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We consider the leading and subleading UV divergences for the four-point on-shell scattering amplitudes
in D ¼ 8 N ¼ 1 supersymmetric Yang-Mills theory in the planar limit. This theory belongs to the class of
maximally supersymmetric gauge theories and presumably possesses distinguished properties beyond
perturbation theory. We obtain the recursive relations that allow one to get the leading and subleading
divergences in all loops in a pure algebraic way staring from the one loop (for the leading poles) and two
loop (for the subleading ones) diagrams. As a particular example where the recursive relations have a
simple form we consider the ladder type diagrams. The all-loop summation of the leading and subleading
divergences is performed with the help of the differential equations which are the generalization of the RG
equations for nonrenormalizable theories. They have explicit solutions for the ladder type diagrams. We
discuss the properties of the obtained solutions and interpretation of the results.
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I. INTRODUCTION

In the last decade there has been considerable activity
on the calculation of the amplitudes in maximally super-
symmetric Yang-Mills theories (SYM) [1,2] and maxi-
mally supersymmetric gravity [3]. Gauge and gravity
SUSY theories in D ¼ 4 such as the N ¼ 4 SYM and
N ¼ 8 SUGRA are the most important examples. These
theories are believed to possess several remarkable prop-
erties, among which are total or partial cancellation
of UV divergences, factorization of higher loop correc-
tions, and possible integrability. The success of factori-
zation leading to the BDS ansatz [1] for the amplitudes in
D ¼ 4 N ¼ 4 SYM stimulated similar activity in other
models and dimensions. Many magnificent insights in the
structure of amplitudes (the S-matrix) of gauge theories in
various dimensions (for review see, for example, [4]) were
obtained.
In recent papers [5,6] we considered the leading UV

divergences of the on-shell scattering amplitudes in max-
imally supersymmetric SYM theories in D ¼ 6 (N ¼ 2

SUSY), D ¼ 8 (N ¼ 1 SUSY), and D ¼ 10 (N ¼ 1
SUSY) dimensions. In these theories the on-shell amplitudes
are IR finite and the only divergences are the UVones. Since
the gauge coupling g2 in D dimensions has dimension
½4 −D�, all these theories are nonrenormalizable.
Applying first the color decomposition of the amplitudes

we are left with the partial amplitudes. Within the spinor-
helicity formalism [2], the tree-level partial amplitudes
have a relatively simple universal form and always factorize
so that the ratio of the loop corrections to the tree-level
expression can be expressed in terms of scalar master

integrals. For the four-point amplitude this is shown
schematically in Fig. 1.
The on-shell four-point amplitude depends on the

Mandelstam variables s, t, and u with the condition
sþ tþ u ¼ 0. Within the dimensional regularization
(dimensional reduction) the UV divergences manifest
themselves as the pole terms with the numerators being
the polynomials over the kinematical variables. This
expansion has a universal form in any dimension including
the combinatoric factors that contain the coupling constant
and the powers of s and t. The dependence on particular
value of D comes from the integration inside the loops.
In D dimensions the first UV divergences start from

L ¼ 6=ðD − 4Þ loops. Consequently in D ¼ 6 they start

FIG. 1. The universal expansion for the four-point scattering
amplitude in SYM theories in terms of master integrals. The
connected strokes on the lines mean the square of the flowing
momentum.
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from 3 loops. In D ¼ 8 and D ¼ 10, though the one-loop
case is somewhat special, they start already at one loop. In
[6] we considered the leading divergences in all of these
cases. Here, we concentrate on the D ¼ 8 case since the
loop order is less than in theD ¼ 6 case and the numerators
are not so complex as in the D ¼ 10 case. Contrary to [6],
we go beyond the leading divergences and consider the
subleading ones in order to understand the tendency and to
check whether the subleading terms change the situation
regarding the renormalization of the theory in all loops.

II. R0 OPERATION AND POLE EQUATIONS IN
THE LEADING AND SUBLEADING ORDER

Any local quantum field theory has a remarkable
property that after performing the incomplete R operation,
the so-called R0 operation, the remaining UV divergences
are always local. Let us briefly recall the main notions
of the R operation [7,8]. Being applied to any Green
function Γ (or any particular graph G) it subtracts all the
UV divergences including those of divergent subgraphs and
leaves the finite expression. The use of the R operation is
equivalent to addition of the counter terms to the initial
Lagrangian. The R operation can be written in terms of
subtraction operators in the factorized form

RG ¼
Y
γ

ð1 −MγÞG; ð1Þ

where the subtraction operator Mγ subtracts the UV
divergence of a given subgraph γ and the product goes
over all divergent subgraphs including the graph itself.
It is useful to define also the incomplete R

operation denoted by R0 which subtracts only the
subdivergences of the graph G. The full R operation
is then defined as

RG ¼ ð1 −KÞR0G; ð2Þ

where K is an operator that singles out the singular
part of the graph (for the minimal subtraction scheme
the operator K singles out the 1=ϵn terms). The KR0G
is the counterterm corresponding to the graph G. Each
counter term contains only the superficial divergence
and is local in coordinate space (in our case it must
be a polynomial of external momenta).
The R0 operation for any graph G can be defined by the

forest formula, but for our calculations it is more conven-
ient to use the recursive definition via the R0 operation for
divergent subgraphs (for details and examples see chapter 3
in [9]):

R0G ¼
�
1 −

X
γ

KR0
γ þ

X
γ;γ0

KR0
γKR0

γ0 − � � �
�
G: ð3Þ

The sum goes over all 1PI, UV-divergent subgraphs of
the given diagram and the multiple sums include only the
nonintersecting subgraphs.
When applying this formula to the diagrams at hand one

finds that for the n-loop diagram the R0 operation results
in the series of terms (we consider the leading and
subleading poles)

R0Gn ¼
AðnÞ

n ðμ2Þnϵ
ϵn

þAðnÞ
n−1ðμ2Þðn−1Þϵ

ϵn
þ � � � þAðnÞ

1 ðμ2Þϵ
ϵn

þ BðnÞ
n ðμ2Þnϵ
ϵn−1

þ BðnÞ
n−1ðμ2Þðn−1Þϵ

ϵn−1
þ � � � þ BðnÞ

1 ðμ2Þϵ
ϵn−1

þ lower order terms; ð4Þ

where the terms like
AðnÞ

k ðμ2Þkϵ
ϵn and

BðnÞ
k ðμ2Þkϵ
ϵn−1

come from the k-
loop graph which survives after subtraction of the (n − k)-
loop counterterm. The full expression (4) has to be local,
i.e. should not contain terms like ðlog μÞk=ϵm for all k,
m > 0 while being expanded over ϵ. (For simplicity here-
after we put μ2 ≡ μ.) This requirement gives us n − 1

equations for the coefficients AðnÞ
i and n − 2 equations for

the coefficients BðnÞ
i . Solving them in favor of the one- and

two-loop graphs one gets

AðnÞ
n ¼ ð−1Þnþ1

AðnÞ
1

n
; ð5Þ

BðnÞ
n ¼ð−1Þn

�
2

n
BðnÞ
2 þ n − 2

n
BðnÞ
1

�
: ð6Þ

It is also useful to have analogous expressions for the KR0
terms equal to

KR0Gn ¼
Xn
k¼1

�
AðnÞ

k

ϵn
þ BðnÞ

k

ϵn−1

�
≡AðnÞ0

n

ϵn
þ BðnÞ0

n

ϵn−1
: ð7Þ

One has, respectively,

AðnÞ0
n ¼ ð−1Þnþ1AðnÞ

n ¼ AðnÞ
1

n
; ð8Þ

BðnÞ0
n ¼

�
2

nðn − 1ÞB
ðnÞ
2 þ 2

n
BðnÞ
1

�
: ð9Þ

This means that performing the R0 operation one can take
care only of the one loop diagrams surviving after con-
traction and get the desired leading pole term via Eq. (5)
and add the two-loop diagrams to get the subleading pole
from Eq. (6). This observation drastically simplifies the
calculation of the leading and subleading poles. Moreover,
it follows from Eqs. (5) and (6) that, just as in renormaliz-
able theories, the leading poles are essentially governed by
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the one-loop diagrams and can be deduced from them in
all loops pure algebraically, while to know the subleading
poles in all loops one needs to know the subleading pole of
the two-loop diagrams. We demonstrate below how this
procedure works in practice and obtain explicit formulas for
the leading and subleading poles in all loops.

III. THE LEADING POLES IN ALL LOOPS

We start with the leading poles and consider as a simplest
example the R0 operation applied to the ladder type
diagrams (see Fig. 2).

To calculate the contribution to AðnÞ
1 one has to calculate

the poles of the one-loop diagrams in the first and the third

row. For BðnÞ
1 one needs the constant part of these one-loop

graphs and for BðnÞ
2 one needs the leading and subleading

poles of the two-loop diagrams from the second and
fourth row.
We first concentrate on the leading poles. For the s-

channel ladder type diagram they depend only on s so that

AðnÞ
n ¼ sn−1An. Calculating the needed one-loop diagrams

and substituting them into Eq. (5) one gets the recursion
relation

nAn ¼ −
2

4!
An−1 þ

2

5!

Xn−2
k¼1

AkAn−1−k; n ≥ 3 ð10Þ

with A1 ¼ 1=3!. Starting from this value one can calculate
any An though explicit solution of the recursion relation
(10) is not straightforward.
However, since we actually need the sum of the series we

perform the summation multiplying both sides of Eq. (10)

by ð−zÞn−1, where z ¼ g2

ϵ and take the sum from 3 to infinity

X∞
n¼3

nAnð−zÞn−1 ¼ −
2

4!

X∞
n¼3

An−1ð−zÞn−1

þ 2

5!

X∞
n¼3

Xn−2
k¼1

Akð−zÞkAn−1−kð−zÞn−1−k:

ð11Þ

FIG. 2. The application of the R0 operation to the ladder type diagrams. At the right it is shown to which term of expansion (4) it
corresponds to.
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Denoting now the sum
P∞

n¼m Anð−zÞn by Σm and perform-
ing the interchange of the order of summation in the
nonlinear term we get

−
d
dz

Σ3 ¼ −
2

4!
Σ2 þ

2

5!
Σ1Σ1: ð12Þ

Having in mind that

Σ3 ¼ Σ1 þ A1z − A2z2; Σ2 ¼ Σ1 þ A1z;

A1 ¼
1

3!
; A2 ¼ −

1

3!4!
;

one finally gets the equation for ΣA ≡ Σ1

d
dz

ΣA ¼ −
1

3!
þ 2

4!
ΣA −

2

5!
Σ2
A: ð13Þ

The solution to this equation is

ΣAðzÞ ¼ −
ffiffiffiffiffiffiffiffi
5=3

p 4 tanðz=ð8 ffiffiffiffiffi
15

p ÞÞ
1 − tanðz=ð8 ffiffiffiffiffi

15
p ÞÞ ffiffiffiffiffiffiffiffi

5=3
p

¼
ffiffiffiffiffi
10

p sinðz=ð8 ffiffiffiffiffi
15

p ÞÞ
sinðz=ð8 ffiffiffiffiffi

15
p Þ − z0Þ

; ð14Þ

where z0 ¼ arcsinð ffiffiffiffiffiffiffiffi
3=8

p Þ. The expansion of tan z contains
the Bernoulli numbers

tan z ¼
X∞
n¼1

ð−1Þn−1 2
2nð22n − 1ÞB2n

ð2nÞ! z2n−1:

Being substituted into Eq. (14) it gives

ΣAðzÞ ¼ −ðz=6þ z2=144þ z3=2880þ 7z4=414720þ � � �Þ:
ð15Þ

Note that taking into account the combinatoric factors the

dimensionless variable z is given by z ¼ g2s2

ϵ . This series

reproduces the ladder type diagrams in all orders. The same
is obviously true for the t-channel ladder diagram with the
replacement s ↔ t. The function ΣA given by Eq. (14) has
an infinite sequence of simple poles and thus has no limit
when z → ∞ i.e., ϵ → 0.
The recursion relation (10) can be generalized to include

all diagrams contributing to the four-point amplitude. It was
obtained in [6] and we present here a short summary. It is
worth mentioning that not all the four-point diagrams
contribute to the leading pole but only those which contain
the subgraphs of each previous order. These diagrams can
be constructed with the help of the so-called rung rule,
described in [6]. But even among them there are zero
contributions which come from the diagrams that are
reduced to the two-point functions after shrinking the
subgraphs when performing the R0 operation.
To present the recursion relation for the full set of

relevant diagrams we note that they can be divided into
two classes: the s-channel and the t-channel ones and the
total contribution is the sum of them. The singularity of Gn

is a polynomial in s and t. When calculating AðnÞ
1 like in

Fig. 2 for the s-channel diagrams, s stands as a constant
factor while t from KR0Gn−1 contains the integration
momentum over the last loop. The same is true for the
t-channel diagrams with the replacement s ↔ t.
As a result, when using the R0 operation one is left with

the remaining triangle and bubble one-loop diagrams
shown in the first and the third rows of Fig. 2.
Substituting the explicit form of s and t and integrating
over the triangle and the bubble with the help of the
Feynman parameters one gets the desired recursion rela-
tion. Note that for the bubble term when integrating over
the loop on both sides one has functions of s and t.
Replacing t by t0 one should have in mind that on the left
t0 ¼ ðl − p1Þ2 and on the right t0 ¼ ðlþ p2

4Þ, where l is the
integration momentum. This means that after integration
one gets mixed terms like gμνpμ

1p
ν
4. They give rise to the

double sum in the second term of the equation. Eventually
one has

nSnðs; tÞ ¼ −2s2
Z

1

0

dx
Z

x

0

dy yð1 − xÞðSn−1ðs; t0Þ þ Tn−1ðs; t0ÞÞjt0¼txþyu

þ s4
Z

1

0

dxx2ð1 − xÞ2
Xn−2
k¼1

X2k−2
p¼0

1

p!ðpþ 2Þ!
dp

dt0p
ðSkðs; t0Þ þ Tkðs; t0ÞÞ

×
dp

dt0p
ðSn−1−kðs; t0Þ þ Tn−1−kðs; t0ÞÞjt0¼−sxðtsxð1 − xÞÞp; ð16Þ

where t0 ¼ txþ uy, u ¼ −t − s, and S1 ¼ 1
12
, T1 ¼ 1

12
.

Here we denote by Snðs; tÞ and Tnðs; tÞ the sum of all contributions in the nth order of PT in s and t channels,
respectively.
The same recursive relation is valid for the t-channel diagrams with the obvious replacement s ↔ t. Due to the s − t

symmetry of the amplitude, one should have Tnðs; tÞ ¼ Snðt; sÞ. The coefficient AðnÞ
n ðs; tÞ of the nth order pole is the sum
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AðnÞ
n ðs; tÞ ¼ Snðs; tÞ þ Tnðs; tÞ:

Equation (16) can be summed the same way as in the ladder case (11). Multiplying both sides by ð−zÞn−1 and summing
up over n from 3 to infinity one gets

d
dz

Σ3ðs; t; zÞ ¼ 2s2
Z

1

0

dx
Z

x

0

dyyð1 − xÞðΣ2ðs; t0; zÞ þ Σ2ðt0; s; zÞjt0¼txþyu

− s4
Z

1

0

dxx2ð1 − xÞ2
X∞
p¼0

1

p!ðpþ 2Þ!
�

dp

dt0p
ðΣ1ðs; t0; zÞ þ Σ1ðt0; s; zÞjt0¼−sx

�
2

ðtsxð1 − xÞÞp: ð17Þ

Using now that

Σ3ðs; t; zÞ ¼ Σ1ðs; t; zÞ − S2ðs; tÞz2 þ S1ðs; tÞz; Σ2ðs; t; zÞ ¼ Σ1ðs; t; zÞ þ S1ðs; tÞz;
d
dz

Σ3ðs; t; zÞ ¼
d
dz

Σ1ðs; t; zÞ − 2S2ðs; tÞzþ S1ðs; tÞ; 2S2ðs; tÞ ¼ 2s2
Z

ðS1ðs; t0Þ þ S1ðt0; sÞÞ

and making notation Σðs; t; zÞ ¼ Σ1ðs; t; zÞ one finally obtains

d
dz

Σðs; t; zÞ ¼ −
1

12
þ 2s2

Z
1

0

dx
Z

x

0

dy yð1 − xÞðΣðs; t0; zÞ þ Σðt0; s; zÞÞjt0¼txþyu

− s4
Z

1

0

dxx2ð1 − xÞ2
X∞
p¼0

1

p!ðpþ 2Þ!
�

dp

dt0p
ðΣðs; t0; zÞ þ Σðt0; s; zÞÞjt0¼−sx

�
2

ðtsxð1 − xÞÞp: ð18Þ

The same equation with the replacement s ↔ t can be
derived for Σðt; s; zÞ.
Contrary to the ladder case (13), the solution of Eq. (18)

is not straightforward and is difficult to analyze.

IV. THE SUBLEADING POLES IN ALL LOOPS:
THE LADDER DIAGRAMS

We now turn to the subleading pole. As an example
we again consider the ladder diagrams. Contrary to the
leading case, here the input is defined not only by the
one loop diagrams, but by the two-loop ones as well.
The subleading pole of the two-loop box has to be
explicitly evaluated; it cannot be deduced from the

recursion relations as it follows from Eq. (6). Explicit
evaluation gives

Box ¼ 1

3!ϵ
; Double Box ¼ −

1

3!4!

�
s
ϵ2

þ 27

4

s
ϵ
þ 1

6

t
ϵ

�
:

ð19Þ
Together with the other one- and two-loop diagrams
evaluated up to the subleading order we obtain the

expressions for BðnÞ
1 and BðnÞ

2 from the diagrams of
Fig. 2. The evaluation of some two-loop diagrams is
quite a cumbersome task; for instance, the rhombus one
has been calculated using the integration by parts
technique [10]. Hereafter we use the notation

AðnÞ
n ¼ sn−1An; AðnÞ0

n ¼ sn−1A0
n; BðnÞ

n ¼ sn−1Bsn þ sn−2tBtn; BðnÞ0
n ¼ sn−1B0

sn þ sn−2tB0
tn:

We get

BðnÞ
1 ¼ −A0

n−1s
n−2

�
−

s
4!

�
19

6
2 − B0

sn−1s
n−2

�
−

s
4!

�
2 − B0

tn−1s
n−3

�
−

s
5!

�
ðt − 2sÞ2

þ
Xn−2
k¼1

A0
ks

k−1A0
n−1−ks

n−2−k
�
2s2

5!

�
46

15

þ
Xn−2
k¼1

A0
ks

k−1B0
sn−1−ks

n−2−k
�
2s2

5!

�
2þ

Xn−2
k¼1

A0
ks

k−1B0
tn−1−ks

n−3−k
�
−s3

5!

�
2; ð20Þ
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BðnÞ
2 ¼ −A0

n−2s
n−3

�
s2

3!4!

�
5063

2400
2 − B0

sn−2s
n−3

�
s2

3!4!

�
13

40
2 − B0

tn−1s
n−4

�
s2

5!5!

�
t − 32s

2
2

− A0
n−2s

n−3
�
−

s
4!

��
−

s
4!

19

6

�
2 − B0

sn−2s
n−3

�
−

s
4!

��
−

s
4!

�
− B0

tn−2s
n−4

�
−

s2

5!5!

�
ð12s − tÞ

þ
Xn−3
k¼1

A0
ks

k−1A0
n−2−ks

n−3−k
�
−

s3

5!4!

�
938

15

þ
Xn−3
k¼1

A0
ks

k−1B0
sn−2−ks

n−3−k
�
−

s3

5!2

�
þ
Xn−3
k¼1

A0
ks

k−1B0
tn−2−ks

n−4−k
�
442s4

5!5!12

�

−
Xn−kþl<n−2

k;l¼1

A0
ks

k−1A0
ls

l−1A0
n−2−k−ls

n−3−k−l
�
2s2

5!

��
2s2

5!

�
46

15
2

−
Xn−kþl<n−2

k;l¼1

A0
ks

k−1A0
ls

l−1B0
sn−2−k−ls

n−3−k−l
�
2s2

5!

��
2s2

5!

�
3

−
Xn−kþl<n−2

k;l¼1

A0
ks

k−1A0
ls

l−1B0
tn−2−k−ls

n−4−k−l
�
2s2

5!

��
−
s3

5!

�
2

−
Xn−kþl<n−2

k;l¼1

A0
ks

k−1B0
tls

l−2A0
n−2−k−ls

n−3−k−l
�
−2s5

5!5!

�
: ð21Þ

These expressions it their turn allow us to get the desired recursion relations for the primed coefficients using
Eq. (9)

B0
tn ¼ −

2

nðn − 1ÞB
0
tn−2

10

5!5!
þ 2

n
B0
tn−1

2

5!
; ð22Þ

B0
sn ¼

2

nðn − 1Þ
�
−A0

n−2
2321

5!5!2
− B0

sn−2
18

4!5!
þ B0

tn−2
44

5!5!

−
Xn−3
k¼1

A0
kA

0
n−2−k

938

4!5!15
−
Xn−3
k¼1

A0
kB

0
sn−2−k

1

5!2
þ
Xn−3
k¼1

A0
kB

0
tn−2−k

442

5!5!12

−
Xn−kþl<n−2

k;l¼1

A0
kA

0
lA

0
n−2−k−l

8

5!5!

46

15
−

Xn−kþl<n−2

k;l¼1

A0
kA

0
lB

0
sn−2−k−l

12

5!5!

þ
Xn−kþl<n−2

k;l¼1

A0
kA

0
lB

0
tn−2−k−l

4

5!5!
þ

Xn−kþl<n−2

k;l¼1

B0
kA

0
lA

0
sn−2−k−l

2

5!5!

�

þ 2

n

�
A0
n−1

19

34!
þ B0

sn−1
2

4!
− B0

tn−1
4

5!

þ
Xn−2
k¼1

A0
kA

0
n−1−k

2

5!

46

15
þ
Xn−2
k¼1

A0
kB

0
sn−1−k

4

5!
−
Xn−2
k¼1

A0
kB

0
tn−1−k

2

5!

�
: ð23Þ

One can write down the corresponding relations for the unprimed coefficients in terms of the primed ones. For Btn it looks
like

Btn ¼ ð−1Þn
�
−
2

n
B0
tn−2

10

5!5!
þ n − 2

n
B0
tn−1

2

5!

�
ð24Þ

and similar for Bsn. Starting from the initial values
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B0
s1 ¼ B0

t1 ¼ 0; B0
s2 ¼ −

1

3!4!

5

12
; B0

t2 ¼ −
1

3!4!

1

6
;

Bs2 ¼ −
1

3!4!

27

4
; Bt2 ¼ −

1

3!4!

1

6
; A1 ¼

1

3!

they allow one to calculate the corresponding coefficients at
any order. One can write down a simple Mathematica
routine to evaluate them purely algebraically (see Mathe-
matica file in Supplemental Material [11]).
The last step is to sum the series. In order to do it we

again write down the differential equation for the sum. Let
us begin with B0

tn. Multiplying Eq. (22) by zn−2 and taking
the sum from 3 to infinity we get the differential equation
for Σ0

tB ≡ Σ0
tB2 ¼

P∞
2 znB0

tn

d2Σ0
tBðzÞ
dz2

−
1

30

dΣ0
tBðzÞ
dz

þ Σ0
tBðzÞ
720

¼ −
1

432
ð25Þ

in full analogy with Eq. (13). Having in mind the boundary

conditions Σ0
tBð0Þ ¼ dΣ0

tBð0Þ
dz ¼ 0, one gets the solution

Σ0
tBðzÞ ¼

5

6
½ez=60ð− sin½z=30� þ 2 cos½z=30�Þ − 2�: ð26Þ

One can write down the equation for the unprimed
ΣtB ≡ ΣtB2 ¼

P∞
2 ð−zÞnBtn. It follows from Eq. (24) and

has the form

dΣtBðzÞ
dz

¼ 1

60
z
dΣ0

tBðzÞ
dz

−
Σ0
tBðzÞ
60

− z
Σ0
tBðzÞ
720

−
z

432
: ð27Þ

Solving this equation having in mind Eq. (26) one gets

ΣtBðzÞ ¼ −
1

36
½60þ zþ ez=60ð−ð60þ zÞ cos½z=30�

− 2ð−15þ zÞ sin½z=30�Þ�: ð28Þ

It is more difficult to get the closed expressions for Σ0
sB

and ΣsB. Again we start with the primed coefficients.
Taking Eq. (23) as input, multiplying it by zn−2 and taking
the sum from 3 to infinity, we get the following differential
equation for Σ0

sB ≡ Σ0
sB2 ¼

P∞
2 znB0

sn:

d2Σ0
sBðzÞ
dz2

þ f1ðzÞ
dΣ0

sBðzÞ
dz

þ f2ðzÞΣ0
sBðzÞ ¼ f3ðzÞ; ð29Þ

where

f1ðzÞ ¼ −
1

6
þ ΣA

15
;

f2ðzÞ ¼
1

80
−

ΣA

120
þ Σ2

A

600
þ 1

15

dΣA

dz
;

f3ðzÞ ¼
2321

5!5!2
ΣA þ 11

1800
Σ0
tB −

469

5!90
Σ2
A −

442

5!5!6
ΣAΣ0

tB

þ 23

6750
Σ3
A þ 1

1200
Σ2
AΣ0

tB −
19

36

dΣA

dz
−

1

15

dΣ0
tB

dz

þ 23

225

dΣ2
A

dz
þ 1

30

dðΣAΣ0
tBÞ

dz
−

3

32
:

This is a general Riccati equation. Surprisingly the solution
can be found by a simple substitution. We discuss it in the
next section.
Similarly to Eq. (27) one can write down the equation for

ΣsB ≡ ΣsB2 ¼
P∞

2 ð−zÞnBsn. It can be solved in terms of
Σ0
sB and Σ0

tB in a straightforward way:

ΣsB ¼
�
z
d
dz

− 1

�
Σ0
sB − z

�
−
19

72
ΣA þ 1

12
Σ0
sB −

1

30
Σ0
tB

þ 23

450
Σ2
A −

1

30
ΣAΣ0

sB þ 1

60
ΣAΣ0

tB

�
: ð30Þ

V. PROPERTIES OF THE SOLUTIONS

We discuss here some properties of solutions of Eqs. (29)
and (30). Equation (29) is a linear inhomogeneous second-
order differential equation. Surprisingly enough it and can
be simplified making the substitution Σ0

sBðzÞ ¼ dΣA
dz uðzÞ.

Then, using Eq. (13), it is reduced to a simple one for the
function uðzÞ:

u00ðzÞ dΣA

dz
¼ f3ðzÞ; ð31Þ

which is trivially solvable in quadratures

20 40 60 80
Z

1000

2000

3000

4000

u[z]

FIG. 3. The behavior of uðzÞ evaluated numerically.
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uðzÞ ¼
Z

z

0

dy
Z

y

0

dx
f3ðxÞ
Σ0
AðxÞ

: ð32Þ

The numerical integration demonstrates that uðzÞ is a
smooth function (see Fig. 3) which increases Exp½z=60�
just like Σ0

tB and has no poles so that the singularities of
Σ0
sBðzÞ come only from Σ0

A.
To get the function ΣsB one has to substitute the

functions Σ0
sB and Σ0

tB into Eq. (30). One can do it
numerically. The singularities of the obtained function
are governed by the leading term ΣA and its derivative.
Consider them in more detail.
The leading divergences are given by ΣA (14). It is a

singular periodic function which has zeroes at z=8=
ffiffiffiffiffi
15

p ¼
πn and first order poles at z=8=

ffiffiffiffiffi
15

p ¼ arcsin
ffiffiffiffiffiffiffiffi
3=8

p þ πn.
Summation of perturbative expansion (15) gives a satis-
factory approximation between zero and the first pole at
z ≈ 20.42; however, it fails to go beyond as can be seen in
Fig. 4 (left).
Turning to subleading divergences given by ΣsB (30) we

notice that Eq. (30) contains the singular functions ΣA and
Σ0
sB which possess the poles at the same points. Thus, we

expect that the function ΣsB is a singular function of the
same kind and also contains poles. Hence, the numerical

solution is due to be valid in the interval between zero and
the first pole. In the same interval one can also perform a
summation of perturbation series generated with the help of
the code mentioned above [11]. We present in Fig. 4 (right)
the result of numerical solution of Eqs. (29) and (30)
together with the perturbation theory series taking into
account 20 terms of expansion.
There are two main conclusions that one can make

analyzing these plots. First of all, the PT works pretty well
in the interval between zero and the first pole and the more
terms that are taken into account the better. In the case when
we know the exact solution as for ΣA we can convince
ourselves that the series is indeed convergent. In the case of
ΣsB we check it numerically plotting the ratio of the
coefficients bs½nþ 1�=bs½n� (see Fig. 5).
One can see that after some first orders it goes to the limit

equal to ≈ − 0.05 which indicates the geometric progres-
sion type behavior. Thus, the perturbation series seems to
be convergent independently of the sign alternation.
The second conclusion concerns the singularity of the

obtained functions. The total contribution of the leading
and subleading divergences for the ladder type diagrams in
all orders can be written as

ΣLadder ¼ ΣAðzÞ þ ϵ

�
ΣsBðzÞ þ

t
s
ΣtBðzÞ

�
þ � � � ;

z≡ g2s2

ϵ
: ð33Þ

From the analytical solution for ΣAðzÞ (14) and ΣtB (28) we
see that while ΣA has an infinite sequence of poles, ΣtB
exponentially grows although slower than ΣA. At the same
time, from the numerical solution for ΣsB it follows that it
apparently inherits the singularities of ΣA and does not
cancel them. Thus, one can conclude that the subleading
divergences do not change the pattern of the leading ones.

VI. DISCUSSION

Summarizing the presented results concerning the sub-
leading divergences one should stress once more that, as it

Series: 20 terms

Exact solution

5 10 15 20 25 30
z

−150

−100

−50

50

100
Σa

Series: 20 terms
Numerical solution

5 10 15 20
z

−1000

−800

−600

−400

−200

ΣsB

FIG. 4. Comparison of the exact solution with the perturbation series including 20 terms for ΣA (left) and for ΣsB (right). The solid line
is the exact (numerical) solution and the dotted line is the PT series summation result.

10 15 20
N

–0.10

–0.09

–0.08

–0.07

–0.06

–0.05

bs[n+1]/bs[n]

FIG. 5. The ratio of the coefficients bs½n�:
R ¼ bs½nþ 1�=bs½n�.
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follows from the general theorems, the all-loop terms are
governed by the two-loop subleading contributions. We
have presented explicit formulas confirming this statement
for the ladder case and have demonstrated how the higher
terms of PT can be calculated from the lower ones via pure
algebraic recursive relations. The corresponding equations
for the sum of all-loop contributions (25), (27), (29), (30)
generalize the usual renormalization group relations for the
pole terms for the case of nonrenormalizable interactions.
To make everything explicit and transparent we chose

the set of the ladder type diagrams and performed the
summation of the leading and subleading divergences in all
loops. Even this task happened to be quite complicated and
we were bound to use numerical methods. However, the
result of summation of subleading divergences does not
lead to any qualitative difference from the leading terms.
All the main features of the leading divergences were left
untouched.
As for the total set of diagrams, already the leading

divergences described by Eq. (18) are difficult to analyze.

Following the same lines one can construct an analogous
equation for the subleading divergences but it will be even
more complicated. The key question here is whether the
account of all diagrams will improve the behavior of the
laddrer type diagrams and remove the infinite sequence
of poles or not. The more general question is to make sense
of nonrenormalizable interactions and to interpret the
obtained results. Does the limit when ϵ → 0 exists or
not? Does the infinite sequence of poles, if it survives,
have anything to do with the infinite number of bound
states like in a string theory or not [12]? We leave the
analysis of these questions to further publications.
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