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Using Dirac’s method for the quantization of constrained systems QED is canonically quantized in the
front form in a gauge which is the light-front analog of the Weyl gauge. From the obtained vacuum wave
functional the spatial Wilson loop is calculated. The result known from the canonical instant-form
quantization or from the covariant path integral quantization is found only if the static limit xþ → 0 is taken
in a specific order. The same ambiguity is also found in the static photon propagator in coordinate space.
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I. INTRODUCTION

There are five basically different forms of relativistic
dynamics, which cannot be transformed into each other by
a Lorentz transformation [1]. They correspond to different
subgroups of the Poincaré group and are defined by
different parametrizations of space-time; i.e. they differ
in which coordinate is considered as “time” in the study of
the evolution. From these five different forms so far only
three have been exploited in relativistic quantum field
theory [2]. These are (i) the instant form, which is the usual
one where time is x0, (ii) the front form, where time is given
by the light-cone variable xþ ¼ 1ffiffi

2
p ðx0 þ x3Þ, i.e. surfaces

of constant time are given by tangent planes to the light
cone and (iii) the point form, where time is the proper time
of a physical object, i.e. the hypersurface of constant time is
given by the hyperboloid xμxμ ¼ const > 0 with x0 > 0.
The choice of the quantization hypersurface of constant

time is restricted by microcausality in the sense that a light
signal emitted from any point of the hypersurface of
constant time must not cross the hypersurface. This con-
dition is fulfilled for the instant form and the point form
while the light-front (LF) hypersurface touches the light
cone. This is not a real problem since a signal carrying
actual information moves with the group velocity which
is always smaller than the phase velocity given by the
speed of light. Hence, points on the light cone cannot
communicate.
According to the different parametrizations of space-

time, there are different forms of Hamiltonian dynamics
and thus different forms of canonical quantization. Most
investigations in quantum field theory have been carried out
in the instant-form quantization, which is the usual one [3].
Little work has been done so far within the point-form
quantization, but this method has recently been success-
fully used to describe hadrons within a constituent quark
picture [4]. The front form arose in the study of deep
inelastic processes and has facilitated the formulation of the
parton model, for a review see e.g. Ref. [5]. The front-form
quantization has also proved advantageous in superstring
theory [6]. Recently a semiclassical approximation within

the light-front quantization of QCD has been proposed,
which results in a LF wave equation of hadrons which is
equivalent to the equation of motion of spin modes on anti–
de Sitter space [7,8].
The front-form dynamics has certain advantages over the

instant-form dynamics. The maximal number of generators
(which is 7) of the Poincaré algebra are kinematic, i.e.
independent of the interaction, in the LF dynamics.
Another simplification in the LF dynamics arises from
the energy-momentum dispersion relation. For a particle
with mass m and 4-momentum p it is given in the instant-
form dynamics by the irrational expression

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
; ð1Þ

while in the front-form dynamics it reads

pþ ¼ m2 þ p2⊥
2p−

: ð2Þ

It correlates the sign of pþ and p−: positivity and finiteness
of the LF energy pþ of a free massive particle requires
p− > 0. Zero modes p− ¼ 0 can occur only for massless
particles at zero transverse momentum p⊥ ¼ 0. Except for
these zero modes the vacuum is the only state with p− ¼ 0.
Since p− is kinematic, i.e. independent of the interaction, it
is preserved at each interaction vertex and the vacuum
cannot mix with the states with p− > 0. As a consequence
in a Feynman diagrammatic expansion of the vacuum state,
loop graphs with constituents with positive p− cannot occur
and the LF vacuum of the interacting theory is the trivial
vacuum of the free theory. However, this argument ignores
possible zero modes.1

In Yang-Mills theory, for example, the LF vacuum
cannot be that of the noninteracting theory, which is the
theory of free photons. This becomes evident when one
considers the Wilson loop, which behaves differently in the

1For further discussions on the LF vacuum see e.g.
Refs. [5,7,9].
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free and in the interacting theory (perimeter vs area law).
The Wilson loop is the crucial observable of the vacuum of
a gauge theory since it represents an order parameter.
Furthermore, from this quantity the static potential between
two opposite point charges can be extracted. The QCD
potential is linearly rising while the potential of the free
theory, QED, is the familiar Coulomb potential.
The Wilson loop is a gauge-invariant quantity, which

should be the same in any gauge and in any quantization
scheme. It is quite astonishing that the Wilson loop has not
yet been calculated in the LF quantization.2 To fill this gap
is the aim of the present paper. We will calculate the spatial
Wilson loop in QED in LF quantization. The calculation of
the Wilson loop in LF quantization is more involved than in
the usual canonical instant-form quantization, since in the
former case even in QED the gauge fields at different space-
time points do not commute, so that the path ordering
becomes nontrivial. We will show that for the spatial
Wilson loop in light-front quantization the same result as
in other quantization schemes is obtained provided the
static limit xþ → 0 is taken in a specific way. The same
ambiguity arises also in the evaluation of the static photon
propagator in coordinate space.
The organization of the rest of the paper is as follows: In

the next section we redo the canonical quantization of (the
photon sector of) QED in the light-front quantization in a
gauge which is convenient for the evaluation of the spatial
Wilson loop. In Sec. III we calculate the photon propagator,
which is then used in Sec. V to calculate the spatial Wilson
loop. For sake of comparison we sketch in Sec. IV the
evaluation of and quote the result for the Wilson loop in
QED in the usual path integral and also in (instant-form)
canonical quantization. Some concluding remarks are given
in Sec. VI.

II. LIGHT-FRONT QUANTIZATION OF QED

Below we carry out the quantization of QED on the light
front using Dirac’s method for the quantization of con-
strained systems [2,12]. The quantization of QED in the LF
form has been carried out before, see e.g. Refs. [13–15].3
Here we redo the quantization in a different gauge [see
Eq. (27)] which is convenient for the evaluation of the
Wilson loop.
The usual canonical quantization in the instant form

starts fromWeyl gauge A0 ¼ 0, which fixes the gauge up to
time-independent gauge transformations. The latter are
then conveniently fixed by imposing the Coulomb gauge
∇ · A ¼ 0, which is a physical gauge since the remaining

transversal components of the gauge field are the gauge-
invariant degrees of freedom. For our purpose it turns out to
be more convenient to use the light-cone analogs of the
Weyl gauge and the axial gauge A3 ¼ 0.
We use the following light-cone variables:

x� ¼ 1ffiffiffi
2

p ðx0 � x3Þ: ð3Þ

In the front form xþ serves as time and x− is called the
longitudinal coordinate. Together with the transversal
coordinates xi¼1;2 the light-cone variables form the 4-vector
in Minkowski space xμ ¼ fxþ; x1; x2; x−g. In these varia-
bles the metric tensor, defined by ðdsÞ2 ¼ gμνdxμdxν, reads

gμν ¼

0
BBB@

0 0 0 1

0 −1 0 0

0 0 −1 0

1 0 0 0

1
CCCA ¼ gμν ð4Þ

from which follows the relations a� ¼ a∓ for any
4-vector aμ. The usual scalar product reads in the light-
cone variables

a · b≡ aμbμ ¼ aþbþ þ a−b− − a⊥ · b⊥; ð5Þ

where a⊥ ¼ a1e1 þ a2e2 denotes the projection of aμ onto
the transverse plane. For the derivatives with respect to the
light-cone variables x� we have

∂� ≡ ∂
∂x� ¼ 1ffiffiffi

2
p ð∂0 � ∂3Þ: ð6Þ

A. Classical Hamiltonian dynamics

We rewrite the QED Lagrangian (with jμ being an
external source)

L ¼ −
1

4
FμνFμν − Aμjμ; Fμν ¼ ∂μAν − ∂νAμ ð7Þ

in the light-cone variables fxμg ¼ fxþ; x1; x2; x−g defined
by Eq. (3)

L ¼ 1

2
F2þ− þ FþiF−i −

1

4
F2
ij − ðjþAþ þ j−A− þ jiAiÞ:

ð8Þ

Here and in the following we use i, j, k, l ¼ 1, 2 to label the
transverse dimensions. In the Hamiltonian formulation the
fields Aμ are considered as coordinates and the conjugate
momenta are defined by

2The Wilson loop in LF quantization should not be mixed up
with a Wilson loop containing lightlike line segments [10] or with
a Wilson loop in the usual instant form (equal-time) quantization
using light-cone gauge [11].

3For the front-form quantization of QCD see e.g.
Refs. [5,14,16,17].
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Πμ ¼
∂L

∂ð∂þAμÞ : ð9Þ

From Eq. (8) we find for the momenta

Πþ ¼ Fþ−; Π− ¼ 0; Πi ¼ Fi−: ð10Þ

The classical Hamiltonian density of QED

H ¼ Πμ∂þAμ − L ð11Þ

is then obtained as

H ¼ 1

2
Π2þ þ 1

2
B2 − A−ð∂þΠþ þ ∂kΠk − j−Þ

þ jþAþ þ jiAi; ð12Þ

where

B ¼ 1

2
ϵijFij ð13Þ

is the component of the magnetic field perpendicular to
the 1-2–plane. The momentum Πþ can be expressed in
terms of the velocity ∂þAþ so Aþ is a regular dynamical
coordinate. In contrast, the momenta Π− and Πi cannot
be expressed in terms of the velocities ∂þAμ¼−;i, indicating
that the corresponding coordinates A−, Ai are not dynami-
cal but give rise to the primary constraints

φ1 ≔ Π−¼! 0 φ2i ≔ Πi − Fi−¼! 0: ð14Þ

A constraint is called first class if it has a vanishing Poisson
bracket with all constraints (including itself), otherwise it is
called second class. With the usual definition of the equal-
time Poisson brackets satisfying

fAμðxÞ;ΠνðyÞg ¼ δμνδðx; yÞ;
δðx; yÞ ¼ δðx− − y−Þδðx⊥; y⊥Þ ð15Þ

we find from (14)

fφ1ðxÞ;φ1ðyÞg ¼ 0;

fφ1ðxÞ;φ2iðyÞg ¼ 0;

fφ2iðxÞ;φ2jðyÞg ¼ −2δij∂x
−δðx; yÞ; ð16Þ

so that φ1 is first class while the φ2k are second class.
The constraints (14) have to be fulfilled at all times xþ,

i.e. they have to persist during the time evolution generated
by the total Hamiltonian function

HT ¼
Z

dx−
Z

d2x⊥HTðxÞ ð17Þ

with

HTðxÞ ¼ HðxÞ þ umðxÞφmðxÞ; ð18Þ

where the umðxÞ are Lagrange multiplier fields and the
summation index m runs over all primary constraints. This
leads to the condition

∂þφm ≡ fφmðxÞ; HTg ¼! 0: ð19Þ

For a first-class constraint this condition may be nontrivial
and then results in a secondary constraint ∂þφmðxÞ ¼ 0,
while for a second-class constraint this condition can be
always fulfilled by choosing the Lagrange multiplier field
umðxÞ appropriately. For the second-class constraints
φ2iðxÞ [Eq. (14)] we find

∂þφ2iðxÞ ¼ fφ2iðxÞ; HTg

¼ 1

2
ϵij∂jBðxÞ − ∂iΠþðxÞ − jiðxÞ

þ 2∂−u2iðxÞ ¼ 0; ð20Þ

which represents an equation for the Lagrange multiplier
field u2iðxÞ. For the first-class constraint φ1 we find using
Eq. (16)

∂þφ1ðxÞ ¼ fφ1ðxÞ; HTg
¼ ∂þΠþðxÞ þ ∂iΠiðxÞ − j−ðxÞ ≕ φ3ðxÞ: ð21Þ

Since this expression is not a priori zero, it defines a
new (secondary) constraint φ3ðxÞ, which represents
Gauss’s law. One easily convinces oneself that this secon-
dary constraint is first class,

fφ1ðxÞ;φ3ðyÞg ¼ 0;

fφ2iðxÞ;φ3ðyÞg ¼ 0;

fφ3ðxÞ;φ3ðyÞg ¼ 0: ð22Þ

Actually this constraint could have already been read off
from the Hamilton function (12) where the expression (21)
is multiplied by the Lagrange multiplier field A−ðxÞ, which
has no kinetic term. The first-class secondary constraint
φ3ðxÞ [Eq. (21)] has to be added to the total Hamiltonian
(17) with an arbitrary Lagrange multiplier field u3ðxÞ
resulting in the extended Hamiltonian

HE ¼ HT þ
Z

d3xu3ðxÞφ3ðxÞ≡
Z

d3xHE: ð23Þ

The Gauss law term ð−A−φ3Þ of the original Hamiltonian
function (12) can be absorbed into the second term of
HE (23) by redefining the Lagrange multiplier field
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u3ðxÞ → u03ðxÞ ¼ u3ðxÞ − A−ðxÞ: ð24Þ

The extended Hamiltonian density (23) then reads

HE ¼ 1

2
Π2þ þ 1

2
B2 þ u1ðxÞφ1ðxÞ þ u2iðxÞφ2iðxÞ

þ u03ðxÞφ3ðxÞ þ jþAþ þ jiAi: ð25Þ

It is easy to check the persistency of the constraint φ3ðxÞ
[Eq. (21)]. Using Eq. (22) we find after a short calculation

∂þφ3ðxÞ ¼ fφ3ðxÞ; HEg ¼ fφ3ðxÞ; Hg ¼ 0; ð26Þ

so that the time evolution of φ3ðxÞ does not give rise to a
new constraint. Thus all together we have the constraints
φ1, φ2i [Eq. (14)] and φ3 [Eq. (21)], where φ1 and φ3 are
first class and φ2i are second class.

B. Gauge fixing and resolution of the constraints

First-class constraints represent weak operator identities
which have to be imposed as subsidiary conditions to the
physical states. It is convenient to degrade all first-class
constraints to second-class ones. This is achieved by

imposing appropriate gauge conditions. In the present case
two convenient gauge conditions are

χ1 ≔ A− ¼ 0; χ2 ≔ Aþ ¼ 0: ð27Þ

The first gauge condition, A− ¼ Aþ ¼ 0, is the light-front
analog of Weyl gauge and fixes the gauge up to
xþ-independent gauge transformations. The latter are fixed
by the condition Aþ ¼ A− ¼ 0, which is the light-front
analog of the axial gauge. The two gauge conditions (27)
turn all first-class constraints into second-class ones, as we
will show below. For this purpose it is convenient to collect
all constraints and gauge conditions into a single vector

ϕ1¼φ1; ϕ2i¼φ2i; ϕ3¼φ3; ϕ4¼ χ1; ϕ5¼ χ2:

ð28Þ

Using Eq. (15) straightforward calculations yield for the
matrix

Cmnðx; yÞ ¼ fϕmðxÞ;ϕnðyÞg ð29Þ

the explicit expression

Cijðx; yÞ ¼

0
BBBBBB@

0 0 0 −δðx; yÞ 0

0 −2δij∂x
−δðx; yÞ 0 0 0

0 0 0 0 −∂x
−δðx; yÞ

δðx; yÞ 0 0 0 0

0 0 −∂x
−δðx; yÞ 0 0

1
CCCCCCA
: ð30Þ

This matrix is nonsingular and hence all constraints including the gauge conditions are now indeed second class. Inverting
this matrix yields

C−1
ij ðx; yÞ ¼

0
BBBBBB@

0 0 0 δðx; yÞ 0

0 1
2
δij∂x

−Gðx; yÞ 0 0 0

0 0 0 0 ∂x
−Gðx; yÞ

−δðx; yÞ 0 0 0 0

0 0 ∂x
−Gðx; yÞ 0 0

1
CCCCCCA
: ð31Þ

Here Gðx; yÞ is the Green’s function of the operator −∂2
−,

for which one finds

Gðx; yÞ ≔ −
1

∂2
−
δðx; yÞ ¼ −

1

2
jx− − y−jδðx⊥; y⊥Þ: ð32Þ

Furthermore, in Eq. (31) we have used the fact that the
inverse of the kernel Kðx; yÞ ¼ −∂x

−δðx; yÞ is given by
K−1ðx; yÞ ¼ ∂x

−Gðx; yÞ, for which we find from (32)

∂−Gðx; yÞ ¼ −
1

2
signðx− − y−Þδðx⊥; y⊥Þ: ð33Þ

With the inverse matrix (31) at hand we can now evaluate
the Dirac brackets

fA;BgD ¼ fA;Bg

−
Z

d3x
Z

d3yfA;ϕmðxÞgC−1
mnðx; yÞfϕnðyÞ;Bg:

ð34Þ

The relevant Poisson brackets of the constraints with the
canonical variables are listed in the Appendix. Using these
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expressions one finds then the following Dirac brackets of
the canonical variables:

fAiðxÞ; AjðyÞgD ¼ 1

2
δij∂x

−Gðx; yÞ; ð35Þ

fAiðxÞ;ΠjðyÞgD ¼ 1

2
δijδðx; yÞ; ð36Þ

fΠiðxÞ;ΠjðyÞgD ¼ 1

2
δij∂x

−δðx; yÞ; ð37Þ

fAiðxÞ;ΠþðyÞgD ¼ −
1

2
∂x
i ∂x

−Gðx; yÞ: ð38Þ

The characteristic feature of the light-front dynamics is that
neither the fields nor the momenta have vanishing Dirac
brackets with themselves.
Once the Dirac brackets have been evaluated all con-

straints (and gauge conditions) have to be imposed. With
φmðxÞ ¼ 0 the total Hamiltonian function HE [Eq. (25)]
reduces to

HE ¼ 1

2
Π2þ þ 1

2
B2 þ jþAþ þ jiAi: ð39Þ

In deriving the expression (12) for H the constraints φ1,
φ2i [Eq. (14)] have already been imposed. We still have to
impose the constraint φ3ðxÞ ¼ 0 [Eq. (21)], i.e. Gauss’s law

∂−Πþ − ∂iΠi − j− ¼ 0; ð40Þ

which can be solved for Πþ to yield

Πþ ¼ 1

∂−
ð∂iΠi − j−Þ: ð41Þ

It is interesting to note that this expression for Πþ preserves
the Dirac bracket (38): inserting the rhs of Eq. (41) for
Πþ into (38) and using Eq. (36), the rhs of Eq. (38) is
recovered.
Inserting the expression (41) for Πþ into the Hamiltonian

density HE, Eq. (39), we obtain the classical Hamiltonian
density of electrodynamics in the front form in the gauge (27)

HE ¼ 1

2
ð∂iΠi − j−Þð−∂2

−Þ−1ð∂jΠj − j−Þ

þ 1

2
B2 þ jþAþ þ jiAi: ð42Þ

At first sight this Hamiltonian density looks simpler than
its counterpart in the instant form since only two field degrees
of freedom Ai¼1;2 and their momenta explicitly enter.
Furthermore, the potential term is given by the third compo-
nent of the magnetic field B ¼ ∂1A2 − ∂2A1 alone. We
should also note that while only the transverse part of the
gauge potential enters the potential the kinetic term contains

only the longitudinal part of the momentum operator. This
is quite strange and can yield nontrivial dynamics only
because of the unusual Dirac brackets (35)–(38).

C. The quantum theory

The quantization proceeds by promoting the canonical
variables A,Π to operators Â, Π̂ and imposing commutation
relations given by i times the corresponding Dirac brackets

½…;…� ¼! if…;…gD: ð43Þ

Therefore, the above obtained Dirac brackets (35), (37)
imply that in the quantum theory neither the fields nor the
momenta commute among themselves,

½AkðxÞ; AlðyÞ� ¼ −
i
4
δklsignðx− − y−Þδ2ðx⊥ − y⊥Þ

½ΠkðxÞ;ΠlðyÞ� ¼
i
2
δkl∂x

−δðx− − y−Þδ2ðx⊥ − y⊥Þ: ð44Þ

Also the commutation relation between the fields and
momenta

½AkðxÞ;Πlð yÞ� ¼ i
1

2
δkl δðx− − y−Þδ2ðx⊥ − y⊥Þ ð45Þ

differs by a factor of 1=2 from the usual one. All three
commutation relations can be realized by the following
decomposition of fields and momenta in terms of creation
and annihilation operators:

AkðxÞ ¼
Z

đ3p
Θðp−Þffiffiffiffiffiffiffiffi
2p−

p ½akð pÞeip·x þ a†kð pÞe−ip·x�; ð46Þ

ΠkðxÞ ¼ −i
Z

đ3pΘðp−Þ
ffiffiffiffiffiffi
p−

2

r
½akð pÞeip·x − a†kð pÞe−ip·x�;

ð47Þ

provided the latter satisfy the usual Bose commutation
relations with the nonvanishing commutator given by

½akð pÞ; a†l ðqÞ� ¼ δklð2πÞ3δ3ð p − qÞ: ð48Þ

Here we use the notation x ¼ ðx⊥; x−Þ and p ¼ ð p⊥;−p−Þ
so that

x · p ¼ x⊥ · p⊥ − x−p−: ð49Þ

Furthermore we have defined

Z
đ3p ¼

Z
đp−

Z
đ2p⊥; đ ¼ d

2π
ð50Þ

and
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δ3ð pÞ ¼ δðp−Þδ2ð p⊥Þ : ð51Þ

With the decompositions (46), (47) one finds from Eq. (42)
for the QED Hamiltonian in LF quantization the Fock-
space representation

H ¼ ð2πÞ3δ3ð0Þ
Z

∞

0

đp−

Z
đ2p⊥ωð pÞ

þ
Z

∞

0

đp−

Z
đ2p⊥ωð pÞa†kð pÞakð pÞ; ð52Þ

where

ωð pÞ ¼ p2⊥
2p−

ð53Þ

is the photon energy in the front form and we have put the
external currents to zero, jμ ¼ 0, since they are not needed
in the following. This is the usual second quantized form of
the QED Hamiltonian known from instant-form quantiza-
tion except that the true photon energy ωð pÞ ¼ jpj is
replaced here by its front form (53). The ground state of this
Hamiltonian is obviously given by the Fock-space vacuum
j0i, which is defined by akð pÞj0i ¼ 0. The coordinate
representation ψ ½A� ¼ hAj0i of this state is not available
since we do not have the coordinate representation of the
momentum operator Π at our disposal. However, as in the
case of the harmonic oscillator, we can express all observ-
ables via Eqs. (46), (47) in terms of the creation and
annihilation operators and work exclusively in Fock space.
For the static propagator

Dkl
BCðx − yÞ ¼ h0jBkðxÞClð yÞj0i

¼
Z

đ3peip·ðx−yÞDkl
BCð pÞ ð54Þ

of the canonical variables Bk, Ck ∈ fAk;Πkg we find in
momentum space

Dkl
AAð pÞ ¼ δkl

Θðp−Þ
2p−

; ð55Þ

Dkl
ΠΠð pÞ ¼

1

2
δklp−Θðp−Þ;

Dkl
AΠð pÞ ¼

1

2
iΘðp−Þδkl: ð56Þ

The above result (55) should be compared with the static
photon propagator in the instant-form quantization, e.g. in
Coulomb gauge (see Sec. IV)

Dkl
AAð pÞ ¼ tklð pÞ 1

2ωðpÞ ; Dkl
ΠΠð pÞ ¼

1

2
tklð pÞωðpÞ;

Dkl
AΠð pÞ ¼ i

1

2
tklð pÞ; ð57Þ

where tklð pÞ is the transversal projector and ωðpÞ ¼ j pj
represents the true photon energy. In the light-front
quantization (55), (56) the photon energy, j pj, is replaced
by p− and the propagators exist only for p− > 0.

III. THE PHOTON PROPAGATOR

The canonical quantization carried out above provides
us with the time-independent wave functionals arising
from the solution of the stationary Schrödinger equation.
With the stationary wave functionals at our disposal time-
dependent processes are conveniently described in the
Heisenberg picture. This is, in particular, true for the
photon propagator defined by

Dμνðx; yÞ ¼ h0jTþAμðxÞAνðyÞj0i; ð58Þ

where Tþ denotes time ordering with respect to the light-
front time xþ, j0i is the (stationary) vacuum wave func-
tional and

AkðxÞ≡ Akðxþ; xÞ ¼ eiHxþAkðxÞe−iHxþ ð59Þ

is the field operator in the Heisenberg picture. Here H is
the LF Hamiltonian (52). With the commutation relation
(48) and the explicit form of the QED Hamiltonian (52)
we find for the time-dependent creation and annihilation
operators

akðxþ; pÞ ≔ eiHxþakð pÞe−iHxþ ¼ akð pÞe−iωð pÞxþ ð60Þ

a†kðxþ; pÞ ≔ eiHxþa†kð pÞe−iHxþ ¼ eiωð pÞxþa†kð pÞ; ð61Þ

where ωð pÞ is the LF photon energy (53). From Eq. (48)
the commutation relation

½akðxþ; pÞ; alðyþ; qÞ� ¼ δklð2πÞ3δ3ð p − qÞe−iωð pÞðxþ−yþÞ
ð62Þ

follows. With Eqs. (60) and (61) the time-dependent
photon field (59) is obtained from Eq. (46) as

AkðxÞ ¼
Z

đ3p
Θðp−Þffiffiffiffiffiffiffiffi
2p−

p ½akðxþ; pÞeip·x þ a†kðxþ; pÞe−ip·x�

ð63Þ

and an analogous expression is found from Eq. (47) for the
momentum operator. From this representation with
akð pÞj0i ¼ 0 we find for the photon two-point function

h0jAkðxÞAlðyÞj0i ¼ δkl
Z

đ3p
Θðp−Þ
2p−

e−iωðpÞðxþ−yþÞeip·ðx−yÞ:

ð64Þ
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Note that this amplitude is restricted to the spatial
components k, l ¼ 1, 2 due to the use of the gauge
A− ¼ 0 ¼ Aþ. With the explicit form of the photon energy
(53) the integral over p⊥ is a usual Fresnel integral

Z
đ2p⊥ exp

�
−i

xþ

2p−
p2⊥ þ ix⊥ · p⊥

�

¼
� ffiffiffiffiffiffiffiffiffiffiffiffi

p−

2πixþ

r �
2

exp

�
i
x2⊥
2xþ

p−

�
: ð65Þ

We are then left with the following representation of the
photon two-point function in LF quantization:

h0jAkðxÞAlðyÞj0i ¼ 1

2
δkl

1

4π2iðxþ − yþÞ

×
Z

∞

0

dp− exp

�
−ip−

�
x− − y− −

ðx⊥ − y⊥Þ2
2ðxþ − yþÞ

��
:

ð66Þ
The remaining integral is well defined only after intro-
ducing a damping term, replacing x− → x− − iε, ε → 0.
This yields

h0jAkðxÞAlðyÞj0i ¼ −δkl
1

4π2½ðx − yÞ2 − iεsignðxþ − yþÞ� ;

ð67Þ
where x2 ¼ 2xþx− − x2⊥. From this expression we find for
the photon propagator (58)

Dklðx − yÞ ¼ Θðxþ − yþÞh0jAkðxÞAlðyÞj0i
þ Θðyþ − xþÞh0jAlðyÞAkðxÞj0i ð68Þ

the compact form

DklðxÞ ¼ −δkl

4π2x2 − iε
: ð69Þ

This is precisely the usual photon propagator obtained in
Landau gauge within the functional integral quantization
[see Eq. (84) below] except that the transversal projector is
replaced here by the Kronecker symbol.
From Eq. (69) we find for the “static” photon propagator

in LF quantization

DijðxÞjxþ¼0 ¼
δij

4π2x2⊥ þ iε
: ð70Þ

Although we have merely taken the limit xþ → 0 this
propagator is also independent of x−. Except for the
absence of the transverse projector in Eq. (70) the same
static photon propagator is obtained in the usual canonical
instant-form quantization in Coulomb gauge if one puts
x3 ¼ 0 in addition to x0 ¼ 0, see Eq. (92) below. The fact

that the static LF propagator is independent of x− should
simplify the LF description.
One important note is in order: To arrive at the static LF

photon propagator it was crucial to start with the time-
dependent fields and take the limit xþ → 0 only after the
momentum integrals were carried out. To see this let us
alternatively try to evaluate the static propagator by putting
xþ ¼ yþ immediately in Eq. (64), resulting in

Dklðxþ ¼ 0; xÞ ¼ δkl
Z

∞

0

đp−

2p−

Z
đ2p⊥e−ip−x−eip⊥·x⊥

¼ δklδ2ðx⊥Þ
Z

∞

0

đp−

2p−
e−ip−x− : ð71Þ

In contrast to Eq. (70) this result depends on x− and is ill
defined. The lesson from this calculation is that the limit
xþ → 0 can be taken only after the momentum integralsR
đp⊥ and

R
đp− have been carried out. Keeping xþ ≠ 0

during the calculation even for observables which are xþ
independent obviously represents some regularization in
the spirit of the point splitting. This will be important later
in the evaluation of the Wilson loop to be given in Sec. V.
For later application let us also calculate the commutator

for the time-dependent gauge fields. Since the gauge field
(63) is linear in the creation and annihilation operators the
commutator ½A; A� is a c-number. Therefore we have with
h0j0i ¼ 1

½AkðxÞ; AlðxÞ� ¼ h0j½AkðxÞ; AlðyÞ�j0i
¼ h0jAkðxÞAlðyÞj0i − h0jAlðyÞAkðxÞj0i:

ð72Þ
From Eq. (67) we find

½AkðxÞ; AlðyÞ� ¼ −iδkl
1

2π2
εsignðxþ − yþÞ
½ðx − yÞ2�2 þ ε2

: ð73Þ

Using

lim
ε→0

ε

x2 þ ε2
¼ πδðxÞ ð74Þ

we obtain

½AkðxÞ; AlðyÞ� ¼ −
i
2π

δklsignðxþ − yþÞδððx − yÞ2Þ: ð75Þ

In the limit xþ → yþ this expression should reduce to the
equal-time commutation relation (44). This is, however, not
obvious, since we cannot take this limit straightforwardly
due to sign function. Furthermore the δ functions are not
the same in both expressions. However, the δ function in
(75) is nonzero only for 2ðxþ − yþÞðx− − y−Þ − x2⊥ ¼ 0,
which requires that the sign of ðx− − y−Þ is the same as
that of ðxþ − yþÞ. Therefore in Eq. (75) we can replace
signðxþ − yþÞ by signðx− − y−Þ. Then the equal-time limit
xþ → yþ can be taken, yielding
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½AkðxÞ; AlðyÞ�xþ¼yþ ¼ −
i
2π

δklsignðx− − y−Þδððx⊥ − y⊥Þ2Þ:
ð76Þ

This is not yet the expression found in Eq. (44). To see the
equivalence between Eqs. (44) and (76) let us set r⊥ ¼
x⊥ − y⊥ and use polar coordinates r⊥ðr;φÞ. The δ function
δ2ðr⊥Þ in Eq. (44) is nonzero only if the module r ¼ jr⊥j
vanishes. However, for r ¼ 0 the angle φ is indefinite so
that the following identity holds:

δ2ðr⊥Þ ¼
1

r
δðrÞ 1

π
: ð77Þ

Indeed, both sides are nonzero (and also divergent) only for
r ¼ 0 and have the same normalization

Z
d2r⊥δ2ðr⊥Þ ¼

Z
∞

0

drr
Z

2π

0

dφ
1

r
δðrÞ 1

π

¼ 2

Z
∞

0

drδðrÞ ¼ 1: ð78Þ

With δðr2⊥Þ≡ δðr2Þ ¼ 1
2r δðrÞ we eventually find from (77)

δðr2⊥Þ ¼
π

2
δ2ðr⊥Þ; ð79Þ

which establishes the equivalence between Eqs. (76)
and (44).

IV. THE WILSON LOOP IN QED

The (Wegner-)Wilson loop is defined as the path-ordered
exponent

W½A� ¼ P exp
�
−ig

I
C
dxμAμðxÞ

�
; ð80Þ

where g is the electric charge and C is a closed loop in
Minkowski space. Its vacuum expectation value hW½A�i
serves as order parameter in gauge theory and allows us to
extract the potential between two opposite static point
charges. In QED, in the usual path integral quantization and
also in the canonical quantization in the instant form, the
gauge fields at different space-time points commute and
the path ordering becomes irrelevant. This, however, is not
the case in the front-form quantizations, see Eq. (76).

A. Functional integral approach

In the usual path integral formulation of QED the
vacuum expectation values are defined by

h� � �i ¼
Z

DAμðxÞ…eiS½A�; ð81Þ

where S½A� ¼ R
d4xLðxÞ is the classical action and L is

defined in Eq. (7). The functional integral in Eq. (81) is well
defined only after gauge fixing, which is usually done by
means of the Faddeev-Popov method. Using the familiar
Landau (Lorentz) gauge ∂μAμ ¼ 0 the Faddeev-Popov
determinant Detð−□Þ is an irrelevant constant which can
be absorbed into the normalization of the functional
integral, which extends over the transversal components
of the gauge field only. Since the classical action S½A� is
quadratic in the gauge field the Wilson loop can be
evaluated in closed form, yielding

hWi ¼ exp

�
−
g2

2

I
C
dxμ

I
C
dyνDμνðx − yÞ

�
: ð82Þ

Here

Dμνðx − yÞ ¼ hAμðxÞAνðyÞi ð83Þ

is the photon propagator, for which one obtains in Landau
gauge ∂μAμ ¼ 0

DμνðxÞ ¼ tμνðxÞ
−1

4πx2 − iε
; ð84Þ

where tμν ¼ −gμν − ∂μ∂ν=∂2 is the transverse projector.
Only the metric tensor gμν part of this projector contributes
in the exponent of the Wilson loop (82).
A temporal loop describes the creation of a charge-

anticharge pair which evolves in time and is eventually
annihilated. Using a rectangular temporal loop with length
T along the time axis and with spatial extension R one
extracts from lnhWi in the limit T ≫ R the familiar
Coulomb law [18]

lim
T→∞

lnhWi=iT

¼ −
g2

4πR
þ divergent self-energy terms independent of R:

ð85Þ

The same result is also found in the usual canonical
quantization in the instant form given below.

B. Canonical quantization in the instant form

The usual canonical quantization in the instant form is
carried out in Weyl gauge A0 ¼ 0 resulting in the
Hamiltonian

H ¼ 1

2

Z
d3xðΠ2ðxÞ þ B2ðxÞÞ; ð86Þ

where ΠðxÞ ¼ δ=iδAðxÞ is the momentum operator, which
represents the electric field, and B ¼ ∇ × A is the magnetic
field. Due to the use of the Weyl gauge Gauss’s law is lost
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as equation of motion and has to be imposed as constraint
to the wave functionals

∇ ·Πjψi ¼ gρjψi; ð87Þ

where ρ denotes the charge density of the matter fields. The
operator ∇ ·Π is the generator of time-independent gauge
transformations (which are not fixed by the Weyl gauge
A0 ¼ 0). In the absence of matter charges (ρ ¼ 0) Gauss’s
law implies gauge invariance of the wave functional.
Instead of working with explicitly gauge-invariant wave
functionals it is usually more convenient to explicitly
resolve Gauss’s law by fixing the gauge. For this purpose
Coulomb gauge ∇ · A ¼ 0 is particularly convenient since
the remaining transversal components of the gauge field are
the gauge-invariant degrees of freedom. In Coulomb gauge
the transversal part of the momentum operator Π⊥ is still
given by δ=iδA⊥ while for the longitudinal part from
Gauss’s law (87) follows

Πjjjψi ¼ g∇ð−ΔÞ−1ρjψi: ð88Þ

With this relation and withΠ2 ¼ Π⊥2 þΠjj2 one finds from
Eq. (86) the gauge-fixed Hamiltonian

H ¼ 1

2

Z
ðΠ⊥2 þ B2Þ þ g2

2

Z
ρð−ΔÞ−1ρ: ð89Þ

Here the last termgives already theusualCoulomb interaction
for a charge density ρ. Although the Hamiltonian approach
yields the Coulomb law directly, the latter can be also
extracted from the spatial Wilson loop.
The exact vacuum wave functional which solves the

Schrödinger equation with the Hamiltonian (89) for ρ ¼ 0
is given by the Gaussian

ψ ½A�≡ hAjψi ∼ exp

�
−
Z

AωA

�
; ð90Þ

where in momentum space ωðpÞ ¼ j pj is the photon
energy. It is clear that in the Hamiltonian approach, due
to the use of the Weyl gauge A0 ¼ 0, only the spatial
Wilson loop is accessible, for which one finds

hWðCÞi ¼ hψ jWC½A�jψi

¼ exp

�
−
g2

2

I
C
dxi

I
C
dyjDijðx − yÞ

�
; ð91Þ

where

Dijðx − yÞ ¼ hψ jAiðxÞAjð yÞjψi

¼ 1

2
tijðxÞω−1ðx; yÞ ¼ tijðxÞ

1

4π2ðx − yÞ2 ð92Þ

is the static photon propagator with the three-dimensional
transversal projector tij ¼ δij −∇i∇j=Δ. This propagator
also represents the equal-time limit of the time-dependent
propagator in Landau gauge (84)

Dijðx − yÞ ¼ Dμ¼i;ν¼jðx − yÞjx0¼y0 : ð93Þ

As in the time-dependent case, only the Kronecker part
of the transversal projector contributes to the Wilson loop
(91). The Coulomb law (85) can be also extracted from the
spatial Wilson loop (91) by choosing a rectangular loop of
sides L and R with L ≫ R and continuing L to imaginary
values L ¼ −iT.

V. THE WILSON LOOP OF QED IN
LIGHT-FRONT QUANTIZATION

In Sec. II we have canonically quantized the photon
sector of QED in the front form and found that the vacuum
state is given by the Fock vacuum j0i. We will now use this
state to evaluate the spatial Wilson loop

hW½A�i ¼ h0jW½A�j0i: ð94Þ

In the common instant-form quantization the evaluation of
the (spatial) Wilson loop in QED, reviewed in the previous
section, is trivial since the vacuum wave functional is a
Gaussian and the gauge fields at different space-time points
commute so that the path ordering becomes irrelevant. In
contrast to that in the light-front quantization, the coor-
dinate representation of the vacuum wave functional of
QED is not at our disposal and the gauge field satisfies the
nontrivial commutation relation (44).
As the calculation of the propagator given in sec. III

taught us, we will have to start with a time-dependent loop
and take the static limit xþ → 0 only at the very end of the
calculation. Since we prefer to work with time-independent
(stationary) wave functions the Wilson loop operator has to
be taken in the Heisenberg picture.
Consider a generic (time-dependent) Wilson loop C in

Minkowski space defined by Eq. (80), where AμðxÞ denotes
the (time-dependent) gauge field in the Heisenberg picture
(59). Due to the chosen gauge (27) only the projection A⊥
of Aμ onto the transverse plane contributes to W½A�. Let
xμðtÞ denote a parametrization of C with t ∈ ½0; 1� and
xμð1Þ ¼ xμð0Þ. Then we have

W½A� ¼ T exp

�
ig
Z

1

0

dt_x⊥ðtÞ · A⊥ðxþðtÞ; x−ðtÞ; x⊥ðtÞÞ
�
;

ð95Þ

where T means (time) ordering with respect to the loop
parameter t. Let us stress that the Wilson loop (95) is
different from the spatial Wilson loop
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W̄½A� ¼ P exp

�
ig
I
C̄
dx⊥ · A⊥ðxþ ¼ 0; x− ¼ 0; x⊥Þ

�
ð96Þ

calculated from the projection C̄ of C onto the transversal
subspace (1-2–plane). This is obvious when the Wilson
loop obeys a perimeter law.
The evaluation of the Wilson loop hW½A�i (95) is

nontrivial since in light-front quantization the gauge
fields A⊥ at different space-time points do not commute.
However, the evaluation of hW½A�i is facilitated by the fact
that the gauge potential (63) consists of two pieces

AkðxÞ ¼ αkðxÞ þ α†kðxÞ ð97Þ

with

αkðxÞ ¼
Z

đ3p
Θðp−Þffiffiffiffiffiffiffiffi
2p−

p akð pÞe−ip·x ð98Þ

[where p · x is defined by Eq. (5) with pþ ¼ p2⊥=2p−]
whose commutator is a c-number. This is because αkðxÞ
and α†kðxÞ are linear in akð pÞ and a†kð pÞ, respectively,
whose commutator (62) is a c-number. The same is
obviously true for the operators

ᾱðtÞ ¼ _xðtÞ · αðxðtÞÞ; ᾱ†ðtÞ ¼ _xðtÞ · α†ðxðtÞÞ: ð99Þ

Then the following identity (which is an extension of
Wick’s theorem, see e.g. [19]) holds:

ð100Þ

Here ∶∶ denotes the normal-ordered product with all
operators ᾱ† being placed left of the operators ᾱ.
Furthermore “ ” denotes the contraction, which is
defined as the difference between the time-ordered and
normal-ordered product.
Taking the vacuum expectation value of Eq. (100) we

obtain for the Wilson loop

ð101Þ

The remaining commutator can be straightforwardly evalu-
ated. Since it is a c-number we have

½αkðxÞ; α†l ðyÞ� ¼ h0j½αkðxÞ; α†l ðyÞ�j0i; ð102Þ

and furthermore since αkðxÞj0i ¼ 0 it follows

½αkðxÞ;α†l ðyÞ� ¼ h0jαkðxÞα†l ðyÞj0i
¼ h0jAkðxÞAlðyÞj0i ð103Þ

where the last two-point function was already evaluated in
Eq. (67). Therefore we find for the Wilson loop (101)

hW½A�i ¼ exp

�
−g2

Z
dt
Z

dt0Θðt0 − tÞ

× _xlðt0Þ_xkðtÞh0jAlðt0ÞAkðtÞj0i
�
: ð104Þ

Interchanging here the integration variables t ⟷ t0 and the
summation indices k ⟷ l in one half of the exponent we
obtain the alternative expression

hW½A�i ¼ exp

�
−
g2

2

Z
dt
Z

dt0 _xkðtÞ_xlðt0Þ

× h0jTtðAkðtÞAlðt0ÞÞj0i
�
: ð105Þ

Choosing the parameter t as the LF time xþ the two-point
function in the exponent becomes the photon propagator
(58) and we obtain

hW½A�i ¼ exp

�
−
g2

2

Z
dxþ

Z
dyþ

dxi

dxþ
dyj

dyþ

×DijðxðxþÞ; yðyþÞÞ
�
: ð106Þ

This result can be written in a parameter-independent
form

hW½A�i ¼ exp

�
−
g2

2

I
C
dxi

I
C
dyjDijðx; yÞ

�
: ð107Þ

Choosing now a planar loop C in the transverse plane (i.e.
y− ¼ x−), Eq. (107) yields the same result as obtained in
the canonical quantization in the instant form, see Eq. (91).
Since the photon propagators also agree4 [cf. Eqs. (70) and
(92)] we do find the same result for the Wilson loop in both
approaches.
It is important to emphasize that the correct result for the

Wilson loop is obtained in the LF quantization only by
starting with temporal loops with nontrivial time depend-
ence and considering the static limit only at the very end of

4Recall that only the Kronecker part δkl of the transverse
projector tkl ¼ δkl − ∂k∂l=∂2 of the photon propagator Dkl
[Eq. (92)] contributes to the Wilson loop (91).
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the calculation. The finite time interval serves as a
regularization in the spirit of point splitting. Starting from
the beginning with static, i.e. spatial loops, leads to the ill-
defined static propagator given in Eq. (71).

VI. CONCLUSIONS

In this paper we have investigated QED in the light-front
quantization using Dirac’s method for the quantization of
constrained systems. Assuming the LF analogs of the Weyl
gauge and of the axial gauge we have derived the gauge-
fixed LF Hamiltonian and evaluated from its vacuum state
the static photon propagator in coordinate space as well as
the spatial Wilson loop. We found that both quantities exist
in the LF quantization only if the static limit xþ → 0 is
taken in a specific way, i.e. after all momentum integrals are
carried out. Thereby the finite-time argument xþ serves as
regulator in the spirit of point splitting.
Although in QED the vacuum wave functional is given by

the Fock vacuum, the evaluation of vacuum expectation
values turns out to be more involved than in the usual
canonical quantization in the instant form due to the non-
commutativity of the photon field in light-front quantization.
This calls into question the common lore that the LF vacuum
is trivial. The problem concerning the static limit xþ → 0,
which we have found here, should also manifest itself in the
calculations of other time-independent quantities.
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APPENDIX: RELEVANT POISSON BRACKETS

Below we list the Poisson brackets between the canoni-
cal variables and the constraints (14), (21) and (27)

fAþ;φ1g ¼ fAþ;φ2kg ¼ 0;

fAþðxÞ;φ3ðyÞg ¼ −∂x
−δðx; yÞ;

fAþ; χ1g ¼ 0 ¼ fAþ; χ3g;
fA−ðxÞ;φ1ðyÞg ¼ δðx; yÞ; fA−;φ2kg ¼ fA−;φ3g ¼ 0;

fA−; χ1g ¼ 0 ¼ fA−; χ3g;
fAi;φ1g ¼ 0; fAiðxÞ;φ2kðyÞg ¼ δikδðx; yÞ;

fAiðxÞ;φ3ðyÞg ¼ ∂x
i δðx; yÞ;

fAi; χ1g ¼ 0 ¼ fAi; χ3g;
fφ1;Πþg ¼ 0; fφ3;Πþg ¼ 0; fχ1;Πþg ¼ 0;

fφ2kðxÞ;ΠþðyÞg ¼ −∂x
kδðx; yÞ;

fχ3ðxÞ;ΠþðyÞg ¼ ∂x
−δðx; yÞ;

fφ1;Π−g ¼ 0; fφ2k;Π−g ¼ 0; fφ3;Π−g ¼ 0;

fχ1ðxÞ;Π−ðyÞg ¼ δðx; yÞ; fχ3;Π−g ¼ 0;

fφ1;Πig ¼ 0; fφ3;Πig ¼ 0;

fφ2kðxÞ;ΠiðyÞg ¼ −∂x
−δðx; yÞδki;

fχ1;Πig ¼ 0; fχ3;Πig ¼ 0: ðA1Þ
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