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We compute the vacuum polarization of a massless minimally coupled scalar field in a background given
by a black hole with subtracted geometry. Extending previous results for the horizon of rotating black holes
with no charge, we obtain an analytical expression for the vacuum polarization that is valid throughout the
spacetime and for arbitrary rotation and charge parameters. The vacuum polarization diverges at the inner
horizon, and the quantum state cannot be extended to the inside of it.
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I. INTRODUCTION

Quantum field theory in curved spacetime is a semi-
classical approximation to quantum gravity that describes
the behavior of quantum fields in gravitational back-
grounds. It has a wide range of physically important
applications, notably in inflationary cosmology [1] and
in black hole evaporation [2]. Since the particle concept is
usually ambiguous or inapplicable on curved backgrounds,
attention is often given to local covariant observables such
as the vacuum polarization hϕ2i and the stress energy
tensor hTμνi. The second of these has more direct physical
relevance as the source for the backreaction of the matter
fields upon spacetime. The vacuum polarization, however,
is important as a preliminary step for the computation of
hTμνi, as well as on its own right as a direct scalar probe of
quantum fluctuations and as affecting e.g. symmetry
breaking computations.
There is a long history to the attempts to compute

vacuum polarization in black hole backgrounds, starting
with Candelas’ evaluation at the horizon of a Schwarzschild
black hole [3]. For asymptotically flat static black hole
solutions, Candelas’ methods cannot be extended beyond
the horizons but techniques for numerical evaluation have
been developed [4]. For the Kerr and Kerr-Newman black
holes analytical results are only available at the horizon pole
[5]. Numerical evaluations throughout the horizonwere first
obtained in [6], and recently a method for numerical
evaluation throughout the spacetime was outlined in [7,8].
Analytic results throughout the spacetime are available in
three dimensions and with anti–de Sitter (AdS) asymptotics
[9,10] but are generally impossible in four dimensions,
where evenwith AdS asymptotics numerical evaluations are
required [11].
In this paper we will show that an exact expression for

the vacuum polarization hϕ2i of a massless, minimally
coupled scalar field is in fact obtainable, throughout the

black hole spacetime, for the class of black holes known as
subtracted geometry. Subtracted geometry black holes
[12–15] are solutions of the bosonic sector of N ¼ 2
STU supergravity coupled to three vector multiplets.
(The general asymptotically flat black holes of the STU
model were constructed in [16–18].) The subtracted black
hole metric can be obtained by subtracting some terms in
the “warp factor” of the original black hole metric in such a
way that the massless minimally coupled scalar wave
equation becomes separable and analytical solutions are
obtainable. This subtracted black hole metric effectively
places the black hole in an asymptotically conical box and
mimics the “hidden conformal symmetry” [19] of the wave
equation on rotating black holes in the near-horizon, near-
extremal, and/or low energy regimes, which is a key
motivator for the Kerr/CFT conjecture (see e.g. [20]).
The energy density of the matter fields in this new
geometry falls off as second power of radial distance, thus
confining thermal radiation. The classical near-horizon
properties of the subtracted black hole are the same as
the original black hole ones; in particular, the classical
thermodynamics of the subtracted black hole is analogous
to the standard one [21], although loop corrections to the
horizon entropy differ [22]).
The horizon vacuum polarization was studied for static

subtracted black holes in [23] and for rotating uncharged
subtracted black holes in [24]. In this paper we extend the
results of [24] in a twofold way. Firstly, we allow for
general values of the four charge parameters associated to
the subtracted metric, in addition to angular momentum,
thus considering the most general possible subtracted black
hole solution. Secondly and most importantly, we compute
the vacuum polarization throughout the spacetime, both
outside and inside the horizon, instead of just at the
horizon. This method we use is to compute first the
Feynman Green’s function of the massless scalar on this
background and then take the coincidence limit, adding
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suitable counterterms to cancel the arising divergences. The
Green’s function is in turn computed by dimensional
reduction from the five-dimensional AdS3 × S2 spacetime,
in which the subtracted geometry can be embedded. As we
will show, the quantum state defined by this procedure is
the subtracted geometry version of the Hartle-Hawking
thermal vacuum.
This paper is organized as follows. In the Sec. II, we first

introduce the subtracted black hole metric and its five-
dimensional embedding, and then discuss the Green’s
function on this background. In Sec. III we take the
regularized coincidence limit in the Green’s function,
obtaining an expression for the vacuum polarization that
is our main result. In Sec. IV we discuss particular cases
and limits of this expression, and in the final concluding
section we summarize the results and discuss prospects for
future work.

II. GREEN’S FUNCTION ON GENERAL
SUBTRACTED BLACK HOLE BACKGROUND

A. The subtracted geometry

The general four-dimensional axisymmetric black hole
metric is given by

ds24 ¼ −Δ−1=2GðdtþAdφÞ2

þ Δ1=2

�
dr2

X
þ dθ2 þ X

G
sin2θdφ2

�
: ð1Þ

The quantities X, G, A, Δ are all functions of r and sin θ
only (and depend on the mass, rotation and charge
parameters). For a given conventional (asymptotically flat)
black hole solution with mass M, angular momentum J,
and up to four charge parameters QI, we can construct a
corresponding subtracted black hole solution by modifying
only the so-called warp factor Δðr; θÞ. Specifically, a
subtracted black hole geometry is given by

X ¼ r2 − 2mrþ a2;

G ¼ r2 − 2mrþ a2cos2θ;

A ¼ 2maG−1sin2θ½ðΠc − ΠsÞrþ 2mΠs�;
Δ ¼ ð2mÞ3rðΠ2

c − Π2
sÞ þ ð2mÞ4Π2

s

− ð2mÞ2ðΠc − ΠsÞ2a2cos2θ; ð2Þ

where the black hole parameters are encoded as

QI ¼
1

4
m sinh 2δI; ðI ¼ 0; 1; 2; 3Þ;

M ¼ 1

4
m
X3
I¼0

cosh 2δI; J ¼ maðΠc − ΠsÞ;

Πc ¼
Y3
I¼0

cosh δI; Πs ¼
Y3
I¼0

sinh δI: ð3Þ

In a conventional black hole the warp factor is a fourth-
order polynomial in r; for example, the Reissner-
Nordstrom metric is obtained setting a ¼ 0, δI ¼ δ in X,
G, A above and Δ ¼ ðrþ 2m sinh δÞ4, whereas the sub-
tracted Reissner-Nordstrom metric has Δ ¼ ð2mÞ3½rðΠ2

c −
Π2

sÞ þ 2mΠ2
s � instead. In both the original and the sub-

tracted case the horizons, specified by X ¼ 0, are at

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
: ð4Þ

Subtracted black holes are solutions of the bosonic sector
four-dimensional N ¼ 2 supergravity coupled to three
vector supermultiplets; the detailed form of matter fields
supporting the geometry is given in [13,14]. An important
feature of subtracted black holes is that they have a natural
embedding in AdS3 × S2 [25]. The Bañados-Teitelboim-
Zanelli (BTZ) black hole metric can be written as

ds2BTZ ¼ −
ðR2−2þÞðR2 − R2

−Þ
l2R2

dt23

þ l2R2

ðR2 − R2þÞðR2 − R2
−Þ

dR2

þ R2

�
dφ3 þ

RþR−

lR2
dt3

�
2

; ð5Þ

which is locally isometric to AdS3 with radius l. Consider
the 5D manifold with metric

ds25 ¼ ds2BTZ þ ds2S2 ; ds2S2 ¼
l2

4
ðdθ2 þ sin2θdφ̄2Þ ð6Þ

To obtain the 4D subtracted black hole metric in the
ðt; r; θ;φÞ coordinates as given above in (1), we first need
to make the identifications,

φ̄ ¼ φ −
16maðΠc − ΠsÞ

l3
ðzþ tÞ

R2 ¼ 64m2R2
0

l4
½2mrðΠ2

c − Π2
sÞ þ 4m2Π2

s − a2ðΠc − ΠsÞ2�

R� ¼ 8mR0

l2
½mðΠc þ ΠsÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
ðΠc − ΠsÞ�

φ3 ¼ z=R0; t3 ¼ ðl=R0Þt; l ¼ 4mðΠ2
c − Π2

sÞ1=3;
ð7Þ

where R0 is an arbitrary length scale. Then we can write

ds25 ¼
Q2ffiffiffiffi
Δ

p ds24 þ
Δ
Q4

ðdzþA2Þ2; ð8Þ

where Δ is given above in (2), and
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A2 ¼
Q3½4m2ΠcΠs þ a2ðΠc − ΠsÞ2cos2θ�

2mðΠ2
c − Π2

sÞΔ
dt

þQ32maðΠc − ΠsÞsin2θ
Δ

dφ

Q ¼ 2mðΠ2
c − Π2

sÞ1=3 ¼ l=2: ð9Þ

B. The Green’s function

The Green’s function of a massless, minimally coupled
scalar field on AdS3 × S2 (with radii l,l2 respectively) has
been computed in [26]. It takes the form

G5ðx; x0Þ ¼
1

8
ffiffiffi
2

p
π2ll22

ζ

½2ζ2 − 1 − cos γ�3=2 ; ð10Þ

where ζ ¼ ζðx; x0Þ and cos γ ¼ cos γðx; x0Þ are related to
the AdS3 and the S2 distances respectively,

ζðx; x0Þ ¼ ΔX2

2l2
þ 1

cos γðx; x0Þ ¼ cos θ cos θ0 þ sin θ sin θ0 cosðφ̄ − φ̄0Þ; ð11Þ

where ΔX2ðx; x0Þ is the distance in the Minkowski space
with signature ð− −þþÞ where AdS3 is embedded.
The Green’s function on the subtracted black hole

background can be obtained by setting l ¼ 2l2, expressing
G5ðx; x0Þ in the ðt; r; θ;φ; zÞ coordinates, and then integrat-
ing over the embedding coordinate z1

G4ðt; r; θ;φ; t0r0; θ0;φ0Þ

¼ 1

2
ffiffiffi
2

p
π2l3

Z þ∞

−∞
dz

ζðz; 0Þ
½2ζ2ðz; 0Þ − 1 − cos γðz; 0Þ�3=2 :

ð12Þ

Here the dependence of ζ and cos γ on the eight coordinates
that G4 depends on is kept implicit. The full form of
ζðt; r; z; t0r0; 0Þ differs depending on which of the six
possible combinations of the three ranges of the black
hole radial coordinate ð0; r−Þ; ðr−; rþÞ; ðrþ;þ∞Þ is the one
where ðr; r0Þ fall into. For example, in the external region
where both r; r0 > rþ and for t ¼ t0, we have

ζðt; r; z; t; r0; 0Þ

¼ 1

rþ − r−
½½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − r−Þðr0 − r−Þ

p
coshðcþzÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − rþÞðr0 − rþÞ

p
coshðc−zÞ�; ð13Þ

where

c� ¼ 16m2

2ð1þ α2Þl3 ½ð1þ α2ÞðΠc þ ΠsÞ

� ð1 − α2ÞðΠc − ΠsÞ�;
α≡ a=rþ: ð14Þ

For the other six possible combinations of radial ranges,
(13) gets sign changes at the square roots, as well as cosh
functions changed to sinh when the points fall in different
ranges. The exact form of ζ for each range of the two radial
coordinates is given in the Appendix. α will be instead of a
as a more convenient rotation parameter in the rest of the
paper; its value is constrained to the range 0 ≤ α ≤ 1.
Setting φ ¼ φ0 as well as t ¼ t0, we obtain that the

Green’s function for radially and polarly separated points
on the subtracted black hole background is given by

G4ðr; θ; r0; θ0Þ ¼
1þ α2

128π2m2ðΠc þ α2ΠsÞ
Z

∞

−∞
du

×
ζ

½ζ2 − ð1þcos γÞ
2

�3=2
; ð15Þ

where we have changed variables to u ¼ cþz. It is also
convenient to use a dimensionless radial coordinate with
origin at the outer horizon

x≡ r − rþ
rþ − r−

: ð16Þ

Note that x ¼ −1 corresponds to the inner horizon if there
is one and to the singularity if there is not. In this notation,
the ζ and cos γ functions appearing in (15) read

ζ ¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x0

p
cosh u −

ffiffiffi
x

p ffiffiffiffi
x0

p
coshðλuÞ

λ≡ α2Πc þ Πs

α2Πs þ Πc
ð17Þ

cos γ ¼ cos θ cosðθ0Þ þ sin θ sinðθ0Þ cosð2cuÞc

≡ αðΠc − ΠsÞ
Πc þ α2Πs

: ð18Þ

As noted above, this exact form of ζ holds only when we
are in the exterior region with x; x0 > 1; the form for
general ðx; x0Þ is given in the Appendix.
Note that setting Πc ¼ 1, Πs ¼ 0, θ ¼ θ0, x ¼ 0, x0 ¼ ϵ

in (15), after a change of variables w ¼ sinh u we recover
Eq. (18) from [24], which corresponds to the Green’s
function with radial separation at the horizon of subtracted
Kerr. In the cited reference this was computed as a sum over
modes solving the 4D Euclidean wave equation, with no
reference to the 5D embedding manifold. This provides a
nontrivial validity check for our dimensional reduction

1This works because ∂z is a Killing vector of the 5D manifold,
and because the extra termA2 in the metric is a one-form Kaluza-
Klein gauge potential and thus the transformation dz → dzþA2

when integrating does not alter the Jacobian.
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procedure. Since the modes used in [24] correspond to the
“Hartle-Hawking” Green’s function, which is thermal with
temperature T ¼ κþ=2π as seen by corotating observers,
we conclude that the dimensional reduction procedure from
the AdS3 × S2 vacuum Green’s function results in the
Euclidean thermal corotating vacuum of the four-dimen-
sional black hole. The outer horizon’s surface gravity thus
related to the temperature is given by

κþ ¼ 1

4m
1 − α2

Πc − α2Πs
: ð19Þ

To close this section, we remark that the integral in (12)
is ill-defined for certain values of the eight 4D coordinates.
The cases in which this happens can be separated into two
kinds. Firstly, when both r and r0 are larger than r− (i.e.,
none of the points lies within the inner horizon) the integral
goes over a light cone singularity if the points in
the underlying 5D manifold are timelike separated. The
Green’s function is perfectly well defined when the
separation is spacelike, though, and the definition of G4

for timelike separation is achieved by analytic continuation
with the usual iϵ prescription for the Feynman Green’s
function.2 Since we will compute the vacuum polarization
by coincidence limit from a spacelike separation, this need
not concern us further. Secondly, when either point has
r < r−, the integral goes over a singularity whether the
separation is timelike or spacelike. We interpret this as
meaning that the quantum state under consideration cannot
be meaningfully extended to this internal region. This is in
accordance with the situation for the Green’s function for
the BTZ black hole in three dimensions [27] as well as with
the well-known instability of the inner horizon under
perturbations in general 4D black holes [28,29].

III. EVALUATION OF hϕ2i
We will use angular point splitting to compute the

vacuum polarization. Setting x ¼ x0 in (15), using trigo-
nometric identities the Green’s function can be recast as

G4ðθ; θ þ ϵÞ ¼ 1þ α2

64π2m2ðΠc þ α2ΠsÞ
Iϵ ð20Þ

Iϵ ¼
Z

∞

0

du
ζðuÞ

½ΔϵðuÞ�3=2
ð21Þ

ζðuÞ ¼ ð1þ xÞ cosh u − x coshðλuÞ ð22Þ

ΔϵðuÞ ¼ ζ2ðuÞ − 1þ sin2θsin2ðcu=2Þ þ sin2ðϵ=2Þ
þ ðcos θ sin ϵ − 2 sin θsin2ðϵ=2ÞÞsin2ðcuÞ: ð23Þ

Even though derived here from the expression in the
exterior region, the form of ζ given in (22) is valid now
for any value of x, as shown in the Appendix. Equation (20)
therefore gives the Green’s function for polar point-splitting
in the whole spacetime, although the result is ill-defined in
the inner horizon internal region x < −1 as discussed
above.
Our general strategy for evaluating the ϵ → 0 limit

explicitly is analogous to the one deployed in [24]. We
first split the integral in two subintervals, ð0; ηÞ and
ðη;þ∞Þ, with η ¼ ϵ1=3. In the lower interval, the integrand
is expanded in a way such that the integral can be evaluated
analytically with a controlled error. In the upper one, ϵ can
be set to zero in the integrand without affecting the final
result. The divergences are thus isolated and canceled with
appropriate counterterms coming from the Hadamard
expansion of the two-point function, leaving an explicit
analytic expression for the vacuum polarization in the
coincidence limit.
Considering first the upper interval, let us call GϵðuÞ

the integrand in (21), and let G0ðuÞ ¼ Gϵ¼0ðuÞ and
Δ0ðuÞ ¼ Δϵ¼0ðuÞ. We claim that

I>ϵ ≡
Z

∞

η
duGϵðuÞ ∼

Z
∞

η
duG0ðuÞ; ð24Þ

where ∼ stands for equality up to terms vanishing in the
limit ϵ → 0. The reason is that the error involved in this
replacement can be written as

Z
∞

η
du

ζðuÞ
½Δ0ðuÞ�3=2

×

2
641 − 1h

1þ sin2ðϵ=2Þþðcos θ sin ϵ−2 sin θsin2ðϵ=2ÞÞsin2ðcuÞ
Δ0ðuÞ

i
3=2

3
75

ð25Þ

and since Δ0ðuÞ ¼ Oðu2Þ at small u and is divergent at
large u, it follows that the term having it as denominator is
bounded by a constant of order ϵ, and thus the integral is of
order ϵ1=3.
The last integral in (24) is still divergent as η → 0, but the

divergence is easily isolated explicitly by adding and
subtracting the leading terms in the expansion of G0,
evaluating explicitly the added terms, and taking η → 0
in the subtraction. This leads to

2This is analogous to how the vacuum Green’s Function in
D-dimensional Minkowski space can be obtained integrating over
the embedding dimension the Green’s Function in (Dþ 1)-
dimensional Minkowski space, analytically continuing the in-
tegral when it includes a light cone singularity.
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I>ϵ ∼
1

2ϵ2=3ð1þ c2v2 þ x − λ2xÞ3=2 −
4c4v2 þ ðλ2 − 1Þ2xð1þ xÞ þ 4c2v2ð1þ x − λ2xÞ ln ϵ

24ð1þ c2v2 þ x − λ2xÞ5=2

þ
Z

∞

0

du

�
ζðuÞ

½ΔðuÞ�3=2 −
�

1

u3ð1þ c2v2 þ x − λ2xÞ3=2 þ
4c4v2 þ ðλ2 − 1Þ2xð1þ xÞ þ 4c2v2ð1þ x − λ2xÞ

8uð1þ uÞð1þ c2v2 þ x − λ2xÞ5=2
��

; ð26Þ

where for compactness we introduce the notation v ¼ sin θ. The upper interval’s contribution is therefore one term
divergent as ϵ−2=3 and two finite terms (one of which is expressed as an integral).
In the lower interval, we expand the numerator and denominator in the integrand

I<ϵ ≡
Z

η

0

du
ζ

Δ3=2
ϵ

∼
Z

η

0

du
~ζ

~Δ3=2
ϵ

; ð27Þ

where ~ζ is the expansion of ζ to the second order in u around u ¼ 0 and ~Δϵ the expansion of the ΔϵðuÞ to the fourth order in
u around u ¼ 0. The error involved can be shown to vanish in the limit ϵ → 0. The integrand now being a combination of
terms of the form ððu2 þ A2Þðu2 þ B2ÞÞ−3=2 and u2ððu2 þ A2Þðu2 þ B2ÞÞ−3=2, the integral can be expressed in terms of the
elliptic functions Eðy; kÞ and Fðy; kÞ where y ¼ arctanðη=AÞ and k ¼ 1 − A2

B2. This result is then expanded for small ϵ using
formulas from [30], giving

I<ϵ ∼ −
4

ϵ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2v2 þ xð1 − λ2Þ

p −
2c2v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

ϵð1þ c2v2 þ x − λ2xÞ3=2 −
1

2ϵ2=3ð1þ c2v2 þ x − λ2xÞ3=2

þ ð−4c4v2 − ðλ2 − 1Þ2xð1 − xÞ þ 4c2v2ððλ2 − 1Þx − 1ÞÞ ln ϵ
12ð1þ c2v2 þ x − λ2xÞ5=2 þ 1

48ð1þ c2v2 þ x − λ2xÞ5=2
× ½ðλ2 − 1Þxð−7 − 3xþ λ2ð3x − 1Þ lnð1þ c2v2 þ xð1 − λ2ÞÞÞ þ 4ð6 − 2c4v2ð−5þ v2Þ þ 14c2v2ð1þ x − λ2xÞÞ
þ xð10þ xð4þ ln 8Þ þ λ4ð−2 − ln 2þ xð4þ ln 8ÞÞ − λ2ð1þ xÞð8þ ln 64Þ þ ln 128Þ þ ððλ4 − 1Þx
þ 3c2v2ð1þ c2 þ x − λ2xÞÞ lnð16ð1þ c2v2 þ x − λ2xÞÞ�: ð28Þ

The accuracy of this expression in the ϵ → 0 limit can be verified numerically. Note that the ϵ−2=3 divergence cancels with
that of (26), and we are left with quadratic, linear and logarithmic divergences. These are canceled subtracting from the
Green’s function the Hadamard expansion [31]

Gdiv ¼
1þ 1

12
Rμνσ

;μσ;ν

8π2σ
−

1

96π2
R lnðμ2σÞ; ð29Þ

where μ is an arbitrary mass scale. We express the halved squared geodesic distance σ in terms of the coordinate separation
ΔXμ ¼ xμ − x0μ (which in our case is −ϵδμθ) using the expansion

σ ¼ 1

2
gμνΔxμΔxν þ AμνρΔxμΔxνΔxρ þ BμνρλΔxμΔxνΔxρΔxλ þ � � � ð30Þ

Here Aμνρ and Bμνρλ have expressions terms of derivatives of the metric, provided explicitly in [32]; see also [33]. Writing
Gdiv in terms of ϵ gives linear, quadratic and logarithmic divergences that match exactly those of the sum of (26) and (28)
[including the prefactor in (20)]. There is also an additional finite piece coming from terms of Gdiv that are Oð1Þ in ϵ.
Combining all the pieces the full expression for the vacuum polarization is
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hϕ2i ¼ lim
ϵ→0

ðG4ðθ; θ þ ϵÞ − Gdivðθ; θ þ ϵÞÞ ¼ 1þ α2

64π2m2ðΠc þ α2ΠsÞ

×
�

1

48ð1þ c2v2 þ x − λ2xÞ5=2 ½4ð6 − 2ð−5þ 4λ2 þ λ4Þx − 2c4v2ð−5þ v2 − 6 ln 2Þ

þ ðλ2 − 1Þ2xðln 8þ xð4þ ln 8ÞÞ − 2c2v2ð−1þ ðλ2 − 1ÞxÞð7þ ln 64ÞÞ þ 3ð4c4v2 þ ðλ2 − 1Þ2xð1þ xÞ
þ 4c2v2ð1þ x − λ2xÞÞ lnð1þ c2v2 þ x − λ2xÞ� þ ð4c2 þ ðλ − 1Þðλ − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2 þ ðλ − 1Þ2

q
ÞÞ

×
2c4 þ ðλ − 1Þ3ðλ − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2 þ ðλ − 1Þ2

p
Þ þ 2c2ðλ − 1Þð2λ − 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2 þ ðλ − 1Þ2

p
Þ

24
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2 þ ðλ − 1Þ2

p
ð2c2 þ ðλ − 1Þðλ − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2 þ ðλ − 1Þ2

p
ÞÞð1þ c2v2 þ x − λ2xÞ5=2

× ½4ðc2ð4 − ð21þ 19c2 þ λ2Þv2 þ 5c2v4Þ − 3 − λ2Þ − ðλ2 − 1Þxðλ2 − 25þ c2ð16 − 80v2ÞÞ − 13ðλ2 − 1Þ2x2�

þ
Z

∞

0

du
�

ζðuÞ
½ΔðuÞ�3=2 −

�
1

u3ð1þ c2v2 þ x − λ2xÞ3=2 þ
4c4v2 þ ðλ2 − 1Þ2xð1þ xÞ þ 4c2v2ð1þ x − λ2xÞ

8uð1þ uÞð1þ c2v2 þ x − λ2xÞ5=2
���

:

ð31Þ

This is the main result of the paper, expressing the vacuum polarization of a quantum massless minimally coupled scalar
field in a subtracted geometry black hole spacetime, any value of the mass, rotation and charge parameters, in terms of
which α, λ and cwere defined above in (14), (17) and (18) respectively. The expression is valid for any values of the angular
coordinate v and for all values of radial coordinate x outside the inner horizon (x ≥ −1). The result has several explicitly
evaluated terms, and one expressed as an integral with no closed form, but easily evaluated numerically. This expression is
correct up to a term of the form CRðxÞ, where C is an arbitrary number, and the Ricci scalar R is RðxÞ ¼ ~R=32m2, with

~R ¼ 3ð1þ α2Þ2ðΠc − ΠsÞ2
½−2α2ΠcΠsðv2 − 1Þ þ Π2

cð1þ α2v2 þ x − α4xÞ þ Π2
sðα2v2 − xþ α4ð1þ xÞÞ�5=2

× ½4α2ðπ2c þ α2Π2
sÞv2 þ ðα2 − 1Þxððα4 − 1ÞðΠc þ ΠsÞ2 þ 4α2v2ðΠ2

s − Π2
cÞÞ

þ ðα2 þ 1Þðα2 − 1Þ2ðΠc þ ΠsÞ2x2�: ð32Þ

In the next section we will compare with previously known
results, as well as examining particular limiting values and
discussing their physical significance.

IV. DISCUSSION

The first check on our result (31) is whether it agrees
with the results in [24] when evaluated at the outer horizon
of a Kerr black hole. This implies setting λ ¼ α2,
c ¼ αΠc ¼ 1, Πs ¼ 0, and x ¼ 0. Since the calculation
in the cited reference was done by radial point splitting
leading to a differently structured result, the comparison is
not possible term by term but only between the total results.
Numerical evaluation of the u-integral in each result shows
that both results are indeed equal throughout the horizon,
up to a multiple of the Ricci scalar R (in other words, the
difference between both results divided by R is a θ-
independent constant).
A more direct comparison is available in the static case.

Setting c ¼ α ¼ 0, x ¼ 0, and λ ¼ Πs=Πc, the u-integral in
(31) becomes elementary, and we obtain an explicit formula

for the vacuum polarization at the outer horizon of general
static black holes

hϕ2ijrþ;α¼0 ¼
Π2

c − Π2
s

768π2m2Π3
c
: ð33Þ

This matches the results obtained in [23].
We are now in position to extend both these previous

results to obtain the vacuum polarization at the horizon
of a fully general subtracted black hole, with both rotation
and charge parameters being nonzero. For simplicity
we exhibit the result only in the subtracted Kerr-
Newman case, where there is a single charge parameter
δ and Πc ¼ cosh4 δ;Πs ¼ sinh4 δ. The result of evaluating
(31) in this case for x ¼ 0 is plotted in Figs. 1 and 2 as a
function of v ¼ sin θ for different combinations of the
rotation and charge parameters.
It can be seen in Fig. 1 that increasing the charge at fixed

angular momentum lowers the vacuum polarization, mak-
ing it vanish in the limit δ → ∞. In Fig. 2 it is seen that
lowering the angular momentum at fixed charge flattens the
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angular profile as we approach the spherically symmetric
static limit. Though the plots are presented for a particular
value of the arbitrary constant multiplying R, these quali-
tative features are independent of it.
Let us now consider the vacuum polarization beyond the

horizon. In the static case with at least one vanishing charge
δI, in which Πs ¼ 0 and a ¼ 0, we can obtain a simple
closed-form expression for the vacuum polarization as a
function of x. This is easiest done not from our expression
(31) but taking a step back to evaluate the u-integral in (24).
The parameters α, c, λ are all 0, so we have

G0ðuÞ ¼
ζðuÞ

½Δ0ðuÞ�3=2

¼ ð1þ xÞ coshu − x

½ðð1þ xÞ coshu − xÞ2 − 1�3=2 : ð34Þ

Then (24) can be computed in closed form and, after
joining with the explicitly computed terms from (28) and
(29), we obtain

hϕ2ijα¼Πs¼0

¼ 1

768π2m2Πc

×
−12−8xþ6ð2þxÞ ffiffiffiffiffiffiffiffiffiffi

1þx
p þ3x2ð−2þ lnð 256ð1þxÞ

2þxþ2
ffiffiffiffiffiffi
1þx

p ÞÞ
4xð1þxÞ3=2 :

ð35Þ

This does not include the arbitrary R term, which takes the
form of an arbitrary constant times

Rjα¼Πs¼0 ¼
3x

32m2Πcð1þ xÞ3=2 : ð36Þ

Asymptotically at large x, both R and the other contribu-
tions to hϕ2i behave as x−1=2. Hence the form of the decay
is universal but the constant in front of it is not. At the outer
horizon, R ¼ 0 and hϕ2i ¼ ð768π2m2ΠcÞ−1.
The singularity is approached as x → −1. In this limit,

the singularity the vacuum polarization diverges as

hϕ2ijx→−1 ∼
1

768π2m2Πc

×

�
C − 3 lnð1þ xÞ

ð1þ xÞ3=2 þOð1þ xÞ−1
�
; ð37Þ

where C is an arbitrary number.
Figure 3 exhibits the x-dependence of hϕ2i for

Schwarzschild (and other Πs ¼ 0 static black holes), as
given above in (35), with the plot scaled to have the horizon
value 1. Note that this plot corresponds to a particular value
of the added R-term, and that only the behaviors at the
singularity and at infinity are physical [as well as the
horizon value, since Rðx ¼ 0Þ ¼ 0]. However, note as well
that the behavior near the singularity is universal since the

FIG. 2. ð64π2m2Þhϕ2i at the Kerr-Newman horizon, for δ ¼ 0.4
(corresponding to Q=M ¼ 0.66). The rotation parameter α ¼
a=rþ takes the values 0.75, 0.4, 0.2, and 0 for the dotted, small-
dashed, medium-dashed and full lines respectively.

FIG. 1. ð64π2m2Þhϕ2i at the Kerr-Newman horizon, for
a=rþ ¼ α ¼ 0.75. The charge parameter δ takes the values 0,
0.2, 0.4, 0.7 and 1 for the dotted, small-dashed, medium-dashed,
large-dashed and full lines respectively.

FIG. 3. ð768π2m2ΠcÞhϕ2i as a function of x for α ¼ 0 ¼ Πs.
The constant multiplying RðxÞ in the arbitrary term added to (35)
is set as −π2m2Πc.
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C-term is subdominant in (37). The vacuum polarization
diverges at the spacelike singularity of Schwarzschild (and
other static black holes with at least one vanishing charge)
with the leading divergence being − lnðyÞ=256π2m2Πcy3=2,
where y ¼ 1þ x is the dimensionless radial coordinate
(timelike in the inner region) translated to vanish at the
singularity.
It is natural to inquire about a comparison between the

vacuum polarizations beyond the horizon for subtracted
Schwarzschild and for standard Schwarzschild. A simple
analytical approximation to the latter (in the Hawking-
Hartle state) was developed by Page and Whiting [34] and
reads

hϕ2iSchPW ¼ 1

768π2m2

�
1þ 2m

r
þ 4m2

r2
þ 8m3

r3

�
: ð38Þ

This approximation is reliable up very close to the
singularity [35]. It is seen that hϕ2i in standard
Schwarzschild goes to a constant asymptotic value
(characteristic of thermal radiation) very far from the black
hole, while in the subtracted case it vanishes.3 As for
the divergence approaching the singularity, insofar as the
Page-Whiting approximation provides the right order
of magnitude it is seen that the divergence is stronger

(∼y−3) in standard Schwarzschild than in subtracted
Schwarzschild.
For black holes with two horizons, the vacuum polari-

zation is well-defined only up to the inner horizon. As an
example, the result for the subtracted Kerr black hole with
α ¼ 1=2 is plotted in Fig. 4 (at the equatorial plane
θ ¼ π=2). Note that the vacuum polarization diverges as
the inner horizon (x ¼ −1) is approached. Other cases with
two horizons, such as subtracted Kerr-Newman, behave in a
qualitatively similar way.

V. CONCLUSIONS

The main result of this paper, given in Eq. (31), is an
analytical expression for the vacuum polarization of a
massless, minimally coupled scalar field in the general
subtracted four-dimensional black hole background. The
remarkable features of the result are its validity throughout
the spacetime from the inner horizon to the asymptotic
boundary and its validity for black holes with arbitrary
charged and rotation parameters. To our knowledge, this is
the first such expression ever obtained in four-dimensional
black holes.
We have shown that the result correctly recovers pre-

vious evaluations at the subtracted static and Kerr horizons
[23,24] and reduces to a simple closed-form expression
(35) valid in the subtracted Schwarzschild case. In this case
the vacuum polarization diverges at the singularity. In the
general case, it diverges at the inner horizon, and the
Green’s function characterizing the quantum state is ill-
defined in the inner region.
We expect the techniques we used to evaluate hϕ2i to be

extendable to the computation of the stress-energy tensor
hTμνi. If this computation is achieved, it could be used to
study the backreaction of the quantum field upon the
geometry in an analytical way. Among other questions,
this would illuminate the quantum effects near the singu-
larity. Moreover, our general expressions for the Green’s
function (provided in the Appendix) can also be used to
probe quantum effects in this geometry in other ways, such
as the response of a particle detector.
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APPENDIX: FULL EXPRESSION FOR THE
GREEN’S FUNCTION IN EACH REGION

The expression for the Green’s function on the
four-dimensional subtracted metric, as an integral of the

FIG. 4. ð64π2m2Þhϕ2i at the equatorial plane as a function of
the dimensionless radial coordinate x for the subtracted Kerr
black hole with α ¼ 1=2. The divergence at x ¼ −1 corresponds
to the inner horizon.

3A heuristic explanation is that the order of magnitude of the
Page-Whiting approximation is given by the κ2Ω−2 where κ is the
surface gravity and Ω2 the conformal factor relating the metric to
an ultrastatic metric with g00 ¼ −1. Standard Schwarzschild is
asymptotically flat, but subtracted Schwarzschild is not and in it
Ω−2 vanishes asymptotically. However, in any case the Page-
Whiting approximation is derived for Einstein spaces and
conformally coupled fields, so there is no reason to expect it
to be accurate in our case.
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five-dimensional Green’s function on AdS3 × S2, was
provided above in (12) and reads

G4ðt; r; θ;φ; t0r0; θ0;φ0Þ

¼ 1

2
ffiffiffi
2

p
π2l3

Z þ∞

−∞
dz

ζðz; 0Þ
½2ζ2ðz; 0Þ − 1 − cos γðz; 0Þ�3=2 ;

ðA1Þ

where ζ and cos γ are given in (11) (their dependence on the
4D coordinates is suppressed). The expression of cos γ in
terms of the four-dimensional coordinates plus z is always
obtained replacing φ̄ in it with the first line of (7), but the
expression of ζ is more complicated and differs depending

on the values of r, r0. To express it in a succinct way it is
convenient to define the auxiliary coordinates

T ¼ Rþt3 − lR−φ3

l2
ðA2Þ

Φ ¼ lRþφ3 − R−t3
l2

ðA3Þ

defined in terms of the 3D BTZ coordinates and the
parameters R� defined in (7). Using for the radial coor-
dinate the dimensionless x as defined in (16), the AdS3

distance function ζ takes the following form:

ζ11 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x0

p
coshðΦ −Φ0Þ − ffiffiffi

x
p ffiffiffiffi

x0
p

coshðT − T 0Þ
ζ22 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x0

p
coshðΦ −Φ0Þ þ ffiffiffiffiffiffi

−x
p ffiffiffiffiffiffiffi

−x0
p

coshðT − T 0Þ
ζ33 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 − x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 − x0

p
coshðΦ −Φ0Þ þ ffiffiffiffiffiffi

−x
p ffiffiffiffiffiffiffi

−x0
p

coshðT − T 0Þ
ζ12 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x0

p
coshðΦ −Φ0Þ − ffiffiffi

x
p ffiffiffiffiffiffiffi

−x0
p

sinhðT − T 0Þ
ζ13 ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 − x0

p
sinhðΦ −Φ0Þ − ffiffiffi

x
p ffiffiffiffiffiffiffi

−x0
p

sinhðT − T 0Þ
ζ23 ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 − x0

p
sinhðΦ −Φ0Þ þ ffiffiffiffiffiffi

−x
p ffiffiffiffiffiffiffi

−x0
p

coshðT − T 0Þ: ðA4Þ

Here the subscripts 1,2,3 label respectively the region
external to the outer horizon (x > 0), the middle region
(−1 < x < 0) and the region internal to the inner horizon
(x < −1), so that for example ζ12 is to be used for
computing the Green’s function when x > 0 and
−1 < x0 < 0. Using the relations in (7) together with
(A2) and (A3), this is enough to express fully the
Green’s function in terms of four-dimensional coordi-
nates, the subtracted black hole parameters, and an
integrated-upon variable z. As mentioned at the end of

Sec. II.b, the z-integral has to be found through analytic
continuation when the points are in the middle/outer
regions and timelike separated; on the other hand, it is
completely undefined when one of the points is in the
inner region x < −1, owing to the failure of the quantum
state to be defined in this region. It is easily checked that
with only θ-separation the Green’s function is given by
(20)–(23) in both the external and the middle region,
which validates our computation of the vacuum polari-
zation in Sec. III.
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