black hole
that is constructed as a solution of SOð6Þ gauged five-
dimensional supergravity, whose relevant part of the
bosonic action is given by [37]

S5d ¼
1

16π

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂ ~ϕ2 −

1

4

X3
i¼1

X−2
i ðFiÞ2 þ 4

l2

X3
i¼1

X−1
i þ 1

24
ϵijkϵ

μνρσλFi
μνF

j
ρσAk

λ;

�
; ð3:1Þ

where ~ϕ ¼ ðϕ1;ϕ2Þ, and

X1 ¼ e−
1ffiffi
6

p ϕ1− 1ffiffi
2

p ϕ2 ; X2 ¼ e−
1ffiffi
6

p ϕ1þ 1ffiffi
2

p ϕ2 ; X3 ¼ e
2ffiffi
6

p ϕ1 :

ð3:2Þ
A six-parameter family of solutions, including three electric
charges, two angular momenta, and mass, which is the most

general asymptotically AdS5 black hole solution to this
theory, was constructed in [38]. Here, we consider the
Uð1Þ3 Cartan subgroup of SOð6Þ with three charge
parameters δI that satisfy δ1 ¼ δ2 ≔ δ and δ3 ¼ 0, as well
as two independent rotation parameters. This four-param-
eter family of solutions was derived in [39]. Their metric is
given by

ds2 ¼ H−4
3

�
−
Δ
ρ2

ðdt − asin2θ
dϕ
Ξa

− bcos2θ
dψ
Ξb

�
2

þ C
ρ2

�
ab
f3

dt −
b
f2

sin2θ
dϕ
Ξa

−
a
f1

cos2θ
dψ
Ξb

�
2

þ Zsin2θ
ρ2

�
a
f3

dt −
1

f2

dϕ
Ξa

�
2

þWcos2θ
ρ2

�
b
f3

dt −
1

f1

dψ
Ξb

�
2
�
þH

2
3

�
ρ2

Δ
dr2 þ ρ2

Δθ
dθ2

�
; ð3:3Þ

where

H ¼ 1þ q=ρ2; ρ2 ¼ r2 þ a2cos2θ þ b2sin2θ;

f1 ¼ a2 þ r2; f2 ¼ b2 þ r2; f3 ¼ f1f2 þ qr2;

Δ ¼ 1

r2
ða2 þ r2Þðb2 þ r2Þ − 2mþ ða2 þ r2 þ qÞðb2 þ r2 þ qÞ=l2;

Δθ ¼ 1 −
a2

l2
cos2θ −

b2

l2
sin2θ; C ¼ f1f2ðΔþ 2m − q2=ρ2Þ;

Z ¼ −b2Cþ f2f3
r2

�
f3 −

r2

l2
ða2 − b2Þða2 þ r2 þ qÞcos2θ

�
;

W ¼ −a2Cþ f1f3
r2

�
f3 þ

r2

l2
ða2 − b2Þðb2 þ r2 þ qÞsin2θ

�
;

Ξa ¼ 1 −
a2

l2
; Ξb ¼ 1 −

b2

l2
: ð3:4Þ
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The gauge and scalar fields are

A1 ¼ A2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 2mq

p
ρ2

�
dt − asin2θ

dϕ
Ξa

− cos2θ
dψ
Ξb

�
;

A3 ¼ q
ρ2

�
bsin2θ

dϕ
Ξa

þ acos2θ
dψ
Ξb

�
:

X1 ¼ X2 ¼ H−1
3; X3 ¼ H

2
3: ð3:5Þ

The metric (3.3) is written in an asymptotic rotating frame. One can use a sort of coordinates to be asymptotically static
(ASF) by taking ϕ ¼ ~ϕþ a

l2 t and ψ ¼ ~ψ þ b
l2 t.

The Hawking temperature, entropy, and the electrostatic potentials on the horizon in the asymptotically static frame are

TH ¼ 2r6þ þ r4þðl2 þ a2 þ b2 þ 2qÞ − a2b2l2

2πrþl2½ðr2þ þ a2Þðr2þ þ b2Þ þ qr2þ�
; SBH ¼ π2½ðr2þ þ a2Þðr2þ þ b2Þ þ qr2þ�

2rþΞaΞb
;

Φ1 ¼ Φ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 2mq

p
r2þ

ða2 þ r2þÞðb2 þ r2þÞ þ qr2þ
; Φ3 ¼

aqb
ða2 þ r2þÞðb2 þ r2þÞ þ qr2þ

: ð3:6Þ

The Killing vector field that generates the Killing horizon is K ¼ ∂t þ ΩS
a∂ϕ þ ΩS

b∂ψ , where ΩS
a and ΩS

b are the angular
velocities on the horizon in ASF. In ARF, the angular velocities on the horizon are written as

ΩR
a ¼ ΩS

a −
a
l2

¼ Ξaaðr2þ þ b2Þ
ða2 þ r2þÞðb2 þ r2þÞ þ qr2þ

; ΩR
b ¼ ΩS

b −
b
l2

¼ Ξbbðr2þ þ a2Þ
ða2 þ r2þÞðb2 þ r2þÞ þ qr2þ

: ð3:7Þ

Conserved charges including two angular momenta, two electric charges, and mass as mentioned in [39] are

Ja ¼
πað2mþ qΞbÞ

4ΞbΞ2
a

; Jb ¼
πbð2mþ qΞaÞ

4ΞaΞ2
b

;

Q1 ¼ Q2 ¼
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 2mq

p
4ΞaΞb

; Q3 ¼ −
πabq

4l2ΞaΞb
;

E ¼ π½2mð2Ξa þ 2Ξb − ΞaΞbÞ þ qð2Ξ2
a þ 2Ξ2

b þ 2ΞaΞb − Ξ2
aΞb − Ξ2

bΞaÞ�
8Ξ2

aΞ2
b

: ð3:8Þ

A. Ultra-spinning limit

We are now ready to perform the ultra-spinning limit on the metric (3.3), by following the same steps as in the previous
section. This black hole rotates in two different directions ϕ and ψ , corresponding to the rotation parameters a and b. But we
are only allowed to take the ultra-spinning limit for one azimuthal direction, which is selected as ϕ for us. Since the metric is
already written in ARF, we begin by introducing a new azimuthal coordinate φ ¼ ϕ=Ξa. Then upon taking the a → l limit
while we keep the parameter b fixed, we will have

Δθ ¼ Ξbsin2θ: ð3:9Þ

Hence we obtain the following new black hole solution as

ds2 ¼ ~H
2
3

�
−

~Δ
ρ2

�
dt − lsin2θdφ − bcos2θ

dψ
Ξb

�
2

þ
~C
~ρ2

�
lb
~f3
dt −

b
f2

sin2θdφ −
l
~f1
cos2θ

dψ
Ξb

�
2

þ
~Zsin2θ
~ρ2

�
l
~f3
dt −

1

f2
dφ

�
2

þ
~Wcos2θ
~ρ2

�
b
~f3
dt −

1

~f1

dψ
Ξb

�
2
�
þ ~H

2
3

�
~ρ2

~Δ
dr2 þ ~ρ2

Ξbsin2θ
dθ2

�
; ð3:10Þ
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where ~H, ~Z, ~W, ~Δ, and ~ρ are given by (3.4), in which
a → l. Also the new coordinate φ can be compactified by
φ ∼ φþ μ. The gauge potentials and scalar fields in this
limit become

A1 ¼ A2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 2mq

p
~ρ2

�
dt − lsin2θdφ − cos2θ

dψ
Ξb

�
;

A3 ¼ q
~ρ2

�
bsin2θdφþ lcos2θ

dψ
Ξb

�
;

X1 ¼ X2 ¼ ~H−1=3; X3 ¼ ~H2=3: ð3:11Þ

Now, it is easy to check that the metric (3.10) and fields
(3.11) satisfy the equation of motion, and we can call (3.10)
a new exact gauged supergravity black hole solution.
It is worth mentioning that taking the ultra-spinning limit

in the ψ direction (instead of ϕ) is also carried out in the
same way. But it is impossible to take the ultra-spinning
limit in both directions simultaneously, because the gθθ
component in the metric (3.10) will diverge in the b → l
limit, and 1=Ξb divergence may not be absorbed into a new
coordinate.

1. Horizon geometry

Here, we find the induced metric on the horizon:

ds2h ¼ ~H−4
3

�
~C
~ρ2

�
b
f2

sin2θdφþ l
~f1
cos2θ

dψ
Ξb

�
2

þ
~Zsin2θ
~ρ2

1

f22
dφ2 þ

~Wcos2θ
~ρ2

�
1

~f1

dψ
Ξb

�
2
�

þ ~H
2
3

~ρ2

Ξbsin2θ
dθ2: ð3:12Þ

As in the four-dimensional case, this metric seems to be
ill defined in θ ¼ 0 ð0 ≤ θ ≤ π=2Þ. But to show that there is
no problem near this point, one can perform the change of
coordinates k ¼ lð1 − cos θÞ, for small k, by which the
horizon metric reads

ds2h ¼
ρþ
Ξb

�
dk2

4k2
þ 4k2

ðl2 þ r2þÞ3b2Ξb

r2þl2ρ4þ
dφ2 þ 4bkm

ρ4þ
dφdψ

�

þ 2m
ρ2þΞb

dψ2: ð3:13Þ

For ψ ¼ constant slices, it reduces to a metric of constant
negative curvature on a quotient of the hyperbolic spaceH2,
indicating that the horizon is noncompact. In Fig. 3 the
embedding topology for constant ψ slices of the horizon is
displayed for μ ¼ 2π.

2. Conformal boundary

To gain a deeper understanding of the obtained geometry
(3.10), let us here take a look at its conformal boundary,
with the conformal factor l2=r2:

ds2bdry ¼ −dt2 þ lsin2θdtdφþ bcos2θ
Ξb

dtdψ

þ l2cos2θ
Ξb

dψ2 þ blsin2θcos2θ
Ξb

dφdψ

þ l2

Ξbsin2θ
dθ: ð3:14Þ

The coordinate φ is a null coordinate on the conformal
boundary. Moreover, as before we analyze this metric near
the pole θ ¼ 0. Then for small k we have

ds2bdry ¼ −dt2 þ 1

Ξb

�
dk2

4k2
þ 2kdtdφþ bdtdψ þ l2dψ2 þ 2bkdφdψ

�
; ð3:15Þ

which for ψ ¼ constant slices represents an AdS3 written Hopf-like fibration over H2. It means that the pole θ ¼ 0 is
removed from the boundary and is indeed not part of the spacetime.

3. Thermodynamic quantities

For the newly obtained ultra-spinning black hole (3.10), we precisely derived the thermodynamic quantities including
temperature, entropy, and angular velocities on the horizon as well as electrostatic potentials on the horizon as

TH ¼ 2r6þ þ r4þð2l2 þ b2 þ 2qÞ − b2l4

2πrþl2½ðr2þ þ l2Þðr2þ þ b2Þ þ qr2þ�
; SBH ¼ μπ½ðr2þ þ l2Þðr2þ þ b2Þ þ qr2þ�

4rþΞb
;

Ωa ¼
lðb2 þ r2þÞ

ðr2þ þ l2Þðr2þ þ b2Þ þ qr2þ
; Ωb ¼

bðr4þ þ 2r2þl2 þ r2þqþ l4Þ
l2ðr2þ þ l2Þðr2þ þ b2Þ þ ql2r2þ

;

Φ1 ¼ Φ2 ¼
r2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 2mq

p
ðl2 þ r2þÞðb2 þ r2þÞ þ qr2þ

; Φ3 ¼
qlb

ðl2 þ r2þÞðb2 þ r2þÞ þ qr2þ
: ð3:16Þ
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4. Extremality under ultra-spinning limit

To ensure that the extremality condition is preserved
under the ultra-spinning limit for this 5D supergravity
black hole, we similarly explore two different ways as
mentioned in Fig. 2. So, we first obtain the extrem-
ality conditions of the main metric (3.3) with a
horizon at r ¼ r0 using Eq. (3.6) by imposing Δ ¼
0 and THjr¼r0 ¼ 0. We find the following two
conditions,

q ¼ −abþ r20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ l2 þ 2r20

p
l

;

m ¼ 1

2

l4ða2 þ r20Þðb2 þ r20Þ þ r20ðY − a2lÞðY − b2lÞ
r20l

4
;

ð3:17Þ

where Y ¼ abl − r20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2l2 þ 2r20

p
.

Now, we find the extremality conditions of our obtained
ultra-spinning black hole using (3.16),

q ¼ −blþ r20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2ðl2 þ r20Þ

p
l

m ¼ 1

2

l4ðb2 þ r20Þðl2 þ r20Þ þ r20ðYs − l2ðb − lÞÞðYs þ blðb − lÞÞ
r20l

4
; ð3:18Þ

FIG. 3. Horizon embeddings in 5D. Plots show the two-dimensional ψ ¼ const slices horizon (3.12) embedded in R3 as a surface of
revolution. We set μ ¼ 2π, rþ ¼ 0.8, q ¼ 10, and l ¼ 1 for all diagrams, and b ¼ 0.0 (left), b ¼ 0.5 (middle), as well as b ¼ 0.9 (right).
All cases show the topology of a sphere with two punctures.
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where Ys ¼ r20ðlþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2ðl2 þ r20Þ

p
Þ. It is easy to check

that Eq. (3.18) will be achieved by taking the a → l limit on
(3.17). Hence as the previous case, the extremality con-
dition and the ultra-spinning limit commute with each other
for the five-dimensional Uð1Þ3 gauged supergravity class
of black holes.

B. Near horizon geometry

For an extremal solution of an ultra-spinning black hole
(3.10) with a horizon at r ¼ r0, we have found the
extremality conditions (3.18). Then one can write the near
horizon expansion as

Δ ¼ ~Xðr − r0Þ2 þOðr − r0Þ3; ð3:19Þ

where

~X ¼ 2þ 3l2b2

r40
þ 1

l2
ð6r20 þ b2 þ 2qÞ: ð3:20Þ

To obtain the near horizon geometry, we use the coordinate
changes similar to (2.29) as

r ¼ r0ð1þ λr̂Þ; φ ¼ φ̂þΩ0
at̂; ψ ¼ ψ̂ þ Ω0

bt̂;

t ¼ t̂
2πT 00

Hr0λ
; θ ¼ θ̂: ð3:21Þ

After applying the scaling parameter λ → 0, the near
horizon geometry in terms of the vielbeins takes the form
of

ds2 ¼ H2=3
0

ρ20
~X

�
−r̂2dt̂2 þ dr̂2

r̂2

�
þ FðθÞdθ̂2 þ

X2
i¼1

êiêi;

ð3:22Þ

where FðθÞ ¼ H2=3
0

ρ2
0

sin2θΞb
and the vielbeins are

ê1 ¼ α1ê1 þ α2ê2; ê2 ¼ β1ê1 þ β2ê2;

ê1 ¼ dφ̂þ kφr̂dt; ê2 ¼ dψ̂ þ kψ r̂dt; ð3:23Þ

and

kφ ¼ 2l½ðr20 þ b2Þ2 þ qb2�
~X½ðr20 þ l2Þðr20 þ b2Þ þ qr20�r0

; kψ ¼ 2bΞb½ðr20 þ l2Þ2 þ ql2�
~X½ðr20 þ l2Þðr20 þ b2Þ þ qr20�r0

;

α1 ¼ H−2=3
0

ðr20 þ l2 þ qÞ sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20ð1 − Ξbsin2θÞ

p ; α2 ¼ −H−2=3
0

ðr20 þ b2 þ qÞlb sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ20ð1 − Ξbsin2θÞ

p ;

β1 ¼ H−2=3
0

b½ðr20 þ l2Þρ20 þ qr20�sin2θ
r0ρ20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ξbsin2θ

p ; β2 ¼ H−2=3
0

l½ðr20 þ l2Þρ20 þ qr20�cos2θ
r0ρ20Ξb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ξbsin2θ

p : ð3:24Þ

C. Ultra-spinning/CFT description

In order to find the CFT dual of the obtained 5D ultra-
spinning black hole (3.10), as it was done in the previous
section, we can follow the two different paths of Fig. 2. We
first start from the lower path. In (3.22) we represented the
NHEG of an ultra-spinning solution. Also for the current
case we choose the same boundary conditions as in [5],

0
BBBBBB@

Oðr2Þ Oð1Þ Oð1Þ Oð1=rÞ Oð1=r2Þ
Oð1Þ Oð1Þ Oð1=rÞ Oð1=rÞ

Oð1Þ Oð1=rÞ Oð1=rÞ
Oð1=rÞ Oð1=r2Þ

Oð1=r3Þ

1
CCCCCCA
; ð3:25Þ

using the basis ðt̂; φ̂; ψ̂ ; θ̂; r̂Þ. One can then show that the
five-dimensional near horizon geometry (3.22) provides
two copies of commuting Virasoro algebras [35], generated
by a pair of commuting diffeomorphisms:

ζφ ¼ −einφ∂φ − inre−inφ∂r;

ζψ ¼ −einψ∂ψ − inre−inψ∂r: ð3:26Þ

These diffeomorphisms lead us to an asymptotic
symmetry algebra of transformations that satisfy the above
boundary conditions. In [7] a general form for NHEG of
rotating black holes in d ¼ 2nþ 1 dimensions was con-
structed:

ds2 ¼ ΓðyÞ
�
−ρ2dt2 þ dρ2

ρ2

�
þ
Xn−1
α¼1

Fαdy2α þ
Xn−1
i;j¼1

~gij ~ei ~ej;

~ei ¼ dϕi þ kiρdt; ki ¼
1

2πTi
: ð3:27Þ

The NHEG of our new solution is exactly recast in this
form. The metric (3.27) has (n − 1) copies of the Virasoro
algebra. The central charges in this form are given
by [7]
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ci ¼
3

2π
ki

Z
dn−1yα

�
det ~gij

Yn−1
α¼1

Fα

�
1=2

Z
dϕ1…dϕn−1:

ð3:28Þ

Then, for (3.22) we obtain two central charges c1
and c2 associated to diffeomorphisms ∂φ̂ and ∂ ψ̂ , respec-
tively:

c1 ¼
3kφ
8π

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðθÞðα2β1 − α1β2Þ

p
dθdφdψ

¼ 3μl½ðr20 þ b2Þ2 þ qb2�
~XΞbr20

;

c2 ¼
3kψ
8π

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðθÞðα2β1 − α1β2Þ

p
dθdφdψ

¼ 3μb½ðr20 þ l2Þ2 þ ql2�
~Xr20

: ð3:29Þ

We note that the central charges contain the chemical
potential μ, which comes from the compactification of the
new azimuthal coordinate. Then similar to the Uð1Þ4 case,
we can write the first law of thermodynamics in its
extremality limit, appearing as

TdS ¼ −
�
ðΩφ −Ωex

φ ÞdJφ þ ðΩψ −Ωex
ψ ÞdJψ

þ
X3
i¼1

ðΦi − Φex
i dQiÞ þ ðK − KexÞdμ

�
; ð3:30Þ

and the Boltzmann weighting factor for this case reads

e−nR=TR−nφ=Tφ−nψ=Tψ−
P

4

i¼1
Qi=Tt;i ; ð3:31Þ

where nR¼ðE−Ωex
φ JEx−Ωex

ψ Jψ−
P

Φex
i QiÞr0=λ, nφ ¼ Jφ,

and nψ ¼ Jψ . We extract again the Frolov-Thorne
temperatures

TR ≡ THr0
λ

¼ 0;

Tφ ¼ −
∂TH=∂rþ

∂Ωφ=∂rþ

				
ex
¼ 1

2kφ
;

Tψ ¼ −
∂TH=∂rþ

∂Ωψ=∂rþ

				
ex
¼ 1

2kψ
; ð3:32Þ

where Kφ and Kψ are given by (3.24). Ultimately the CFT
entropy using the Cardy formula is computed as

SCFT ¼ π2

3
c1Tφ þ

π2

3
c2Tψ

¼ μπ½ðr2þ þ l2Þðr2þ þ b2Þ þ qr2þ�
4rþΞb

; ð3:33Þ

which is exactly the same as the Bekenstein-Hawking
entropy (3.16).
Now, we examine CFT duality via the upper path of

Fig. 2. The near horizon geometry of the metric (3.3) in the
extremal limit was studied in [7]. One can easily check that
by performing the ultra-spinning technique based on their
result, our calculated NHEG (3.22) will exactly be held. It
means that we can again confirm that the near horizon limit
commutes with the ultra-spinning limit for this 5D black
hole. Hence the CFT dual of theUð1Þ3 gauged supergravity
black hole (3.3) gives us the same result for both the upper
and lower paths of Fig. 2.

IV. DISCUSSION

For better understanding of the physics of gauged
supergravity black holes in large angular momentum, we
have employed the novel ultra-spinning (superentropic)
limit proposed in [12] to generate new exact supergravity
black hole solutions. In particular, we use this simple ultra-
spinning technique for four-dimensional singly spinning
Uð1Þ4 and five-dimensional doubly spinningUð1Þ3 gauged
supergravity black holes. Our obtained black holes for both
cases have an unusual horizon that is noncompact but with
finite area. However, at first glance we see singularities in
the coordinate angles θ ¼ 0; π. We have shown that these
poles are not parts of the spacetime and can be viewed as a
sort of boundary that introduces punctures in the spacetime,
providing a noncompact horizon. In [12,13] it was shown
that a relation between this kind of ultra-spinning limit and
superentropic black holes can be found by exploring the
thermodynamic behavior of the obtained black holes in the
context of extended phase space thermodynamics. In our
upcoming work, we shall study the properties of these
newly obtained ultra-spinning black holes in the extended
phase space to find the range of parameter space, giving us
superentropic black holes.
Also we have shown that the extremality conditions and

the near horizon limit are preserved under the ultra-
spinning limit, demonstrating that they commute with
the ultra-spinning limit. We have also presented the
NHEG of both ultra-spinning gauged black holes despite
the noncompactness of their horizons, possessing an AdS2
sector and a Sd−2 with two punctures. The appearance of
the AdS2 factor in the NHEG prompts us to explore
whether these unusual new solutions exhibit the well-
defined Kerr/CFT correspondence. We have also inves-
tigated Kerr/CFT for both cases. Assuming the Cardy
formula, we have shown that the microscopic entropy of
the dual CFT for both new ultra-spinning gauged
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supergravity black holes in four and five dimensions
precisely agrees with the macroscopic Bekenstein-
Hawking entropy. Recently a formula as a higher-
dimensional generalization of the Cardy formula for the
large energy limit of generic CFT has been presented in
[40], which relates the entropy of a CFT to the vacuum
energy on S1 ×Rd. Now, there is a curiosity to explore:
whether this formula can reproduce the entropy of the ultra-
spinning black holes at a high temperature.
A further direction for our next research will be an

investigation of applying a hyperboloid membrane
limit [15] to these supergravity black holes and their
ultra-spinning versions to generate other new exact
solutions.
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