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Four-dimensional manifolds with changing signature are obtained by taking the large N limit of fuzzy
CP2 solutions to a Lorentzian matrix model. The regions of Lorentzian signature give toy models of closed
universes which exhibit cosmological singularities. These singularities are resolved at finite N, as the
underlying CP2 solutions are expressed in terms of finite matrix elements.
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I. INTRODUCTION

Fuzzy spheres are defined by N × N irreducible matrix
representations of the suð2Þ algebra [1–8]. In a previous
work, [9], we showed that a fuzzy sphere embedded in a
Minkowski background, which we denote by S2;LF , can serve
as a two-dimensional toymodel of a closed noncommutative
cosmology. Noncommutative or matrix cosmologies have
been of interest for some time, and they possess a limit, the
“commutative” limit, where a spacetime manifold is recov-
ered from the matrix configurations [10–18]. In [9], the
commutative limit for S2;LF corresponds to taking N → ∞,
which yields a sphere embedded in Minkowski space. This
“sphere” had several novel features. The curvature com-
puted from the induced metric is not constant and there are
singularities at two fixed latitudes. Also, the induced metric
has changing signature. Signature change is known to be a
possible feature of both classical and quantum gravity
[19–28]. The region bounded by the singular latitudes has
Lorentzian signature, and describes a closed two-
dimensional spacetime. The two singular latitudes behave
as cosmological singularities, which get resolved at finiteN.
The question naturally arises as to whether one can

generalize S2;LF to four-dimensional fuzzy cosmologies. Of
course, a trivial generalization is obtained by taking the
tensor product of two noncommutative spaces, for example
S2;LF × S2F, S

2
F being a fuzzy sphere in a Euclidean back-

ground. Such tensor product spaces appear after extrem-
izing the sum of two bosonic matrix actions, consisting of
Yang-Mills terms, analogous to what appears in the
Ishibashi, Kawai, Kitazawa, and Tsuchiya (IKKT) model
[29], along with cubic terms and mass terms. The results of
[9] can be straightforwardly repeated in this case.
Here, instead,we examine fuzzyCP2 (CP2

F) [7,30–35]. In
order for time to emerge in the largeN limit we embed CP2

F
in a Lorentzian background. This CP2

F results from extrem-
izing a matrix model action, again consisting of a Yang-
Mills term, cubic term and mass term. The large N limit

yields four dimensional manifolds which are, loosely speak-
ing, embeddings ofCP2 in an eight (or greater)-dimensional
Lorentzian target space with a flat metric tensor. Analogous
to the two-dimensional model in [9], the induced metric
tensor on the four-dimensional surface can have changing
signature. Signature changes occur at two three-dimensional
singular surfaces, which define the boundaries between
regions of Euclidean andLorentzian signature. The region of
Lorentzian signature defines a closed spacetime, with the
singular surfaces playing the role of cosmological singu-
larities. A novel feature of these toy universes is that the
cosmological singularities occur at nonzero distance scales,
and that time cannot be defined for smaller distance scales.
As with the two-dimensional models in [9], the singularities
appear only after taking the largeN limit, and so the finiteN
matrix description once again resolves the singularities of
the continuum description.
The outline of this article is the following: We review

CP2 in Sec. II and CP2
F in Sec. III. In Sec. IV we show that

CP2
F solutions result from both Euclidean and Lorentzian

Yang-Mills type-matrix models. A one-parameter family
of deformed CP2

F solutions (which contains the unde-
formed solution) is also found to Lorentzian Yang-Mills
type-matrix model, which requires a mass term, along
with a cubic term, in the action. The large N (or
commutative) limit of these solutions is taken in
Sec. V. There we plot the distance scale versus time in
the comoving frame for the CP2 universes. Concluding
remarks are given in Sec. VI.

II. CP2

To define CP2 one starts with a three-dimensional
complex vector space spanned by z ¼ ðz1; z2; z3Þ, where
zi ∈ C are not all zero, and then makes the identification
of z with γz, for all complex nonzero values of γ. CP2

can equivalently be defined as the space of Uð1Þ orbits on
the unit 5—sphere S5. The latter is spanned by z with
jzj2 ¼ z�i zi ¼ 1, where i is summed from 1 to 3, and a point
on the space of Uð1Þ orbits is feiβz; 0 ≤ β < 2πg. Upon
introducing the following Poisson brackets
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fzi; z�jg ¼ −iδij fzi; zjg ¼ fz�i ; z�jg ¼ 0; ð2:1Þ
one can generate theUð1Þorbits from the 5–sphere constraint

C ¼ z�i zi − 1 ≈ 0 ð2:2Þ
Infinitesimal variations δϵ along an orbit are then

δϵzi ¼ fzi; Cgϵ ¼ −iϵzi δϵz�i ¼ fz�i ; Cgϵ ¼ iϵz�i ; ð2:3Þ
where ε is an infinitesimal parameter.
CP2 is also defined as SUð3Þ=Uð2Þ, i.e., the space of

adjoint orbits of SUð3Þ through λ8, where λα, α ¼ 1; 2;…; 8
are the Gell-Mann matrices, CP2 ¼ fUλ8U†; U ∈ SUð3Þg.
Upon introducing

xα ¼ z̄λαz
jzj2 ; ð2:4Þ

one recovers the suð3Þ Lie algebra from the Poisson bracket
algebra on CP2. Using the commutator ½λα; λβ� ¼ 2ifαβγλγ

we get from (2.1) that

fxα; xβg ¼ 2

jzj2 f
αβγxγ; ð2:5Þ

after imposing the constraint (2.2). xα are functions of z and z̄
which are invariant under z ↔ γz, γ ∈ C, and so they span a
four-dimensional constrained surface, i.e., CP2, in R8.
The constraints on xα are

xαxα ¼ 4

3
dαβγxβxγ ¼ 1

3
xα; ð2:6Þ

where dαβγ are defined from the anticommutator of Gell-
Mann matrices ½λα; λβ�þ ¼ 4

3
δα;β13 þ 2dαβγλγ , 13 being the

3 × 3 identity matrix. The constraints in (2.6) follow from
the expression for xα in (2.4).
The metric on CP2 is given by

ds2E ¼ 4

jzj4 ðjzj
2jdzj2 − jz̄dzj2Þ; ð2:7Þ

where jdzj2 ¼ dz�i dzi and z̄dz ¼ z�i dzi. It is known
as the Fubini-Study metric and is invariant under:
z → γz, dz → dγzþ γdz. The isometry of the metric is
SUð3Þ=Z3, with corresponding transformations: z → Uz;
U ∈ SUð3Þ=Z3. The Fubini-Study metric is recovered from
the embedding (2.4) of CP2 in the R8 target space, where
one assumes a flat Euclidean metric tensor. That is, starting
with the SOð8Þ invariant

ds2E ¼ dxαdxα; ð2:8Þ
and then substituting (2.4), one recovers (2.7).
The metric tensor in (2.7) can be reexpressed in terms of

a pair of complex coordinates ζa ¼ za=z3, a ¼ 1, 2 (away
from z3 ¼ 0), which are invariant under z → γz. Along
with their complex conjugates, they span CP2 when z3 ≠ 0.

In terms of these coordinates, the invariant length (2.7)
becomes

ds2E ¼ 2gab̄dζadζ
�
b ¼

4

ðjζj2 þ 1Þ2 ððjζj
2 þ 1Þjdζj2 − jζ̄dζj2Þ;

ð2:9Þ
where jζj2 ¼ ζ�aζa, jdζj2 ¼ dζ�adζa and ζ̄dζ ¼ ζ�adζa. It is
well known to satisfy the sourceless Einstein equations
with a positive cosmological constant, specifically Λ ¼ 3

2
.

From (2.1), the Poisson brackets are given by

fζa; ζ�bg ¼ −iðjζj2 þ 1Þðζaζ�b þ δabÞ
fζa; ζbg ¼ fζ�a; ζ�bg ¼ 0: ð2:10Þ

Their inverse gives the symplectic two-form

Ω ¼ −
i
2
gab̄dζa∧dζ�b; ð2:11Þ

which is also the Kähler two-form.
The invariant length and Kähler two-form can further-

more be expressed in terms of left-invariant Maurer-Cartan
one forms ωi on SUð2Þ, satisfying dωi þ ϵijkωj∧ωk ¼ 0.
For this take ωi ¼ i

2
Trσiu†du, where u is the SUð2Þ matrix

u ¼ 1

jζj
�

ζ�1 −iζ2
−iζ�2 ζ1

�
ð2:12Þ

and σi are Pauli matrices. One can write

ds2E ¼ 4ðdjζjÞ2
ðjζj2 þ 1Þ2 þ

4jζj2
ðjζj2 þ 1Þ ðω

2
1 þ ω2

2Þ þ
4jζj2

ðjζj2 þ 1Þ2 ω
2
3

ð2:13Þ
and

Ω ¼ −2d
� jζj2
ðjζj2 þ 1Þω3

�
: ð2:14Þ

The isometry of the metric tensor is SUð3Þ=Z3. For any
jζjð≠ 0Þ-slice, the metric tensor and symplectic two-form
are invariant under SUð2Þ ×Uð1Þ=Z2. The latter symmetry
is also present for the manifolds we obtain in Sec. V. (On
the other hand, the SUð3Þ=Z3 isometry is broken for those
manifolds.) The SUð2Þ ×Uð1Þ=Z2 transformations on u
are of the form u → u0 ¼ vueiλσ3 , v ∈ SUð2Þ and λ ∈ R,
which leave ω3 and ω2

1 þ ω2
2 invariant. We can parametrize

the SUð2Þ matrices in (2.12) by Euler angles ðθ;ϕ;ψÞ
according to

ζ1 ¼ eið
ψþϕ
2
Þ cos

θ

2
jζj ζ2 ¼ eið

ψ−ϕ
2
Þ sin

θ

2
jζj; ð2:15Þ

where in order to span all of SUð2Þ, 0 ≤ θ < π, 0 ≤ ψ <
2π and 0 ≤ ϕ ≤ 4π. On the other hand, to parametrize the
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Maurer-Cartan one forms, we only need ϕ to run from 0 to
2π. In terms of the Euler angles, the metric is given by

ds2E ¼ 4ðdjζjÞ2
ðjζj2 þ 1Þ2 þ

jζj2
ðjζj2 þ 1Þ ðdθ

2 þ sin2θdϕ2Þ

þ jζj2
ðjζj2 þ 1Þ2 ðdψ þ cos θdϕÞ2: ð2:16Þ

The Killing vectors ka; a ¼ 1;…; 4, generating the
SUð2Þ × Uð1Þ=Z2 isometry group on any jζjð≠ 0Þ-slice
are expressed in terms of the Euler angles according to

k1 � ik2 ¼ e�iϕ

� ∂
∂θ � i

�
cot θ

∂
∂ϕ − csc θ

∂
∂ψ

��

k3 ¼
∂
∂ϕ k4 ¼

∂
∂ψ ð2:17Þ

In Sec. V A we shall replace the eight-dimensional
Euclidean target space by an eight-dimensional Minkowski
space to get an alternative metric on “CP2.”Before doing this
we first review CP2

F, the fuzzy analogue of CP2 in Sec. III.

III. CP2
F

Loosely speaking, CP2
F is the quantization of CP2. For

this one replaces the complex coordinates zi and z�i , i ¼ 1,
2, 3, by operators a†i and ai, [7,36] satisfying the commu-
tation relations of raising and lowering operators

½ai; a†j � ¼ δij ½ai; aj� ¼ ½a†i ; a†j � ¼ 0; ð3:1Þ
acting on some Hilbert space Hn. In analogy with the
5–sphere constraint (2.2), one fixes the eigenvalue of the
total number operator a†i ai to some positive integer value n.

This restrictsHn to be spanned by the N ¼ ðnþ2Þ!
2n! harmonic

oscillator states fjn1; n2; n3 >g, ni ¼ 0; 1; 2;…, where
n ¼ n1 þ n2 þ n3. The action of the raising and lowering
operators is incompatible with this restriction, so a†i and ai
cannot generate the algebra of CP2

F. One can instead work
with functions of the operators a†i aj, which do have a well-
defined action on theN—dimensional Hilbert spaceHn. Of
course, a†i ai acts trivially on Hn. The remaining operators,
a†i aj − 1

3
δija

†
kak, generate SUð3Þ and are the noncommu-

tative analogues of (2.4), which we can also write as

Xα ¼ 1

n
a†i λ

α
ijaj; α ¼ 1; 2;…; 8. ð3:2Þ

From them we recover the suð3Þ Lie-algebra

½Xα; Xβ� ¼ 2i
n
fαβγXγ ð3:3Þ

Xα acting on Hn generate an irreducible representation of
SUð3Þ, which is uniquely specified by the values of the
quadratic and cubic Casimirs, XαXα and dαβγXαXβXγ . They

are contained in the following fuzzy analogues of the
quadratic CP2 constraints (2.6),

XαXαjHn
¼ 4

3
þ 4

n
ð3:4Þ

dαβγXαXβjHn
¼

�
1

3
þ 1

2n

�
XγjHn

; ð3:5Þ

in addition to

fαβγXαXβjHn
¼ 6i

n
XγjHn

: ð3:6Þ

The quadratic constraints (3.4)–(3.6) tend towards the
commutative constraints (2.6) in the large n (or equiva-
lently, large N) limit. (3.4) assigns a value to the quadratic
Casimir, while for the cubic Casimir we then get

dαβγXαXβXγjHn
¼ 4

9
þ 2

n
þ 2

n2
: ð3:7Þ

The CP2
F algebra is the algebra of N × N matrices which

are polynomial functions of Xα, satisfying the constraints
(3.4)–(3.6). The standard choice for the Laplace operator
on CP2

F is ΔE ¼ ½Xα; ½Xα;…��.
Star products for CP2

F are known [36,37]. Using a star
product, denoted by ⋆, the CP2

F algebra is mapped to a
noncommutative algebra of functions on CP2. So for
example, from (3.3), the images (or “symbols”) Xα of
the operators Xα under the map satisfy the star commutator:

Xα⋆Xβ − Xβ⋆Xα ¼ 2i
n
fαβγX γ: ð3:8Þ

In the commutative limit n → ∞, the star product of
functions is required to reduce to the pointwise product
(at zeroth order in 1=n), and the star commutator of
functions reduces to i times the Poisson bracket of
functions (at first order in 1=n). So for example, the left-
hand side of (3.8) goes to i

n fXα;X βg as n → ∞, and in that
limit, Xα satisfy the same Poisson bracket relations as xα in
(2.5). Therefore χα can be identified with the CP2 embed-
ding coordinates in the large n limit.

IV. CP2
F SOLUTIONS TO MATRIX MODELS

A. Euclidean background

CP2
F is easily seen to be a solution of a Yang-Mills

matrix model with a Euclidean background metric. For this
we introduce M ×M matrices Yα, α ¼ 1;…; 8, whose
dynamics is governed by the action [31]

SEðYÞ ¼
1

g2
Tr

�
−
1

4
½Yα; Yβ�2 þ 2

3
i ~αfαβγYαYβYγ

�
; ð4:1Þ

where ~α is a real coefficient. The first term in the trace
defines the Yang-Mills matrix action (which can be trivially
extended to ten dimensions) appears in the IKKT matrix
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model [29]. It is invariant under rotations in the eight-
dimensional Euclidean space. This SOð8Þ symmetry is
broken by the second term, which instead is invariant under
the adjoint action of SUð3Þ, with infinitesimal variations
δYα ¼ 2ifαβγYβϵγ , for infinitesimal parameters ϵα. Both
terms are invariant under the common subgroup of rota-
tions in the α ¼ 1, 2, 3 directions, as well as translations in
the eight-dimensional Euclidean space.
The action (4.1) has extrema at

½½Yα; Yβ�; Yβ� þ i ~αfαβγ½Yβ; Yγ� ¼ 0: ð4:2Þ
CP2

F is a solution to (4.2). That means we identify Yα with
N × N matrix representations of the Xα, defined in the
previous section. For this we also need to make the
identification ~α ¼ 2=n, n being an integer such that

N ¼ ðnþ2Þ!
2n! ≤ M.

B. Lorentzian background

The matrix action (4.1) was written in an eight-dimen-
sional Euclidean ambient space. Here we change the
ambient space to eight-dimensional Minkowski space, with
metric tensor η ¼ diagð1; 1; 1; 1; 1; 1; 1;−1Þ. In order to
find nontrivial solutions we also add a quadratic term to the
action, which now reads

SMðYÞ ¼
1

g2
Tr

�
−
1

4
½Yα; Yβ�½Yα; Yβ� þ

2

3
i ~αfαβγYαYβYγ

þ β

2
YαYα

�
; ð4:3Þ

where β is real and indices raised and lowered using η.
The action is an extremum when

½½Yα; Yβ�; Yβ� þ i ~αfαβγ½Yβ; Yγ� þ βYα ¼ 0: ð4:4Þ
A simple solution Yα ¼ Ȳα to (4.4) is CP2

F, now written
in a Lorentzian background:

Ȳα ¼ n ~αXα: ð4:5Þ
Here ~α and β are constrained by

β ¼ −6~α2: ð4:6Þ
For any fixed n, which defines a matrix representation, this
solution is expressed in terms of only one free parameter,
which sets an overall scale. This CP2 solution is not
invariant under all of SUð3Þ, since general transformations
do not preserve the timelike direction of the background
metric. On the other hand, the timelike direction is
preserved under the adjoint action of the SUð2Þ ×Uð1Þ
subgroup. In order for the Laplace operator associated with
this solution to be consistent with the eight-dimensional
Minkowski metric tensor η, we should take it to be
ΔM ¼ ½Yα; ½Yα;…��, rather than the standard Laplace
operator on CP2

F.

A more general solution to (4.4) which is also invariant
under SUð2Þ ×Uð1Þ is

Ȳi ¼ nρ
2
Xi; i ¼ 1; 2; 3

Ȳa ¼ v
nρ
2
Xa; a ¼ 4; 5; 6; 7

Ȳ8 ¼ w
nρ
2
X8 ð4:7Þ

where the parameters v; w; ρ; ~α and β are constrained by

v ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ þ 5þ w − w2 − w3

1þ w

s

~α

ρ
¼ 5þ wþ 7w2 − w3 − γ

4ð1þ 4w − w2Þ
β

ρ2
¼ −

3ð1þ 15w − 8w3 − w4 þ w5 þ ð1þ 2w − w2ÞγÞ
4ð1þ wÞð1þ 4w − w2Þ

ð4:8Þ

and

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − 6wþ 7w2 þ 4w3 − 17w4 þ 2w5 þ w6

p
: ð4:9Þ

For any fixed n, this solution is determined by two
parameters ρ and w, the former of which sets the overall
scale. Again, here we assume the Laplace operator to be
ΔM ¼ ½Yα; ½Yα;…��. The solution is a one-parameter defor-
mation of the previous CP2

F solution, given by (4.5) and
(4.6), and we can regard w as the deformation parameter.
The previous solution is recovered for w ¼ 1, since then
(4.8) gives v ¼ 1, ~α ¼ ρ

2
and β ¼ − 3

2
ρ2. v is real and finite

for the domain −1 < w≲ 1.32247. v tends towards the
lower bound ≈:493295 as w goes to the upper limit
≈1.32247, while v is singular in the limit w → −1. v
versus w is plotted for this domain in Fig. 1.

FIG. 1. v versus w is plotted for the one-parameter family of
deformed CP2

F solutions given in (4.7) and (4.8).
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V. COMMUTATIVE LIMIT

The discussions in Sec. IV assume N × N matrix repre-
sentations for theCP2

F solution (4.5), (4.6), and the deformed
CP2

F solution (4.7)–(4.9). Here we take the N → ∞ limit of
these solutions to reveal different spacetime manifolds. We
begin with the undeformed CP2

F solution (4.5), (4.6).

A. CP2 in a Lorentzian background

For convenience we first fix the scale of the solution (4.5),
(4.6) by setting ~α ¼ 1=n and β ¼ −1=n2. Thus Ȳα ¼ Xα, for
any n. For some star product we can introduce their corre-
sponding symbols Ȳα, and so Ȳα ¼ Xα, where Xα satisfies
the star commutator (3.8). Then in the n → ∞ limit, Ȳα obey
the Poisson brackets (2.5), and constraints of the form (2.6). In
the limit, Ȳα canbe expressed in termsof complex coordinates
z as in (2.4), which once again span a four-dimensional
manifold.However, now themanifold, strictly speaking, is not
CP2. While we recover theCP2 constraints (2.6) and (2.5) in
the commutative limit, the induced metric on the manifold
cannot be the Fubini-Study metric (2.7). The latter followed
from the Euclidean backgroundmetric tensor onR8, given in
(2.8). Now the embeddingmatrices Ȳα, and their symbols Ȳα,
span eight-dimensional Minkowski space. Moreover, since
the Laplace operator for the matrix solution (4.5) is con-
structed using the eight-dimensionalMinkowskimetric tensor
η, the inducedmetric tensor on the surface that is recovered in
the n → ∞ limit of the solution should also be constructed
using η. The induced metric tensor on the surface is thus
computed from the invariant length for the eight-dimensional
Minkowski space,

ds2M ¼ dȲαdȲα ¼ ds2E − 2ðdX8Þ2; ð5:1Þ
where we assume Ȳα ¼ Xα. Then by writing Xα ¼ z̄λαz

jzj2 , one
gets corrections to the Fubini-Study metric

ds2M ¼ ds2E −
2ðdðz̄λ8zÞÞ2

jzj4

−
2ðz̄λ8zÞ2ðdjzj2Þ2 − djzj4dðz̄λ8zÞ2

jzj8 : ð5:2Þ

In terms of the coordinates ζa ¼ za=z3, a ¼ 1, 2, which are
invariant under z → γz, we get

ds2M ¼ ds2E −
24jζj2

ðjζj2 þ 1Þ4 ðdjζjÞ
2

¼ 4
ðjζj2 − 1Þ2 − 2jζj2

ðjζj2 þ 1Þ4 ðdjζjÞ2 þ 4jζj2
ðjζj2 þ 1Þ ðω

2
1 þ ω2

2Þ

þ 4jζj2
ðjζj2 þ 1Þ2 ω

2
3; ð5:3Þ

where the left-invariant one formsωi were defined previously
in Sec. II.

The metric tensor obtained here differs from that onCP2,
and furthermore is not Kähler. On the other hand, the
symplectic two-form remains unchanged, i.e. it is (2.14).
SUð3Þ=Z3 is no longer an isometry. Instead, the metric
tensor (5.3) and symplectic two-form are invariant under
SUð2Þ × Uð1Þ=Z2, generated by the Killing vectors (2.17).
A novel feature is that the metric tensor has variable
signature. It has Euclidean signature for 0 < jζj2 < 2 −ffiffiffi
3

p
and jζj2 > 2þ ffiffiffi

3
p

, and Lorentzian signature for
2 −

ffiffiffi
3

p
< jζj2 < 2þ ffiffiffi

3
p

. The metric tensor, along with
the Ricci scalar, is singular at the boundaries jζj2 ¼ 2� ffiffiffi

3
p

between the regions, and so the boundaries define physical
singularities. [There are also coordinate singularities
located at jζj ¼ 0 and jζj → ∞, just as is the case with
the CP2 metric tensor given by (2.13).] Away from the
singularities, the manifold is spatially homogeneous and
axially symmetric at each point, and the invariant length
(5.3) has a form which is similar to that of a Taub-NUT
space (more specifically, the Taub region of Taub-NUT
space since the coefficient of ω2

3 is positive).
We now restrict to the Lorentzian region 2 −

ffiffiffi
3

p
<

jζj2 < 2þ ffiffiffi
3

p
. jζj is a time parameter in this region, and

one has the following properties:
(a) There are timelike geodesics which originate at the

initial singularity, which we choose to be at

jζj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ffiffiffi
3

pp
, and terminate at the final singularity

at jζj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

3
pp

. The elapsed proper time along a
geodesic with ω1 ¼ ω2 ¼ ω3 ¼ 0 can be written as a
function of jζj

τðjζjÞ ¼ 2

Z jζjffiffiffiffiffiffiffiffiffi
2−

ffiffi
3

pp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−r4 þ 4r2 − 1

p

ðr2 þ 1Þ2 dr ð5:4Þ

The the total proper time from the initial singularity to

the final singularity is τð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

3
pp

Þ ≈ :672.
(b) From the volume of any time slice, which can be

constructed from the determinant of the metric, 3gjjζj,
on a time slice, one can assign a spatial distance scale
a as a function of jζj,

aðjζjÞ3 ¼
Z ffiffiffiffiffiffiffiffiffiffi

3gjjζj
q

dθdϕdψ ¼ 8π2jζj3
ðjζj2 þ 1Þ2 ; ð5:5Þ

where the integration is done on the time slice,
which can be parametrized by the Euler angles in
(2.12). A novel feature of this spacetime is that
the distance scale is nonvanishing at the time of the

initial and final singularities, corresponding to jζj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ffiffiffi
3

pp
and jζj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

3
pp

, respectively,

að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ffiffiffi
3

pq
Þ ≈ 1.896 að

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
3

pq
Þ ≈ 2.940:
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A plot of the normalized scale a=ajτ¼0 as a function of
the time τ from τ ¼ 0 (the time of the initial singularity)
to the time of the final singularity appears in Fig. 3 (solid
curve). It is seen to grow and deaccelerate.

B. Deformed CP2 in a Lorentzian background

We can obtain a one-parameter family of spacetime
manifolds, including the one obtained in the above sub-
section, by taking the commutative limit of the deformed
CP2

F solution (4.7)–(4.9). Here it is convenient to set
ρ ¼ 2=n. Then the symbols Ȳα of the matrices Ȳα for the
solution in (4.7) satisfy

Ȳi ¼ X i; i ¼ 1; 2; 3

Ȳa ¼ vXa; a ¼ 4; 5; 6; 7

Ȳ8 ¼ wX 8; ð5:6Þ

where Xα again denote the symbols of the CP2
F matrices.

Recall v is real and finite for the domain−1 < w≲ 1.32247,
while w is given in (4.8) and plotted in Fig. 1. In the n → ∞
limit, we shall keep v and w fixed, which implies as before
that ~α and β vanish in the limit, ~α ∼ 1=n and β ∼ 1=n2. The
invariant length in the eight-dimensional Minkowski space
now reads

ds2M ¼ dȲαdȲα ¼ v2ds2E þ ð1 − v2ÞðdX iÞ2
− ðw2 þ v2ÞðdX8Þ2; ð5:7Þ

where we substituted the commutative solution (5.6). Using
the identities

ðdX iÞ2 ¼ 4jζj4
ð1þ jζj2Þ2 ðω

2
1 þ ω2

2Þ þ
4jζj2

ð1þ jζj2Þ4 ðdjζjÞ
2

ðdX8Þ2 ¼ 12jζj2
ð1þ jζj2Þ4 ðdjζjÞ

2; ð5:8Þ

which follows fromXα ¼ z̄λαz
jzj2 and the previous definition of

the left-invariant one forms ωi, we now get

ds2M ¼ 4

�
v2ðjζj2 − 1Þ2 þ ð1 − 3w2Þjζj2

ð1þ jζj2Þ4
�
ðdjζjÞ2

þ 4jζj2ðv2 þ jζj2Þ
ð1þ jζj2Þ2 ðω2

1 þ ω2
2Þ þ

4v2jζj2
ðjζj2 þ 1Þ2 ω

2
3:

ð5:9Þ

This expression reduces to (5.3) when w ¼ v ¼ 1. The
symplectic two-form is again given by (2.14).
As in the previous case, the metric tensor and symplectic

two-form are invariant under SUð2Þ × Uð1Þ=Z2, generated
by the Killing vectors (2.17). The induced metric tensor
now has physical singularities at jζj ¼ jζ�j, where

jζ�j2 ¼
2v2 þ 3w2 − 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3w2 − 1Þð4v2 þ 3w2 − 1Þ

p
2v2

;

ð5:10Þ

which using (4.8) are functions of only w. The singularities
are plotted as a function of w in Fig. 2. There are two
singularities for the domains −1 > w > − 1ffiffi

3
p and

1ffiffi
3

p < w≲ 1.32247, one singularity (at jζj ¼ 1) for

w ¼ � 1ffiffi
3

p , and none for − 1ffiffi
3

p < w < 1ffiffi
3

p . As before, they

define the boundaries between regions of Euclidean sig-
nature and Lorentzian signature. (The regions of Lorentzian
signature are shaded in the figure.) For the domain

FIG. 2. Singularities at jζj2 ¼ jζ�j2 are plotted as a function
of w using (5.10). They define boundaries between regions
of Lorentzian signature (shaded) and Euclidean signature
(unshaded).

FIG. 3. a=ajτ¼0 as a function of the time τ from τ ¼ 0 (the time
of the initial singularity) to the time of the final singularity for
four different choices for w (and hence v): w ≈ 1.3225 (large
dashed curve), w ¼ 1.25 (dot-dashed curve), w ¼ 1 (solid curve)
and w ¼ .75 (small dashed curve).
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− 1ffiffi
3

p < w < 1ffiffi
3

p , the metric tensor in (5.9) has a Euclidean

signature for all jζj2.
Once again there are timelike geodesics which originate

at the initial singularity, which we choose to be at
jζj ¼ jζ−j, and terminate at the final singularity at
jζj ¼ jζþj. The generalization of the expression (5.4) for
the elapsed proper time along a geodesic with ω1 ¼ ω2 ¼
ω3 ¼ 0 can be written as

τðjζjÞ ¼ 2

Z jζj

jζ−j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3w2 − 1Þr2 − v2ðr2 − 1Þ2

p
ðr2 þ 1Þ2 dr: ð5:11Þ

The generalization of the expression (5.5) for the volume of
a jζj-slice, which we again denote by aðjζjÞ3, is

aðjζjÞ3 ¼
Z ffiffiffiffiffiffiffiffiffiffi

3gjjζj
q

dθdϕdψ ¼ 8π2vjζj3ðjζj2 þ v2Þ
ðjζj2 þ 1Þ3 :

ð5:12Þ

We restrict to the region of Lorentzian signature for four
different choices for w (and hence v), including the case
w ¼ v ¼ 1 of the previous subsection, in Fig. 3. There we
plot the normalized scale a=ajτ¼0 as a function of the time
τ, starting from τ ¼ 0 (the time of the initial singularity) to
the time of the final singularity. In all cases the distance
scale a is nonvanishing at the time of the initial and final
singularities, and the scale grows and deaccelerates. The
largest and longest expansion occurs when w takes its
maximum value of ∼1.3225, while the spacetime only
exists for an instant for w ¼ � 1ffiffi

3
p .

VI. CONCLUDING REMARKS

We have constructed four-dimensional manifolds
by taking the N → ∞ of solutions to Lorentzian matrix
equations (4.3). The metric tensor and symplectic two-form
on the manifold are invariant under SUð2Þ ×Uð1Þ=Z2. The
manifolds, in general, have changing signature. We get toy
models of spacetime after restricting to regions with
Lorentzian signature, complete with initial and final cosmo-
logical singularities. The metric tensor resembles that of the
Taub region of Taub-NUT space. In all cases, the distance
scale grows and deaccelerates as shown in Fig. 3, which
clearly does not give a realistic picture of our universe.
Many other solutions of the Lorentzian matrix equa-

tions (4.3) are possible. On the other hand, not all solutions
may have a well defined commutative (or large N) limit.
One such example is

Ȳi ¼ −nð2þ
ffiffiffi
5

p
ÞXi; i ¼ 1; 2; 3

Ȳa ¼ −n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
29þ 13

ffiffiffi
5

pq
Xa; a ¼ 4; 5; 6; 7

Ȳ8 ¼ nX8 ð6:1Þ

where again Xα is defined in (3.2). In this case both ~α

and β are fixed, ~α ¼ 2
19
ð10 − ffiffiffi

5
p Þ, β ¼ − 24

19
ð163þ 73

ffiffiffi
5

p Þ.
Again, the dimension of the representation is N ¼ ðnþ2Þ!

2n! .
Now the only free parameter is n, and the solution is ill-
defined when n → ∞ and so there is no commutative limit.
Upon modifying the matrix action (4.3), in particular the
cubic term, it should be possible to find solutions asso-
ciated with other noncommutative geometries, which may
or may not have a commutative limit. One possibility is the
fuzzy four-sphere embedded in a Lorentzian background.
Many other issues can be explored. Among them are: the

question of stability for the various classical matrix
solutions, the role played by the inclusion of fermionic
degrees of freedom in the matrix model, and the compu-
tation of quantum effects. With regard to fermions, we note
that supersymmetry, in addition to translation symmetry, is
explicitly broken by the presence of the quadratic term in
the action (4.3). Of course, it is also of interest to investigate
whether a more physical cosmology can be found amongst
the solutions of this, or related, matrix models. Since a
compact coset space necessarily implies a closed spacetime
cosmology, to get an open universe one proposal is to start
with a noncompact noncommutative coset space. One
expects matrix representations then to be infinite-dimen-
sional, and although one cannot then takeN → ∞, it should
be possible to define an alternative commutative limit in
this case. A striking feature of the spacetimes recovered in
Sec. V is that initial singularity occurs when the universe
has a nonzero distance scale aðjζ−jÞ. This distance scale
should be greater than the Planck length since Planck scale
effects are washed out in the continuum limit. Time cannot
be defined for distance scales smaller than aðjζ−jÞ. If this
feature, i.e., that the universe begins with a nonzero spatial
size, can be implemented in a realistic cosmology, then it
may not be necessary to consider the very early universe,
and perhaps, one can even avoid having an inflationary era.
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