
Unitarity and microscopic acausality in a nonlocal theory

Christopher D. Carone*

High Energy Theory Group, Department of Physics, College of William and Mary,
Williamsburg, Virginia 23187-8795, USA

(Received 13 May 2016; published 21 February 2017)

We consider unitarity and causality in a higher-derivative theory of infinite order, where propagators fall
off more quickly in the ultraviolet due to the presence of a transcendental entire function of the momentum.
Like Lee-Wick theories, these field theories might provide new avenues for addressing the hierarchy
problem; unlike Lee-Wick theories, tree-level propagators do not have additional poles corresponding to
unobserved particles with unusual properties. We consider microscopic acausality in these nonlocal
theories. The acausal ordering of production and decay vertices for ordinary resonant particles may provide
a phenomenologically distinct signature for these models.
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I. INTRODUCTION

One path to addressing the hierarchy problem is to
consider extensions of the standard model that lessen the
degrees of divergence of loop integrals. Historically,
supersymmetry has been the most popular approach of
this type. Loop diagrams involving the supersymmetric
partners of ordinary particles cancel the quadratic diver-
gence of the Higgs boson squared mass that would
otherwise be present. The surviving dependence on any
high mass scales in the theory is only logarithmic, so that
extreme fine-tuning is avoided. In Lee-Wick theories [1], in
particular the Lee-Wick standard model [2], more con-
vergent loop diagrams are assured by the introduction of
higher-derivative kinetic terms that yield propagators that
fall off more quickly with momentum. However, a propa-
gator whose inverse is a higher-order polynomial in the
momentum will have additional poles. This fact is reflected
in an auxiliary field formulation of Lee-Wick theories in
which higher-derivative terms are absent, but additional
fields are present that correspond to these Lee-Wick partner
states [2]. Diagrams involving the Lee-Wick partner par-
ticles serve to cancel unwanted quadratic divergences and
hence play a role similar to the partner particles in super-
symmetric theories.
Among the scenarios with partner particles that address

the hierarchy problem, Lee-Wick theories are particularly
unusual. The partner states in Lee-Wick theories have
wrong-sign kinetic and mass terms, requiring special rules
to be applied so that the theory has a chance at a sensible
interpretation [3]. However, such states need not appear in
all theories with higher-derivative quadratic terms [4].
Given the possibility of applications in addressing the
hierarchy problem [5], it is well motivated to consider
higher-derivative theories in which the complications of
Lee-Wick theories might be avoided altogether.

As an example of the type of theory of interest here,
consider

L ¼ −
1

2
ϕF̂ð□Þ−1ð□þm2Þϕ −

λ

4!
ϕ4; ð1:1Þ

where ϕ is a real scalar field, □≡ ∂μ∂μ, and the momen-
tum-space propagator is given at tree level by

~DFðpÞ ¼
iF̂ð−p2Þ

p2 −m2 þ iϵ
: ð1:2Þ

If F̂ð−p2Þ is an entire function, then there will be no
additional poles in Eq. (1.2), aside from the one at
p2 ¼ m2. If F̂ is a transcendental function (rather than a
polynomial, which is also entire), then we can find forms
that drop off at large momentum. In particular, we will
focus on the simple choice

F̂ð□Þ ¼ expð−η□nÞ; ð1:3Þ

where η > 0 is a coupling constant and n is a positive, even
integer. (We restrict ourselves to even n so that F̂ provides a
convergence factor in either Euclidean or Minkowski
space.) This theory is nonlocal. The consequences of
nonlocal modifications of the quadratic terms in the
Lagrangian were discussed as early as the 1950s [6] but
have periodically met a resurgence of interest [5,7–16].
Motivated by the infinite-derivative Lagrangians obtained
in string field theory [17] and p-adic string theory [18],
nonlocal theories of the general type of interest here were
studied as possible models of inflation [7]. More recently,
the possibility that such nonlocal quadratic terms could
provide an avenue for quantizing gravity has also been
discussed [8–13]. Of particular motivation here is the work
of Ref. [5], which applies nonlocal modifications of the
quadratic terms to parts of the standard model itself and*cdcaro@wm.edu
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considers some aspects of the phenomenology. A more
extensive list of background references on nonlocal field
theories and their applications can be found in that work.
Reference [5], like most phenomenological studies of

proposed modifications to the standard model, ulti-
mately focuses on scattering processes, which reflect
the overlap of asymptotic states defined in the far past
and far future. In the context of Lee-Wick theories, it
was pointed out by Grinstein, O’Connel, and Wise
(GOW) that the distinctive acausal features of the theory
could be studied by considering the time dependence of
the scattering processes via a wave-packet analysis
conducted in the semiclassical limit [19], as we discuss
in more detail later. The trajectories of wave packets can
be used to define the apparent production and decay
points of an exchanged resonance, and the dependence
of the amplitude on the ordering of these events can be
evaluated. GOW worked with a theory of real scalar
fields with OðNÞ symmetry, where the unitarity of the
theory could be demonstrated to all orders in perturba-
tion theory in the large N limit. As argued by Coleman
[20], the existence of a unitary S-matrix implies that
observable acausality does not lead to logical paradoxes
in scattering experiments, since there is a unitary
evolution of initial states to final states. The question
that we wish to study in the present work is how the
approach and conclusions of GOW are modified if one
instead assumes a theory with an infinite-derivative
modification of the quadratic terms, one that does not
introduce additional poles with wrong-sign residues in
the propagator at tree level.
We proceed largely by analogy, first addressing the

issue of unitarity in a specific nonlocal extension of the
OðNÞ model studied by GOW. Unitarity in nonlocal
theories has been discussed in a more general context in
Refs. [8,16,21] and in a different context in Ref. [15].
What we gain by working in the large N limit of the
OðNÞ model is that unitarity can be studied in explicit
detail, to all orders in perturbation theory, via a one-loop
calculation. In addition, the intermediate steps and final
conclusions can be readily compared to those of
Ref. [19]. The reader who is familiar with the phenom-
enological work of Ref. [5] will recall that the authors
define their nonlocal theory via Euclidean correlation
functions that are analytically continued in their external
momentum to Minkowski space. If one were to attempt
to quantize the theory in Minkowski space directly, one
would find that unitary is violated. The calculation that
we present in Sec. II will make clear why this is the
case. We then turn to the issue of causality in Sec. III. It
is generally expected that the nonlocal theories having
the form shown in Eq. (1.1) have field commutators that
do not vanish at spacelike separation [16]. We show that
this is indeed the case in the specific OðNÞ model
defined in Sec. II by an explicit calculation. What our

consideration of unitarity and causality demonstrate up
to this point is that the theory of interest may show
signs of acausality in scattering experiments without
logical inconsistency, in the sense discussed by
Coleman. To address this further, we turn to the
scattering of wave packets in the latter half of
Sec. III and show that there is a nonvanishing amplitude
for acausal orderings of production and decay vertices
for exchanged resonances. Unlike the Lee-Wick case,
where the resonance is a Lee-Wick partner with wrong-
sign kinetic and mass terms, the resonances in this case
are ordinary particles. In Sec. IV, we summarize our
conclusions.
The explicit calculations that we present in this work, as

well as the discussion of the nonlocal OðNÞ model and the
detailed application of the approach of Ref. [19] to similar
theories, have not appeared in the literature previously.
These may serve as a useful complement to more formal
treatments that anticipate the qualitative features of some of
our results. Moreover, the explicit examples and calcula-
tions that we present may resonate with a wider audience of
model builders who are interested in phenomenological
applications relevant to TeV-scale physics, an exploration
that has been quite limited thus far [5].

II. UNITARITY

A. Preliminaries

In the absence of higher-derivative modifications, we
work with a theory of N real scalar fields with the
Lagrangian density

L ¼ 1

2
∂μϕ

a∂μϕa −
1

2
m2ϕaϕa −

1

8
λ0ðϕaϕaÞ2: ð2:1Þ

This theory has an OðNÞ global symmetry, with the index a
running from 1 to N. The theory has a sensible N → ∞
limit, i.e., there are no Feynman diagrams that grow as
positive powers of N, if the coupling λ0 scales as 1=N. (For
a pedagogical discussion, see Ref. [22].) It is convenient to
redefine the coupling λ0 ≡ λ=N, so that the N dependence
of a given amplitude is explicit. Following Ref. [19], the
theory in Eq. (2.1) is equivalent to

L ¼ 1

2
∂μϕ

a∂μϕa −
1

2
m2ϕaϕa þ N

2λ
σ2 −

1

2
σϕaϕa; ð2:2Þ

where σ is an auxiliary field; this can be verified by
substitution of the auxiliary field’s equation of motion into
Eq. (2.2). The advantage of working with the auxiliary field
formulation is that it makes counting of powers of N
transparent, since each σ propagator scales as 1=N. For
example, the self-energy function for the σ field, Σ0ðp2Þ,
receives its leading-order contribution from a ϕa loop and
scales as N. Following the sign conventions of Ref. [19],
the full σ propagator is given by
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~Dðp2Þ ¼ i
1=λ0

þ i
1=λ0

ðiΣ0Þ
i

1=λ0

þ i
1=λ0

ðiΣ0Þ
i

1=λ0
ðiΣ0Þ

i
1=λ0

þ…; ð2:3Þ

which can be resummed to

~Dðp2Þ ¼ λ

N
i

1þ λΣðp2Þ ; ð2:4Þ

where Σ0ðp2Þ≡ NΣðp2Þ, so that the N scaling of Eq. (2.4)
is explicit. All corrections to Σðp2Þ that are higher than one
loop are suppressed by additional factors of 1=N, by virtue
of the additional σ propagators. Hence, if one is interested
in only the leading-order behavior of Σðp2Þ, one only needs
to compute a one-loop diagram.1

At leading order in 1=N, two-into-two scattering in the
auxiliary field formulation corresponds to the s-, t-, and u-
channel exchanges of the auxiliary field, with the dressed
propagator given by Eq. (2.4). All other loop corrections to
the scattering amplitude involve additional σ propagators
and are subleading in the 1=N expansion. It follows that the
scattering amplitude is given by

Mðab → cdÞ

¼ −
λ

N

�
δabδcd

1þ λΣðsÞ þ
δacδbd

1þ λΣðtÞ þ
δadδbc

1þ λΣðuÞ
�
; ð2:5Þ

where s, t, and u are the usual Mandelstam invariants. As
reviewed in Ref. [19], Eq. (2.5) can be used to demonstrate
the unitarity of the theory at leading order in 1=N and at all
orders in perturbation theory.
Our present interest is how this calculation is altered

when there is a nonlocal modification to Eq. (2.1), of either
the form

L ¼ −
1

2
ϕaF̂ð□Þ−1ð□þm2Þϕa −

1

8
λ0ðϕaϕaÞ2 ð2:6Þ

or

L ¼ −
1

2
ϕað□þm2Þϕa −

1

8
λ0½ðF̂1=2ϕaÞðF̂1=2ϕaÞ�2: ð2:7Þ

Here, F̂ is the differential operator defined in Eq. (1.3),
with η > 0 and n an even positive integer, and F̂1=2≡
expð− 1

2
η□nÞ. We choose n even so that the factors of F̂

lead to improved convergence of loop integrals in momen-
tum space, regardless of whether we assume a Euclidean or
Minkowski metric. We compare each possibility in the
following subsection, for the simplest choice of n ¼ 2,

which we assume henceforth. Equations (2.6) and (2.7) are
related by a nonlocal field redefinition and give the same
results for scattering amplitudes. Working with Eq. (2.7),
the factors of F̂1=2 acting on internal lines reproduce the
momentum dependence of the propagator that one obtains
from Eq. (2.6); the factors of F̂1=2 acting on external lines
each give a factor of expð−ηm4=2Þ, matching the wave
function renormalization factors in the scattering ampli-
tudes obtained from Eq. (2.6). For definiteness, we will
examine the case where a ¼ b ≠ c ¼ d so that only the s-
channel amplitude is relevant. Then, the scattering ampli-
tude takes the form

M ¼ −
λ

N
e−2ηm

4

1þ λΣðsÞ δabδcd; ð2:8Þ

where the constant exponential factor is due to the higher-
derivative operator acting on the external lines and where
ΣðsÞ now includes the effects of F̂ on the ϕa propagator.

B. Minkowski space

We show in this section that the theory defined in
Minkowski space by Eq. (2.7) violates unitarity. The
self-energy function Σðp2Þ is given by

Σðp2Þ ¼ −
i
2

Z
d4k
ð2πÞ4

×
expf−ηðkþ p=2Þ4g expf−ηðk − p=2Þ4g

½ðk − p=2Þ2 −m2 þ iϵ�½ðkþ p=2Þ2 −m2 þ iϵ� :

ð2:9Þ

Unitarity implies the operator relation iðT† − TÞ ¼ T†T,
where the T-matrix is related to the S-matrix by
S ¼ 1þ iT. One can derive a condition on scattering
amplitudes by taking matrix elements of both sides of this
expression and including an appropriate insertion of a
complete set of intermediate states. Working at leading
order in the 1=N expansion, this procedure was carried out
in the O(N) model in Ref. [19], and the derivation is not
altered by the presence of the additional momentum-
space suppression factors in the numerator of Eq. (2.9).
One finds [19]

2ImMðk1; a; k2; b → k01; c; k
0
2; dÞ

¼
X
e;f

Ie;f

Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3

1

2E1

1

2E2

ð2πÞ4δð4Þðq1 þ q2 − pÞ

×Mðk1; a; k2; b → q1; e; q2; fÞ
×M�ðk01; c; k02; d → q1; e; q2; fÞ; ð2:10Þ

where the identical particle factor Ie;f ¼ 1=2 if e ¼ f and 1
otherwise. The left-hand side of this expression follows
immediately from Eq. (2.8):

1At leading order, there is also a one-loop σ tadpole diagram,
but it can be eliminated by a shift in the auxiliary field and a
redefinition of the ϕa mass [22].
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LHS ¼ λ2

N
½2e−2ηm4

ImΣðsÞ� 1

j1þ λΣðsÞj2 δabδcd: ð2:11Þ

The right-hand side of Eq. (2.10) includes only two-particle
intermediate states, which provide the leading contribution
in the large N limit. After substitution of Eq. (2.8), the
necessary integral evaluation is identical to that of the two-
body Lorentz-invariant phase-space factor. The result is

RHS ¼ λ2

N

"
1

16π
e−4ηm

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

s

r #
1

j1þ λΣðsÞj2 δabδcd:

ð2:12Þ

When η ¼ 0, the quantities in brackets in Eqs. (2.11) and
(2.12) coincide, as can be seen either from an elementary
one-loop calculation [19] or by examining the η → 0 limit
of the numerical calculation that we are about to describe.
When η ≠ 0, these quantities differ. After exploring the
source of the discrepancy, we show how it is avoided by
defining the theory as an analytic continuation of correla-
tion functions defined in Euclidean space.
It is easiest to see that Eqs. (2.11) and (2.12) do not agree

when η ≠ 0 by showing that ImΣðp2Þ no longer has a
functional form proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=s

p
. To confirm

this claim most quickly, we simply evaluate the imaginary
part of Eq. (2.9) numerically, working in the center-of-mass
frame, where ~p ¼ 0; we perform the k0 integral exactly
along the real axis with ϵ finite and evaluate the limit as
ϵ → 0. Note that the imaginary part of the loop integral is
finite, even when η is vanishing. It is convenient to write
Eq. (2.9) in the following form,

ImΣ ¼ −
1

4π3

Z
∞

0

dk
Z

∞

0

dk0

×

�
k2gðk0; kÞ fþðk0; kÞf−ðk0; kÞ − ϵ2

½fþðk0; kÞ2 þ ϵ2�½f−ðk0; kÞ2 þ ϵ2�
�
;

ð2:13Þ

where k≡ j~kj,

f�ðk0; kÞ≡ ðk0 � p0=2Þ2 − k2 −m2; ð2:14Þ

and

gðk0; kÞ≡ expf−η½ðk0 þ p0=2Þ2 − k2�2
− η½ðk0 − p0=2Þ2 − k2�2g: ð2:15Þ

The integration can be performed using symbolic math-
ematics code (we used MAPLE [23]), provided care is
taken in dealing with the points on the real k0 axis that
would be singularities in the ϵ → 0 limit. For ϵ small but
nonzero, the growth of the integrand around these points is

taken into account by singularity handling routines in
MAPLE that are invoked automatically by breaking up
the region of k0 integration into intervals that are terminated
at these points. We then have no difficulty obtaining
numerically convergent results. In Fig. 1, we show the
result for ImΣ as a function of the center-of-mass energy,
working in units where m ¼ 1, for η ¼ 0 and an example
where η ≠ 0. The line with long dashes shows the expect-
ation for ImΣ following from the analytic result of the one-
loop calculation in the η ¼ 0 case,

ImΣðsÞ ¼ 1

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

s

r
θðs − 4m2Þ; ð2:16Þ

where θ is the Heaviside step function. This agrees with the
numerical result for η ¼ 0, given by the open circular points
in Fig. 1. However, the results are not proportional to the
same functional form in s for the case where η ≠ 0. One
would not suspect that the disagreement is the result of a
numerical artifact, since the extra exponential factor in the
integrand in the case where η ≠ 0 is smooth and serves
primarily to truncate the domain of integration.
To further verify this result, let us now do the calculation

in a different way. Imagine we evaluate the k0 integral in Σ
by closing a semicircular contour in the lower-half complex
plane. In ordinary, local quantum field theories, the integral
along the semicircular contour would vanish as the radius
of the contour is taken to infinity. In the present theory, this

FIG. 1. Imaginary part of the self-energy functions ΣðsÞ as a
function of

ffiffiffi
s

p
. The open circular points indicate the results of the

direct numerical evaluation of Eq. (2.9), for the cases where η ¼ 0
and η ¼ 0.3. The long dashed line gives the η ¼ 0 expectation,
proportional to ð1 − 4m2=sÞ1=2 for s > 4m2. The solid points are
the result of Eqs. (2.29), after a numerical evaluation of the
second term, as discussed in the text.
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is not the case; the numerator of the loop integral becomes
exp½−2ηðk0Þ4� far from the origin, which blows up in
directions where Reðk0Þ4 < 0. Hence, let us decompose

Σ ¼ Σp − IC and 2ImΣ ¼ 2ImΣp − 2ImIC; ð2:17Þ

where Σp is −2πi times the residues of the poles contained
within the contour and IC is the clockwise integral along
the semicircular portion. Since

Σpðp0Þ ¼ 1

2

Z
d3k
ð2πÞ3

1

2E~kp
0

×

�
Nðk0 ¼ E~k − p0=2Þ

2E~k − p0
−
Nðk0 ¼ E~k þ p0=2Þ

2E~k þ p0

�
;

ð2:18Þ

where N represents the numerator of the integrand of

Eq. (2.9) and E2
~k
≡ j~kj2 þm2, it is clear for 0 < p0 < 2m

on the real axis that Σpðp0Þ ¼ Σpðp0�Þ�. Since Σp is an
analytic function of p0 off the real axis, this can be
analytically continued, from which it follows that

DiscΣp ¼ 2iImΣpðp0 þ iϵÞ; ð2:19Þ

where the discontinuity is about a cut on the real p0 axis,

DiscΣp ¼ lim
ϵ→0

½Σpðp0 þ iϵÞ − Σpðp0 − iϵÞ�: ð2:20Þ

We may express

Σpðp0 þ iϵÞ ¼ 1

8π2

Z
dE~k

j~kj
p0 þ iϵ

×

�
Nðk0 ¼ E~k − p0=2 − iϵ=2Þ

2E~k − p0 − iϵ
−
Nðk0 ¼ E~k þ p0=2þ iϵ=2Þ

2E~k þ p0 þ iϵ

�
: ð2:21Þ

There can be poles in the E~k integration that blow up at most as 1=ϵ; hence, we only need expand what remains to order ϵ.
Defining N0 ≡ ∂N=∂k0, we find

DiscΣp ¼ −
1

8π2
lim
ϵ→0

Z
dE~k

j~kj
p0

×

�
Nðk0 ¼ k0−Þ

�
1

p0 − 2E~k þ iϵ
−

1

p0 − 2E~k − iϵ

�

þ Nðk0 ¼ k0þÞ
�

1

p0 þ 2E~k þ iϵ
−

1

p0 þ 2E~k − iϵ

�

þ
�
−i
2
N0ðk0 ¼ k0−Þ −

i
p0

Nðk0 ¼ k0−Þ
��

ϵ

p0 − 2E~k þ iϵ
þ ϵ

p0 − 2E~k − iϵ

�

þ
�
i
2
N0ðk0 ¼ k0þÞ −

i
p0

Nðk0 ¼ k0þÞ
��

ϵ

p0 þ 2E~k þ iϵ
þ ϵ

p0 þ 2E~k − iϵ

��
; ð2:22Þ

where k0� ¼ E~k � p0=2. We can now take the ϵ → 0 limits of the quantities in square brackets, using

lim
ϵ→0

�
1

yþ iϵ
−

1

y − iϵ

�
¼ −2πiδðyÞ and lim

ϵ→0

�
ϵ

yþ iϵ
þ ϵ

y − iϵ

�
¼ 2πyδðyÞ: ð2:23Þ

We see that the third and fourth terms in the curly braces are proportional to ðp0 � 2E~kÞδðp0 � 2E~kÞ, so that they vanish
after integration. Since p0 > 0, the surviving term is given by

DiscΣp ¼ i
1

4π

Z
dE~k

j~kj
p0

δðp0 − 2E~kÞNðk0 ¼ E~k − p0=2Þ: ð2:24Þ

It is straightforward to confirm that the same result is obtained by making the conventional Cutkosky replacements in the
original integral for Σp,
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1

ðk� p=2Þ2 −m2 þ iϵ
→ −2πiδð½k� p=2�2 −m2Þ;

ð2:25Þ

so that

iDiscΣp ¼ 1

2

Z
d4k
ð2πÞ4NðkÞð−2πiÞ2δð½kþ p=2�2 −m2ÞÞ

× δð½k − p=2�2 −m2Þ: ð2:26Þ

Changing variables, introducing an additional integral, and
writing out the numerator factor N, this is equivalent to

iDiscΣp ¼ −
1

2

Z
d4q1
ð2πÞ4

d4q2
ð2πÞ4 e

ð−ηq4
1
−ηq4

2
Þð2πÞδðq21 −m2Þ

× ð2πÞδðq22 −m2Þ
× ð2πÞ4δð4Þðq1 þ q2 − pÞ; ð2:27Þ

which integrates to

iDiscΣp ¼ −
1

16π
e−2ηm

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

s

r
: ð2:28Þ

From Eqs. (2.17) and (2.19), it follows that we can write the
quantity in square brackets from the left-hand side of our
unitarity relation, Eq. (2.11), as

½2e−2ηm4

ImΣðsÞ� ¼ 1

16π
e−4ηm

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

s

r
− 2e−2ηm

4

ImIC:

ð2:29Þ

The first term agrees with the desired form of the quantity
in square brackets in Eq. (2.12); it follows that the violation
of unitarity stems entirely from the nonvanishing of the
integral IC along the semicircular contour.
We can verify that Eq. (2.29) is correct by evaluating the

imaginary part of IC and comparing the result for ImΣ with
what we obtained previously in Fig. 1. Notice that if we
were to push all the poles on the real k0 axis to the upper
half-plane, then IC would be given by the negative of the
integral along the real axis. Hence, we may identify

IC ¼ i
2

Z
d4k
ð2πÞ4

×
NðkÞ

½ðk0 − p0=2 − iϵÞ2 − E2
~k
�½ðk0 þ p0=2 − iϵÞ2 − E2

~k
� :

ð2:30Þ

The point is that Eq. (2.30) can be evaluated numerically in
exactly the same way as the integral in Eq. (2.9) that we
described earlier. The result for ImΣ computed from

Eq. (2.29) using the numerical evaluation of Eq. (2.30)
is indicated by the solid points shown in Fig. 1; they are in
complete agreement with our previous direct evaluation of
ImΣ in the case where η ≠ 0.
To understand this result, it is useful to consider how the

calculation might have proceeded had we started by
evaluating the discontinuity of Eq. (2.9) directly using
Cutkosky’s formula [24]. It is straightforward to check that
the discontinuity computed in this way would reconcile
Eqs. (2.11) and (2.12) only if DiscΣ ¼ 2iImΣ. However,
this relation is not justified in the present case since Σ
cannot be shown to satisfy the Schwartz reflection principle
Σðp0Þ ¼ Σðp0�Þ� when η ≠ 0. The reflection principle
requires that there be a segment along the real p0 axis
over which Σ is purely real; in the case where η ≠ 0, it is
not possible to prove that such a region exists, and our
numerical results shown in Fig. 1 strongly suggest that
the opposite is true. In the Appendix, we show in more
detail how the violation of the Schwartz reflection
principle can be directly related to the nonvanishing of
contour integrals, like IC, at large radius in the com-
plex plane.
Another starting point [8] for attempts to demonstrate

unitarity is the largest time equation (LTE) [25]. We
simply note here that this approach cannot be consistently
applied to the present problem. As discussed by Anselmi
[26], derivation of the LTE requires two assumptions: (1)
the vertices of the theory are localized time, and (2)
the propagator in position space is of the form
θðx0ÞgþðxÞ þ θð−x0Þg−ðxÞ, where θ is the step function.
If nonlocality appears in the vertices of the theory, then
assumption 1 is violated. If a field redefinition is used to
move the nonlocality to the propagators, then assumption 2
is violated due to the appearance of additional terms in the
propagator that are proportional to derivatives of δðx0Þ.
(The explicit form of the propagator can be found in
Ref. [16].) The subsequent derivation of the LTE described
in Ref. [26] fails. Hence, we say nothing further about this
approach.

C. Euclidean space

We have discussed in the previous subsection how
unitarity is violated if we attempt to formulate the theory
of interest directly in Minkowski space. If correlation
functions are defined in Euclidean space and analytically
continued in the external momenta to Minkowski space,
unitarity is preserved. This might be expected since the
theory quantized via a Euclidean functional integral auto-
matically satisfies reflection positivity. The way that the
calculation of the previous section is modified is as follows:
the Euclidean version of Σ corresponds to Eq. (2.9) with the
k0 integration taken along the imaginary axis and with
Euclidean external momentum p0 ¼ ip0

E. In other words,
the starting point is the path that one would obtain with a
Wick rotation if it were justified in a Minkowski-space
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formulation of the theory. Now, close the contour with a
semicircle in the right half-plane, so that

2ImΣ ¼ 2ImΣp − 2ImI0C; ð2:31Þ
where I0C is the integral over the semicircular path and Σp

again is determined by the residues of the poles contained
within the closed contour. While ImIC in our previous
calculation was nonvanishing, we now show that ImI0C ¼ 0.
Let us write I0C ¼ −i

R
dk0Xðk0Þ, where Xðk0Þ is given by

Eq. (2.9) with ϵ set to zero and k0 placed on the desired
semicircle, k0 ¼ ρ expðiθÞ for −π=2 ≤ θ ≤ π=2. In the
center-of-mass frame where ~p ¼ 0, it is straightforward
to check that Xðk0Þ is also a function of p02 ¼ −p0

E
2, which

is real; it follows immediately that Xðk0Þ� ¼ Xðk0�Þ. Since
dk0 ¼ ik0dθ,

2iImI0C ¼ I0C − I0C
� ¼ lim

ρ→∞

Z
π=2

−π=2
dθ½k0Xðk0Þ − k0�Xðk0�Þ�;

ð2:32Þ
which vanishes; this can be seen by changing variables
θ → −θ and noting that k0ð−θÞ ¼ k0�, indicating that the
dθ integral is equal to its negative. The surviving term in
Eq. (2.31) is the same function of p0 that reconciled the
left- and right-hand sides of our unitarity relation in the
previous section. By Lorentz invariance, the result holds in
any other reference frame in which the scattering process is
measured. Hence, we have verified that the large N
scattering amplitudes of interest in the present context
are unitary provided that the theory is defined as in Ref. [5],
via the analytic continuation to Minkowski-space external
momentum of correlation functions defined in a Euclidean
field theory. We will assume that correlation functions are
computed in this way in the discussion that follows.

III. CAUSALITY

Nonlocal theories of the type studied here were known
long ago to violate causality [6]. In general, the commutator
of fields at spacelike separation is expected to be non-
vanishing for theories where F̂ is an entire, transcendental
function [16]. We demonstrate this in the case wherem ¼ 0
in the unitary theory discussed in the previous section, a
limit in which we can explicitly evaluate the commutator.
We will then turn to scalar theories with similar nonlocal
modifications and consider how acausality affects the time
dependence of scattering amplitudes, following the general
approach of Ref. [19].

A. Commutator

The Feynman propagator DFðx − yÞ is identified with
the two-point correlation function h0jTϕðxÞϕðyÞj0i. If we
strictly assume that x0 > y0, then we may write the
commutator

h0j½ϕðxÞ;ϕðyÞ�j0i ¼ DFðx − yÞ −DFðx − yÞ�ðx0 > y0Þ:
ð3:1Þ

Working with the form of the theory in which the higher-
derivative operator appears in the quadratic terms for ϕ, it
follows immediately that2

DFðx − yÞ ¼
Z

d4k
ð2πÞ4

ie−ηk
4

k2 −m2 þ iϵ
e−ik·ðx−yÞ: ð3:2Þ

Because the factor of e−ηk
4

blows up in certain directions in
the complex k0 plane, as indicated earlier, the usual
procedure of closing the integration contour in the lower
half-plane is not useful; instead, we directly evaluate the k0

integral along the real axis, deviating by small semicircles
below and above the poles at k0 ¼ −E~k and þE~k, respec-
tively. Hence, we may writeDFðx − yÞ ¼ I2C þ IPV , where
I2C is the result from the semicircle integrations while IPV
is the remaining principal value integral. The latter can be
reduced to a one-dimensional integral in the case m ¼ 0,
which we can numerically evaluate. We find

I2C ¼ 1

4π2j~rj
Z

∞

0

dk sinðkj~rjÞ cosðkr0Þ; ð3:3Þ

where we define r ¼ x − y and k ¼ j~kj. The remaining
principal value integral is identical to one considered in the
computation of the retarded propagator for this theory in
Ref. [6] and is given by

IPV ¼ −i
π3

∂
∂ρ

�
signðρÞ

Z
∞

0

dy
y
expð−ηy4=ρ2Þ

×

�
K0ðyÞ þ

π

2
Y0ðyÞ

��
; ð3:4Þ

where ρ¼ r02− j~rj2. Restricting to the case where r0 < j~rj,
it follows from Eqs. (3.1) and (3.4) that

h0j½ϕðxÞ;ϕðyÞ�j0i ¼ 4iη
π3ρ3

Z
∞

0

dyy3 expð−ηy4=ρ2Þ

×

�
K0ðyÞ þ

π

2
Y0ðyÞ

�
;

ð0 < r0 < j~rjÞ; ð3:5Þ

where K0 and Y0 are Bessel functions. Equation (3.5) is
nonvanishing, as is shown in Fig. 2. We do not consider the

2Since we work here with the lowest-order propagator, our
prescription of starting with a Euclidean correlation function and
continuing to Minkowski space in the external momentum simply
gives us the usual momentum-space propagator. All subsequent
Fourier transforms are, of course, in Minkowski space.
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casem ≠ 0, since the necessary two-dimensional numerical
integration is much more tedious but no more illuminating.
One might wonder how this calculation of the commu-

tator relates to a similar calculation in the formulation of the
theory where the nonlocality appears only in the interaction
terms, Eq. (2.7). The unstated assumption is that the theory
presented in this form results from a field redefinition
starting with the theory in which only the quadratic terms
are modified, Eq. (2.6). With nonlocal interactions arising
in this way, operators that correspond to observables are
built out of the “smeared” fields, F̂1=2ϕðxÞ, and it is the
commutator of these objects that is the physically relevant
quantity to evaluate at spacelike separation. This gives
precisely the same integral to evaluate as in Eq. (3.2), with a
different origin for the momentum dependence in the
numerator.

B. Acausal vertex ordering

The question we now wish to address is how acausality
manifests itself in the time dependence of scattering
processes. We allow ourselves to stray from the OðNÞ
model in this subsection to consider theories of a single real
scalar field with the same modification of their quadratic
terms as Eq. (2.6), but with different interaction terms. This
will allow us to illustrate the effects of interest most clearly;
the generalization to the OðNÞ model that we previously
considered will be clear by analogy. We consider two
examples, following the general approach of Ref. [19].

1. Particle production by a source

Consider a local theory of a real scalar field which
includes a coupling to a classical source,

Lint ¼ ϕðxÞjðxÞ; ð3:6Þ

where Lint is the interaction Lagrangian. We wish to study
hψoutjΩi, the amplitude for the source to create an outgoing
wave-packet state from the vacuum, where

jψouti ¼
Z

d4x0gðx0 − y0Þϕðx0ÞjΩi: ð3:7Þ

Here, we follow the convections of Ref. [19] where primed
coordinates correspond to “out” states. The function gðx0Þ
is chosen so that the outgoing wave packet is localized
about the spacetime point y0 at some time long after the
source is turned off, and its 4-momentum is localized about
p0. By the choice of this function, we can determine the
position of the wave packet at any earlier time when the
source is turned on. For a source localized within a small
region about the spacetime origin, we first show that the
amplitude vanishes if the wave packet’s trajectory extrap-
olates back to the origin at a time substantially earlier than
t ¼ 0, as one would expect for a causal process. We then
consider how this conclusion changes given the chosen
nonlocal modification of this theory.
The amplitude hψoutjΩi may be written

hψoutjΩi ¼
Z

d4x0g�ðx0 − y0ÞhΩjϕðx0ÞjΩi

¼ i
Z

d4yjðyÞ
Z

d4p
ð2πÞ4

i
p2 −m2 þ iϵ

× ~gðpÞ�e−ip·ðy0−yÞ

≡ i
Z

d4yjðyÞIðy0 − yÞ; ð3:8Þ

where ~gðpÞ is the Fourier transform ~gðpÞ ¼ R
d4xgðxÞeip·x.

As we discussed earlier, all momentum-space correlation
functions are defined via analytic continuation from a
Euclidean theory; all subsequent calculations, including
Fourier transforms, are then performed in Minkowski
space. The integral Iðy0 − yÞ can be reexpressed using a
Schwinger parameter,

IðΔyÞ ¼ 1

ℏ

Z
∞

0

ds
Z

d4p
ð2πÞ4 e

isðp2−m2þiϵÞ=ℏ ~gðpÞ�e−ip·Δy=ℏ;

ð3:9Þ

where Δy≡ y0 − y, and we have temporarily restored the ℏ
dependence. As in Ref. [19], if the relevant distance scales
(in this case Δy) are large compared to all characteristic
inverse masses and inverse momenta, then we are justified
in using the stationary phase approximation, since this limit
is equivalent to taking ℏ → 0 in Eq. (3.9). Evaluating the
d4p integral in this way (and resuming our convention that
ℏ ¼ 1) yields

FIG. 2. The commutator CðρÞ ¼ h0j½ϕðxÞ;ϕðyÞ�j0i, as a func-
tion of ρ ¼ ðx0 − y0Þ2 − j~x − ~yj2 at spacelike separation ρ < 0,
for m ¼ 0 and η ¼ 1.
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IðΔyÞ ¼ i
16π2

Z
∞

0

ds
1

s2
~gðΔy
2s

Þ�e−i½Δy2=ð4sÞþsm2�: ð3:10Þ

By evaluating the ds integral in the same way, one finds

IðΔyÞ ¼
ffiffi
i

p

4
ffiffiffi
2

p
π3=2

m1=2

ðΔy2Þ3=4 ~g
�
m

Δyffiffiffiffiffiffiffiffi
Δy2

p ��
e−im

ffiffiffiffiffiffi
Δy2

p
;

ð3:11Þ

leading finally to

hψoutjΩi ¼
1

2

�
i
2π

�
3=2

Z
d4y

m1=2

½ðy0 − yÞ2�3=4 jðyÞ~g

×

�
m

y0 − yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0 − yÞ2

p ��
e−im

ffiffiffiffiffiffiffiffiffiffiffi
ðy0−yÞ2

p
: ð3:12Þ

By construction, the function ~g only has support in the
region where

m
ðy0 − yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0 − yÞ2

p ≈ p0; ð3:13Þ

which limits the possible values of y that contribute to the
integral. Let us assume a ~g in which ~y ≈ 0 for some y0 ≪ 0.
If jðyÞ is strongly localized about the spacetime origin, for
example a delta function source jðyÞ ∝ δð4ÞðyÞ, the integral
in Eq. (3.12) vanishes. The “production vertex” for the
outgoing wave packet, which is identified spatially with the
origin, cannot occur before the time at which the source
excites the system.
The conclusion is different if we introduce a nonlocal

coupling to the source following our earlier prescription

Lint ¼ ½F̂1=2ϕðxÞ�jðxÞ: ð3:14Þ

This case is simple to understand since we can integrate by
parts, and recover a theory of the original form, but with a
smeared source,

jðyÞs ¼ F̂1=2jðyÞ ¼
Z

d4xϵðy − xÞjðxÞ where

ϵðy − xÞ ¼
Z

d4k
ð2πÞ4 e

−ηk4=2eik·ðy−xÞ: ð3:15Þ

Assuming the example where jðyÞ ¼ c0δð4ÞðyÞ, where c0 is
a coupling, consider the time dependence of jðyÞs near the
spatial origin

jðy0; ~y ¼ 0Þs ¼
c0
2π3

Z
∞

0

dk0
Z

∞

0

dkk2

× exp½−ηðk02 − k2Þ2=2� cosðk0y0Þ

¼ c0
8

ffiffiffi
2

p
π3

Z
∞

0

dk0k03e−ηk0
4=4

× cos½k0y0�½K1=4ðk04Þ − K3=4ðk04Þ�;
ð3:16Þ

where Ki is a Bessel function of the second kind, of order i.
Unlike the original jðxÞ, this function is no longer localized
in time at t ¼ 0. The second line of Eq. (3.16) can be
evaluated numerically, and the results are shown in Fig. 3.
This result implies that there is a common region with y0 ≪
0 and ~y ≈ ~0 where the functions j and ~g in Eq. (3.12) both
have support; the overlap hψoutjΩi is therefore generally
nonvanishing. One concludes that there is a nonvanishing
probability that the wave packet appears to emerge from the
position of a spatially localized source at a time before the
system has been excited by the source.

2. Two-into-two scattering

The previous example is perhaps the simplest illustration
of how the smearing of interaction positions can lead to the
apparent acausal ordering of scattering events. In the more
phenomenologically relevant case of two-into-two scatter-
ing, similar results can be obtained. We use the term
“apparent” since the spacetime positions of the production
and the subsequent decay of a resonance, for example, are
inferred from the wave-packet positions and momenta long
before and after the interaction has occurred. Nothing
meaningful can be said about the system directly at

FIG. 3. Time dependence of the smeared source function at the
origin jðtÞs ≡ jðy0 ¼ t; ~y ¼ ~0Þs for η ¼ 1 and c0 ¼ 1.

UNITARITY AND MICROSCOPIC ACAUSALITY IN A … PHYSICAL REVIEW D 95, 045009 (2017)

045009-9



intermediate times, since no measurements are made
during this period. We now consider how the wave-packet
analysis of two-into-two scattering discussed in the context
of Lee-Wick theories in Ref. [19] is modified in the present
context.
We consider the same free theory of a real scalar field ϕ

and introduce couplings to two additional real scalar fields
ψ and χ, that would otherwise have no higher-derivative
couplings. In this case, we assume

Lint ¼
1

2
gχðF̂1=2ϕÞχ2 þ 1

2
gψðF̂1=2ϕÞψ2: ð3:17Þ

Again, this is consistent with the assumption that we start
with a theory in which the higher-derivative operators
appear in the ϕ quadratic terms only and that these terms
have been subsequently put in canonical form by a field
redefinition. We do not consider doing the same for the ψ
and χ fields to simplify the analysis; there is no reason to
expect that this choice will affect our conclusions qualita-
tively. We consider the scattering process χχ → ψψ . Setting
the problem up in the way that we have is convenient since
the nonlocality affects the propagator but not the external
lines, which allows us to immediately carry over most of
the wave-packet analysis of Ref. [19] without modification.
Let us briefly recapitulate the key steps in this approach.
We assume incoming and outgoing wave-packet states

given by

jψ ini ¼
Z

d4x1d4x2f1ðx1 − y1Þf2ðx2 − y2Þϕðx1Þϕðx2ÞjΩi;

ð3:18Þ

jψouti ¼
Z

d4x01d
4x02g1ðx01 − y01Þg2ðx02 − y02Þϕðx01Þϕðx02ÞjΩi;

ð3:19Þ

where the functions fi and gi define the wave packets.
These are chosen so that in the process of interest, we can
specify well-defined production and decay vertices for the
resonance, in this case associated with the field ϕ,
exchanged in the s-channel. To be more explicit, the
functions fi are chosen so that the initial wave packets
are localized about the spacelike separated points y1 and y2,
respectively, and have momenta peaked at p1 ¼ mχv1 and
p2 ¼ mχv2. A production vertex can be defined at point z0,
where

z0 − y1
τ1

¼ v1 and
z0 − y2

τ2
¼ v2; ð3:20Þ

with τ2i ≡ ðz0 − yiÞ2. Similarly, the functions gi are chosen
so that the final wave packets are localized about the
spacelike separated points y01 and y

0
2, respectively, and have

momenta peaked at p0
1 ¼ mψv01 and p0

2 ¼ mψv02. A decay
vertex can be defined at point z00 where

y01 − z00
τ01

¼ v01 and
y02 − z00

τ02
¼ v02; ð3:21Þ

with τ02i ≡ ðy0i − z00Þ2. Defining wμ ≡ z0μ0 − zμ0, the authors
of Ref. [19] determined how the amplitude hψoutjψ ini
depends on w0 and showed in Lee-Wick theories that
the amplitude is nonvanishing for an acausal ordering of the
vertices. The key intermediate steps are these: the ampli-
tude of interest can be written in the form

hψoutjψ ini ¼
Z

d4q
ð2πÞ4

~FðqÞ ~GðqÞΓð4Þ
s ðq2Þ; ð3:22Þ

where Γð4Þ
s ðq2Þ is the momentum-space four-point function

for the s-channel process of interest, with propagators
truncated from the external lines, and

~FðqÞ ¼
Z

d4zeiz·qI1ðzÞI2ðzÞ with ð3:23Þ

IiðzÞ ¼
Z

d4ki
ð2πÞ4 e

iki·ðyi−zÞ ~fiðkiÞ
i

k2i −m2 þ iϵ
; ð3:24Þ

where ~fiðkÞ are the Fourier transforms of the incoming
wave-packet functions. We do not display the analogous
expressions for GðqÞ, corresponding to the outgoing wave-
packet states. In the same limit described in our earlier
example involving a classical source, the momentum and z
integrals in Eq. (3.24) can be evaluated in the stationary
phase approximation, leading to a result of the form

hψoutjψ ini≃
Z

d4q
ð2πÞ4 e

−iq·ðz0
0
−z0ÞF̂ðqÞĜðqÞΓð4Þ

s ðq2Þ;

ð3:25Þ

where the functions F̂ and Ĝ have localized support at q ≈
p1 þ p2 and q ≈ p0

1 þ p0
2, respectively. We study the

nonlocal theory of interest using Eq. (3.25) as the starting
point. Hence, from Eq. (3.17), it follows that

hψoutjψ ini ¼
Z

d4q
ð2πÞ4 e

−iq·w
�

−igχgψe−ηq
4

q2 −m2
ϕ þ imΓ

�
F̂ðqÞĜðqÞ;

ð3:26Þ

where Γ is the ϕ decay width. Defining the Fourier
transform

ϵ0ðxÞ ¼
Z

d4q
ð2πÞ4 e

−ηq4eiq·x; ð3:27Þ

the amplitude can be written as
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hψoutjψ ini ¼
Z

d4xϵðx − wÞIðxÞ; ð3:28Þ

where

IðxÞ ¼
ffiffi
i

p
gϕgχ

8π3=2
m1=2

ϕ

ð
ffiffiffiffiffi
x2

p
Þ3=2

e−imϕ

ffiffiffiffi
x2

p
e−Γ

ffiffiffiffi
x2

p
=2F̂

×

�
mϕ

xffiffiffiffiffi
x2

p
�
Ĝ

�
mϕ

xffiffiffiffiffi
x2

p
�
: ð3:29Þ

As in the case of the “ordinary resonance” discussed in
Ref. [19], as well as in our previous example, IðxÞ is
derived by exponentiating the propagator denominator
using a Schwinger parameter and then integrating using
the stationary phase approximation. Note that we cannot
apply this approximation to Eq. (3.26) directly since we
require that the nonlocal length scale η1=4 be comparable to
the vertex separation; one cannot then assume that the real
exponential prefactor is a slowly varying function of the
momentum relative to the complex phase factor.
Equation (3.29) coincides with the ordinary resonance
result when η ¼ 0, in which case ϵ0 becomes a four-
dimensional delta function. In that limit, the argument of
Ref. [19] is the following: in the center-of-mass frame, F̂
and Ĝ only have support where x0 ¼ w0 > 0 and
~x ¼ ~w ≈ 0. Hence, the amplitude is only nonvanishing
for the causal ordering of the production and decay vertices.
(In the Lee-Wick case, the result is the opposite.) Making
the same assumptions here, one concludes only that x0 must
be greater than zero; the amplitude may be nonvanishing,
for example, when w0 < 0 and ~w ¼ 0, since ϵ0ðx − wÞ is no
longer a delta function. This can be verified by noting that
the function ϵ0 differs from the function ϵ that we have
previously studied by the replacement η → 2η. Since the x
integral is dominated by the region where ~x ≈ 0, we can
evaluate ϵðx − wÞ for the choice ~x ¼ ~w ¼ 0, where ~w ¼ 0
corresponds to the case in which the production and decay
vertices are spatially coincident. Since ϵ0 is nonvanishing
for x0 > 0 and w0 < 0, we conclude that ϵ0, F̂, and Ĝ have
common regions of support, so that Eq. (3.28) is generally
nonvanishing. Hence, there is a nonvanishing amplitude for
an acausal ordering of the production and decay vertices.
The effect emerges in a very different way than in the Lee-
Wick theories.3 In that case, a crucial sign flip in the
propagator of the Lee-Wick resonance leads to a change
from w0 to −w0 in comparison to the ordinary resonance
case. The sign flip affects the sign of the width appearing in
one of the exponential factors in the amplitude, leading to
the interpretation that the exponential decay is happening as

the Lee-Wick resonance propagates backward in time from
the decay to the production vertex. Here, however, the form
of IðxÞ corresponds to propagation forward in time over the
timelike interval x. The nonlocality in the theory leads to a
spatial smearing of the interaction points so that one no
longer identifies x with the physical spacetime separation
of the extrapolated decay and production vertices.

IV. CONCLUSIONS

We have considered unitarity and causality in a theory
where quadratic terms are modified by higher-derivative
terms of infinite order, chosen so as not to induce additional
poles in the propagator at tree level. We have studied
unitarity at leading order in the large N limit of the scalar
OðNÞ model for Euclidean- and Minkowski-space formu-
lations of the theory. We have verified that a unitary theory
is obtained from Euclidean correlation functions that are
analytically continued in their external momenta to
Minkowski space, but not when correlation functions are
formulated in Minkowski space directly. In the same
theory, we verified the nonvanishing of field commutators
at spacelike separation by an explicit calculation. We then
studied the time dependence of scattering amplitudes in
similar theories using a wave-packet approach employed by
others [19] in studying Lee-Wick theories. We found that
the apparent acausal ordering of decay and production
vertices of resonances was a common feature in these
theories. Unlike Lee-Wick theories, this effect would be
present in tree-level resonant exchanges for all the states in
the theory that are subject to modified quadratic terms and
would make solutions to the hierarchy problem based on
this idea phenomenologically distinct from others that have
been proposed.
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APPENDIX: SCHWARTZ REFLECTION

In the text, we computed the imaginary part of Σðp0Þ
directly. If one instead were to compute the discontinuity
about the cut along the real axis using the usual Cutkosky
cutting rules, one would obtain a unitary theory only if the
relation between the discontinuity and the imaginary part
were determined by Σðp0Þ ¼ Σðp0�Þ�. This property is
called the Schwartz reflection principle. Our numerical
results in Sec. II Bsuggest that there is no interval along the
real p0 axis where this relation is valid. In this Appendix,
we show that the condition that Σðp0Þ ¼ Σðp0�Þ� is
identical to the requirement that the relevant k0 loop
integral about a contour at large radius in the complex
plane vanishes identically, which is not the case in the
theory defined in Minkowski space.

3I refer here to Lee-Wick theories of the type described earlier,
for example, in Ref. [2]. Other variants exist in which the
acausality may be more analogous to nonlocal theories. See
Ref. [27].

UNITARITY AND MICROSCOPIC ACAUSALITY IN A … PHYSICAL REVIEW D 95, 045009 (2017)

045009-11



To illustrate this, consider real p0 < 2m with ~p ¼ 0. Let

Iðp0Þ ¼ −
i
2

Z
d3k
ð2πÞ3

×
Z

dk0

ð2πÞ
Bðk0; ~kÞ

½ðk0 − p0=2Þ2 − E2
~k
�½ðk0 þ p0=2Þ2 − E2

~k
� ;

ðA1Þ

where Bðk0; ~kÞ represents the numerator factor in Eq. (2.9).
For real p0 < 2m, the usual Feynman prescription calls for
going below the poles at k0 ¼ �p0=2 − E~k (both in the left
half-plane) and above those at k0 ¼ �p0=2þ E~k (both in
the right half-plane). We achieve this by evaluating the
integral along a contour defined by k0 ¼ ρeiϵ, for a real
integration variable ρ, and then taking the limit as ϵ
approaches zero. Hence, the integral labelled I1 in Fig. 4
is identical to the function Σðp0Þ discussed earlier. On the
other hand, Σðp0�Þ� (again assuming real p0) corresponds
to the same integral evaluated along the path k0 ¼ ρe−iϵ,
but in the opposite direction due to an additional overall

minus sign from complex conjugation. This is the integral
I2 shown in the figure.
Integration along either of the two arcs at large radius

shown in Fig. 4 is identically zero, since the function B is
damped as one approaches the real axis, even when the
nonlocality parameter η is nonzero. Let us denote the
residues of the four poles shown in Fig. 4 by Ri for i ¼
1…4 going from left to right. Considering the two closed,
wedge-shaped loops shown in the figure, it follows from
the residue theorem that

I1 þ I2 ¼ 2πiðR1 þ R2 − R3 − R4Þ: ðA2Þ

However, using the fact that the function B is even in k0,
one may compute the residues directly and confirm that
R1 ¼ −R4 and R2 ¼ −R3. Hence,

I1 þ I2 ¼ −4πiðR3 þ R4Þ: ðA3Þ

Next, consider the semicircular contour in the lower
half-plane that terminates on the I1 contour. Clearly,
I1 þ IC ¼ −2πiðR3 þ R4Þ. Combining this with
Eq. (A3), it follows that I1 þ I2 ¼ 2ðI1 þ ICÞ, or using
our previous identification,

Σðp0Þ þ 2ICðp0Þ ¼ Σðp0�Þ�: ðA4Þ

In the case whereB ¼ 1, the integrand of Eq. (A1) drops off
in all directions in the complex k0 plane. Hence, IC ¼ 0,
and the relation Σðp0Þ ¼ Σðp0�Þ� is obtained; it can then be
analytically continued to complex p0 to relate the dis-
continuity to the imaginary part. In the theory studied in
Sec. II B, there is no general reason to expect that IC is
nonvanishing (the integrand grows in certain directions in
the complex plane), and it is the same as the integral IC
discussed in that section that was found to be nonzero by
direct numerical evaluation. In this case, it is not justified to
analytically continue Σðp0Þ ¼ Σðp0�Þ� to determine the
relation between the discontinuity and the imaginary part.
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