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This paper is focused on the functional renormalization group applied to the T6
5 tensor model on the

Abelian group Uð1Þ with closure constraint. For the first time, we derive the flow equations for the
couplings and mass parameters in a suitable truncation around the marginal interactions with respect to
the perturbative power counting. For the second time, we study the behavior around the Gaussian fixed
point, and show that the theory is nonasymptotically free. Finally, we discuss the UV completion of the
theory. We show the existence of several nontrivial fixed points, study the behavior of the renormalization
group flow around them, and point out evidence in favor of an asymptotically safe theory.
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I. INTRODUCTION

Tensor models (TMs) generalize matrix models and are
considered as a convenient formalism for studying random
geometries [1–17]. TMs also offer an alternative to other
approaches dealing with quantum gravity (QG) which is
based on new mathematical/statistical tools, for example,
the 1=N expansion recently discovered [16,17]. On the
other hand, group field theory (GFT) is a quantum field
theory over group manifolds and is considered as a second
quantization of loop quantum gravity [18–22]. Both TMs
and GFT belong to the so-called background-independent
scenario for QG. They aim at describing a rudimentary
phase of the geometry of spacetime, namely, when this
geometry is hypothetically still in a discrete form, or at least
not yet continuous. It is also named a “pre-geometric”
phase of our spacetime. Recently TMs and GFT have been
combined to provide a new class of field theories, the so-
called tensorial group field theory (TGFT). TGFTs improve
the GFTs in order to allow for renormalization [23–32].
Moreover, it has been shown that several TGFTs models
are asymptotically free in the UV, in other words, near the
Gaussian fixed point [33–43].
The renormalization group (RG) method formulated first

by Wilson [44,45] is a nonperturbative method which
allows us to interpolate smoothly between the UV laws
and the IR phenomena in physical systems. The RG has a
vast range of applications. A particularization of the RG,
the functional renormalization group (FRG) is a realization
of the RG concept in the framework of quantum and/or

statistical field theory and is one of the best candidates for
studying quantum fluctuations [46]. An important property
of this method is that the FRG could be used in regimes
where perturbative calculations are invalid, for instance, at
the vicinity of nontrivial fixed points in the infrared regime.
Recently, much interest was focused on the FRG

equation of various Matrix and TGFT models [39–43,
47–49]. The differential equations of the flow were derived
using Wetterich’s equation [46]. The fixed points were
given and further evidence of asymptotically safety and
asymptotically freedom was derived around these fixed
points in the UV.
The TGFT of the form T6

5 on the Uð1Þ group with
closure constraint is proved to be renormalizable [30]. The
proof of this claim is performed using multiscale analysis.
The closure constraint, also called the gauge invariance
condition, can help us to define the emergence of the
metric on spacetime after phase transition and therefore
makes this type of model relevant for the understanding
the quantum theory of gravitation. This kind of model
with the closure constraint, namely, the six-dimensional
TGFT with quartic interactions is studied recently in [39]
and [41]. The perturbative computation of the β functions
of the T6

5 model is given in [38], in which we have showed
that this model is asymptotically free in the UV. This result
seems to be nonconsistent in the point of view of the FRG
analysis. This paper aims at giving the FRG analysis to a
renormalizable tensor model T6

5 with the closure con-
straint and for improving the conclusion given in [38]. In a
truncation containing all relevant and marginal inter-
actions, we find nontrivial fixed points. The FRG flows
for coupling constants and for the mass parameter are
solved numerically.
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The paper is organized as follows. In Sec. II we first
present the model which is analyzed in this paper, namely,
the T6

5 model with closure constraints. In Sec. III we give
the flow equations of the coupling constants and mass
parameter by using the dimensional renormalization
parameters. In Sec. IV we give the nontrivial fixed points
and provide the numerical solution of the flow equations. In
Sec. V the validity of the choice of the truncation of the
effective action is discussed. The behavior of our model in
the vicinity of these fixed points is also given. The
conclusion and discussion are made in Sec. VI.

II. THE T6
5 TGFT MODEL

This section is devoted to a short review of the particular
TGFT that we present in this paper. First, we define and give
some properties of our model. Next, we discuss the canonical
dimension that allows us to make sense of the exponentiation
of the functional action in the partition function.

A. The model

We consider fields ψ and ψ acting over the d copies of
the group Uð1Þ, i.e., ψ ;ψ∶Uð1Þd → C. In the Fourier
representation, the fields variables T~p; T ~p; ~p ∈ Zd are
maps T; T∶Zd → C, such that,

ψð~gÞ¼
X
~p

T ~pei
~θ·~p; ~g¼ðg1;…;gdÞ;

~p¼ðp1;…;pdÞ; ~θ¼ðθ1;…;θdÞ; θj∈ ½0;2πÞ: ð1Þ

The parameter θk with gk ≡ eiθk is related to the para-
metrization of the Uð1Þ group such that Uð1Þ ≈ S1. The

theory we consider is described by its generating function
or the vacuum-vacuum transition amplitude:

ZΛ½J; J� ¼ eWΛ½J;J� ¼
Z

dμCΛ
ðT; TÞeSint½T;T�þhJ;TiþhT;Ji

ð2Þ

where the notation h:; :imeans hJ; Ti ¼ P
~p∈ZdJ~pT ~p, dμCΛ

is the Gaussian measure with the covariance CΛ such that

Z
dμCΛ

T~pT ~p0 ¼ e−ð~p2þm2Þ=Λ2

~p2 þm2
δ

�Xd
i¼1

pi

�
δ~p~p0 ¼ CΛð~p; ~p0Þ;

ð3Þ

and the delta δðPd
i¼1 piÞ implements the closure constraint;

see [23,28]. Λ is the UV cutoff which will impose that the
modulus of momentum vectors remains less than Λ,
namely, j~pj ≤ Λ. We keep in mind that we will eventually
take the limit Λ → ∞. We define a model by its action at a
high (UV) energy scale. The classical action Sint is defined
as a sum of tensorial invariances [1,3]:

Sint½T; T� ¼
X
b∈B

λbTrb½T; T�: ð4Þ

A tensor invariant is a polynomial in the tensor T and its
conjugate T, which is invariant under the action of the
tensor product of d independent copies of the unitary group
UðNÞ. The sum is taken over a finite set B of such
invariants d-bubbles [1] associated with the couplings λb.
The interaction (4) of a tensor field theory in dimension

d ¼ 5 [30] is

Sint½T; T� ¼
λ1
2

X5
l¼1

X
f~pigi¼1;…;4

WðlÞ
~p1;~p2;~p3;~p4

T~p1
T~p2

T~p3
T~p4

þ λ2
3

X5
l¼1

X
f~pigi¼1;…;6

X ðlÞ
~p1;~p2;~p3;~p4;~p5;~p6

T~p1
T~p2

T~p3
T~p4

T~p5
T~p6

þ λ3
X5

li¼1;i¼1;2;3

X
f~pigi¼1;…;6

Yðl1;l2;l3Þ
~p1;~p2;~p3;~p4;~p5;~p6

T~p1
T~p2

T~p3
T~p4

T~p5
T~p6

; ð5Þ

where the symbols WðlÞ, X ðlÞ, and YðlÞ are products of
delta functions associated to tensor invariant interactions,
and λiðΛÞ are coupling constants. For instance,

WðlÞ
~p1;~p2;~p3;~p4

¼ δp1lp4l
δp2lp3l

Y
j≠l

δp1jp2j
δp3jp4j

: ð6Þ

Such a kernel is called bubble [1], and can be pictured
graphically as a six-colored bipartite regular graph, with

black and white vertices corresponding, respectively, to the
fields T and T, and each line corresponding to a Kronecker
delta. As an example, the four-valent bubble associated to

the kernel Wð1Þ is depicted on Fig. 1 below, and in the
same way, all the interaction bubbles involved in the
action Sint are defined as where the index l takes values
from 1 to 5, and refers to the single color characterizing
each bubble.
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ð7Þ

ð8Þ

ð9Þ

B. Canonical dimension

Another important definition for our purpose concerns
the notion of canonical dimension. We will only give the
essential information here, and the reader interested in the
details may consult [37]. In our model, the divergence
degree for an arbitrary Feynman graph G is given by [23,30]

ωðGÞ ¼ −2LðGÞ þ ðFðGÞ − RðGÞÞ ð10Þ

where L is the number of propagators, and F is the number
of faces. Let us pick an arbitrary orientation for all of the
edges e and for all of the faces f. Then R is the rank of the
incidence matrix ϵfe:

ϵfe ¼
8<
:

1 if e ∈ f and their orientation match

−1 if e ∈ f and their orientation do not match

0 otherwise:

ð11Þ

Note that the rank R does not depends on the chosen of the
orientation. Denoting by niðGÞ the number of bubbles in G
with 2i black and white nodes, the divergences subgraphs
are said to be melonic [16,23], if and only if they satisfy the
following relation:

FðGÞ − RðGÞ ¼ 3

�
LðGÞ −

X
i

niðGÞ þ 1

�
ð12Þ

which, together with the topological relation LðGÞ ¼P
iiniðGÞ − NðGÞ=2, leads to

ωðGÞ ¼ 3 −
NðGÞ
2

− 2n1ðGÞ − n2ðGÞ; ð13Þ

where NðGÞ denote the number of external lines of G.
For the rest n1ðGÞ ¼ 0. For N ¼ 4, ω ≤ 1, the value 1
corresponding to melonic graphs with only a six-point
interactions bubble. This conclusion indicates that pertur-
batively around the Gaussian fixed point (GFP), the
coupling constant λ1 scales as Λ for some cutoff Λ, and
we associate a canonical dimension ½λ1� ¼ 1 to this con-
stant. In the same way, we deduce that for a generic
coupling λb, associated to a melonic bubble with Nb
external lines

½λb� ¼ 3 −
Nb

2
ð14Þ

giving explicitly

½m� ¼ 1 ½λ1� ¼ 1 ½λ2� ¼ ½λ3� ¼ 0: ð15Þ

III. FUNCTIONAL RENORMALIZATION GROUP
WITH THE CLOSURE CONSTRAINT

In this section we discuss the physical consequences of
the renormalization group flow by truncating the space of
actions. The procedure is standard, and consists of a
systematic projection of the renormalization group flow
into a finite-dimensional subspace of generalized cou-
plings. The approximated trajectory fΓkg is then described
by several functions, which are solutions of a finite coupled
system of differential equations, the so-called β functions.
The difficult point of this approach is to justify the choice of
the truncation. For our purpose, we use a standard dimen-
sional argument, and neglect all the interactions up to the
marginal coupling with respect to the perturbative power
counting. As discussed in this section, such a truncation
make sense as long as the anomalous dimension remains

FIG. 1. An example of bubble of order 4.
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small, giving a consistency condition for the validity of the
truncation, which can be easily checked. However, we will
see that truncation may introduce a singular artifact as lines
of fixed points, which depends on the truncation.
We start this section by evaluating the Wetterich equa-

tion, and find the system of β functions studied for our
model. The asymptotic behavior in the UV is also provided.

A. Truncation and regularization

The FRG method is based on the following deformation
to our original partition function given in Eq. (2), i.e.,

Zk½J; J� ¼
Z

dμCΛ
ðT; TÞeSint½T;T�−ΔSk½T;T�þhJ;TiþhT;Ji ð16Þ

where we have added to the original action a IR cutoff
ΔSk½T; T�, defined as

ΔSk½T; T� ¼
X
~p∈Z5

Rkðj~pjÞT~pT~p: ð17Þ

The cutoff function Rk depends on the real parameter k
playing the role of a running cutoff, and is chosen such that

(i) Rsð~pÞ ≥ 0 for all ~p ∈ Zd and s ∈ ð−∞;þ∞Þ.
(ii) lims→−∞Rsð~pÞ ¼ 0, implying Zs¼−∞½J; J� ¼

Z½J; J�. This condition ensures that the original
model is in the family (16). Physically, it means
that the original model is recovered when all the
fluctuations are integrated out.

(iii) lims→lnΛRsð~pÞ ¼ þ∞, ensuring that all the fluctua-
tions are frozen when es ¼ Λ. As a consequence, the
bare action will be represented by the initial con-
dition for the flow at s ¼ lnΛ.

(iv) For −∞ < s < lnΛ, the cutoff Rs is chosen so that
Rsðjpj > esÞ ≪ 1, a condition ensuring that the UV
modes jpj > es are almost unaffected by the addi-
tional cutoff term, while Rsðjpj < esÞ ∼ 1, or
Rsðjpj < esÞ ≫ 1, will guarantee that the IR modes
jpj < es are decoupled.

(v) d
dj~pjRsð~pÞ ≤ 0, for all ~p ∈ Zd and s ∈ ð−∞;þ∞Þ,
which means that high modes should not be sup-
pressed more than low modes.

The equation describing the flow of the couplings, the
so-called Wetterich equation has been established in [46] in
the case of a theory with the closure constraint: For a given
cutoff Rk, the effective average action satisfies the follow-
ing first order partial differential equation:

∂kΓk¼
X
~p∈Z5

∂kRkðj~pjÞ · ½Γð2Þ
k þRk�−1ð~p; ~pÞδ

�X5
i¼1

pi

�
;

ð18Þ

where Γk, the effective average action and is defined as the
Legendre transform of the free energy Wk ≔ ln½Zk� as

Γk½T; T� þ
X
~p∈Z5

Rkðj~pjÞT~pT ~p ≔ hJ; Ti þ hT; Ji −Wk½J; J�

ð19Þ

and

Γð2Þ
k ð~p; ~p0Þ ≔ ∂2Γk

∂T~p∂T~p0
ð20Þ

where T denotes the mean field T~p ≔ ∂Wk

∂J~p
, and is a gauge

invariant field in the sense that T~p ¼ T~pδð
P

5
i¼1 piÞ.

The Wetterich flow equation is an exact differential
equation which must be truncated, i.e., it must be projected
to functions of few variables or even onto some finite-
dimensional sub-theory space. However, as in nonpertur-
bative analysis [46], and discussed in the Introduction of
this section the question of error estimate is very important
and nontrivial in functional renormalization. One way to
estimate the error in FRG is to improve the truncation in
successive steps, i.e., to enlarge the sub-theory space by
including more and more running couplings. The difference
in the flows for different truncations gives a good estimate
of the error. In addition, one can use different regulator
functions Rk in a given (fixed) truncation and determine the
difference of the RG flows in the infrared for the respective
regulator choices. In this section, we adopt the simplest
truncation, consisting of a restriction to the essential and
marginal coupling with respect to the perturbative power
counting (i.e., whose canonical dimension is upper or equal
to zero). As mentioned before, such a truncation make
sense as long as the anomalous dimension remains small,
and a qualitative argument is the following. Let us define
the anomalous dimension η ≔ ∂s lnðZÞ [see Eq. (24)
below]. In the vicinity of a fixed point, η can reach to a
nonzero value η�. As a result, the effective propagator
becomes

Z−1

~p2 þ ðm2
s=ZÞ

≈
e−η�s

~p2 þm2�
; ð21Þ

and then modifies the power counting (13), which becomes
in the melonic sector (all the star quantities refer to the non-
Gaussian fixed point that we consider):

ω�ðGÞ¼−ð2þη�ÞLðGÞþðFðGÞ−RðGÞÞ

¼3−
N
2
ð1−η�Þ−3η�n3−ð1þ2η�Þn2−ð2þη�Þn1:

ð22Þ

As a result, the canonical dimension (15) turns out to be

½tb�� ¼ 3 −
Nb

2
ð1 − η�Þ ¼ ½tb� þ

Nb

2
η�; ð23Þ
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from which one can argue that, as long as η� ≪ 1, the
classification in terms of essential, inessential, and marginal
couplings remains unchanged, and the truncation around
marginal couplings with respect to the perturbative power
counting makes sense. Note that for a more specific
explanation, the study of the critical exponent will help
to prove whether or not the truncation given below the
equation should be improved or not. Unlike what happens
in a standard local field theory, each line here has several
strands (the theory is nonlocal). The contractions in the

loop of the tadpole concerns only 4 strands out of 5. The
last strand circulates freely, and corresponds to an external
momentum. It is by developing on this external variable
that we generate the contribution to the anomalous dimen-

sion η. Thus, the quantity WðlÞ
~p1;~p2;~p3;~p4

does not explicitly

depend on the momentum. The dependence on the
momentum is due to the nonlocality of the interactions.
Up to these consideration, our choice of truncation is the
following:

Γk½T; T� ¼
X
~p∈Z5

ðZðkÞ~p2 þm2ðkÞÞT~pT ~p þ
λ1ðkÞ
2

X5
l¼1

X
f~pigi¼1;…;4

WðlÞ
~p1;~p2;~p3;~p4

T~p1
T~p2

T~p3
T~p4

þ λ2ðkÞ
3

X5
l¼1

X
f~pigi¼1;…;6

X ðlÞ
~p1;~p2;~p3;~p4;~p5;~p6

T~p1
T~p2

T~p3
T~p4

T~p5
T~p6

þ λ3ðkÞ
X5

li¼1;i¼1;2;3

X
f~pigi¼1;…;6

Yðl1;l2;l3Þ
~p1;~p2;~p3;~p4;~p5;~p6

T~p1
T~p2

T~p3
T~p4

T~p5
T~p6

: ð24Þ

Also note that we have adopted an additional restriction
concerning the degree of the differential operator for the
kinetic term, which can be viewed as the first term in the
derivative expansion. One more time, a consistency check
must be to introduce the next contribution and evaluate its
relative contribution. We will not consider this question in
this paper.
We move on to the extraction of the truncated flow

equations for m2, Z, and λi from the full Wetterich
equation (18). We write the second derivative of Γk as

Γð2Þ
k ½T; T�ð~p; ~p0Þ ¼ ð−ZðkÞ~p2 þm2ðkÞÞδ

�X5
i¼1

pi

�
δ~p~p0

þ Fk;ð1Þ½T; T�~p;~p0 þ Fk;ð2Þ½T; T�~p;~p0

in such a way that all the field-dependent terms of order 2n
are in Fk;ðnÞ. In particular, Fk;ð1Þ depends on λ1ðkÞ, while
Fk;ð2Þ depends on λ2ðkÞ and λ3ðkÞ.
For the regulator Rk, we adopt the Litim’s cutoff [50], in

which we set ek → k:

Rkðj~pjÞ ¼ ZðkÞðk2 − ~p2ÞΘðk2 − ~p2Þ; ð25Þ

and computing the first derivative with respect to k, we find

k∂kRkðj~pjÞ ¼ fk∂kZðkÞðk2 − ~p2Þ þ 2ZðkÞk2gΘðk2 − ~p2Þ:
ð26Þ

Hence, we are now in position to extract the flow equations
for each coupling, which is the subject of the next section.

B. Flow equations in the UV regime

We will deduce the flow equation in the UV regime. In
this regime, all the sums can be replaced by integration
following the arguments of [41], essentially because the
divergences of the integral approximations are the same
as the exact sums. The method consists of a formal
expansion of the rhs of the Wetterich equation (18) in
power of couplings, and an identification of the corre-
sponding terms in the lhs. The rhs involves, in general,
some contractions between the FkðnÞ and the effective
propagator ∂kRk. And in this UV regime, only the
melonic graphs contribute.
Expanding the rhs and the lhs of the flow equation, we

obtain the following relations (in matrix notations):

k∂kΓk;ð1Þ ¼ −TrGI½∂kRkK−1
k Fk;ð1ÞK−1

k �; ð27Þ

k∂kΓk;ð2Þ ¼ −TrGI½∂kRkK−1
k Fk;ð2ÞK−1

k �
þ TrGI½∂kRkK−1

k ðFk;ð1ÞK−1
k Þ2�; ð28Þ

k∂kΓk;ð3Þ ¼ 2TrGI½∂kRkK−1
k Fk;ð1ÞK−1

k Fk;ð2ÞK−1
k �

− TrGI½∂kRkK−1
k ðFk;ð1ÞK−1

k Þ3�: ð29Þ

where the subscript GI means “gauge invariant” sums, in
the sense that all the terms summing involve a product with
a delta δðP5

i¼1 piÞ, ΓkðnÞ means the term of order n in the
truncation of Eq. (24), and
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K−1
k ≔

1

ZðkÞ~p2 þm2ðkÞ þ Rkðj~pjÞ
: ð30Þ

1. Flow equations for Z and m2

Expanding the trace in the rhs of Eq. (27), we find, using
the expressions (25) and (26)

TrGI½∂kRkK−1
k Fk;ð1ÞK−1

k �

¼
X
~p2≤k2

k∂kZðkÞðk2 − ~p2Þ þ 2ZðkÞk2
½ZðkÞk2 þm2ðkÞ�2

× Fkð1Þð~p; ~pÞδ
�X5

i¼1

pi

�
: ð31Þ

Graphically, this contribution can be pictured as in Fig. 2,
where the dashed line represent the contraction with the
propagator ∂kRk. The operator Fkð1Þ is a sum over the
intermediate colors labeling each four-valent bubbles,

Fkð1Þ ¼
P

5
i¼1 F

ðiÞ
kð1Þ, and each term contributes separately

to the wave function and mass flow. As a result, we focus
our attention on the computation of the trace for the case
i ¼ 1. As explained in [41], we will identify the contribu-
tion to the coupling of a given bubble in the lhs by
expanding the rhs around its local approximation, i.e.,
around the value q ¼ 0, where q denote the “external
momentum” shared by the red lines in Fig. 2. The two-
points case is in a sense the more interesting, because for
the wave function contribution, the local expansion requires
the first deviation to the exact local approximation, corre-
sponding to the mass term. This first deviation is propor-
tional to q2. Then, identifying the terms in front of each
powers of q2, we find

k∂km2ðkÞ

¼ −5λ1ðkÞ
k∂kZðkÞðS1ð0Þk2 − S2ð0ÞÞ þ 2ZðkÞk2S1ð0Þ

½ZðkÞk2 þm2ðkÞ�2
ð32Þ

k∂kZðkÞ ¼
−2λ1ðkÞZðkÞk2S001

½ZðkÞk2 þm2ðkÞ�2 þ λ1ðkÞðS001k2 − S002Þ
ð33Þ

where the factor 5 in front of Eq. (32) takes into account the
contributions for each i, S00l denote the coefficient in front of
q2 in the expansion of SiðqÞ in the power of q, and the sums
S1 and S2 are

S1ðqÞ ¼
X
~p∈Z4

δ

�X4
i¼1

pi þ q

�
θðk2 − q2 − ~p2Þ; ð34Þ

S2ðqÞ ¼
X
~p∈Z4

~p2δ

�X4
i¼1

pi þ q

�
θðk2 − q2 − ~p2Þ: ð35Þ

Since we will be mostly interested in the large-k limit, we
can approximate the sums by integrals, replacing the
Kronecker deltas by Dirac deltas. The support of the
integrals is in the intersection of the hyperplane of equation
qþP

4
l¼1 pl ¼ 0 and the 4-ball of radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − q2

p
. Note

that the Kronecker delta of the closure constraint can be
rewritten as qþ ~p · ~n ¼ 0, where ~n ¼ ð1; 1; 1; 1Þ ∈ R4 is
the vector with all components equal to 1. Using the
rotational invariance of our integral, we can choose one of
our coordinate axis to be in the direction ~n. If we choose the
axis 1 in this direction, our constraint writes as
δðqþ p0

1j~njÞ ¼ δðqþ 2p0
1Þ ¼ δðq=2þ p0

1Þ=2, and we find
the following integral approximation:

S1ðqÞ≃ 1

2
Ω3

�
k2 −

5q2

4

�3
2 ð36Þ

S2ðqÞ≃ 1

2

�
5q2

4
þ 3

5

�
k2 −

5q2

4

��
Ω3

�
k2 −

5q2

4

�3
2

; ð37Þ

where Ωd ≔ πd=2=Γðd=2þ 1Þ is the volume of the unit d-
ball, with the special value Ω3 ¼ 4π=3. Using this integral
approximation, we obtain

S1ð0Þ ¼
2

3
πk3; S2ð0Þ ¼

2

5
πk5;

S001 ¼ −
5

4
πk; S002 ¼ −

5

12
πk3 ð38Þ

FIG. 2. Typical contribution to the two-points observable. The
dashed line represents the contraction with the propagator ∂kRk.

(a) (b)

FIG. 3. Contributions coming from the six-points interactions
to the four-point interaction.
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giving

k∂km2ðkÞ ¼ −
4π

3
λ1ðkÞ

ηðkÞ þ 5

½ZðkÞk2 þm2ðkÞ�2 k
5 ð39Þ

ηðkÞ ¼ 5π

2
λ1ðkÞ

k3

½ZðkÞk2 þm2ðkÞ�2 − λ1ðkÞ 56 πk3
ð40Þ

with the anomalous dimension ηðkÞ defined as

ηðkÞ ≔ k∂k lnðZðkÞÞ: ð41Þ

Note that, in this case, and for the other computations, the
extraction of the local approximation in the UV limit brings
up a very nice property of the melonic sector, called
traciality. Traciality is a concept first introduced in a
perturbative renormalization framework, ensuring that
the local approximation of high subgraphs makes sense
in the TFGT context [23,25].

2. Flow equation for λ1
The flow equation for λ1 (28) involves two traces

that we will compute separately. The first trace
TrGI½∂kRkK−1

k Fk;ð2ÞK−1
k � involves two typical contributions

that we have pictured in Fig. 3 below. Note that the two
diagrams pictured on this figure have the same connectivity
as the four-valent interaction with an intermediate line of
color red, and we will only consider the flow equation for
the coupling attached to one of the five colors.
The computation of these two contributions follows

exactly the same way as the extraction of the flow equation
for the mass parameter. We expand with respect to the
external momentum q (i.e., the momentum around the
external face sharing the same line as the four internal
faces) around q ¼ 0, the first term of the expansion giving
the relevant contribution. Because the two sums involve a
loop of length one, they can be expressed in terms of the
two sums S1 and S2, and we find

TrGI½k∂kRkK−1
k Fk;ð2Þð3ÞaK−1

k �

¼ 4λ3
k∂kZðkÞðS1ð0Þk2 − S2ð0ÞÞ þ 2ZðkÞk2S1ð0Þ

½ZðkÞk2 þm2ðkÞ�2
×

X
f~pigi¼1;…;4

WðlÞ
~p1;~p2;~p3;~p4

T~p1
T~p2

T~p3
T~p4

þOðqÞ; ð42Þ

TrGI½k∂kRkK−1
k Fk;ð2Þð3ÞbK−1

k �

¼ λ2
k∂kZðkÞðS1ð0Þk2 − S2ð0ÞÞ þ 2ZðkÞk2S1ð0Þ

½ZðkÞk2 þm2ðkÞ�2
×

X
f~pigi¼1;…;4

WðlÞ
~p1;~p2;~p3;~p4

T~p1
T~p2

T~p3
T~p4

þOðqÞ: ð43Þ

The contribution of the last trace TrGI½∂kRkK−1
k ×

ðFk;ð1ÞK−1
k Þ2� is graphically pictured in Fig. 4, where the

dotted line means contraction with Kronecker delta.
Expanding in local approximation, we find, for the
extra-local contribution with q ¼ 0:

TrGI½k∂kRkK−1
k ðFk;ð1Þ;ð4ÞK−1

k Þ2�

≈ λ21ðkÞ
k∂kZðkÞðS1ð0Þk2 − S2ð0ÞÞ þ 2ZðkÞk2S1ð0Þ

½ZðkÞk2 þm2ðkÞ�3
ð44Þ

×
X

f~pigi¼1;…;4

WðlÞ
~p1;~p2;~p3;~p4

T~p1
T~p2

T~p3
T~p4

: ð45Þ

Hence, summing the contributions (42), (43), and (44), and
using the integral approximation for the sums, we find

k∂kλ1ðkÞ ¼ −ðλ2 þ 4λ3Þ
4π

15

ηðkÞ þ 5

½ZðkÞk2 þm2ðkÞ�2 k
5

þ λ21ðkÞ
4π

15

ηðkÞ þ 5

½ZðkÞk2 þm2ðkÞ�3 k
5: ð46Þ

3. Flow equations for λ2 and λ3
The only contribution to λ3 is pictured in Fig. 5 below,

corresponding to the trace:

TrGI½∂kRkK−1
k Fk;ð1ÞK−1

k Fk;ð2ÞK−1
k �:

Indeed, it is the only contraction in the melonic sector with
the same connectivity as the six-point interaction associated

FIG. 4. Contribution to the four-point interaction involved two
vertices. FIG. 5. Contribution to the flow of λ3.
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with the coupling λ3. The local approximation of the
diagram can be computed exactly as for the contribution
(3) to λ1, and we obtain

Trfig ð5Þðq ¼ 0Þ

¼ λ1λ3
k∂kZðkÞðS1ð0Þk2 − S2ð0ÞÞ þ 2ZðkÞk2S1ð0Þ

½ZðkÞk2 þm2ðkÞ�3
×

X
f~pigi¼1;…;6

YðlÞ
~p1;~p2;~p3;~p4;~p5;~p6

T~p1
T~p2

T~p3
T~p4

T~p5
T~p6

ð47Þ
and

k∂kλ3ðkÞ ¼
16π

15
λ1λ3

ηðkÞ þ 5

½ZðkÞk2 þm2ðkÞ�3 k
5: ð48Þ

In the same way, the contribution to the local approxima-
tion of the diagram 6(a) to the flow equation for λ2 writes as

Trfig ð6Þaðq ¼ 0Þ

¼ λ1λ2
k∂kZðkÞðS1ð0Þk2 − S2ð0ÞÞ þ 2ZðkÞk2S1ð0Þ

½ZðkÞk2 þm2ðkÞ�3
×

X
f~pigi¼1;…;6

X ðlÞ
~p1;~p2;~p3;~p4;~p5;~p6

T~p1
T~p2

T~p3
T~p4

T~p5
T~p6

:

ð49Þ

Finally, the contribution coming from the diagram 6(b)
in Fig. 6 involves a loop with two delta propagators, and

Trfigð6Þbðq¼0Þ

¼ λ31ðkÞ
k∂kZðkÞðS1ð0Þk2−S2ð0ÞÞþ2ZðkÞk2S1ð0Þ

½ZðkÞk2þm2ðkÞ�4
×

X
f~pigi¼1;…;6

X ðlÞ
~p1;~p2;~p3;~p4;~p5;~p6

T~p1
T~p2

T~p3
T~p4

T~p5
T~p6

:

ð50Þ

Grouping together the contributions (49) and (50), we find

k∂λ2 ¼ 24π

15
λ1λ2

ηðkÞ þ 5

½ZðkÞk2 þm2ðkÞ�3 k
5

−
12π

15
λ31

ηðkÞ þ 5

½ZðkÞk2 þm2ðkÞ�4 k
5: ð51Þ

4. Dimensionless renormalized parameters

Taking into account the canonical dimension defined in
Sec. II B, the renormalized dimensionless couplings are
defined as

m¼
ffiffiffiffi
Z

p
km λ1¼Z2kλ1 λ2¼Z3λ2 λ3¼Z3λ3: ð52Þ

Using the flow equations (40), (39), (46), (51) and (48), we
find for the dimensionless renormalized couplings the
following autonomous system:

ηðkÞ ¼ 5π

2
λ1ðkÞ

1

½1þm2ðkÞ�2 − λ1ðkÞ 56 π
ð53Þ

βm2 ¼ −ð2þ ηÞm2ðkÞ − 4π

3
λ1ðkÞ

ηðkÞ þ 5

½1þm2ðkÞ�2 ð54Þ

βλ1 ¼ −ð1þ 2ηÞλ1ðkÞ − ðλ2 þ 4λ3Þ
4π

15

ηðkÞ þ 5

½1þm2ðkÞ�2

þ λ21ðkÞ
4π

15

ηðkÞ þ 5

½1þm2ðkÞ�3 ð55Þ

βλ3 ¼ −3ηλ3ðkÞ þ
16π

15
λ1λ3

ηðkÞ þ 5

½1þm2ðkÞ�3 : ð56Þ

βλ2 ¼ −3ηλ2ðkÞ þ
24π

15
λ1λ2

ηðkÞ þ 5

½1þm2ðkÞ�3

− λ31
12π

15

ηðkÞ þ 5

½1þm2ðkÞ�4 ; ð57Þ

with the definition βi ≔ k∂ki, i ∈ fm2; λ1; λ2; λ3g.

(a) (b)

FIG. 6. Contribution to the flow of λ2.
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IV. FIXED POINTS IN THE UV REGIME

At vanishing β functions we obtain fixed points. But
these fixed points do not get any quantum corrections and
are called the Gaussian fixed points. In the neighborhood of
these fixed points, the stability is determined by the
linearized system of β functions. All these points are
studied in detail in this section.

A. Vicinity of the Gaussian fixed point

The autonomous system describing the flow of the
dimensionless couplings admits a trivial fixed point for
the values λ1 ¼ λ2 ¼ λ3 ¼ m ¼ 0 called GFP. Expanding
our equations around these points, we find the reduced
autonomous system:

8>>>>>><
>>>>>>:

βm2 ≈ −2m2 − 20πλ1
3

;

βλ1 ≈ −λ1 − 4π
3
ðλ2 þ 4λ3Þ

�
1þ π

2
λ1 þ 2m2

�
− 11π

3
λ21;

βλ2 ≈ π
2
λ1λ2;

βλ3 ≈ −13π
6
λ1λ3

ð58Þ

and the anomalous dimension:

ηðkÞ ≈ 5πλ1
2

: ð59Þ

These equations give the qualitative behavior of the RG
trajectories around the GFP. In order to study its stability,
we compute the stability matrix βij ≔ ∂iβji ∈
fm2; λ1; λ2; λ3g, and evaluate each coefficient at the GFP.
We find

βGFPij ≔

0
BBBBB@

−2 0 0 0

− 20π
3

−1 0 0

0 − 4π
3

0 0

0 − 16π
3

0 0

1
CCCCCA
; ð60Þ

with eigenvalues ð−2;−1; 0; 0Þ and eigenvectors eGFP1 ¼
ð 9
160π2

; 3
8π ;

1
4
; 1Þ; eGFP2 ¼ ð0; 3

16π ;
1
4
; 1Þ; eGFP3 ¼ ð0; 0; 0; 1Þ;

eGFP4 ¼ ð0; 0; 1; 0Þ. One recalls that the critical exponents
are the opposite values of the eigenvalues of the βij, and
that the fixed point can be classified following the sign of
their critical exponents. Hence, we have two relevant
directions in the UV, with critical exponents 2 and 1,
and two marginal couplings with zero critical exponents.
Moreover, note that the critical exponents are equal to the
canonical dimension around the GFP. Finally, note that the
previous system of equations admits other fixed points, or a
line of fixed points in addition to the Gaussian one, for the

values: λ1 ¼ m ¼ 0; λ3 ¼ −λ2=4. This fixed point occurs
as well as in the nonperturbation analysis, and we will
return on this subject in the next section.
For the moment, we are in position to discuss the

qualitative flow diagram around the Gaussian fixed point.
First of all, note that all the coefficients of the beta function
of the system (58) are not negative definite. This fact seems
to be a special feature of this model, meaning that the
weight of the anomalous dimension does not dominate the
vertex contribution. This fact is a first difference with
respect to the similar non-Abelian ϕ6 model studied in [37].
However, the analysis provided in this reference remains
true, and the model is not asymptotically free. We will not
repeat the complete analysis given in [37], but a qualitative
argument is the following. Exploiting the fact that the
hyperplans λ2 ¼ 0 and λ3 ¼ 0 are invariant under the flow,
we can look at only a two-dimensional reduction of the
complete system (58). We choose λ2 ¼ 0, and plot the
numerical integration of the reduced flow equation in Fig. 7
(on the left) below. In the domain, λ3 > 0, even if a given
trajectory approaches the Gaussian fixed point, λ1 reaches a
negative value, and it is ultimately repelled for k sufficiently
large. The same phenomenon occurs for λ2 in the plan
λ2 < 0 (see Fig. 7 on the right). The issue of the UV
completion of a theory which is nonasymptotically free is
one of the difficult question that we address to the non-
perturbative renormalization group machinery, and the rest
of this paper is essentially devoted to this one.

B. Non-Gaussian fixed points

Solving numerically the systems (39)–(48), we find
some non-Gaussian fixed points, whose relevant character-
istics are summarized in Table I below. In addition to these
non-Gaussian fixed points, the system admits a line of fixed
points, (LFP), for the values

LFP ¼ fm2 ¼ 0; λ1 ¼ 0; λ2 ¼ −4λ3g; ð61Þ

with critical exponents

8>>>>>>>><
>>>>>>>>:

θð1Þ ¼ −2;
θð2Þ ¼ 0;

θð3Þ ¼ − 1
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 128

9
π2λ2

q �
;

βλ3 ¼ − 1
2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 128

9
π2λ2

q �
:

ð62Þ

The denominator of η, D ≔ ½1þm2ðkÞ�2 − λ1ðkÞ 56 π, intro-
duces a singularity in the flow. At the Gaussian fixed point,
and in a sufficiently small domain around, D > 0. But
further away from the GFP, D may cancel, creating in the
ðλ1; m2Þ plan a singularity line. The area below this line
where D < 0 is thus disconnected from the region D > 0
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connected to GFP. Then, we ignore for our purpose the
fixed points in the disconnected region, for whichD < 0. A
direct computation shows that only the fixed points FP2,
FP3, FP5, and FP6 are relevant for an analysis in the
domain connected to the Gaussian fixed point.
(1) The fixed points FP2 and FP3 are very similar.

They have three irrelevant directions and one rel-
evant direction in the UV. For each of these fixed
points, the three irrelevant directions span a three-
dimensional manifold on which the trajectory runs
toward the fixed point in the IR, while the trajecto-
ries outside are repelled of this critical surface, as
pictured in Fig. 8. This picture, the existence of a
separatrix between two connected regions of the
phase space is reminiscent of a critical behavior,
with the phase transition between a broken and a
symmetric phase, and these separatrix are IR-critical
surfaces. This interpretation is highlighted for the
two fixed points in the zero momenta limit. Indeed,
in both cases, the contributions in the effective action
of the terms proportional to λ2 and λ3 can be
neglected in comparison with the contributions of
the two first terms, leading in the first approximation
a Ginsburg-Landau equation for ϕ4 scalar complex
theory. Note that for FP2 two critical exponents are

complex, providing some oscillations of the trajec-
tories, and implying that the fixed point is an IR
attractor in the two-dimensional manifold spanned
by the eigenvectors corresponding to these two
critical exponents. Moreover, the fixed point FP6

appears to be an IR fixed point, with coordinates of
the opposite sign.

(2) The fixed point FP5 has two relevant and two
irrelevant directions in theUV.The relevant directions
in the UV span a two-dimensional manifold corre-
sponding to a UV-multicritical surface. Such a sur-
face is interesting for theUVcompletionof the theory.
Indeed, all the trajectories in the surface are oriented
toward the fixed point in the UV, while the dimension
of the surface gives an interesting number of physical
parameters, providing evidence in favor of theasymp-
totic safety of the model in the UV [51] and [52].

(3) Finally, we have the line of teh fixed point, for which
we will distinguish four cases:
(a) In the domain d1 ¼ fλ2 < 0g we have two

relevant, one marginal, and one irrelevant di-
rections.

(b) At the point d2 ¼ fλ2 ¼ 0g, we recover the GFP,
with two relevant and two marginal directions.

(c) In the domain d3 ¼ fλ2 ∈�0; ð 3
8πÞ2�g we have

three relevant and one marginal directions. One

TABLE I. Summary of the properties of the non-Gaussian fixed points. Again, the critical exponents θi are the opposite values of the
eigenvalues of the stability matrix: β� ≕ diagð−θ1�;−θ2�;−θ3�;−θ4�Þ.
FP m̄2 λ̄1 λ̄2 λ̄3 η θð1Þ θð2Þ θð3Þ θð4Þ

FP1 −0.3 0.005 0.0009 −0.0002 −6.3 −299 56.1 −11.7 5.8
FP2 −0.7 0.008 0.0006 −0.0002 0.76 −7.4 − 1.9i −7.4þ 1.9i 3.34 −0.12
FP3 −0.9 0.0007 3.32.10−6 0.0 1.3 −66.7 −42.63 −27.7 1.80
FP4 −0.8 0.04 −0.02 0.0 −5.9 −144.8 −14.4 −7.5 −5.4
FP5 0.06 −0.006 0.002 0.0 −0.04 1.9 1.09 −0.04 −0.01
FP6 1.32 −0.5 −0.06 0.0 −0.6 3.0 −1.23 −1.13 −0.39

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.05

0.00

0.05

1

2

0.4 0.2 0.0 0.2 0.4
0.6

0.4

0.2

0.0

0.2

0.4

0.6

1

3

FIG. 7. Phase portrait in the plans ðλ̄1; λ̄3Þ for λ̄2 ¼ 0 (on the left) and in the plan ðλ̄1; λ̄2Þ, for λ̄3 ¼ 0.

VINCENT LAHOCHE and DINE OUSMANE SAMARY PHYSICAL REVIEW D 95, 045013 (2017)

045013-10



more time, this section of the critical line is
interesting in view of the UV completion of the
theory and provides supplementary evidence in
favor of asymptotic safety. Indeed, in each point,
the relevant directions in the UV span a three-
dimensional UV-critical surface, in favor of the
existence of a nontrivial asymptotically safe
theory with three independent physical param-
eters. This line of the fixed point has been
recently discussed in [43] for a similar model
improved by unconnected interaction bubbles.

(d) In the domain d4 ¼ fλ2 > ð 3
8πÞ2g The situation is

very reminiscent of the previous one. We have
three eigenvalues with a negative real part and
one equal to zero. Hence, we have three relevant
and one marginal directions. The only difference

in comparison with the domain d3 is that the
eigenvalue has nonzero imaginary parts, giving
some oscillations and attractor phenomena in the
trajectories.

Finally, we briefly discuss the values of the anomalous
dimensions. With our conventions, the couplings of the
relevant operator are suppressed as a power of k in the UV
limit k → ∞. The couplings decrease when the trajectory
goes away from the UV regime. However, the power law
behavior is limited to the attractive region of the fixed
point; far from its scaling regime it can deviate from the
power law one. And we can evaluate this deviation. For
instance, in the vicinity of FP5, one deduces from (23) that
the canonical dimension becomes

½tb�FP5
≈ 3 − 1.6

Nb

2
; ð63Þ

from which we deduce that all the interactions of valence
up or equal to 3 become inessential. The same phenomenon
occurs in the vicinity of FP4, where all the interactions up
to these of valence four become inessential. In contrary, at
the fixed points FP2 and FP4 the anomalous dimension is
positive, meaning that the power counting is improved with
respect to the Gaussian one, and irrelevant operators are
enhanced in the UV.

V. TRUNCATION WITH AN INTERACTION
OF VALENCE 8

This section aims to identify how the adding of the
interaction of valence 8 may modify the flow equation and
the fixed point of our model. This means that the effective
action is now truncated to satisfy the following form: let
eji ∈ ½1; 5� be the color of the bubble of valence 8, with
i ¼ 1, 2, 3, 4 and j ¼ 1; 2;…; 5,

Γk½T; T� ¼
X
~p∈Z5

ðZðkÞ~p2 þm2ðkÞÞT~pT ~p þ
λ1ðkÞ
2

X5
l¼1

X
f~pigi¼1;…;4

WðlÞ
~p1;~p2;~p3;~p4

T~p1
T~p2

T~p3
T~p4

þ λ2ðkÞ
3

X5
l¼1

X
f~pigi¼1;…;6

X ðlÞ
~p1;~p2;~p3;~p4;~p5;~p6

T~p1
T~p2

T~p3
T~p4

T~p5
T~p6

þ λ3ðkÞ
X5

li¼1;i¼1;2;3

X
f~pigi¼1;…;6

Yðl1;l2;l3Þ
~p1;~p2;~p3;~p4;~p5;~p6

T~p1
T~p2

T~p3
T~p4

T~p5
T~p6

þ
X4
i¼1

λ4;iðkÞ
X5

eji¼1=;eji≠eki ∀j≠k

X
f~plgl¼1;…;8

Z
i;ðejiÞ
~p1;~p2;~p3;~p4;~p5;~p6;~p7;~p8

T~p1
T~p2

T~p3
T~p4

T~p5
T~p6

T~p7
T~p8

; ð64Þ

where we assume that the last term of the action (64) takes into account all contributions of melonic interactions of the form
T8, and the coupling constants λ4;i; i ¼ 1, 2, 3, 4 are related to the vertex V4;i; see Fig. 9. The set fe·igj takes into account
allz the colors associated to the vertices V4;i. We get for Γk;ð3Þ and Γk;ð4Þ the flow equations:

FIG. 8. Qualitative behavior of the RG trajectories around an IR
fixed point. The critical surface is spanned by the relevant
directions in the IR, and the arrows are oriented toward the IR
direction. This illustrates the scenario of asymptotically safety.
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k∂kΓk;ð3Þ ¼ 2TrGI½∂kRkK−1
k Fk;ð1ÞK−1

k Fk;ð2ÞK−1
k � − TrGI½∂kRkK−1

k ðFk;ð1ÞK−1
k Þ3� − TrGI½∂kRkK−1

k Fk;ð3ÞK−1
k �; ð65Þ

and

k∂kΓk;ð4Þ ¼ −TrGI½∂kRkK−1
k Fk;ð4ÞK−1

k � þ TrGI½∂kRkK−1
k ðFk;ð2ÞK−1

k Þ2� þ TrGI½∂kRkK−1
k ðFk;ð1ÞK−1

k Þ4�
− 3TrGI½∂kRkK−1

k Fk;ð2ÞK−1
k ðFk;ð1ÞK−1

k Þ2�: ð66Þ

Taking into account the dimensionless renormalized parameter, and grouping all melonic contributions, the flow equations
of the coupling constants λ2, λ3 and λ4;i, are

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

βm2 ¼ −ð2þ ηÞm2 − 4π
3
λ1

ηþ5

½1þm2�2 ;

βλ1 ¼ −ð1þ 2ηÞλ1 − ðλ2 þ 4λ3Þ 4π15 ηþ5

½1þm2�2 þ λ21
4π
15

ηþ5

½1þm2�3 ;

βλ2 ¼ −3ηλ2 þ 24π
15

λ1λ2
ηþ5

½1þm2�3 − λ31
12π
15

ηþ5

½1þm2�4 −
48π
15

λ4;2
ηþ5

½1þm2�2 −
12π
15

λ4;4
ηþ5

½1þm2�2

βλ3 ¼ −3ηλ3 þ 16π
15

λ1λ3
ηþ5

½1þm2�3 −
8π
15
λ4;1

ηþ5

½1þm2�2 −
36π
15

λ4;3
ηþ5

½1þm2�2 −
8π
15
λ4;4

ηþ5

½1þm2�2 ;

βλ4;1 ¼ ð1 − 4ηÞλ4;1 þ 16π
15

λ4;1λ1
ηþ5

½1þm2�2 þ 4π
15
λ23

ηþ5

½1þm2�3 −
24π
15

λ21λ3
ηþ5

½1þm2�4 þ 4π
15
λ41

ηþ5

½1þm2�5 ;

βλ4;2 ¼ ð1 − 4ηÞλ4;2 þ 32π
15

λ4;2λ1
ηþ5

½1þm2�2 þ 4π
15
λ22

ηþ5

½1þm2�3 −
12π
15

λ21λ2
ηþ5

½1þm2�4 ;

βλ4;3 ¼ ð1 − 4ηÞλ4;3 þ 24π
15

λ4;3λ1
ηþ5

½1þm2�2 ;

βλ4;4 ¼ ð1 − 4ηÞλ4;4 þ 24π
15

λ4;4λ1
ηþ5

½1þm2�2 þ 8π
15
λ2λ3

ηþ5

½1þm2�3 −
24π
15

λ21λ3
ηþ5

½1þm2�4

ð67Þ

with the anomalous dimension given by Eq. (53). One more
time, the system can be solved numerically, and the fixed
points as well as their essential properties are summarized
in Table II.
Interestingly, note that the line of fixed points has

disappeared, which is not a surprise, because such line
of fixed points is generally a pathology of the crude
truncation. Among the fixed points listed in the table, only
FP5, FP6, and FP10 have D > 0. The over fixed points
have a big critical exponent and become harmful pathology
of the model.

(i) The fixed point FP5 has seven irrelevant directions
and one relevant direction in the UV, and seems
to be an IR fixed point, whose irrelevant directions
span an IR-critical surface with seven dimensions.

(ii) The fixed point FP6 has five relevant directions and
three irrelevant directions in the UV. The relevant

directions span an UV-multicritical surface of di-
mension five. The existence of a such submanifold is
in accordance with the asymptotic safety of the
theory.

(iii) The fixed point FP10 has seven relevant directions
and one irrelevant direction in the UV. It corresponds
to an UV fixed point whose relevant directions span
a seven-dimensional UV-critical surface. One more
time, the existence of a such manifold seems to be in
accordance with a nontrivial asymptotically safe
theory.

At this stage, it is not obvious to make contact with the
fixed points obtained in the previous truncation. The
standard way to highlight these relation is to consider
truncation with higher and higher valence, and seek
convergence of the fixed points. But in our case, the
difficulty of a such computations is very improved by

FIG. 9. Graphical representation of the vertices of valence 8.
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the nonlocality of the interactions, and these conclusions
have to be confirmed by more finer analysis. Let us remark
that the study of the critical exponent [46] could upset our
analysis for the choice of the truncations with valances
greater than 6. For instance, the fixed point FP5 leads to a
very large critical exponent and this can help to show that
the truncation in this order remains nonconsistent. For the
fixed point FP10 the critical exponent is small, and adding
another interaction of valence more than 8 becomes
unnecessary. Unlike, the fixed point FP10 exhibits several
relevant directions and these do not appear in the previous
section by using just the truncation with the interaction of
valence 6.

VI. DISCUSSION AND CONCLUSION

In this paper the renomalization group analysis is applied
for the just renormalizable T6

5 TGFT model in the deep UV
limit. Using the simplest approximation consisting of a
truncation around the marginal interactions with respect to
the perturbative power counting, i.e., around the Gaussian
fixed point, we have derived the flow equations for each
couplings. Because we have focused our attention on the UV
sector, the leading contributions to the flow equations
provide to the melonic sector, a consideration which con-
siderably simplify the computation of the flow equations. In
a second time, using the appropriate notion of canonical
dimension in the UV, we have translated our flow equation in
an autonomous system of differential equations, which we
have computed numerically the fixed points, as well as the
behavior of the flow’s trajectory around each of them.
We have find two type of fixed points. The IR fixed

points, whose relevant directions in the IR span an

IR-critical surface, a picture in favor of phase transi-
tions. This is supported, for two of these IR fixed
points, by the negative value of their mass parameter,
and the fact that in their vicinity, the effective action
turns out to be a Ginsburg-Landau like equation for a ϕ4

scalar complex theory, advocating a condensed phase
transition interpretation. In opposition, the second type
of fixed points are UV critical, and their relevant
directions in the UV span critical surface with dimen-
sions higher or equal to 2, a picture in accordance with
a well-defined and nontrivial behavior in the UV for
asymptotically safe theories. In all the case, we observe
that anomalous dimensions enhanced or weaken the UV-
power counting for relevant operators with respect to the
perturbative power counting, a phenomena which seems
to indicate a breakdown of our crude truncation in these
domains of the phase space. Moreover, the presence of
pathological effects as a line of fixed points seems to
confirm these suspicions, as well as its disappearance in
a higher truncation, while our conclusions about asymp-
totic safety and IR fixed points remain true. The
connection between the new fixed point and these ones
obtained in the first truncation remains, however,
unclear at this stage without more control over the
approximation procedure.
Finally, note that in the complementary IR regime, the

flow equations receive nonmelonic contributions. This is
due to the fact that, for a very small cutoff, the sums take
values 0 or 1. As pointed in [41], the appropriate
rescaling is provided by the standard power counting,
and the flow equation turns out as well to be an
autonomous system, which can be solved numerically.
However, we have to keep in mind that our model is

TABLE II. Summary of the properties of the non-Gaussian fixed points in the ϕ8 truncation.

FP FP1 FP2 FP3 FP4 FP5 FP6 FP7 FP8 FP9 FP10

m̄2 −1.07 −0.91 −0.84 −0.84 −1.22 −0.75 −0.76 −0.74 −0.59 1.45
λ̄1 0.004 0.005 0.02 0.02 0.009 0.006 0.045 0.05 0.14 −0.65
102λ̄2 0.1 0.03 0.7 −0.4 0.2 −0.01 2 1 −40 −16
103λ̄3 −0.3 0.04 −3 0.0 −0.7 0.02 −10 −10 −0.6 −3
102λ̄4;1 0.01 −0.04 0.1 0.01 0.001 −230 0.3 0.3 0.09 −0.3
103λ̄4;2 −0.04 −0.01 0. −1 −0.06 −2000.0 −0.9 −1 100 −10
103λ̄4;3 0.0 0.0 −0.3 −0.9 0.0 0.0 0.0 0.0 0.0 0.0
102λ̄4;4 0.003 690 0.02 0.4 0.006 670 0.05 0.2 0.03 −0.03
η −6.8 −6.3 −6.0 −6.0 2.6 0.9 −5.9 −5.6 −0.65 −0.66
θð1Þ 307.8 289.8 179.6 180.0 −110.7 24.7 142.6 137.9 121.6 3.2

θð2Þ −245.8 −112.0 −12þ 25i −45.9 −50þ 13i 14.5 19þ 6i 20þ 4i 30 3.1

θð3Þ 173.0 −67.8 −12 − 25i 31 −50 − 13i 12.2 19 − 6i 20 − 4i 23.6 −3.0
θð4Þ 113.6 31þ 6.7i 21þ 10i 26 −39 7.7 11.7 13þ 1.7i 18.9 2.8

θð5Þ 77þ 19i 31 − 6.6i 21 − 10i −22 −33 −6 1.2þ 10i 13 − 1.7i 17.2 2.7

θð6Þ 77 − 19i −28.5 −15 10 24.8 5.7 1.2 − 10i 11 9.8 1.0

θð7Þ −67 −19 6 6.1 −18 −5 9.8 −5.7 6.3 0.7

θð8Þ 7.2 5.8 2.2 4 −2.3 −1.3 5.5 5.4 5.2 0.3
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defined on a compact manifold [Uð1Þ6 in the referenced
paper, Uð1Þ5 in our case]. Then, no phase transition can
occur, and all the non-Gaussian fixed points reached to
the Gaussian one when the cutoff tend to 0, except if the
radius of the circles tend simultaneously to infinity.
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