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As time passes, once simple quantum states tend to become more complex. For strongly coupled k-local
Hamiltonians, this growth of computational complexity has been conjectured to follow a distinctive and
universal pattern. In this paper we show that the same pattern is exhibited by a much simpler system—
classical geodesics on a compact two-dimensional geometry of uniform negative curvature. This striking
parallel persists whether the system is allowed to evolve naturally or is perturbed from the outside.
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I. THE GEOMETRY OF COMPUTATION

There is evidence that the evolution of quantum com-
plexity and the growth of the geometry behind black-hole
horizons follow identical patterns [1–3]. This is true
whether the systems evolve in isolation or are subject to
external perturbations. In this paper we will show that a
third system—the “analog model,” namely a classical
nonrelativistic particle that moves along the geodesics of
a two-dimensional, compact, negatively curved surface of
high genus—shares the same behavior. Although we do not
fully understand the reasons for this correspondence, it
most likely has its roots in Nielsen’s geometrized approach
to complexity [4–6].

II. THE EVOLUTION OF QUANTUM
COMPLEXITY

In this section we will review the evolution of the
quantum complexity of strongly coupled quantum systems
and highlight some signature phenomena. (We will also
briefly review the evolution of classical wormholes, to
which quantum complexity has been conjectured to be
holographically dual.) In Sec. III we will show that much of
the highlighted phenomenology is reproduced by our
simple analog model.
Fast scramblers.—The systems whose complexity we

will be interested in modeling are the fast scramblers. Fast
scramblers are systems that spread the effects of localized
disturbances over all the degrees of freedom in a time
logarithmic in the entropy. An example of a fast scrambler
made with fermionic qubits is the Sachdev-Ye-Kitaev
(SYK) system [7–10]; an example with conventional
commuting qubits is the high-temperature phase of the
Hamiltonian

H ¼
X

i1<i2<…<ik

Ji1;i2;…;ikσi1σi2…σik : ð2:1Þ

(The J’s are a set of numerical coefficients, possibly chosen
randomly, but centered around a value J. The σi are single
qubit traceless Pauli operators for the ith qubit. We have
suppressed the index structure associated with the Pauli
operators.)
This Hamiltonian is not local since every qubit couples

to every other qubit, but it is “k-local” since no term in the
Hamiltonian couples together more than k qubits. It is
assumed that the total number of qubits, K, is much larger
than k. For definiteness we will usually take k ¼ 2.
The fast scrambler of Eq. (2.1) is a continuous-time

Hamiltonian. We will also be interested in systems for
which time is discrete, for example, quantum circuits. A
quantum circuit starts with a collection of K qubits and
makes them interact via k-qubit quantum gates. Random k-
local quantum circuits are believed to be fast scramblers.
For k ¼ 2, a random quantum circuit may be constructed

as follows. In each time step the K qubits are randomly
paired and each pair interacts by a randomly chosen gate.
The particular gate set is not very important as long as it is
universal. After each step, the qubits are randomly
regrouped into pairs and the process is repeated. This is
illustrated in Fig. 1.
Our focus will not be on the state of the qubit system, but

rather on the unitary operator UðτÞ generated by the circuit
after τ time steps. We will be interested in the complexity of
this unitary operator, defined as the number of gates in the
minimal quantum circuit that generates this unitary. Wewill
particularly be interested in how the complexity evolves
with time.
Growth and saturation.—The number of gates that the

circuit applied in order to prepare UðτÞ is

NgatesðτÞ ¼
Kτ
2

: ð2:2Þ
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The number of time steps, τ, is called the depth of the
circuit and K is called the width. The factor of 1=2 in
Eq. (2.2) is due to the pairing of qubits, which implies that
in each time step K=2 gates act.
However, the definition of the complexity C½UðτÞ� is not

the actual number of gates used in the defining circuit to
generate UðτÞ. Instead the complexity is the minimum
number of gates that it takes to prepareUðτÞ, using the most
efficient possible circuit. This may be less than or equal to
the actual number of gates used in the defining circuit.
However, it is believed that at least for some length of time
the defining circuit is the most efficient, and for this period
the complexity grows as Kτ

2
.

The growth of complexity cannot continue indefinitely.
Though there is no limit to the size of any individual circuit,
if the circuit is too big, there will typically be another,
shorter, circuit that implements an almost identical unitary.
We can estimate how large a circuit can be before it is likely
to have been “short-circuited” by calculating the volume of
SUð2KÞ. There are a continuous infinity of elements of
SUð2KÞ, so any finite arrangement of discrete gates can
only hit measure zero; for this reason, we introduce a
tolerance—we settle for getting sufficiently close (in the
inner product sense) to the target unitary. An ϵ net is a kind
of lattice on SUð2KÞ that divides it into small patches of
linear size ϵ. The number of such patches that it takes to
cover SUð2KÞ is double exponential in K, of order.1 e4

K
.

Since the number of possible circuits grows exponentially
with the depth, this implies that the maximum complexity is
exponential in K,

Cmax ∼ 4K: ð2:3Þ

Complexity∼4K is not only the largest possible complex-
ity, it is also the complexity of the overwhelming majority of
unitary operators. Thus, while this has not been proved, it is
believed that the linear growth in complexity, Kτ=2, con-
tinues for an exponential time, only appreciably slowing
when the complexity gets close to its maximum value.

Once the complexity reaches its maximum value, it will
fluctuate in the vicinity of Cmax for a time of order e4

K
and

then execute quantum recurrences, quasiperiodically
returning to small values. The time scale τ ∼ e4

K
is called

the quantum recurrence time.
Figure 2 shows the complexity history, as conjectured in

[11], of the evolution operator UðτÞ ¼ eiHτ for a fast
scrambler.
To summarize, the complexity initially increases linearly,

with a rate of increase equal to the internal energy [12,13]
which we assume is proportional to the number of qubitsK.
The numerical coefficient is dependent on the exact
definition of complexity but we will adopt a convention
motivated by Eq. (2.2),

CðτÞ ¼ K
2
τ: ð2:4Þ

(Here we have assigned 2-local gates a complexity of 1; if
instead we had assigned them a complexity of 2, the growth
rate would have been Kτ.) Once CðτÞ reaches its maximum
value, a long period of complexity equilibrium will follow,
during which the complexity remains near maximum. On
very long time scales, the complexity will occasionally
fluctuate substantially below its maximum, and on double
exponentially long time scales very rare fluctuations will
return C all the way back to near zero. Conditional on
having backtracked to a low complexity at some time, the
system will typically have reached that value via a rate of
decrease of −K=2.
The growth of complexity has been conjectured to be

holographically dual to the growth of the Einstein-Rosen

FIG. 2. The evolution of the computational complexity of the
operator eiHτ for a generic k-local Hamiltonian H. At t ¼ 0 the
operator eiHt is the identity and so has complexity zero. At early
and intermediate times the complexity increases linearly, with
coefficient K=2. After a time exponential in the number of qubits
K, the complexity saturates at a value Cmax that is exponential in
K. It then fluctuates near that maximum value. Very very rarely—
so rarely that we must wait the double exponentially long
quantum recurrence time for it to be likely to have happened
even once—the complexity of the system may fluctuate down to
near zero, before growing again.

FIG. 1. An example of a random circuit with K ¼ 6, k ¼ 2, and
depth 4. The six qubits (black lines) are randomly grouped into
three ordered pairs, and then a gate (blue box) is applied to each
pair. At the next time step, they are randomly regrouped.

1As a function of ϵ, the number of patches is approximately
e4

K log ϵ; in what follows we will ignore the weak dependence on ϵ
and focus on the double exponential dependence on K.
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bridge (ERB) connecting two entangled black holes [1–3].
Evidence for this conjecture is that we see all the same
phenomenology for ERBs as we do for complexity. Like
complexity, ERBs initially grow linearly with time. Indeed,
ERBs continue to grow linearly for as long as classical
gravity continues to hold. There are known nonperturbative
effects which destroy the validity of classical gravity on a
time scale exponential in the entropy [14]; if the holo-
graphic duality holds up to this time, then linear growth of
the ERB continues for an exponential time.

A. Decreasing complexity is unstable

Wemay artificially create a period of decreasing complex-
ity by time reversing the quantum circuit, i.e., Hermitian
conjugating the gates and applying them in reverse order.
This will replace the normal increase of complexity with a
reversed history of decreasing complexity.
However, decreasing complexity is unstable: a small

perturbation of a single gate (or a thermal photon) will soon
cause the complexity to stop decreasing. After a scrambling
time,

τ� ¼ logK; ð2:5Þ

the complexity will start increasing, again with rate K=2.
The randomcircuitmodel is useful for seeingwhy there is a

delay time τ� before the complexity begins to increase. The
scrambling time is defined as the time that it takes for a simple
perturbation such as an extra gate to spread through the
system affecting every qubit. Let us suppose the complexity is
large but decreasing, and that at some point we apply an extra
single-qubit gate. Initially only one qubit is affected—let us
call it “infected”—by the action of the extra gate. The rest of
the system, being uninfected,will continuealong its trajectory
of decreasing complexity. After an additional time step, two
qubits will be infected, then four, eight, etc. But for large K
this is still a negligible fraction of the system. After τ time
steps, the epidemic will have spread to

sðτÞ ¼ eτ ð2:6Þ

qubits.2 The notation sðτÞ stands for the size of the epidemic
after τ time steps [3].

This exponential behavior is a sign of chaos and has been
studied by Maldacena, Shenker, and Stanford [15]. They
refer to the exponent in the exponential growth formula as
the quantum Lyapunov exponent [16].
The scrambling time τ� ¼ logK is the number of steps

needed to infect most of the qubits. Once the scrambling
time has passed, the delicate coordination required for the
complexity to be decreasing has been completely disrupted
by the effects of the perturbation and the normal condition
of increasing complexity will have been restored.
By contrast with the decreasing case, increasing com-

plexity is an entirely stable condition. If the complexity was
set to increase, then a perturbation generically will not
change that—after a perturbation, the complexity will
continue to increase.

1. The second law of complexity

The similarity with the evolution of entropy in classical
chaotic systems is obvious and suggests a “second law of
complexity" with all the same qualifications as for the
second law of thermodynamics. The simplest version
would be:
Complexity always increases.
However, just as it would be for entropy, this is too

simple. We can instead try:
Complexity almost always increases.
But this is also not true: just like entropy, complexity

almost always fluctuates about its maximum.
The correct formulation is:
Conditioning on the complexity being less than maxi-

mum, it will most likely increase, both into the future and
into the past.
The big difference is that the second law of complexity

operates on vastly longer time scales than its entropic
counterpart. The time required for the classical entropy to
fluctuate down to near zero—the classical recurrence
time—is exponential in the entropy eK. By contrast, the
time required for the quantum complexity to fluctuate to
near zero—the quantum recurrence time—is double expo-
nential in the entropy e4

K
. At the end of Sec. V we comment

on the origin of this similarity between quantum complex-
ity and classical entropy.

2. Black holes and shock waves

In [17,18] it was pointed out that the dynamics of a black
hole is governed by a k-local chaotic Hamiltonian, so we
can also study the behavior of complexity in the context of
black holes. It was conjectured [2,3] that the evolution of
complexity is reflected in the growth of black-hole interior
geometries. By studying the time evolution of Einstein-
Rosen bridges, similar behaviors are found as those we
expect from quantum-circuit complexity. For example, the
eternal black hole in Anti–de Sitter (AdS) has a Penrose
diagram which is time-reversal symmetric. During the first

2For 2-local circuits the size will grow as 2τ, where τ is the
number of discrete time steps. In what follows we will treat time as
continuous and then rescale time to give eτ. In general, we can also
consider k-local circuits where k is some order-one number. By
rescaling time and appropriately defining gate complexity, the
complexity of the circuit can always be made to grow as eτ at early
times; however, the late-time rate at which the epidemic approaches
saturation [Eq. (2.11)] is not robust against changing k and scales
instead like the k-dependent e−τ=ðk−1Þ. More discussion of the
normalization of the time variable τ and its relation to the various
time units used in black-hole physics appears in Appendix A.
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half of the evolution the ERB shrinks. This is the white-hole
era. References [2,11,19] have studied what happens if
during this era a thermal-scale perturbation is applied to the
white hole. It is found that the volume (or action) of the
ERB continues to decrease for a scrambling time, but then
reverses, effectively turning the white hole into a black
hole. This exactly parallels the behavior of complexity for
chaotic quantum systems. On the other hand, a similar
perturbation applied during the black-hole era has very
little effect. In other words, increasing ERB size is a stable
condition.
The most striking evidence for the holographic duality

between the complexity of the boundary theory and the size
(volume or action) of the corresponding ERB in the bulk is
provided by the switchback effect [2,20]. To see this effect,
we must study the evolution of precursors.

B. Precursors: Single perturbations

As we just saw, in chaotic systems tiny changes have
huge consequences—the passage of time amplifies pertur-
bations until they transform the fate of the whole system.
We can capture this phenomenon by studying “precursors.”
A precursor WðτÞ measures the difference between the
operator as it is now and what the operator would have been
by now had we slightly perturbed it at some point in the
past. Clearly, one way to construct such an operator is to
evolve “backwards in time” (i.e., undo the time evolution
that has happened by acting on it with the inverse of the
time-evolution operator), then hit it with the small pertur-
bation, and then run it back to the present by acting with the
normal forward-directed time-evolution operator:

WðτÞ ¼ UðτÞWU†ðτÞ: ð2:7Þ

Here U is the time-evolution operator UðτÞ ¼ expð−iHτÞ
and W is a simple operator of unit complexity. (For
example, for a quantum circuit W could be a single-qubit
Pauli operator.)
Let us now consider the complexity of WðτÞ. For τ ¼ 0

the complexity is tiny,

C½Wðτ ¼ 0Þ� ¼ C½W� ¼ 1: ð2:8Þ

However, the complexity of WðτÞ grows with jτj as the
effect of the initially small perturbation cascades through
the system. An upper bound on the growth rate is given by
the triangle inequality

C½WðτÞ� ≤ C½UðτÞ� þ C½W� þ C½U†ðτÞ�

¼ 1

2
Kjτj þ 1þ 1

2
Kjτj ∼ Kjτj ð2:9Þ

since the minimal circuit that implements WðτÞ can
certainly be no bigger than the circuit formed by concat-
enating the individual circuits for U, W, and U†.

This naive concatenated circuit successfully makes
WðτÞ, but it is not the smallest circuit that makes WðτÞ.
This is most easily seen considering the case whereW is the
simplest of all operators, namely the identity operator. In
that case U and U† cancel, so WðτÞ is also the identity
operator and has complexity zero.
The point is similar to the earlier discussion of the

instability of decreasing complexity. The operatorW affects
only a single qubit; in other words, it acts as the identity on
all but one qubit. Therefore, there is a large amount of
cancellation between the gates of U and U† until the effect
of W has spread through the system. This partial cancella-
tion leads to the minimal circuit being smaller than the
naive concatenated circuit by an amount Kτ�, a phenome-
non known as the “switchback effect.” The switchback
effect is one of the signature phenomena of the evolution of
quantum complexity, and reproducing it will be a strong
test of our analog model in Sec. III.
To be more quantitative about how the complexity of

WðτÞ changes with time, we can consider the random
circuit model. Going back to Eq. (2.6) for the size of the
epidemic, it is obvious that the size cannot grow for too
long since the epidemic must saturate once every qubit is
infected. Taking into account that only uninfected qubits
can become infected, one finds that for large K the size of
the epidemic satisfies the differential equation [20]

dsðτÞ
dτ

¼ s
K − s
K − 1

: ð2:10Þ

The solution is the “epidemic” function

sðτÞ ¼ Keτ

K þ eτ
¼ K

eðτ−τ�Þ

1þ eðτ−τ�Þ
ðwith τ� ¼ logKÞ:

ð2:11Þ

Several things are seen from these equations. The early
exponential growth of Eq. (2.6) is recovered for time less
than logK. At later time, every qubit is infected, and so the
size of the epidemic saturates3 at K. Equation (2.11) shows
saturation takes a scrambling time. This formula was more
rigorously justified by a model using a random time-
dependent Hamiltonian in [21].
Figure 3 plots the size of the precursor as a function of

time, sðτÞ. At early times the precursor is growing
exponentially but is still too tiny to be visibly distinct
from zero. After a scrambling time, the size rapidly grows
from near zero to near one, saturating in a few thermal
times. (See Appendix A.) When there is a large hierarchy

3The saturation of the size of the epidemic is not connected
with the saturation of complexity at its maximum value in
Eq. (2.3). The saturation of size occurs at the scrambling time,
which is logarithmic inK; the saturation of complexity occurs at a
time exponential in K.

BROWN, SUSSKIND, and ZHAO PHYSICAL REVIEW D 95, 045010 (2017)

045010-4



between the scrambling time and the thermal time, which is
to say when logK ≫ 1, the transition is quite sharp and
almost looks like a step function.
From sðτÞ it is straightforward to calculate CðτÞ. We call

those gates acting on infected qubits “infected gates.”
Recall from the discussion below Eq. (2.9) that the
complexity of a precursor is the number of uncanceled
gates. It can also be identified with the sum over time of the
number of infected gates at that time. On the other hand, at
each time step the number of infected gates is equal to the
number of infected qubits,4 which is the size of the
precursor. It follows that the complexity is the integral
over time of the size. Or more simply,

dCðτÞ
dτ

¼ sðτÞ: ð2:12Þ

Combining this equation with Eq. (2.11) gives

CðτÞ ¼ K log ð1þ eτ−τ� Þ

¼
�
eτ for τ� − τ ≫ 1

K
2
ð2τ − 2τ�Þ for τ − τ� ≫ 1:

ð2:13Þ

At early time the complexity increases exponentially
with the Lyapunov exponent 1. As explained in the
appendix, this is the value for the quantum Lyapunov
exponent expected from the arguments of [15]. After a
scrambling time, the complexity grows linearly. The
delayed onset of linear growth causes the complexity to
be Kτ� less than it would have been with no delay.

1. Single precursors and black holes

We have seen how precursor perturbations effect the
growth of quantum complexity. The growth of quantum
complexity is believed to be holographically dual to the
growth of wormholes behind a black-hole horizon. For
a two-sided AdS black hole, the dual of applying a
precursor WðtwÞ to the boundary state is throwing in a
thermal graviton at time −tw. At first the photon has little
effect—its energy is tiny. However, as it falls into the
AdS gravitational potential, it blueshifts exponentially.
Soon, the little graviton has grown to a mighty shock-
wave, which greatly distorts the geometry of the
black-hole interior. A classical gravity calculation [19]
calculates the size of the backreaction caused by early-
time shock waves as5

s½WðtwÞ� ¼
dC½WðtwÞ�

dtw
¼ K

ce
2π
β ðtw−t�Þ

1þ ce
2π
β ðtw−t�Þ

; ð2:14Þ

where c is an order-one constant that is proportional to
the exact energy of the disturbance in units of temper-
ature. This has exactly the same functional form as
Eq. (2.11).6 This is an important consistency check for
the holographic complexity-geometry correspondence,
and we see that the correspondence passes: the picture
of epidemic spreading successfully captures the scram-
bling properties of a black-hole horizon.

C. Precursors: Multiple perturbations

Rather than perturbing the system once, we may perturb
the system multiple times. We can implement such a
perturbation with [23]

Wmultiðτn; τn−1;…; τ1Þ
≡WnðτnÞWn−1ðτn−1Þ…W2ðτ2ÞW1ðτ1Þ
¼ e−iHτnWneiHðτn−τn−1ÞWn−1eiHðτn−1−τn−2Þ…

×W2eiHðτ2−τ1ÞW1eiHτ1 ; ð2:15Þ

where the τi’s may not be chronologically ordered.
Pictorially, we represent such a product by a time fold:
see Fig. 4, where each red dot represents a small
perturbation Wi, and the arrows indicate the order in
which the perturbations act. When the perturbations are

0 50 100 150

0.2

0.4

0.6

0.8

1.0

150 100 50

s K

FIG. 3. The size of the precursor as a function of τ − τ� for the
epidemic function Eq. (2.11). For τ − τ� ≪ 1 the size is growing
exponentially as the epidemic spreads throughout the system, but
it is growing from such a small baseline as to be visually
indistinguishable from zero. When τ ¼ τ�, almost every site is
infected, and sðτÞ abruptly saturates at K.

4This statement is true for 2-local circuits. For general k-local
circuits we need to rescale time. See earlier footnote 2.

5To get Eq. (2.14) from [19] we identify complexity with the
geodesic length of the wormhole. It can be shown [22] that
Eq. (2.14) will hold true regardless of which detailed pre-
scription of bulk dual of complexity we use. In particular, this
functional form will be true if we use ERB volume [1,3] or
action [12,13].

6Note the prefactor 2π
β in front of the time tw. The tw is

measured in Schwarzschild time, and the 2π
β transforms it into

Rindler time, which corresponds to the dimensionless τ used in
the circuit model.
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well separated, so that the influence of Wi has spread
throughout the whole system before Wiþ1 acts, we expect
one switchback subtraction at each time reversal. This
means the complexity of this operator will be

C½Wmultiðτn; τn−1;…; τ1Þ� ¼
K
2
ðτf − 2nsbτ�Þ; ð2:16Þ

where nsb is the number of switchbacks and τf is the
total “folded time,”

τf ≡ jτ1 − τ2j þ jτ2 − τ3j þ � � � þ jτn−1 − τnj: ð2:17Þ

The number of switchbacks nsb is generally not the same
as the number of perturbations. To get a switchback
subtraction, the Hamiltonian evolution before and after
the perturbation must go in opposite directions; it is only
then that there is any cancellation. When the perturbation is
a through-going insertion, such as at τ2 and τ6 in Fig. 4,
there is no cancellation. Through-going perturbations still
completely change the microstate (after long enough time),
but they have little effect on the time evolution of
complexity.

1. Multiple precursors and black holes

Products of precursors give stringent tests of the holo-
graphic duality between quantum complexity and the
classical geometry of ERBs. In the black-hole context
one studies this by studying black-hole geometries per-
turbed by multiple shockwaves separated by large times
[23]; sure enough, the complexity results Eq. (2.16) and
gravity results [2] agree.

III. ANALOG MODEL: PARTICLE
IN HYPERBOLIC SPACE

In the last section, we considered the evolution of the
complexity of a quantum system. In this section we will
consider an analog model—a classical particle moving on
a two-dimensional negatively curved space of large
genus. We will find a surprisingly detailed parallel between
the two.
The analog model.—The analog model features a non-

relativistic particle moving on a uniformly negatively
curved geometry. An infinite hyperbolic plane H2 with
curvature length K=2 has metric

dl2 ¼ K2

4
ðdr2 þ sinh2rdθ2Þ: ð3:1Þ

The Gaussian curvature is −4=K2. The origin, at r ¼ 0, will
correspond to the identity operator in the qubit system of
the last section. The volume V within a distance L of the
origin is (for L ≫ K)

V ∼ K2e2L=K: ð3:2Þ
We will compactify the hyperbolic plane to a uniformly
negatively curved space of genus g. We denote the
compactified spaceHg. The Gauss-Bonnet theorem implies
the genus and the volume are approximately the same. In
the analog model, they will both be double-exponentially
large

V ∼ g ∼ e4
K
: ð3:3Þ

To implement the compactification, we start with an equi-
lateral hyperbolic polygon with 4g sides centered at the
origin. This is shown in Fig. 5. We then pair up the sides of
the polygon and identify the elements of each pair. The
distance of the polygon from the origin is constrained by
the condition that the outer points fit together without a
conical singularity; given Eqs. (3.2) and (3.3), this distance
must be approximately 4K.
The analog model that we will present is the motion of

nonrelativistic particles on Hg. Unperturbed particles fol-
low the geodesics of Hg with uniform velocity. (In the
Poincaré disk, these geodesics are circles centered on the
boundary.) When impulsively perturbed, the particles are
deflected. As we will see, both perturbed and unperturbed
motion in our analog model closely resemble the evolution
of complexity of quantum systems. The resemblance
involves the identifications in Table I.
Recurrences.—When an outgoing trajectory of increas-

ing radius (increasing complexity) reaches a side of the
polygon, it jumps to the identified side and re-enters the
geometry. Immediately after re-entry it is traveling toward
smaller r, implying that the complexity is temporarily
decreasing. Generically, the decrease lasts for a short time
and then turns around so that the trajectory soon hits

=0

1

3

5

8

4

7

9

2

6

FIG. 4. The multiple precursor operatorWmultiðτn; τn−1;…; τ1Þ.
When τi − τi−1 and τiþ1 − τi have the same sign, as at τ2 and τ6,
Wi is called a “through-going” insertion, and there is generically
no cancellation. When τi − τi−1 and τiþ1 − τi have opposite signs,
as at the other τi, this is called a “switchback,” and there is a
partial cancellation that reduces the complexity by Kτ�.
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another nearby side. This leads to a fluctuating complexity
that tends to fluctuate near the maximum value for a very
long time. Figure 6 shows a portion of the geodesic after it
first passes through one of the polygon sides.
After re-entering the shaded region, the geodesic will

soon exit again. Typically it will re-exit at a neighboring
side. Once in a while the angle will be such that a side or
two will be skipped over. It takes an extreme fine tuning for
the geodesic to return to anywhere near the origin, i.e., to
low complexity.
It is easy to calculate the fine-tuning of the angle

of re-entrance required for the complexity to reach a
subexponential value. Relative to the radial direction the
angle must be fine-tuned to

δθ ∼ exp ð−4KÞ: ð3:4Þ

Indeed, we can calculate the probability for this motion to
reach a distance from the originΔC less than the maximum.
Motion on Hg is known to be ergodic and fills the space
uniformly, so the probability of reaching a given small
radius is inversely proportional to the volume contained
within that radius. Using Eq. (3.2) this gives

probability of reaching radius L − ΔC ¼ e−2ΔC=K: ð3:5Þ

The expected time for a recurrence is of the order of the
quantum recurrence time of the circuit model, e4

K
. Thus

the model reproduces the expected complexity evolution,
Fig. 2.

A. Decreasing radius is unstable

In Sec. II A we saw that fine-tuned evolutions in which
the complexity is decreasing are unstable. Any small
perturbation—even that due to a single gate—will generi-
cally cause the complexity to stop decreasing and start
increasing again. We also saw that the complexity increase
is a delayed reaction that sets in about a scrambling time
after the perturbation. In this subsection we will see that the
same is true in the analog model. We will see that geodesics
of decreasing radius (decreasing distance from the origin)
are unstable. Any small deflection to the trajectory grows
due to geodesic deviation, and after a distance 1

2
K logK

the trajectory will typically be heading away from the
origin again.
In what follows it will be more convenient to represent

H2 by the Poincaré half-plane rather than the disc. In these
coordinates, the metric takes the form,

dl2 ¼ K2

4

�
dx2 þ dy2

y2

�
: ð3:6Þ

All geodesics are circles centered on the boundary at y ¼ 0
(when the circles are infinitely big this gives straight lines

FIG. 5. An example of a compactification of the hyperbolic
plane. Start with a ginormous equilateral polygon centered at the
origin, and then identify sides to make the compact and conical-
deficit-free space Hg.

TABLE I. This table shows the correspondence between the evolution of the complexity of a strongly-coupled quantum system (left)
and the motion of a particle on a hyperbolic space (right).

Complexity Hyperbolic space

Number of qubits K Curvature length K=2
Evolution generated by a 2-local time-independent
Hamiltonian H

Geodesic motion on Hg

Identity operator Center of the Poincaré disk
Trajectory in SUð2KÞ swept out by the time evolution
operator e−iHt

Particle trajectory through Hgalong a geodesic with velocity K=2

Complexity of the operator UðtÞ (number of gates
in minimal circuit)

Distance of the particle from origin (length along
minimal geodesic)

Maximum complexity (this is of order 4K, see Eq. (2.3) Length, L, of the longest minimal geodesic from the origin
Number of unitary operators in SUð2KÞ (this is of order e4K ) Volume, V, of Hg (this is of order eL)
Perturbation with simple operator W A perpendicular small displacement of trajectory, as in Fig. 7
Decreasing complexity unstable Decreasing distance from origin unstable
Quantum Lyapunov exponent of fast scrambler Classical Lyapunov exponent of motion on H2
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in the y direction). It is convenient to map the origin of the
Poincaré disk, r ¼ 0, to very large y. In the region shown in
Figs. 7 and 9, large y corresponds to small complexity and
small y corresponds to large complexity.
The undisturbed evolution of a quantum system by

a time-independent 2-local Hamiltonian corresponds to
geodesic motion on H2. We will also want to consider
disturbances—for the circuit model this might be the
action of an extra gate, or for the black hole this might be
the addition of a thermal-scale perturbation. In our analog
model, disturbances will correspond to shunts that dis-
place the particle. For example, the analog of a pertur-
bation by an orthogonal perturbing Hamiltonian7 is two
right-angled turns in quick succession—it first kicks the
particle onto a perpendicular geodesic for a small dis-
tance of order unity (corresponding to a complexity of a
single gate) before then kicking it again. This is shown
in Fig. 7.
Let us use this model of perturbations to recover the

result of Sec. II A—that increasing complexity is stable, but
decreasing complexity is unstable.
Figure 8 illustrates that increasing complexity is stable.

A downwards pointing trajectory corresponds to increasing

complexity. Consider a kick produced by an extra gate of
unit complexity. The kick travels for a unit distance along a
geodesic orthogonal to the initial direction, which in the
Poincaré plane is a small circular arc (see Fig. 9). Because
the kick is represented by a circular arc, after the perturba-
tion the particle is no longer traveling exactly vertically.
Thus, perturbing this trajectory with a horizontal displace-
ment gives rise, eventually, to a large horizontal metric
displacement. However, the new trajectory has almost the
same vertical progression as the old trajectory—the com-
plexity was increasing before the kick, and it continues to
increase with almost the same rate after the kick. (This is an
example of the through-going insertion discussed earlier.)
This behavior thus matches the expectations for circuits and
black holes.
Now consider a fine-tuned situation in which the com-

plexity starts large and decreases toward zero. In the analog
model, this corresponds to motion in which a particle starts
low and proceeds vertically upwards. Once again we may
perturb this with a small kick, and once again after the

FIG. 6. Following a geodesic onHg. When the geodesic crosses
the red polygon that bounds Hg through side A, it re-enters the
geometry at the identified point on the polygon through side Ā.
(For convenience, the identified sides are shown here as being
close together, though typically they will be very distant.) In this
picture, a geodesic is traced through several such exits, re-entries,
and re-exits.

FIG. 7. A small perturbation represented as a perpendicular
kick to a geodesic.

FIG. 8. Perturbing a trajectory of increasing complexity results
in a new trajectory on which the complexity is still increasing.
Since the conformal factor y−2 is blowing up at small y, the
horizontal deviation is exponentially increasing. However, the
rate of change of complexity is almost unaffected by the kick.

7The inner product is defined by trace norm: hH1; H2i ¼
trðH1H2Þ. On the subspace of simple operators (2-local) this is
the same as in Nielsen’s geometry [5]. With this norm, we expect
the inner product between a generic 2-local Hamiltonian and a
simple operator to be of order 1

K when both are normalized. Notice
that there are many fewer perpendicular directions in the analog
model than there are possible perturbing Hamiltonians; the
analog model captures the behavior of any individual perturbing
Hamiltonian.
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perturbation, the particle is no longer traveling exactly
vertically. Due to the negative curvature the deviation
from vertical grows exponentially. Eventually the trajectory
reaches a maximum height (corresponding to a minimum
complexity, at the black dot) and then falls back in
the direction of decreasing y (and hence increasing
complexity).
At the turn-around point—the top of the trajectory—the

complexity reaches a minimum. The length of the rising
portion of the circular arc is easily calculated as

Δl ¼ 1

2
K logK: ð3:7Þ

This corresponds to a time equal to the scrambling time
τ� ¼ logK. In other words, at the scrambling time the
complexity stops decreasing and begins to increase. This
agrees perfectly with expectations from circuits and
black holes.
We find it interesting and suggestive that the so-called

quantum Lyapunov exponent [15], which is by no means a
Lyapunov exponent of the classical gauge theory, is a
classical Lyapunov exponent of the analog model.

B. Precursors: Single perturbations

Next, we study precursors in the analog model. The
precursor WðτÞ ¼ e−iHτWeiHτ is represented by three
geodesic segments representing eiHτ, W, and e−iHτ; the
geodesics representing e�iHτ are in black, and the small
segment representing W is in red, as in Fig. 10. We have
seen that the analog of complexity is geodesic length, so
the analog of the complexity of WðτÞ is the length of the
shortest path from the origin to the point representingWðτÞ.
An upper bound on the length of the shortest path

connecting the end points is given by the triangle inequality

C½WðτÞ� ≤ C½UðτÞ� þ C½W� þ C½U†ðτÞ�

¼ 1

2
Kjτj þ 1þ 1

2
Kjτj ∼ Kjτj ð3:8Þ

since the minimal path can certainly be no longer than
the path formed by concatenating the individual lines forU,
W, and U†. This is analogous to the naive upper bound on
the complexity of the operator WðτÞ from concatenating
subcircuits, as given in Eq. (2.9).
This naive concatenated line is not the shortest line that

connects the end points. Instead, the minimal geodesic
takes a shortcut at the corner. We will see that the length
shaved by this shortcut precisely reproduces the switchback
subtraction from Sec. II B.
In Appendix B, the geodesic distance between the

point representing the identity and the point representing
e−iHτWeiHτ is calculated to be

cosh
2C½WðτÞ�

K
¼ cosh2

�
1

K

�
þ sinh2

�
1

K

�
cosh½2τ�: ð3:9Þ

From this we can extract both the early-time and the late-
time behavior

C½WðτÞ� ¼
(

1
2
eτ for τ� − τ ≫ 1

K
2
ð2τ − 2τ�Þ for τ − τ� ≫ 1:

ð3:10Þ

We can also calculate the “size” of the precursor, defined as
the rate of change of complexity. For logK ≫ 1 this is

s½WðτÞ�≡ dC½WðτÞ�
dτ

¼ K sinh τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ cosh2τ

p : ð3:11Þ

FIG. 9. On the left side, we show a trajectory of decreasing
complexity—y is increasing. On the right side, we show the effect
of a perturbation. The kick results in a small change of direction
in the trajectory, which is then magnified by the negative
curvature. After a scrambling time, the complexity bottoms
out and starts to increase (y decreases).

C(W)=1

C(eiH )=K /2 C(e-iH )=K /2

C(W( ))=?

W( )

FIG. 10. A precursor is represented by three segments of
geodesics in H2. This is a schematic picture that represents
distances more faithfully than in Poincaré coordinates.
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When 1 < τ < τ�, the size of the precursor increases
exponentially with exponent one; after a scrambling time
τ > τ�, it approaches saturation as Kð1 − 2K2e−2τ þ � � �Þ.
We see that the evolution of the length of a precursor

geodesic is almost but not exactly identical to the evolution
of the complexity of a precursor operator in Eq. (2.13). For
τ < τ� they both grow exponentially with exponent one. At
τ ¼ τ� both jump rapidly from near zero to near saturation.
And for τ > τ� both grow linearly with the same coefficient
and with the same constant subtraction—what for the
operator was a shortening of the naive circuit due to the
partial cancellation of the gates is for the geodesic a
shortening of the naive length due to taking a shortcut at
the corner.
However, the agreement is not perfect. The exact func-

tional form of the almost-step-functions are different. And
for τ > τ� the approach to saturation is also not exactly the
same—though they both saturate exponentially, the analog
model has an exponent that is larger by a factor of two, and
so saturates faster. However, as discussed in footnote 2, the
approach to saturation is not a robust feature of the
epidemic model and can be changed by changing k.
Let us now comment on the geometric interpretation of

the size of the precursor. In [20] it was conjectured that it is
related to the area AðτÞ enclosed by the four geodesics in
Fig. 10. Here we make that statement more precise,

s½WðτÞ� ¼ dC½WðτÞ�
dτ

¼ K sin
2AðτÞ
K2

: ð3:12Þ

Though the length of geodesics keeps increasing, the area
saturates at the scrambling time. This tells us that there
exists a limiting curve that hugs the two Hamiltonian
evolutions (UðτÞ and U†ðτÞ) when τ > τ�. As time
increases the blue geodesic in Fig. 10 representing WðτÞ
will hug the limiting curve.

C. Precursors: Multiple perturbations

In Sec. II C we looked at the products of multiple
precursors and showed that so long as the individual
precursors were separated by more than a scrambling time,
the total switchback subtraction is the sum of the individual
subtractions at each switchback. In this subsection will see
that the same is true for precursors in our analog model.
The product of two precursors in the analog model

is shown in Fig. 11. The product is composed of five
geodesic segments: eiHτ1 , W1, e−iHðτ1−τ2Þ, W2, and e−iHτ2 .
By presumption, the Wi operators are orthogonal to the
Hamiltonian, which in our analog model means that we
choose the turns induced by W to be through right angles.
The complexity of the precursor C½W2ðτ2ÞW1ðτ1Þ� corre-
sponds to the length of the shortest geodesic connecting the
start to the end point (shown in solid blue in Fig. 11).
The length of this shortest geodesic is calculated in

Eq. (B12). For C½Wi� ¼ 1 ≪ K,

cosh
2C½W2ðτ2ÞW1ðτ1Þ�

K

¼ 1þ 2

K2
ðcosh½τ1� þ cosh½τ2�Þ2

þ 4

K4
cosh½τ1� cosh½τ2� cosh ½τ1 þ τ2�: ð3:13Þ

This exhibits all the same phenomenology as the complex-
ity of the multiple precursor operator in Sec. II C. In
particular, for jτ1 − τ2j ≫ 2τ� the total shortcut from
cutting the two corners is just the sum of the individual
shortcuts at each corner. For example, for large τ2 but small
τ1, the rate of change of complexity with τ1 grows like eτ1 .
By contrast, when both τ1 and τ2 are large,

C½W2ðτ2ÞW1ðτ1Þ� ¼
K
2

�
jτ1j þ jτ1− τ2jþ jτ2j−4τ�

�
þ� � � ;

ð3:14Þ

so that the geodesic shaves a distance Kτ� at each
switchback.
There is a geometric intuition for why distant switchback

shortcuts simply add. Due to the divergence of geodesics in
negatively curved spaces, the minimal geodesic must hew
exponentially close to the eiHτ1 geodesic until it gets within
about a scrambling distance from the first corner. Having
turned the first corner, within a scrambling distance it will
once again hew to eiHðτ2−τ1Þ until it gets within about a
scrambling length of the second corner. The shortcuts at the
two corners can only affect each other insofar as the middle

W1

W2( 2)W1( 1)exp(-iH 1)

exp(iH 2)

W2

exp(-iH 2)

exp(iH 1)

C

C
~

exp(-iH( 1- 2))W1exp(iH 1)

FIG. 11. Schematic representation of the product of two
precursors on the negatively curved geometry. For large jτ1j,
jτ2j, and jτ1 − τ2j, the length of the shortest geodesic connecting
the start to the end is shorter than the sum of the five defining
geodesic segments by an amount equal to two individual switch-
back subtractions.
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segment of the geodesic is different from the eiHðτ2−τ1Þ
geodesic, but for jτ1 − τ2j > 2τ� that difference is expo-
nentially small.
As is discussed in Appendix 1 d, this argument would

apply equally had we made not two rights turns then two
left turns, as in Fig. 11, but rather four right turns. The
argument would also apply with any number of switch-
backs, and Eq. (2.16) holds for a product of any number of
precursors.

D. Length and action

In our correspondence, the distance travelled by a
particle moving along a geodesic corresponds to the
complexity of the corresponding unitary operator. In this
subsection, we examine the relation between the length of
the particle’s path and its on-shell action. We will show that
they are linearly related. This suggests that we had a choice
when interpreting our analog model—to correspond to
complexity, we could have chosen not geodesic length but
on-shell action.
Let the line element of the Riemannian space be

dl2 ¼ gijdxidxj: ð3:15Þ

The metric gij has Euclidean signature and the coordinates
do not include time, which as earlier we will denote by τ.
The action for the particle is

A ¼
Z

m
2
gij _xi _xjdτ: ð3:16Þ

The action is different from the path length, which would
be given by

l ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

gij _xi _xj
q

dτ: ð3:17Þ

The equation of motion following from the action
Eq. (3.16) is

ẍi ¼ gik
�
1

2

∂gmj

∂xk −
∂gkj
∂xm

�
_xj _xm; ð3:18Þ

particles that satisfy the equation of motion move along
geodesics with constant velocity. Along a geodesic, both
the energy and the velocity of the particle are conserved,

E ¼ m
2
gij _xi _xj and v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gij _xi _xj

q
¼

ffiffiffiffiffiffi
2E
m

r
: ð3:19Þ

The path length Eq. (3.17) and the action Eq. (3.16) are
linearly related,

A ¼
ffiffiffiffiffiffiffi
mE
2

r
l: ð3:20Þ

The constant of proportionality can be set equal to one by
choosing

E ¼ K
2

and m ¼ 4

K
; ð3:21Þ

so that the velocity of the particle is set to K=2, which
we have previously identified with the rate of change of
complexity.
One point to note is that the expression for length in

Eq. (3.17) is invariant under reparametrization of the time
variable τ, while the expression for action in Eq. (3.16) is
not. Equation (3.16) has chosen a particular parametrization
of the path, which is the conventions for time in
Appendix A.
In this paper we identified complexity with the minimum

length of a trajectory; in this subsection we have shown that
we could equally well have identified complexity with the
minimum action8 of any trajectory with velocity K=2
connecting the origin to the location of the particle. This
is not the first time that complexity and action have been
identified, but the relation9 to the results of [12,13] is
not clear.

IV. DISCUSSION

Previous papers have exhibited a close match between
quantum-circuit complexity and black-hole geometry
[1–3,12,13]. This paper exhibits a new correspondence
between these two systems and a third—a nonrelativistic
particle moving on a negatively curved two-dimensional
surface of large genus.
This simple analog model recovers many properties of

chaotic k-local Hamiltonian systems, as well as random
circuits and black holes. The negative curvature of the
analog model plays a key role, controlling the exponential
geodesic deviation, and therefore the quantum Lyapunov
exponent discussed in [15].
The quantum Lyapunov exponent can be shown to

measure how rapidly the same initial quantum state
deviates when subjected to two slightly different
Hamiltonians. The classical Lyapunov exponent measures
how rapidly two slightly different classical states deviate
when subjected to the same Hamiltonian. Our correspon-
dence is able to relate these two exponents by relating

8There is an argument that action is a better candidate to be the
analog of complexity than length. This comes from consider-
ations of the additivity properties of complexity under combining
subsystems. Riemannian length adds in quadrature, whereas
action, like complexity, is strictly additive. We thank Brian
Swingle for explaining this point. These issues will be addressed
in a forthcoming publication.

9Note that the action we are discussing is the action of the
particle in the analog model, and not the action, as in [12,13], of a
holographically dual gravitational system, nor the action of the
strongly coupled system itself—being strongly coupled, the
system does not have a well-defined on-shell action.
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different fast-scrambling quantum Hamiltonians to differ-
ent geodesics of the hyperbolic plane.
Moving a curvature distance on the hyperbolic plane

corresponds to adding K=2 gates; a unit distance corre-
sponds to a single gate. On the hyperbolic plane we are
able to resolve arbitrarily small distances. By contrast, and
though it is a subject of active investigation, we do not yet
have a fully satisfactory continuum definition of complex-
ity for Hamiltonians such as those in Eq. (2.1). We
speculate that perhaps the analog model could be used
as a guide for constructing a continuum definition of
complexity that is able to resolve complexities of a fraction
of a gate.
A simple discrete version of our correspondence is

visible already just by graphing the number of possible
circuits as a function of depth. Consider the 2-local random
circuit model described in Fig. 1, and suppose there is
exactly one kind of gate, which is a (nonsymmetric) two-
qubit gate. The circuit with depth zero is the identity. After
a single time step, the number of different possible unitary
transformations generated is generically

log½#unitaries� ¼ log

�
K!

ðK=2Þ!
�
≈
1

2
K log

�
2K
e

�
; ð4:1Þ

there is generically a different unitary for every distinct way
of arranging the gates in the depth-one circuit. After each
successive time step, the number of possible unitaries that
may have been implemented by the circuit multiplies by
almost as much again. It only fails to multiply insofar as
there are collisions in which two different circuit designs
give the same unitary, but as we argued in Sec. II, these
collisions are rare until the circuit is exponentially deep.
Ignoring collisions, the graph forms a tree, as in Fig. 12,
and a tree is a discrete version of hyperbolic space.
The correspondence that this toy discrete version is

capturing is that, on the one hand, the number of possible
circuits grows exponentially with the depth, and, on the
other hand, that the volume of a hyperbolic ball grows
exponentially with radius. By examining the exponent in
this hyperbolic growth, we can say something about the
dimensionality of the hyperbolic space.
Throughout this paper, we considered geodesics on the

two-dimensional hyperbolic plane H2. However, as shown
in Appendix 1 e, essentially all our results about the match
between complexity evolution and hyperbolic geodesics
would continue to hold inHD. As discussed in Appendix B
1, because of geodesic deviation on supercurvature scales,
the behavior of geodesics in hyperbolic spaces are insen-
sitive to the dimensionality. However, the exponent with
which volume increases with distance is sensitive to the
dimensionality. The volume enclosed within a ball of radius
r on a HD of curvature length K=2 is

volume ∼ exp

�
2rðD − 1Þ

K

�
: ð4:2Þ

This grows more slowly than the rate at which the
number of quantum circuits increases with depth in
Eq. (4.1) unless the dimensionality of the hyperbolic space
is D ∼ 1

2
K logK.

To capture the growth of complexity and the behavior of
precursors it suffices to consider a hyperbolic space to any
dimensionality—we have considered the simplest case
of D ¼ 2. If we wish to also capture the rate at which
the number of possible unitaries grows as a function
of complexity, we must move to a higher-dimensional
hyperbolic space.10

We do not entirely understand why the parallel between
our analog model and the evolution of quantum complexity
works quite so well, but we suspect that the reason is an
underlying relation with Nielsen’s complexity geometry
[5]. Indeed, it was already pointed out in [5] that the
average sectional curvature of the complexity geometry is
negative. The connection of our work with Nielsen’s is
explored in Sec. V.

A. A triangle of systems

The three systems—black-hole interior, quantum circuit,
and analog model—form a triangle of ideas. The sides of
the triangle are the relationships between pairs of these
ideas. Here is how we understand those sides:

FIG. 12. The number of possible circuits grows exponentially
with circuit depth. At depth zero, the circuit is the identity. After
a single time step (on left), there are OðKK=2Þ possible unitaries
that could have been created. After two time steps (on right),
there are OðKKÞ. Almost all the possible unitaries reached after
two steps are distinct though there are rare coincidences. This
forms a tree. A Cayley tree is known to be a discrete model of a
hyperbolic space.

10Using the two-dimensional hyperbolic plane means that the
typical point is at a radius ΔC ∼ K less than the maximum radius,
as in Eq. (3.5), corresponding to a complexity about K below the
maximum complexity. By instead adopting a higher-dimensional
hyperbolic space, the typical complexity becomes much closer to
the maximal complexity—for D ¼ 1

2
K logK it is closer than a

single gate.
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(i) Black hole—quantum circuit. This connection was
proposed in [1]. It seems reasonable to expect that
the dynamics of a black hole can be represented as a
Hamiltonian system of K qubits with K being
approximately the entropy. A black hole is therefore
a quantum circuit. However, the interesting con-
nection is that the growth of complexity of the circuit
is holographically dual to the growth of geometry
behind the horizon. This strongly suggests that the
emergence of space inside black holes is encoded in
the growth of complexity. This side of the triangle is
not new, but certainly not fully understood.

(ii) Quantum circuit—analog model. This is the con-
nection that has been proposed in this paper. It
seems likely that this side of the triangle involves
Nielsen’s complexity geometry. Complexity geom-
etry and the analog model share similar growth
patterns: volume grows exponentially with dis-
tance. This, and the negative sectional curvatures
of complexity geometry, are the key features that
makes them similar.

(iii) Analog model—black hole. For subexponential
times both the analog model and the Einstein-Rosen
bridge are described by classical geometry, but of
quite different types. One is a fixed hyperbolic
Euclidean signature space; the other is a time-
dependent Lorentzian wormhole geometry. It
should be possible to bridge the gap between these
two geometric systems in purely geometric terms
without any quantum or information theoretic con-
siderations although at the moment we do not
know how.

V. RELATIONSHIP TO NIELSEN
COMPLEXITY GEOMETRY

In this paper we have presented an analog model for the
evolution of quantum complexity. This model was origi-
nally motivated by Nielsen’s complexity geometry model
[5]. However, the relationship between the models is not
entirely clear—it is certainly not the case that we math-
ematically derived our model from Nielsen’s. In this section
we present some thoughts about the connection between
the two.
In Nielsen’s setup, we may regard the time-evolution

operator UðτÞ as the motion of a classical particle on the
space of unitary operators SUð2KÞ equipped with an unusual
metric. The complexity of U is related to the minimal
geodesic distance between U and the identity operator. This
is a relatively simple idea, but Nielsen’s complexity geom-
etry is very complicated and difficult to analyze.
We can define a “grand” analog model by considering a

nonrelativistic particle moving on the full complexity
geometry, i.e., on SUð2KÞ equipped with the complexity
metric [5]

dl2 ¼ GMNdXMdXN; ð5:1Þ

where the coordinates XM label points of SUð2KÞ. The
usual metric on SUð2KÞ is invariant under both left and
right multiplication by unitary operators; it has SUð2KÞL ×
SUð2KÞR invariance. The complexity metric, GMN has only
right multiplication invariance—this means that it is homo-
geneous but, unlike the standard metric, not isotropic.
The configuration space (in the sense of classical

mechanics) of the grand analog model is SUð2KÞ, but
the phase space contains momenta as well as coordinates.
The momenta are given in terms of the complexity
metric by

PM ¼ GMN
_XN: ð5:2Þ

The equations of motion analogous to Eq. (3.18) are
second order, and a trajectory is determined not only
by an initial point X but also the initial momenta. The
momenta are in one-to-one correspondence with the gen-
erators of SUð2KÞ, and the allowable initial conditions
require the momenta to correspond to k-local generators,
i.e., generators constructed from no more than k Pauli
operators.
On the other hand the motion of U defined by the

quantum Hamiltonian is determined by the first order
Schrödinger equation

_U ¼ −iHU; ð5:3Þ

which means that for a given Hamiltonian only a single
trajectory passes through any U.
The resolution of this mismatch is that the grand analog

model does not describe a single quantum Hamiltonian; it
describes all k-local Hamiltonians. In other words, it
describes all systems of the type in Eq. (2.1). In the
quantum theory the future evolution of U is determined
not only by the current value of U but also the set of
coefficients Ji1;i2;…;ik . One can show that these coefficients
correspond to the components of the analog momenta in the
k-local directions.
An interesting consequence of this observation is that

averaging over the phase space of the grand analog model
involves a quenched average over an ensemble of J
coefficients, just as in the SYK model [7–10]. The natural
framework for such averaging is classical statistical
mechanics. For now we just remark that the ensemble-
averaged complexity translates to the classical entropy of
the grand analog model. This helps explain why the
evolution of complexity closely resembles the classical
evolution of entropy. The much longer time scale is due to
the exponentially large number of degrees of freedom of the
analog model. We will come back to this theme in a
subsequent paper.
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There are both similarities and differences between the
geometry of the simple two-dimensional analog model and
the complexity geometry of Nielsen. The most obvious
difference is the dimensionality: complexity geometry has
dimension ð4K − 1Þ; the analog model has dimension 2.
This difference seems very extreme, but there is a sense in
which the hyperbolic plane mimics the properties of very
high dimensional spaces. The dimension of a space reflects
the growth of the volume as a function of linear dimension,
i.e., the volume of a ball as a function of its radius. For
subcurvature distances the volume of the hyperbolic plane
only grows quadratically with radius, but at supercurvature
distances it grows faster than any power—it is like the
dimensionality is infinite. Figure 13 is a photograph of an
actual physical model of the hyperbolic plane embedded in
three-dimensional space. One sees how space-filling it
becomes.
Let us consider the crocheted model embedded in Rn.

Suppose the crocheting continues outward from the center
for distance (in the surface) L. The linear size in Rn will be
less then L but the volume of wool will be eLΔ, where Δ is
the thickness of the crocheted surface. The crocheting
obviously cannot continue past the point where Ln ¼
eLΔn−2 without becoming densely packed. The larger n,
the further the crocheting can proceed; roughly, the
maximum L scales like n. Now suppose n is the dimension
of SUð2KÞ, namely n ∼ 4K. In that case the maximum linear

dimension in the surface will be ∼4K and the number of
stitches will be of order e4

K
, in agreement with our cut off

procedure.
A second big difference is that complexity geometry is

homogeneous whereas Hg is not. One can pick any point
in complexity geometry and transform it to the identity
operator by a symmetry of the space; the minimal geodesic
distance between points U and V is the relative complexity
of the corresponding operators. In the analog model, while
H2 is homogeneous, the compactification renders it inho-
mogeneous—the topological identifications break the sym-
metry. This shows that we cannot identify in a continuous
manner the hyperbolic plane with the full Nielsen complex-
ity geometry—it is not that points of Hg represent indi-
vidual operators in SUð2KÞ in a smooth way. Instead, it
seems that the region of the hyperbolic plane within r ≤ r0
represents the entire collection of operators with complex-
ity C ≤ Kr0=2.
The relationship between complexity geometry and the

analog model seems to be something along the following
lines: begin by breaking the symmetry of complexity
geometry by picking an arbitrary reference point (the
crocheter’s starting point) and a two-dimensional section,
and then identify the reference point with the origin of Hg.
The area of the portion ofHg less than a distance L from the
origin represents the collection of operators with relative
complexity less than L. For each reference point and each
section there is a new set ofHg-surfaces; since each point of
complexity geometry has its own identical copy of Hg,
complexity geometry is homogeneous but Hg is not.
We hope to return to the relationship between Nielsen’s

complexity geometry and the analog model in future work.
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APPENDIX A: CONVENTION ABOUT UNITS

(i) Throughout this paper we have been using a time
variable, τ, that treats complexity itself as a clock:
the units of time are defined by the requirement that
early on the rate of change of complexity is K=2.
(We could have removed this factor of 2 by

redefining the complexity of a 2-local gate from 1
to 2. This would also have removed the factor of 2 in
the curvature length of the analog model. Sadly it
would also have introduced a factor of 2 in the
asymptotic rate of growth of the prefactor.)

(ii) For a typical qubit state, the effective temperature
is infinite and the entropy S is proportional to the

FIG. 13. We thank the mathematician and artist Daina
Taimina for allowing us to use her crocheted model as an
illustration of how space-filling the hyperbolic plane becomes
when embedded in flat space. The geometry of the surface is a
slightly thickened hyperbolic plane. As it grows out from the
center, it will become densely packed at some radial distance
from the starting point. The larger the dimension of the
embedding space, the further the crocheting can proceed before
becoming densely packed.
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number of qubits K; thus, we identify the rate of
change of complexity with the course-grained en-
tropy of a typical state. On the other hand, there are
reasons to believe [12,24] that for generic systems
the early rate of change of complexity is propor-
tional to the internal energy. This means that our
units of time must be such that the energy is equal to
the entropy.

(iii) We note that even though the temperature of a
random qubit state is infinite, the scrambling time
does not go to zero. This is because the spectrum is
bounded from above, so infinite temperature does
not mean infinite energy per qubit.

(iv) In the context of black holes, the time τ in this paper
is not conventional Schwarzschild time, but is
instead dimensionless Rindler time (i.e., the boost
angle)

τ ¼ 2π

β
× Schwarzschild time: ðA1Þ

In these units, the energy is the entropy (divided
by 2π).

(v) For the type of random circuit discussed in Sec. II, as
well as for the complexity geometry, time τ is the
depth of the circuit, i.e., number of parallel comput-
ing time steps. At each time step, K

2
gates act, and the

complexity generically increases by K
2
; this is why

the velocity of the analog particle is taken to be K
2
.

(vi) With this normalization of time, the limiting quan-
tum Lyapunov exponent of [15] is 1, and the
corresponding scrambling time is τ� ¼ logK. We
expect generic local systems (of the type, for
example, studied in the SYK model [7]) will be
close to saturating this bound. Thus, the Lyapunov
exponent is O(1); for simplicity in the paper we have
put it exactly equal to one.

(vii) The evolution UðτÞ on Nielsen’s geometry is ex-
pected to be chaotic [5]. The motion of particles on a
compact negatively curved surface is also chaotic.
The classical Lyapunov exponent is determined by
the sectional curvature from the equation of geodesic
deviation. It is to be identified with the quantum
Lyapunov exponent of the quantum circuit.

APPENDIX B: LENGTHS OF GEODESICS
IN HYPERBOLIC SPACE

In this appendix, we review the geometry of hyperbolic
space. In Sec. B 1 we explore the sense in which hyperbolic
space has the standard L2 norm at short distances but an L1

norm at long distances. In Sec. B 2 we derive the geometric
results in Sec. B 1 and in the rest of the paper. Throughout
this appendix we will consider hyperbolic spaces with unit
radius of curvature—straightforward dimensional analysis

can be used to translate this result to any other radius of
curvature.

1. Pythagoras in hyperbolic space

a. L2 norm on short distances, L1 norm
at long distances

Consider an equal-sided right-angled triangle on a
unit-sized hyperbolic plane. As a function of the length
of the other sides, s1, the length of the hypotenuse is (see
Sec. B 2)

cosh½shyp� ¼ cosh½s1�2: ðB1Þ

This demonstrates an essential property of hyperbolic
space. On small scales, the hyperbolic

plane has the usual L2 norm, whereas on long scales it
behaves as though it has an L1 norm (the “taxicab
geometry”):

dshyp
ds1

¼ 2 cosh½s1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosh½s1�2

p ¼
( ffiffiffi

2
p

for s1 ≪ 1

2 for s1 ≫ 1:
ðB2Þ

Unlike in flat space, the hypotenuse closely tracks the
right-angled sides, only substantively “cutting the corner”
once it is within about a curvature length of the right angle.
As a consequence, even for the largest triangles the total
distance saved by the “shortcut” is only about a curvature
length

shyp ¼ 2s1 − log 2þ Oðe−s1Þ: ðB3Þ

b. Shortcuts on the hyperbolic plane

It is interesting to generalize this formula to the case
where the angle is no longer a right angle and the two sides
have different lengths. In that case the answer is
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ðB4Þ

For θ ¼ 0 (no turn) this gives s1þ2 ¼ s1 þ s2. For
θ ¼ 90° and s1 ¼ s2 this gives Eq. (B1). For θ ¼ 180°
(about face) this gives s1þ2 ¼ js1 − s2j. For s1, s2 ≫ 1
this gives

s1þ2 ¼ s1 þ s2 þ log cos2
θ

2
þ � � � : ðB5Þ

This means that smoothing the sharp corner shortens
the path by about a curvature length, Δs ∼ −1, unless
θ is exponentially close to 180°, in which case
Δs ∼ 2 log j θ−180°

2
j.

Roughly speaking, the shortcutting geodesic hugs the
original geodesics until the two original geodesics are a
curvature length apart. For intermediate θ the two original
geodesics are a curvature length apart when the distance to
the corner is about a curvature length. For tiny π − θ the
two geodesics are much closer together, and remain less
than a curvature length apart until a scrambling distance
from the corner.

c. Two right-angled turns

Now consider making two turns. Specifically, you
walk along a geodesic for a distance s2, turn right, walk
another 2s1, turn right again, and walk a further s2. The
geodesic

distance back to the starting point is

cosh½2s3� ¼ cosh½s1�2 þ sinh½s1�2 cosh½2s2� ðB6Þ

→
ds3
ds2

¼ 2 sinh½s1� sinh½s2�
cosh½s3�

: ðB7Þ

For small s1, the growth rate Eq. (B7) looks like

At early times (s2 ≲ − log s1 ↔ s3 ≲ 1), s3 grows
exponentially

early times∶ s3 ¼ s1 cosh s2: ðB8Þ

(This early-time formula follows directly from the equation
of geodesic deviation.)
At late times (s2 ≳ − log s1 ↔ s3 ≳ 1), s3 grows linearly

late times∶ s3 ¼ s2 þ log½sinh s1�: ðB9Þ

The switchback delay is log½sinh s1�, which is about a
scrambling distance.
Finally, notice that for large s1 and s2, Eq. (B6) gives

2s3 ¼ 2s1 þ 2s2 − 2 log 2þ � � � : ðB10Þ

The distance shaved by the shortcut is 2 log 2. Thus, the
distance shaved by shortcutting two well-separated turns
is double the distance shaved by shortcutting a single turn
in Eq. (B3); one might be tempted to say that two well-
separated turns do not “interact.” We will see this again in
the example of the next subsection.

d. Four right-angled turns

Walk a distance s1, turn right, walk s2, turn right, walk
s3, turn left, walk s4, turn left, walk s5. The geodesic
distance back to the start is
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ðB12Þ

For s2; s4 ≪ 1 ≪ s1; s3; s5 this gives

s1þ2þ3þ4þ5 ¼ s1 þ s3 þ s5 þ 2 log
s2
2
þ 2 log

s4
2
: ðB13Þ

The shortcut thus shaves a scrambling distance at each of
the two about-turns.
The four successive turns were first right, then right, then

left, and then left. Had we instead made four successive
right turns, this would correspond to using negative s4 in
Eq. (B12). Since only the fourth term is sensitive to the sign
of s4, and since that term is exponentially smaller than the
others when s3 is large, four successive right turns would
lead to a shorter s1þ2þ3þ4þ5, but only by an exponentially
small amount.

e. From H2 to HD

So far our results have been for the hyperbolic plane, H2.
However, the crucial feature that hyperbolic space looks
like it has an L2 norm on short distances and an L1 norm on
supercurvature scales persists in any dimension. For exam-
ple, consider H3. You walk for s1, turn right, walk another
s2, turn right, turn by an angle θ into the third dimension,
and then walk a further s3. The geodesic distance back to
where you started is

cosh½s1þ2þ3� ¼ cosh½s1� cosh½s2� cosh½s3�
− sinh½s1� sinh½s3� cos θ: ðB14Þ

For large s2, the term that depends on θ is exponentially
suppressed.

Indeed, consider HD. You walk for s1, turn 90°, walk
another s2, turn 90° orthogonal to your first turn, walk
another s3, turn another 90° orthogonal to both your
previous turns…. Every time you turn, you turn into a
fresh dimension of the HD. The geodesic distance back to
where you started is given simply by

cosh½s1þ2þ���þD� ¼ cosh½s1� cosh½s2�… cosh½sD�: ðB15Þ

This confirms that essentially all our results would carry
over from H2 to HD.

2. Derivation from embedding space

The easiest way to calculate distances is to embed
hyperbolic space into a Minkowski space of one more
dimension. Let us start with H2. Three-dimensional
Minkowski space has the metric

ds2 ¼ −dT2 þ dX2 þ dY2: ðB16Þ

The hyperbolic plane is given by restricting to points whose
displacement from the origin, ~v, is a forward-directed
timelike vector of unit length,

~v · ~v≡ −T2 þ X2 þ Y2 ¼ −1: ðB17Þ

This gives the unit hyperbolic plane, which has curvature
length 1, Gaussian curvature −1, and Ricci curvature
R ¼ −2. The 1 rotation and 2 boost symmetries that leave
the origin fixed in Minkowski2þ1 become the three sym-
metries of H2. The normalized normal to the hyperbolic
place is ~n ¼ ~v. We can recover standard radial coordinates
ds2 ¼ dr2 þ sinh2rdθ2 by writing
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va ¼

0
B@

T

X

Y

1
CA ¼

0
B@

cosh r

sinh r cos θ

sinh r sin θ

1
CA; ðB18Þ

which manifestly has vava ¼ −1. The distance between the
points ~u and ~v is their relative rapidity

cosh½suv� ¼ −~u · ~v ðB19Þ

sinh½suv� ¼j~u × ~vj: ðB20Þ

Geodesics are given by intersecting H2 with a plane
through the origin. The geodesic through ~u and ~v has
normalized normal

n̂uv ¼
~u × ~v
j~u × ~vj : ðB21Þ

The locus of points on the geodesic is those ~w for which
~w · ~w ¼ −1 and ~w · ~n ¼ 0.
The angle between the planes ~n1 and ~n2, as measured

from the plane ~n3, is given by

sin θ ¼ n̂1 · n̂2 × n̂3: ðB22Þ
Therefore, the angle between the geodesic from ~u to ~v and
the geodesic from ~v to ~w is

sin θ ¼ ~u × ~v
j~u × ~vj · ~v ×

~v × ~w
j~v × ~wj ¼

~u · ~v × ~w
j~u × ~vjj~v × ~wj : ðB23Þ

Using embedding coordinates, let us give a general
prescription for calculating the geodesic length between
the start and endpoints of any paths of the form
“proceed for a distance s1, then turn through an angle
θ12, then proceed for a distance s2, then turn through
θ23, then ….”
Without loss of generality, we will begin in coordinates

such that the starting point is at the origin, ua ¼ ð1; 0; 0Þ,
and such that we set off in the X direction. Then we will
walk along the path, changing coordinates as we go to keep
ourselves at the origin, and keep ourselves pointing in the X
direction, so that by the time we arrive, we will in be
coordinates such that the final point is at the origin
va ¼ ð1; 0; 0Þ. Let us begin. After we have walked a
distance s1, in the new coordinates ~u is

ua ¼

0
B@

cosh s1 sinh s1 0

sinh s1 cosh s1 0

0 0 1

1
CA
0
B@

1

0

0

1
CA: ðB24Þ

We then turn left by θ12 and then proceed by a further s2 in
the new X direction. After doing this n times, the geodesic
distance from ~u to ~v can be calculated using Eq. (B19) as

cosh s1þ2þ���þn ¼ −vaua ¼ ð 1 0 0 Þ

0
B@

cosh sn sinh sn 0

sinh sn cosh sn 0

0 0 1

1
CA…

…

0
B@

1 0 0

0 cos θ12 sin θ12
0 − sin θ12 cos θ12

1
CA
0
B@

cosh s1 sinh s1 0

sinh s1 cosh s1 0

0 0 1

1
CA
0
B@

1

0

0

1
CA: ðB25Þ

As special cases of this general formula, we recover Eqs. (B1), (B4), (B6), and (B12), and thence Eqs. (3.9)
and (3.14).
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