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The fluctuations of five-dimensional self-gravitating non-Abelian kinks which arise from the breaking of
the SUð5Þ × Z2-symmetric theory are analyzed within the context of braneworlds. While tensor and vector
sectors of these fluctuations behave like its counterparts in the standard Abelian Z2 kinks, the mixing
between the field excitations of the non-Abelian kink and the scalar components of the metric makes the
pure scalar sector of the theory very interesting. The spectrum of these scalar fluctuations, which includes
gravitationally trapped massless modes on the core of the wall associated with the broken symmetries, is
discussed for the two classes of kinks that break SUð5Þ into its maximal subgroups.
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I. INTRODUCTION

The central idea in braneworld scenarios is that matter
and its interactions, as we know them, must be localized on
the brane. Domain wall spacetimes, providing regulariza-
tions of the Randall-Sundrum braneworld [1,2], preserve
the property of producing effective four-dimensional (4D)
gravity on the brane [3–6]. In addition, while it has been
shown that fermion fields may be localized on the brane via
their interaction with the scalar field from which the wall is
made [7–13], gauge field localization has been somewhat
more elusive [14–20].
A lot of work has been done on the topic of localization

in braneworlds in which the field theoretic domain walls
considered arise in Abelian Z2-symmetric theories,
although it is also possible to consider (besides the Z2

symmetry) continuous internal symmetry walls with inter-
esting localization properties. There are well-known exam-
ples of domain walls in flat spacetime that arise in an
SUð5Þ × Z2 symmetric theory [21–24] in which the full
SUð5Þ × Z2 symmetry is not restored at the core of the wall
[25]. This makes non-Abelian domain walls of this sort
(rather than its extensions to the gravitating case) very
interesting within the context of braneworlds [25–28].
It has been shown that non-Abelian branes in flat space

that break E6 to SOð10Þ ×Uð1Þ may produce, via the
Dvali-Shifman (DS) mechanism [29], an SUð5Þ effective
theory on the brane [27]. On the other hand, self-gravitating
SUð5Þ × Z2 domain walls, supporting 4D massless fermion
excitations in its world volume, may also localize 4D
massless non-Abelian excitations via the DS mechanism,
depending on the symmetry breaking pattern [28].
While domain walls in Abelian Z2-symmetric theories

are topologically stable, there is no global stability crite-
rium for the non-Abelian ones. This lead us to resort to
perturbative analysis, after a solution is found, to establish
at least their local stability [23,24]. Furthermore, the
inclusion of gravity makes the perturbative analysis
somewhat more intricate than the analogous one in flat

spacetime due to the mixing between the field excitations of
the non-Abelian kink Φ and the scalar components of the
metric gab, in a theory invariant under diffeomorphisms
acting both on the Φ and on gab.
In this work we make a perturbative analysis for the five-

dimensional (5D) self-gravitating SUð5Þ × Z2 domain
walls of [28] in terms of diffeomorphism-invariant quan-
tities. This analysis not only shows that these walls are
perturbatively stable, it also permits us to study the
gravitationally trapped content from the point of view of
4D observers localized on the brane. We find, as expected,
that the tensor and vector sectors of the fluctuations behave
as its counterparts in the more familiar Z2-symmetric
domain walls. On the other hand, the scalar sector of the
fluctuations in the SUð5Þ × Z2 case shows a rather different
behavior from the Abelian one, linked to the particular
symmetry breaking pattern considered and with a spectrum
that includes normalizable massless modes, i.e., with
massless scalar particles associated with the broken sym-
metries which are gravitationally trapped on the core of
the wall.

II. SELF-GRAVITATING SUð5Þ × Z2 KINKS

In this section we briefly recall the results of [28]
regarding the properties of 5D self-gravitating domain
walls formed in the two possible symmetry breaking
patterns of SUð5Þ × Z2. Let us consider the (4þ 1)-
dimensional theory

S ¼
Z

d4xdξ
ffiffiffiffiffiffi
−g

p �
1

2
R − Trð∂aΦ∂aΦÞ − VðΦÞ

�
; ð1Þ

where R is the scalar curvature, g is the determinant of the
metric, Φ is a scalar field that transforms in the adjoint
representation of SUð5Þ, and VðΦÞ is a potential such that
(1) is invariant under the transformations

(i) Φ → UΦU†, U ¼ expfiωqTqg,
(ii) Z2∶ Φ → −Φ, Z2 ∉ SUð5Þ,
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where Tq; q ¼ 1;…; 24, are traceless Hermitian generators
of SUð5Þ.1
The Einstein-scalar field equations for this system are

Rab −
1

2
gabR ¼ Tab; ð2Þ

where

Tab ¼ 2Trð∇aΦ∇bΦÞ
− gabðgcdTrð∇cΦ∇dΦÞ þ VðΦÞÞ ð3Þ

and

gab∇a∇bϕm ¼ ∂VðΦÞ
∂ϕm

; Φ ¼ ϕmTm; ð4Þ

where ∇cgab ¼ 0. Exact domain wall solutions of (2)–(4)
are available for a sixth-order Higgs potential of the form

VðΦÞ ¼ V0 − μ2Tr½Φ2� þ hðTr½Φ2�Þ2 þ λTr½Φ4�
þ αðTr½Φ2�Þ3 þ βðTr½Φ3�Þ2
þ γðTrΦ4ÞðTrΦ2Þ ð5Þ

for special values of the couplings which yield integrable
models.
Assuming that the geometry preserves 4D-Poincaré

invariance, the metric ansatz is

gab ¼ e2AðξÞημνdx
μ
adxνb þ dξadξb; ð6Þ

with ημν ¼ diagð−1;þ1;þ1;þ1Þ and a domain wall sol-
ution Φ of the form

ΦðξÞ ¼ ϕMðξÞMþ ϕPðξÞP ð7Þ

is proposed, where ϕM;ϕP satisfy the boundary conditions

ϕMðþ∞Þ ¼ −ϕMð−∞Þ; ϕPðþ∞Þ ¼ ϕPð−∞Þ; ð8Þ

with M and P appropriately chosen orthogonal diagonal
generators of SUð5Þ.
Imposing the integrability conditions

TrðMPÞ ¼ TrðM2PÞ ¼ TrðM3PÞ ¼ 0; ð9Þ

TrðP3MÞ ¼ TrðP3Þ ¼ 0; ð10Þ

for the special values of the couplings given by

h ¼ −12TrðP2M2Þλ;

α ¼ 4

3

�
2TrðM3ÞTrðP4Þ − 3TrðP2MÞTrðM4Þ

3TrðP2MÞ − 2TrðM3Þ

− 6TrðP2M2Þ
�
γ;

β ¼ 1

6

�
TrðM4Þ − TrðP4Þ

TrðP2MÞ½3TrðP2MÞ − 2TrðM3Þ�
�
γ; ð11Þ

an exact domain wall solution is given by [28]

ϕMðξÞ ¼ v tanh bξ; ϕPðξÞ ¼ vκ; ð12Þ

where μ2, λ, and γ can be written explicitly in terms of v and
b, and κ is a numerical constant which depends on the
choice of M and P. On the other hand,

AðξÞ ¼ −
v2

9

�
2 ln ðcoshðbξÞÞ þ 1

2
tanh2ðbξÞ

�
; ð13Þ

and the spacetime is asymptotically 5D anti–de Sitter
space with the cosmological constant Λ ¼ VðΦÞξ¼−∞ ¼
VðΦÞξ¼þ∞ ¼ − 8

27
b2v4.

As discussed in [28] (see [23,24] for the flat space case),
the choice of M and P relies on the desired asymptotic
values for Φ at ξ → �∞. It is well known that in flat
spacetime there are two symmetry breaking patterns of
SUð5Þ by a field Φ in the adjoint: involving the breaking in
subgroups with the same rank as SUð5Þ and occurring as
minima of a fourth-order potential [30,31]. These are

SUð5Þ × Z2 → SUð3Þ × SUð2Þ ×Uð1Þ=ðZ3 × Z2Þ ð14Þ

and

SUð5Þ × Z2 → SUð4Þ × Uð1Þ=Z4; ð15Þ
the second type of symmetry breaking pattern yielding the
largest residual symmetry. In the remainder of this section,
we quote the results of [28] concerning the symmetry
breakings (14) and (15) for the gravitating case with the
sixth-order potential and refer the reader to that work for a
detailed discussion on these and other issues related to the
localization of fermions and gauge fields within the context
of braneworlds.

A. Symmetry breaking
SUð5Þ × Z2 → SUð3Þ × SUð2Þ × Uð1Þ=ðZ3 × Z2Þ

For this symmetry breaking pattern, we have

MA ¼ 1ffiffiffiffiffi
40

p diagð1; 1; 1; 1;−4Þ; ð16Þ

PA ¼ 1

2
ffiffiffi
2

p diagð1; 1;−1;−1; 0Þ; ð17Þ
1We use units where ℏ ¼ G ¼ c ¼ 1.
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and κA ¼ ffiffiffi
5

p
. With H� and H0 ¼ Hþ∩H− being the

unbroken symmetries at ξ → �∞ and ξ ¼ 0, respectively,
we have

HA
� ¼ SUð3Þ� × SUð2Þ� ×Uð1Þ�

Z2 × Z3

; ð18Þ

HA
0 ¼ SUð2Þþ × SUð2Þ− ×Uð1ÞM × Uð1ÞP

Z2 × Z2

; ð19Þ

with the following embeddings:

SUð2Þ� ⊂ SUð3Þ∓; ð20Þ

in the sense that the Cartan subalgebra of SUð2Þþ [SUð2Þ−]
is a subspace of the Cartan-subalgebra space of SUð3Þ−
[SUð3Þþ] corresponding to the particular basis chosen for
the Lie algebra. In the model with gauge symmetry, HA

0

resembles the gauge group SUð2ÞL × SUð2ÞR ×Uð1ÞB−L,
on which the Higgs sector of the minimal 4D left-right
symmetric theory is based. This 5D non-Abelian wall may
be thought of as the generalization to the gravitating case of
the perturbatively stable flat space one for a quartic
potential of Refs. [22–24].

B. Symmetry breaking
SUð5Þ × Z2 → SUð4Þ × Uð1Þ=Z4

In this case,

MB ¼ 1ffiffiffiffiffi
60

p diagð−2;−2;−2; 3; 3Þ; ð21Þ

PB ¼ 1

2
diagð0; 0; 0; 1;−1Þ; ð22Þ

and κB ¼ ffiffiffiffiffiffiffiffi
5=3

p
. The unbroken symmetries are

HB
� ¼ SUð4Þ� ×Uð1Þ�

Z4

; ð23Þ

HB
0 ¼ SUð3Þ × Uð1ÞM ×Uð1ÞP

Z3

; ð24Þ

where SUð3Þ is embedded in different manners in SUð4Þþ
and SUð4Þ−. In this symmetry breaking pattern, if the
symmetry were gauged, the SUð3Þ gauge bosons on the

wall would need to form massive glueballs of SUð4Þ in
order to escape into the bulk, so they can be localized on the
wall via the DS mechanism [29].

III. DIFFEOMORPHISM-INVARIANT
FLUCTUATIONS

Let gab and Φ ¼ ϕqTq be the metric and the scalar field
solutions of the field equations of the theory (1). Let hab
and φ ¼ φqTq be the metric and scalar field fluctuations,
respectively, around the above background. Following [6],
we find that these fluctuations satisfy

−
1

2
gcd∇c∇dhab þ RcðabÞdhcd þRc

ðahbÞc

−
1

2
∇a∇bðgcdhcdÞ þ∇ða∇chbÞc

¼ 4Tr½∇ðaΦ∇bÞφ� þ
2

3
habVðΦÞ þ 2

3

�∂VðΦÞ
∂ϕq

φq

�
gab

ð25Þ

and

− hab∇a∇bϕq −
1

2
gabgcdð∇ahbd þ∇bhad −∇dhabÞ∇cϕq

þ gab∇a∇bφq −
∂2VðΦÞ
∂ϕp∂ϕq

φp ¼ 0; ð26Þ

where ∇cgab ¼ 0 and

VðΦþ φÞ ¼ VðΦÞ þ ∂VðΦÞ
∂ϕq

φq þ
1

2

∂2VðΦÞ
∂ϕp∂ϕq

φpφq

þOðφ3Þ: ð27Þ

For the theory (1) with the sixth-order potential (5), we
have

∂VðΦÞ
∂ϕq

¼ ð−2μ2 þ 4hTr½Φ2� þ 6αðTr½Φ2�Þ2

þ 2γTr½Φ4�ÞTr½ΦTq� þ 6βTr½Φ3�Tr½Φ2Tq�
þ 4ðλþ γTr½Φ2�ÞTr½Φ3Tq� ð28Þ

and

∂2V
∂ϕq∂ϕp

¼ ð−2μ2 þ 4hTr½Φ2� þ 6αðTr½Φ2�Þ2 þ 2γTr½ϕ4�ÞTr½TqTp� þ 6βðTr½Φ3�ðTr½TqTpΦ�

þ Tr½TpTqΦ�Þ þ 3Tr½TqΦ2�Tr½TpΦ2�Þ þ 4ðλþ γTr½Φ2�ÞðTr½TqTpΦ2� þ Tr½TpTqΦ2�
þ Tr½TqΦTpΦ�Þ þ 8ðhþ 3αTr½Φ2�ÞTr½TqΦ�Tr½TpΦ� þ 8γðTr½TqΦ3�Tr½TpΦ� þ Tr½TpΦ3�Tr½TqΦ�Þ: ð29Þ
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In the background fgab;Φg provided by the SUð5Þ × Z2

kinks discussed in the previous section, (28) reduces to

∂VðΦÞ
∂ϕq

¼ ðϕ00
M þ 4A0ϕ0

MÞδMq; ð30Þ

and the right-hand side of (29) turns out to be diagonal in q,
p. However, although they get notably simplified, (25) and
(26) are still extremely involved.
Indeed, as is well known, hab and φ are not diffeo-

morphism-invariant variables. Under an infinitesimal dif-
feomorphism of the form

xa → x̄a ¼ xa þ ϵa; ð31Þ

we have

hab → h̄ab ¼ hab − 2∇ðaϵbÞ ð32Þ

and

φ → φ̄ ¼ φ − ϵa∇aΦ; ð33Þ

where fhab;φg and fh̄ab; φ̄g describe the same physical
perturbations. Hence, we must take care of the general
coordinate invariance of the theory (1).
Since the background fgab;Φg provided by the

SUð5Þ × Z2 kinks preserves 4D-Poincaré invariance, we
decompose hab (from the point of view of the four-
dimensional observers confined to the wall) in scalar,
vector, and tensor sectors. Following [32], we set

hμν ¼ 2e2AðhTTμν þ ∂ðμfνÞ þ ημνψ þ ∂μ∂νEÞ; ð34Þ

hμξ ¼ hξμ ¼ eAðDμ þ ∂μCÞ; ð35Þ

and

hξξ ¼ 2ω; ð36Þ

where

h
TTμ
μ ¼ 0; ∂μhTTμν ¼ 0 ð37Þ

and

∂μfμ ¼ 0; ∂μDμ ¼ 0: ð38Þ

From (32), with

ϵa ¼ ðe2Aϵμ; ϵξÞ; ð39Þ

where

ϵμ ¼ ∂μϵþ ζμ; ∂μζμ ¼ 0; ð40Þ

we have that, under an infinitesimal diffeomorphism,

ψ → ψ̄ ¼ ψ − A0ϵξ; ω → ω̄ ¼ ωþ ϵ0ξ; ð41Þ

E → Ē ¼ E − ϵ; C → C̄ ¼ C − eAϵ0 þ e−Aϵξ; ð42Þ

fμ → f̄μ ¼ fμ − ζμ; Dμ → D̄μ ¼ Dμ − eAζ0μ; ð43Þ

and

h̄TTμν ¼ hTTμν ; ð44Þ

and from (33) we have

φ̄ ¼ φ −Φ0ϵξ since Φ ¼ ΦðξÞ: ð45Þ

The hTTμν sector is automatically diffeomorphism invari-
ant, i.e., h̄TTμν ¼ hTTμν , while it is also possible to define an
invariant divergenceless vector (since we have one vector
gauge function ζμ),

Vμ ¼ Dμ − eAf0μ; ð46Þ

and two diffeomorphism-invariant scalar fluctuations (since
we have two gauge functions, ϵ and ϵξ), given by

Γ ¼ ψ − A0ðe2AE0 − eACÞ ð47Þ

and

Θ ¼ ωþ ðe2AE0 − eACÞ0; ð48Þ

such that V̄μ ¼ Vμ, Γ̄ ¼ Γ and Θ̄ ¼ Θ.
On the other hand, for the diffeomorphism-invariant non-

Abelian scalar field fluctuation, we find

χ ¼ φ −Φ0ðe2AE0 − eACÞ; ð49Þ

such that χ̄ ¼ χ .
In the (generalized) longitudinal gauge [32], E ¼ C ¼ 0

and fμ ¼ 0, the freedom of the coordinate transformations
(31) is completely fixed, and we have Γ ¼ ψ , Θ ¼ ω,
Vμ ¼ Dμ, and χ ¼ φ. This leaves us with the tensor fhTTμν g,
vector fVμg, and scalar fΓ;Θ; χg sectors, which decouple
from each other at the linearized level.
The tensor and vector sectors of the fluctuations behave

as their corresponding analogous ones in the standard
Abelian Z2 kinks, which are widely discussed in the
literature. It is the scalar sector of the theory under
consideration that is quite different from the Z2 case.
Nevertheless, in order to render this work self-consistent,
we will also discuss briefly the tensor and vector fluctua-
tions. In the following, the results will be expressed in the
conformal coordinate

NELSON PANTOJA and ROSSANA ROJAS PHYSICAL REVIEW D 95, 045008 (2017)

045008-4



z ¼
Z

dξe−AðξÞ; ð50Þ

such that

gab ¼ e2AðzÞðημνdxμadxνb þ dzadzbÞ: ð51Þ

A. Tensor fluctuations

In the tensor sector hTTμν with Ψμν ≡ e3A=2hTTμν , the modes
Ψμνðx;zÞ∼eip·xΨμνðzÞ satisfy the Schrödinger-like equation

ð−∂2
z þ VQ1

ÞΨμνðzÞ ¼ m2ΨμνðzÞ; ð52Þ

where

VQ1
¼ 9

4
A02 þ 3

2
A00 ð53Þ

and pμpμ ¼ −m2. VQ1
supports a massless bound state

which can be identified with the graviton and a tower of
non-normalizable massive states which propagate in the
bulk. As is well known, the above equation can be
factorized as

ð−∂2
z þVQ1

ðzÞÞ¼
�
∂zþ

3

2
A0ðzÞ

��
−∂zþ

3

2
A0ðzÞ

�
; ð54Þ

which implies the absence of modes with m2 < 0, ensuring
the stability of the system under tensor perturbations. As in
the Abelian Z2 kink [33], the normalizable massless tensor
mode is given by Ψ0 ∝ expf3AðzÞ=2g, which reproduces
4D gravity on the core of the wall, while the continuum of
massive modes gives small corrections to this behavior at
short distances.

B. Vector fluctuations

The vector sector Vμ satisfies the equations

ð∂z þ 3A0ÞVμðx; zÞ ¼ 0 ð55Þ

and

∂β∂βVμðx; zÞ ¼ 0; ð56Þ

whose solution is given by Vμðx; zÞ ¼ e−3AðzÞVμðxÞ, with
∂β∂βVμðxÞ ¼ 0. On the other hand, from (46) we see that
Vμðx; zÞmust be an odd function of z and hence VμðxÞ ¼ 0.
As in the Abelian Z2 kink [32], there are no massless vector
fluctuations localized on the wall.

C. Scalar fluctuations

In the scalar sector, we have the set of diffeomorphism-
invariant fluctuations fΓ;Θ; χg, which are subject to two

constraints. The first one only involves scalars without
charge under SUð5Þ and is given by

2Γþ Θ ¼ 0; ð57Þ

while the second one also involves the component χM of χ ,

3A0Θ − 3Γ0 − ϕ0
MχM ¼ 0: ð58Þ

From (57) and (58), it follows that the fluctuations Γ, Θ,
and χM are not independent and correspond to a single
physical scalar fluctuation.
With Ω≡ e3A=2Γ=ϕ0

M, the modes Ωðx; zÞ ∼ eip·xΩðzÞ
satisfy

ð−∂2
z þ VQ2

ÞΩðzÞ ¼ m2ΩðzÞ; ð59Þ

where VQ2
is given by

VQ2
¼ −

5

2
A00 þ 9

4
A02 þ A0 ϕ

00
M

ϕ0
M
þ 2

�
ϕ00
M

ϕ0
M

�
2

−
ϕ000
M

ϕ0
M
: ð60Þ

VQ2
does not support normalizable massless states. Notice

that

ð−∂2
z þ VQ2

Þ ¼
�
−∂z þ

Z0

Z

��
∂z þ

Z0

Z

�
; ð61Þ

where

Z ¼ e3A=2
ϕ0
M

A0 ; ð62Þ

implying the absence of modes with m2 < 0. This scalar
fluctuation has an exact analogous one in the Abelian Z2

self-gravitating kink (see [32]).
Now, let us consider the scalar fluctuation χ ¼ χqTq. Let

Ξ ¼ ΞqTq, with

Ξq ≡ e3A=2
�
χq −

Γ
A0 ϕ

0
q

�
: ð63Þ

The modes Ξqðx; zÞ ∼ eip·xΞqðzÞ satisfy Schrödinger-like
equations which depend on q.
First, let us consider perturbations along theM direction.

For q ¼ M (it should be recalled that the fluctuations Γ, Θ,
and χM are not independent), ΞMðzÞ satisfies

ð−∂2
z þ VMÞΞMðzÞ ¼ m2ΞMðzÞ; ð64Þ

where VM is given by
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VM ¼ −
A000

A0 −
3

2
A00 þ 9

4
A02 þ 2

A002

A02

þ
�
3A0 − 2

A00

A0

�
ϕ00
M

ϕ0
M
þ ϕ000

M

ϕ0
M
: ð65Þ

In terms of Z, as defined in (62), (64) can be rewritten as

ð−∂2
z þ VMÞ ¼

�
∂z þ

Z0

Z

��
−∂z þ

Z0

Z

�
; ð66Þ

and, from (61) and (66), it follows that the eigenvalues m2

of the modes of Ω and ΞM always come in pairs, except
possibly for the massless ones. Hence, there are no modes
with m2 < 0 for ΞM. On the other hand, the massless
solution Ξ0

MðzÞ of (64) is given by

Ξ0
MðzÞ ∝ e3A=2

ϕ0
M

A0 ; ð67Þ

which is, however, not normalizable since Ξ0
MðzÞ is not

bounded for z → 0. This is the mode which is expected to
be related, when gravity is switched off, to the translational
zero mode of the flat space SUð5Þ × Z2 kink [22–24]. As in
the Abelian Z2 kinks [5,34], once we include gravity, the
massless mode is not normalizable and therefore not
localized.
The behavior of the scalar fluctuation ΞM closely

parallels that of the scalar fluctuation associated with the
standard Abelian Z2 kink [32]. Now, let us consider
perturbations along the generators Tq of SUð5Þ other than
M. For q ≠ M, ΞqðzÞ satisfies

ð−∂2
z þ VqÞΞq ¼ m2Ξq; ð68Þ

where Vq is given by

Vq ¼ VQ1
þ e2A

∂2V
∂ϕ2

q
; ð69Þ

with VQ1
given by (53).

For q ¼ P, we find that

∂2V
∂ϕ2

P
¼ 4b2

�
1þ 4

9
v2
�

ð70Þ

for both symmetry breakings. VP is always positive and
hence does not support bound states with m2 ≤ 0. As
expected,Φ is stable to perturbations along theΦ direction.
Furthermore, these perturbations do not generate normal-
izable 4D massless modes independently of the symmetry
breaking pattern.
For a Tq that is a generator of H0 and where Tq ≠ M;P,

we find for the symmetry breaking A

∂2V
∂ϕ2

q
¼ b2

�
−8þ 32

9
v2 þ ð3� FÞ

�
6 −

4

9
v2ðF2 þ 1Þ

��
;

ð71Þ

where F ¼ FðzÞ is the function defined by

FðzÞ ¼ tanhbξ; ð72Þ

with ξ ¼ ξðzÞ (50). These are perturbations along the six
generators of SUð2Þþ × SUð2Þ− ⊂ HA

0 ; the � signs cor-
respond to the two different SUð2Þ’s. On the other hand, for
the symmetry breaking B, we find

∂2V
∂ϕ2

q
¼ b2

�
5

2
þ 109

36
v2 þ

�
3

2
þ 1

6
v2
�
5 −

11

6
F2

��
F2

�

ð73Þ

for the perturbations along the eight generators of
SUð3Þ ⊂ HB

0 . In both symmetry breaking patterns, Vq is
always positive and hence does not support bound states
with m2 ≤ 0. From the above results, it follows that
perturbations along the generators of H0 do not generate
normalizable 4D massless modes.
Next, let us consider perturbations along those gener-

ators of SUð5Þ that are not generators of H0, which we will
call broken generators. For a perturbation along Tq, such
that Tq is a generator ofHþ but not ofH− (the minus signs)
or a generator ofH− but not ofHþ (the plus signs), we find
for the symmetry breaking A

∂2V
∂ϕ2

q
¼ 2b2F

�
1þ 2

3
v2
�
1 −

1

3
F2

��
ðF � 1Þ; ð74Þ

and, for the symmetry breaking B,

∂2V
∂ϕ2

q
¼ 2b2F

�
�13

�
1

2
þ 4

9
v2
�

þ
�
1þ 2

3
v2
�
1 −

1

3
F2

��
ðF � 1Þ

�
: ð75Þ

These are perturbations along the n� generators that are
broken only at one side of the wall, with n� ¼ 4 for the
symmetry breaking A and n� ¼ 6 for the symmetry
breaking B (n� is the dimension of the coset H�=H0).
The Schrödinger-like equation for these fluctuations
cannot be written in terms of a fake superpotential, as
we did for ΞM. However, on general grounds and from the
shape of Vq for these perturbations (see Fig. 1), besides a
mild resonance behavior, trapped massless modes are
expected.
These gravitationally trapped massless modes corre-

spond to rotations of Φ within the class described by
H�=H0. In the nongravitating setting, the analogous zero
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modes behave as F � 1 and are not normalizable [23].
Hence, gravitationally trapped massless modes associated
with these perturbations can be seen as the zero modes in
flat space which turn out normalizable and get localized
once we include gravity. For this type of perturbation, there
are no bound states in the flat space case [23], nor do we
find any modes with m2 < 0 in the gravitating case.
Finally, for a q such that Tq is neither a generator of Hþ

nor ofH−, we find that ∂2V=∂ϕ2
q ¼ 0, and the modes ΞqðzÞ

satisfy

ð−∂2
z þ VQ1

ÞΞq ¼ m2Ξq: ð76Þ

As stated above, VQ1
supports a massless bound state, a

tower of non-normalizable massive states with m2 > 0 and
no modes with m2 < 0. These are perturbations along the
nbr generators that are broken everywhere, with nbr ¼ 8 for
the symmetry breaking A and nbr ¼ 2 for the symmetry
breaking B.
The above results show that the 5D self-gravitating

SUð5Þ × Z2 domain walls of [28] are perturbatively stable.
Additionally, on both symmetry breaking patterns, normal-
izable 4D massless modes of the kink fluctuations
χ ¼ χqTq appear when Tq is not a generator of H0. The
existence of normalizable massless scalar modes is remi-
niscent of the situation envisaged in [35], although in the
latter case these modes appears in Abelian Z2-symmetric
models with N scalar fields (N ≥ 2) and a potential
generated by a fake superpotential.

IV. SUMMARY AND OUTLOOK

Dynamical localization of gauge fields via the DS
mechanism [29] in non-Abelian domain wall scenarios
was put forward in [25,26] and discussed in [27] for a flat
space model based on an E6 symmetry group and in [28]
for a gravitating SUð5Þ × Z2 model. Besides the fact that
the stability of non-Abelian kinks is not guaranteed and
should be proved at least perturbatively [23,24], it is clear
that the 4D phenomenology on the brane may be influenced
by the inclusion of gravity, which couples metric fluctua-
tions with the wall fluctuations.
We have thus carried out a diffeomorphism-invariant

analysis of the fluctuations of the 5D self-gravitating
SUð5Þ × Z2 domain walls of [28], in order to determine
their perturbative stability as well as their localization
properties from the point of view of 4D observers.
We have found no modes with m2 < 0 for the fluctua-

tions of the self-gravitating SUð5Þ × Z2 kinks, implying
that these are perturbatively stable as in the flat spacetime
case [22–24].
Not surprisingly, the tensor and vector sectors of the

fluctuations behave in the same way as the corresponding
ones of the standard Z2 kinks. There is a normalizable
massless mode in the tensor sector which gives rise to 4D
gravity on the brane and a tower of non-normalizable
massive states which propagate in the bulk. There is no
localized vector fluctuation.
On the other hand, the scalar sector of the fluctuations for

the self-gravitating SUð5Þ × Z2 kinks greatly differs from
its analogous one for the Abelian Z2 case. We have found
no normalizable 4D massless modes associated with the
unbroken subgroup H0 on the core of the wall, independ-
ently of the symmetry breaking pattern considered.
However, there are as many normalizable 4D zero modes
as there are broken generators, i.e., we find gravitationally
localized massless 4D scalar particles without charge under
H0 which can be identified as (the 4D zero modes of) the
Nambu-Goldstone fields associated with the symmetry
breaking SUð5Þ × Z2 → H0. This gravitational trapping
of Nambu-Goldstone bosons is presumably shared with
other non-Abelian domain walls, a subject that deserves
further investigation.
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FIG. 1. (a) Vq for the ΞqðzÞmodes of the fluctuations within the
class described byHþ=H0 (for the class described byH−=H0, Vq

is the mirror image). (b) Enlargement of the area shown in (a).
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