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The properties of the multisoliton solutions of the (2þ 1)-dimensional Maxwell-Chern-Simons-Skyrme
model are investigated numerically. Coupling to the Chern-Simons term allows for existence of the electrically
charge solitons which may also carry magnetic fluxes. Two particular choices of the potential term is
considered: (i) the weakly bounded potential and (ii) the double vacuum potential. In the absence of gauge
interaction in the former case the individual constituents of the multisoliton configuration are well separated,
while in the latter case the rotational invariance of the configuration remains unbroken. It is shown that coupling
of the planar multi-Skyrmions to the electric and magnetic field strongly affects the pattern of interaction
between the constituents. We analyze the dependency of the structure of the solutions, the energies, angular
momenta, electric and magnetic fields of the configurations on the gauge coupling constant g, and the electric
potential. It is found that, generically, the coupling to the Chern-Simons term strongly affects the usual pattern
of interaction between the skyrmions, in particular the electric repulsion between the solitons may break the
multisoliton configuration into partons.We show that as the gauge coupling becomes strong, both themagnetic
flux and the electric charge of the solutions become quantized although they are not topological numbers.
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I. INTRODUCTION

Diverse models of the field theory support regular soliton
solutions. Many such models have been intensively studied
over last decades in a wide variety of physical contexts.
Perhaps one of the most interesting examples is (2þ 1)-
dimensional non-linear Oð3Þ sigma model, which is also
known as the baby Skyrme model.
Soliton solutions of this model were considered for the

first time in the papers [1,2]. A few years later, they were
revisited in [3] the term “Baby Skyrmion” was coined in the
second of these paper to describe planar reduction of the
original Skyrme model. Indeed, this low-dimensional sim-
plified nonlinear theory emulates the conventional Skyrme
model in (3þ 1) dimensions [4] in many respects. In
particular, this planar theory was used to study the processes
of scattering of the solitons [2,5] and the effects of iso-
rotations of the multisolitons [6,7]. The low dimensionality
of the model significantly simplifies full numerical compu-
tationsmaking it possible to exclude any restrictions imposed
by the parametrization of the fields.
A peculiar feature of the planar Skyrme model is that the

structure of the multisoliton configurations is very sensitive
to the particular choice of the potential of the model [8–11].
Further, a suitable choice for the potential term allows us to
split the individual constituents of the planar Skyrmions,
each of them being associated with a fractional part of the
topological charge of the configuration [10,12]. Another
choice of the potential term allows us to construct weakly
bounded multisoliton configurations via combination of a
short-range repulsion and a long-range attraction between
the solitons [11].

There has recently been significant progress in construc-
tion of various multisoliton configurations in the baby
Skyrme model [3,8–11]. Also it was found that the restricted
baby Skyrmemodel in (2þ 1)-dimensions [13–15] supports
solutions1 saturating the topological bound. Furthermore, the
BPS Skyrme model is integrable in the sense of generalized
integrability, it supports an infinite number of conservation
laws [16]. The planar Skyrme model in AdS spacetime was
also considered as a low-dimensional analogue of Sakai-
Sugimoto model of holographic QCD [17,18].
The baby Skyrme model attracts a special attention since

this simple theory finds various direct physical realizations.
Indeed, this model originally was formulated as a modifi-
cation of theHeisenberg-typemodels of interacting spins [1].
Further, hexagonal lattices of two-dimensional skyrmions
were observed in a thin ferromagnetic layer [19], and in a
metallic itinerant-electron magnet, where the Skyrmion
lattice was detected by results of neutron scattering [20].
The Skyrmion configurations naturally arise in various
condensed matter systems with intrinsic and induced chi-
rality, somemodification of the baby Skyrmemodel with the
Dzyaloshinskii-Moriya interaction term was suggested to
model noncentrosymmetric ferromagnetic planar structures
[21]. These solitonic states were considered in the context of
future applications in development of data storage technol-
ogies and emerging spintronics, see e.g. [22].

1By analogy with corresponding monopole solutions of the
Yang-Mills-Higgs model, which satisfy the Bogomolny-Prasad-
Sommerfeld equations, these solutions of the Skyrme submodel,
which is integrable, are usually refer to as "BPS Skyrmions".
This of course is an abuse of terminology.
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Planar Skyrmions yield a specific contribution in the
description of the topological quantum Hall effect [23,24].
In this framework the Skyrmion-like states are coupled to
fluxes of magnetic field and carry an electric charge.
Therefore, in order to study the topological properties of
planar quantum systems, it is crucial to extend the low-
dimensional Skyrmemodel by gauging it and coupling to the
electric and magnetic fields.
The planar Skyrme-Maxwell model was considered in

[25,26]. An interesting observation is that in the strong
coupling regime the magnetic flux coupled to the
Skyrmion, is quantized although there is no topological
reason of that. Further, it is found recently that, in the model
with weakly bounding potential, the coupling to the
magnetic field results in effective recovering of the rota-
tional invariance of the configuration [26].
It is known that the electric field is always trivial in the

planar gauged Skyrme model [25]. In order to construct
electrically charged planar Skyrmions one has to include
the Chern-Simons term in the Lagrangian of the model
[27,28]. Then the solitons may acquire electric charge in
addition to the magnetic flux. Thus, we can expect the
general picture of interaction between the Skyrmions
becomes more complicated and various patterns of sym-
metry breaking may be observed.
The key ingredient in the discussion of theproperties of the

soliton solutions of the planar Maxwell-Chern-Simons-
Skyrme model presented recently in [27,28] is the
assumption of rotational invariance of the solutions.
Indeed, it simplifies the consideration significantly since
the problem then can be reduced to the numerical solution of
system of three coupled ordinary differential equations.
However, the rotational invariance is not a general property
of the multisoliton solution of this model, thus this problem
should be revisited.
In this paper we investigate the Maxwell-Chern-Simons-

Skyrme model in (2þ 1) dimensions and study the resulting
multisoliton solutions. Since the choice of potential is critical
for the structure of the solitons of the baby Skyrmemodel, we
consider the weakly bounded potential [11] and the double
vacuum (or “easy-axis” potential) [1,29]. This choice is
motivated by the fact that in the case of zero gauge coupling
the individual constituents of themultisoliton configuration in
the model with weakly bounded potential are well separated,
while in the model with double vacuum potential the rota-
tional invariance of the configuration is always unbroken.
Our calculations are performed for multisoliton solutions

up to chargeQ ¼ 5without any restrictions of symmetry.We
study numerically the dependency of the structure of the
solutions, their energies, angular momenta, electric and
magnetic fields on the gauge coupling constant g, and the
electric potential.

II. MODEL

We consider a gauged version of the Oð3Þ σ-model with
the Skyrme term in 2þ 1 dimensions with a Lagrangian [28]

L ¼ −
1

4
FμνFμν þ c

4
εμνρFμνAρ þ

1

2
Dμ

~ϕ ·Dμ ~ϕ

−
1

4
ðDμ

~ϕ ×Dν
~ϕÞ2 − Vð~ϕÞ: ð1Þ

Here the triplet of scalar fields ~ϕ is constrained to the

surface of a sphere of unit radius: ~ϕ · ~ϕ ¼ 1. We introduced
the usual Maxwell term with the field strength tensor
defined as Fμν ¼ ∂μAν − ∂νAμ. The flat metric is gμν ¼
diagð1;−1;−1Þ and the coupling of the Skyrme field to the
magnetic field is given by the covariant derivative [25,30,31]

Dμ
~ϕ ¼ ∂μ

~ϕþ gAμ
~ϕ × ~ϕ∞:

Topological restriction on the field ~ϕ is that it approaches

the vacuum at spacial boundary, i.e., ~ϕ∞ ¼ ð0; 0; 1Þ. Thus,
the field ϕa of the finite energy regular baby Skyrmion
configuration is a map ϕ∶ R2 → S2 which belongs to an
equivalence class characterized by the topological charge
Q ¼ π2ðS2Þ ¼ Z. Explicitly,

Q ¼ −
1

4π

Z
~ϕ · ð∂1

~ϕ × ∂2
~ϕÞd2x: ð2Þ

Further, we suppose that the potential Vð~ϕÞ breaks the
symmetry to SOð2Þ≃Uð1Þ. This unbroken subgroup
corresponds to the Uð1Þ gauge transformations of the fields

A0
μ ¼ Aμ þ

i
g
UðαÞ∂μUðαÞ−1; ~ϕ0

⊥ ¼ UðαÞ~ϕ⊥ ð3Þ

where UðαÞ ¼ eigαðxÞ and ~ϕ⊥ ¼ ðϕ1 þ iϕ2Þ. Thus, the
third component of the Skyrme field ϕ3 remains
decoupled. However since the fields are restricted to
the surface of the unit sphere, coupling of the planar

components ~ϕ⊥ to the gauge sector affects the component
ϕ3 indirectly.

Note that the transformations of the Skyrme field ~ϕ are
actually isorotations around the third axis in the internal
space, which (in the absence of the gauge field) were
considered in [6,7].
The Chern-Simons term LCS ¼ c

4
εμνρFμνAρ is topologi-

cal [32–35]. Under the gauge transformations (3) it changes
as total derivative, LCS → LCS þ c

2
∂μðαεμνρ∂νAρÞ. Thus, if

the boundary terms can be neglected, the corresponding
action of the Maxwell-Chern-Simons-Skyrme model is
invariant with respect to the gauge transformations (3).
Note that the Chern-Simons term violates P and T
invariance of the system (1) while it preserves C symmetry.
Consequently, the left and right isorotations of the Skyrme
field (3) are not identical.
Coupling of the Skyrme field to the Chern-Simons term

has many interesting consequences [36]. Note that since
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this term is independent of the metric, it does not contribute
to the energy-momentum tensor of the system, which
follows from (1):

Tμν ¼ −FμλFλ
ν þ

1

4
gμνFλρFλρ þDμ

~ϕ ·Dν
~ϕ

− ðDμ
~ϕ ×Dρ

~ϕÞ · ðDν
~ϕ ×Dρ ~ϕÞ

− gμν

�
1

2
Dρ

~ϕ ·Dρ ~ϕ −
1

4
ðDρ

~ϕ ×Dσ
~ϕÞ

· ðDρ ~ϕ ×Dσ ~ϕÞ − V
�
: ð4Þ

Thus, the energy of the system is the sum of the kinetic
energy

T ¼ 1

2

Z
½E2

i þ ðD0
~ϕÞ2 þ ðD0

~ϕ ×Di
~ϕÞ2�d2x ð5Þ

and the potential energy

W ¼ 1

2

Z
½B2 þ ðD1

~ϕÞ2 þ ðD2
~ϕÞ2

þ ðD1
~ϕ ×D2

~ϕÞ2 þ Vð~ϕÞ�d2x ð6Þ

where the electric components of the field strength are
Ei ¼ F0i and the magnetic component is B ¼ F12.
Integration over all 2-dimensional space of the energy
density T00 yields the total mass-energy of the sys-
tem E ¼ R

T00d2x.
The complete set of the field equations, which follows

from the variation of the action of the model (1), is [25,28]

Dμ
~Jμ ¼ ∂V

∂ ~ϕ × ~ϕ;

∂μFμν þ c
2
εναβFαβ ¼ g~ϕ∞ · ~Jν; ð7Þ

where [25]

~Jμ ¼ ~ϕ ×Dμ ~ϕ −Dν
~ϕðDν ~ϕ · ~ϕ ×Dμ ~ϕÞ: ð8Þ

Thus, the conserved current is jμ ¼ ~ϕ∞ · ~Jμ and this current
is a source for the electromagnetic field. Note that the
Gauss law from the variation of A0 is ν ¼ 0 component of
the second equation (7):

∂iEi þ cB ¼ gj0: ð9Þ

Another effect of the Chern-Simons term, which is evident
from the second equation (7), is that the gauge field
becomes massive, the mass of the photon is given by
the constant c [34].

Notably, it is known that in the Chern-Simons-Maxwell
theory the total magnetic flux through the x − y-plane,
Φ ¼ R

d2xB, is proportional to the electric charge, q ¼
cΦ [32–34]. Unlike the Abelian Higgs model with
Chern-Simons term [37], in the planar Skyrme theory
the magnetic flux is in general, nonquantized. However,
in the regime of strong gauge coupling, the magnetic flux
becomes quantized without any topological reason
[25,26]. Note that since we do not restrict the symmetry
of the configuration, the integral relation between the
total electric charge and total magnetic flux of the system
does not impose any restriction on the electric charges
and magnetic fluxes of the constituents.
We consider electromagnetic field generated by the

Maxwell potential

A0 ¼ A0ðx; yÞ; A1 ¼ Aðx; yÞ; A2 ¼ 0; ð10Þ

where the gauge fixing condition is used to exclude the
A2 component of the vector-potential. Thus the magnetic
field is orthogonal to the x − y plane: B ¼ ð0; 0; BÞ ¼
−∂2A1 while the electric field is restricted to this plane,
Ei ¼ −∂iA0. From the condition of finiteness of the
energy at the spacial boundary we have to assume that
both the electric and magnetic fields are vanishing as
r → ∞. However, the electric potential A0 → ω at spacial
infinity, where the constant ω is a free parameter which
yields the total electric charge of the configuration.
Now we can make use of the remaining gauge degree of

freedom, which corresponds to the time-dependent gauge
transformations UðtÞ ¼ eigχðtÞ:

A0 → A0
0 ¼ A0 þ

i
g
UðtÞ∂tUðtÞ−1; Dμϕ⃗⊥ → UðtÞDμϕ⃗⊥:

Particular choice of the gauge function χðtÞ ¼ −ωt yields
A0
0 ¼ A0 − ω, therefore the boundary condition on the

gauge transformed electric potential is A0
0 → 0 as

x; y → ∞. In other words, we can write the kinetic energy
of the system (5) as

T ¼ 1

2

Z
½E2

i þ g2ðA0
0 þωÞ2½ðϕ1Þ2 þ ðϕ2Þ2 þ ð∂iϕ3Þ2��d2x:

ð11Þ

Note that the term ∼g2ðA0
0 þ ωÞ2½ðϕ1Þ2 þ ðϕ2Þ2� in the total

Hamiltonian of the system effectively contributes to the
mass of the corresponding components of scalar field. As
we will see it strongly affects the properties of multisoliton
configurations.
For the sake of compactness of notations we omit the

superscript “ 0” henceforth and suppose that the electro-
magnetic potential A0 is vanishing at the boundary.
Then the Chern-Simons term in the Lagrangian (1) can
be written as
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LCS ¼
Z nc

2
ð∂2A0A1 − ∂2A1A0Þ

o
d2x

¼ fup to total derivativeg ¼ −c
Z

A0∂2A1d2x: ð12Þ

An important property of the electrically charged sol-
itions is that they usually possess an intrinsic angular
momentum, associated with internal rotation of the con-
figuration. The total angular momentum of the system (1) is
given by

J ¼
Z

Tφ0d2x; where Tφ0 ¼ xT20 − yT10 ð13Þ

with

T10 ¼ ∂2A0∂2A1 þ gA0½ð~ϕ × ~ϕ∞Þ ·D1
~ϕ

− ∂2ϕ3ð~ϕ · ðD1
~ϕ ×D2

~ϕÞÞ�;
T20 ¼ −∂1A0∂2A1 þ gA0½ð~ϕ × ~ϕ∞Þ ·D2

~ϕ

þ ∂1ϕ3ð~ϕ · ðD1
~ϕ ×D2

~ϕÞÞ�: ð14Þ

Note that usually there is a linear relation J ∼ q between
the angular momentum of the spinning solitons and its
electric charge. This relation holds for Q-balls [38,39],
monopole-antimonopole pairs [40,41] and gauged
Skyrmions in (3þ 1)-dimensions [42]. However, in the
presence of the Chern-Simons term, this relation is broken
since this term violates the spacial parity but preserves the
charge conjugation. For example, in the sector of degree
one more complicated relation holds [28]

J ¼ −
q
g
þ q2

4πc
: ð15Þ

In sectors of higher degree the situation becomes more
involved unless no restriction of rotational symmetry is
imposed, thus its generalization suggested in [28] turns out
to be an artefact of the hedgehog approximation.

III. SOLITON SOLUTIONS

In this section we investigate static soliton solutions of
the model (1). Generally, when a nonvanishing electric field
is presented in a system, the functional whose stationary
points we are looking for, is not the positively defined
energy but the indefinite action [43]. Further, since the
Chern-Simons term does not contribute to the energy
functional and it appears in the action as a boundary term,
the usual approach to this problem is to look for corre-
sponding solutions of the Euler-Lagrange equations which
follow from the Lagrangian (1) subject to a set of the
boundary conditions [28]. We implemented this approach
in order to check the correctness of our results, which were
obtained in a different way.

Indeed, the standard energy minimization technique
cannot be applied in this case, but we can consider two
related static functionals

H1 ¼
Z �

1

2
ð∂2A1 þ cA0Þ2 þ

g2ðA0 þ ωÞ2
2

× ½ðϕ3Þ2 − 1 − ð∂iϕ3Þ2� þ
1

2
Di

~ϕ ·Di
~ϕ

þ 1

4
ðDi

~ϕ ×Dj
~ϕÞ2 þ V

�
d2x ð16Þ

and

H2 ¼
Z �

1

2
ð∂1A0Þ2 þ

1

2
ð∂2A0 þ cA1Þ2 −

1

2
ðcA1Þ2

þ g2ðA0 þ ωÞ2
2

½1 − ðϕ3Þ2 þ ð∂iϕ3Þ2�
�
d2x: ð17Þ

To construct multisoliton solutions of the model (1) we
simultaneously minimize the functional (16) with respect to

variables A1 and ~ϕ leaving A0 constant, and the second

functional (17), with respect to A0 leaving A1 and ~ϕ
constant. However, in our calculations we do not adopt
any a priori assumptions about spatial symmetries of the
fields, both in the gauge and in the scalar sectors.
One can see that the stationary points of both quantities

correspond to the same set of the field equations (7)
because, up to the terms, which do not affect the equations
of motion, we have H1 ¼ −L and H2 ¼ L.
The numerical calculations are mainly performed on an

equidistant square grid, typically containing 2002 lattice
points and with a lattice spacing dx ¼ 0.15 To check our
results for consistency we also considered the lattice
spacings dx ¼ 0.1, 0.2.
The numerical algorithm employed was similar to that

used in [26,44]. Well-chosen initial configurations of given
degree produced via rational map ansatz were evolved
using the Metropolis method to minimize the functionals
(16), (17).
Let us now briefly discuss the parameters of the model

(1). Each configuration in a sector of given degree Q is
labeled by three parameters, the gauge coupling constant g,
Chern-Simons coupling c and the value of the electric
potential ω.
We also are free to choose the explicit form of the

potential term V, the structure of multisoliton configu-
rations strongly depends on it. In what follows, we
consider two possibilities, so called double vacuum
potential [1,29]

V ¼ μ2ð1 − ϕ2
3Þ; ð18Þ

and lightly bound planar model with the potential [11,26]
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V ¼ μ2½λð1 − ϕ3Þ þ ð1 − λÞð1 − ϕ3Þ4�; λ ∈ ½0; 1�:
ð19Þ

If we restrict our consideration to the case λ ¼ 0.5 this
potential combines a short-range repulsion and a long-
range attraction between the solitons, thus the multi-
soliton configuration consists of well separated partons
with small binding energies.
The parameter μ2 in both cases corresponds to the mass

of the scalar field. In the case of the double vacuum
potential the interaction between the solitons is strongly
attractive, the rotational invariance of the multisoliton
configurations is unbroken and the isorotation of the
system almost does not violate it [6,7].
Note that the choice of the electric potential ω is

restricted by the requirement of finiteness of energy [28]

jωj < 1

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

∂V
∂ϕ3

����
ϕ3→1

s
ð20Þ

Actually this restriction appears on the same physical
reasons as the restriction on the angular frequency of the
isospinning baby Skyrmions [6,7], the mass term is
necessary to stabilize the soliton.

IV. NUMERICAL RESULTS

A. Weakly bound Skyrmions

Let us first consider the potential (19). In this case the
electric potential is restricted as

jωj < 1

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

∂V
∂ϕ3

����
ϕ3→1

s
¼

ffiffiffiffiffiffiffi
λμ2

p
g

: ð21Þ

In most of our calculations we choose μ2 ¼ 0.1, λ ¼ 0.5
and set c ¼ 1. Our goal is to analyze how the structure of
the multisoliton configurations will be affected by the

variation of the rescaled parameter ω →
ffiffiffiffiffi
λμ2

p
g ω, thus

ω ∈ ½−1; 1�. In a sector of given topological degree Q
each static configuration is characterized by its energy E,
total electromagnetic energy Eem and distributions of the

electric field ~E, the magnetic flux Φ and the angular
momentum J.
First, we set ω ¼ 0 and study the dependence of these

quantities on the strength of the gauge coupling g ∈ ½0; 2�,
see Fig. 1. As the gauge coupling increases from zero, the
energy of the configuration decreases since the magnetic
flux is formed, as shown in the left upper plot of Fig. 1. Due
to the Chern-Simons coupling, also the electric field is
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FIG. 1. Total energy, electromagnetic energy, magnetic flux and angular momentum per charge vs gauge coupling g for the gauged
planar Skyrmions with topological charges Q ¼ 1–5 in the model with potential (19) at μ2 ¼ 0.1, λ ¼ 0.5 and ω ¼ 0.
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generated by some distribution of the electric charge
density on the x − y plane.
The distribution of the magnetic flux is associated with

the position of the solitons, it is orthogonal to the x − y
plane [25], the fluxes are attached to the individual partons
of the multisoliton configuration.
As in the case of the model without the Chern-Simons

term [25,26], we observe that as the gauge coupling
becomes stronger, the magnetic flux of the degree Q baby
Skyrmions grows from 0 to 2πQ=g, i.e., in the strong
coupling regime the magnetic flux is quantized, see the left
bottom plot in Fig. 1.
We note here that since in the Chern-Simons model the

electric charge of the configuration is proportional to the
magnetic flux, q ¼ cΦ, effective quantization of one
quantity means that the second quantity also becomes
quantized. This effect is not topological, unlike the soliton
chargeQ, both the magnetic flux and the electric charge are
not topological numbers.

For the weakly bounded potential (19) the binding
energy is always positive, i.e., E1 > Ei>1=Q, where E1

is the energy of the one-soliton configuration at the
corresponding value of the gauge coupling g. Hence the
energy of a given multisoliton configuration is less than the
energy of the separated single solitons and the configura-
tion remains stable.
In the right upper plot of Fig. 1, we represent the

dependency of the total electromagnetic energy per unit
topological charge on the gauge coupling. Similar to
the case of the gauged baby Skyrme model without the
Chern-Simons term [26], the electromagnetic energy
increases till g≃ 1 and then tends to decrease as g
continues to grow. As we mentioned in [26], the physical
reasons of that effect could be better understood if we
note that the usual rescaling of the potential Aμ → gAμ

leads to F2
μν →

1
g2 F

2
μν. Thus, in the strong coupling regime

the Maxwell term is effectively removed from the
Lagrangian (1).

FIG. 2. Energy density, magnetic field, module of electric field and angular momentum density of solutions of degreesQ ¼ 2–5 in the
model (1) with potential (19) at μ2 ¼ 0.1, λ ¼ 0.5 and ω ¼ 0 at g ¼ 1.5.
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The pattern of evolution of the angular moment of the
lightly bound configuration is similar to the behavior of the
electromagnetic energy, it has maximum at g≃ 0.7 and we
can assume that J tends to 0 as g → ∞ since increasing of
the gauge coupling makes the solitons width and the
magnetic fluxes increasingly localized.
In fact, the effect of the Chern-Simons coupling is to

induce an electric charge of the solitons. It produces
additional repulsion between the partons. However, our
numerical simulations indicate that the rotational invariance
of the multisoliton configurations is restored in the strong
coupling regime. Indeed, we observe that as the gauge
coupling becomes stronger and both the electric charge and
the magnetic field become quantized, the multisoliton
solution of the model (1) with potential (19) tend to form
systems of Q ¼ 2 rotationally invariant solitons, in agree-
ment with the binary species model [11]. This pattern can
be seen from Fig. 2 where we displayed the energy, the
electric and magnetic field and the angular momentum
density contour plots for theQ ¼ 2–5 solitons at ω ¼ 0 and
g ¼ 1.5. Further increase of the gauge coupling yields a
complete restoration of the rotational symmetry of the
mutisoliton solutions. This pattern is similar to what we
observed in the absence of the electric field [26], yet at
some lower values of the gauge coupling. Thus, increase of
the Chern-Simons coupling constant c induces electric

repulsion between the constituents, it can be compensated
by the corresponding increase of the coupling constant g,
see Eq. (7).
A better understanding of the complicated pattern of

electromagnetic interactions in the system of solitons
requires consideration of the second of the equations (7),
which yields two Maxwell equations

∇ × ~Bþ c~E × ~ϕ∞ ¼ 4π

c
~j;

∇ · ~Eþ c~B · ~ϕ∞ ¼ 4πρ ð22Þ

where the components of the electric current ~j ¼ ðj1; j2; 0Þ
are

j1 ¼ −g2A1½1 − ðϕ3Þ2 þ ð∂iϕ3Þ2�
þ gfð~ϕ × ∂1

~ϕÞ3 þ ∂2ϕ3ð∂2
~ϕ · ~ϕ × ∂1

~ϕÞg;
j2 ¼ g2A1∂1ϕ3∂2ϕ3

þ gfð~ϕ × ∂2
~ϕÞ3 þ ∂1ϕ3ð∂1

~ϕ · ~ϕ × ∂2
~ϕÞg ð23Þ

and the electric charge density is ρ ¼ − g2

4π ðωþ A0Þ×
½1 − ðϕ3Þ2 þ ð∂iϕ3Þ2�. The second equation in (22) is just
another form of the Gauss law.
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FIG. 3. Total energy, electromagnetic energy, magnetic flux and angular momentum per charge vs ω for the gauged planar Skyrmions
with topological charges Q ¼ 1–5 in the model with potential (19) at μ2 ¼ 0.1, λ ¼ 0.5 and g ¼ 0.3.
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Clearly, inversion of the sign of ω does not affect the
current (23), however the charge density ρ is changing

by δρ ¼ g2

2π ω½ðϕ1Þ2 þ ðϕ2Þ2 þ ð∂iϕ3Þ2�.
Let us now consider how the properties of the multi-

soliton configurations depend on the value of the parameter
ω, which yields the electric potential in the system.
In the Fig. 3, we present the results of the analysis of the

dependence of the characteristics of configuration on the
rescaled parameter ω ∈ ½−1; 1�. We fixed an intermediate
value of the gauge coupling g ¼ 0.3.
First, we observe that for all range of values of the

parameter ω the multisoliton configuration in the above-
mentioned system consists of individual partons of unit
charge. As jωj → 1 the electric repulsion becomes strong
and the solitons become unstable, thus all quantities grow
rapidly in magnitude and diverge. However the binding
energy at ω → −1 is larger than at ω → 1, see the left upper
plot of Fig. 3.
As said above, the Chern-Simons term violates the P and

T invariance of the system, therefore the structure of the
configurations is not symmetric with respect to reflections
ω → −ω. Indeed, it is seen in Fig. 3, lower row, which
displays the dependencies of the integrated magnetic flux.2

and angular momentum on ω, both quantities are vanishing
at some nonzero positive value of ω. They become negative

and continue to decrease monotonically as ω grows.
Notably, the electromagnetic energy of the Q ¼ 2 configu-
ration per unit charge is higher that for other multisolitons,
see the right upper plot of Fig. 3.
In Fig. 4 we displayed the energy, the electric and

magnetic field density contour plots for the Q ¼ 2
solitons at ω ¼ 0.99 and ω ¼ −0.99. Clearly, in the
latter case the separation between the constituents is a
bit smaller. Peculiar feature of the magnetic field
distribution is that for ω ¼ 0.99 the positive magnetic
flux exhibits a peak at the center of the Skyrmion.
However this peak is screened by the circular wall of
negative magnetic flux, so the total flux is negative. For
ω ¼ −0.99 the magnetic flux has a single positive
maximum at the center of the soliton.

B. Double vacuum potential

Next we consider the model (1) with the double vacuum
potential (18). In this case the bound (20) becomes

jωj < 1

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

∂V
∂ϕ3

����
ϕ3→1

s
¼

ffiffiffiffiffiffiffi
2μ2

p
g

ð24Þ

Thus, for comparative consistency of our consideration, we
fix c ¼ 1, μ2 ¼ 0.1 and rescale the parameter ω as

ω →
ffiffiffiffiffi
2μ2

p
g ω, so that ω ∈ ½−1; 1�. Again, we consider

multisoliton configurations of degrees Q ¼ 1–5.

FIG. 4. Contour plots of the energy density (left column) electric field (middle column) and the magnetic field distributions (right
column) for Q ¼ 2 gauged planar Skyrmions in the model (1) with potential (19) at μ2 ¼ 0.1, λ ¼ 0.5 and ω ¼ 0.99 (upper row),
ω ¼ −0.99 (lower row).

2Recall that the magnetic flux is related to the total electric
charge of the configuration as q ¼ cΦ.
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As ω ¼ 0 the solutions possess the rotational invariance
as in the absence of the Chern-Simons term. However as ω
start to vary, the situation changes. While the unit charge
Skyrmion remains rotationally invariant for all range of
values of ω, the repulsive electromagnetic interaction may
affect the structure of multisolitons at large negative values
of this parameter.
In Fig. 5 we exhibited the contour energy density plots of

the gauged baby Skyrmions in the model (1) with double
vacuum potential for 1 ≤ Q ≤ 5 at some set of values
of ω. Indeed, electromagnetic repulsion becomes
stronger as ω → −1 and, as electric charge of the solitons
becomes large enough, the size of the configuration starts to
increase and the multisoliton configuration features broken
rotational invariance. Then the global minima are sym-
metric with respect to the dihedral group DQ, see the first

column in Fig. 5. For positive values of ω we still can
observe the local minima consisting of several constituents,
see Fig. 6.
In Fig. 7 we have plotted the dependencies of energy,

electromagnetic energy, magnetic flux and angular
momenta of the static soliton solutions of the model (1)
with double vacuum potential (18) as functions of ω at
g ¼ 0.3. Qualitatively, the results are rather similar to the
pattern reported above for the model with weakly bounded
potential, cf. Fig. 3. A significant difference is related with
the behavior of the solutions at the negative values of ω.
Indeed, it is seen in the left upper plot of Fig. 7, at some
critical negative value of ω we observe crossings in EðωÞ
curves. First, the energy of the multi-Skyrmion configura-
tion becomes higher than the energy of the system of Q
charge one baby Skyrmions and the configurations are

FIG. 5. Energy density of solutions in model with double vacuum potential (18) for charges Q ¼ 1–5 and ω ∈ ½−1; 1�.
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FIG. 6. (Continued)
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FIG. 6. Energy density, magnetic field, module of electric field and angular momentum density of solutions in model with double
vacuum potential for charges Q ¼ 1–5 and ω ∈ ½−1; 1� (Local minima are marked with *).
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unstable with respect to decay into constituents. For some
range of values of parameters of the model other channels
of decay are also possible, for example the configuration
may decay into set of Q ¼ 2 rotationally invariant solitons,
as in the binary species model [11]. Then, as the value of
the parameter ω continues to decrease approaching lower
bound −1, the second crossing in EðωÞ curves is observed,
the system becomes bounded in a new configuration
with E1 > Ei>1=Q.
Another indication of this instability is the curve J=QðωÞ

displayed in Fig. 7, right bottom plot. As we can see, the
momentum curve does not have a monotonic behavior, asω
decreases below the corresponding negative critical value
and the rotational symmetry of the configuration becomes
broken, the angular momentum starts to decrease rapidly.
In Fig. 6 we summarized our results for critical behavior

of the multisolitons of the model (1) with the double
vacuum potential at large positive and negative values of ω.
The Q ¼ 1 Skyrmion remains rotationally invariant, how-
ever the size of the soliton at ω ¼ −0.99 is much larger than
at ω ¼ 0.99, the energy is less concentrated at the center of
the soliton. The distribution of the electric field of the
soliton in both cases is featuring an annular shape. Similar
to the case of the model with weakly bounded potential (19)
that we considered above, at large negative values of

ω → −1, the distribution of the magnetic field has a sharp
peak at center of the soliton. For positive values of ω this
peak is also presented, however it becomes screened by the
circular wall of negative magnetic flux, thus the total
magnetic flux through the plane is negative.
In the sector of degree two we can also see the difference

between the pattern of critical behavior of the solitons in the
limit of large positive and negative values of ω. As
ω → −1, the electromagnetic repulsion still remains not
strong enough to break the configuration into two soltions
of unit charge. However the rotational invariance is broken
and the energy density distribution has a shape of an oval
cup. In the opposite limit ω → 1, the electromagnetic
repulsion may break the configuration into a pair of
individual solitons, whose relative orientation corresponds
to the attractive scalar channel. This configuration, however
corresponds to the local minimum, the global minimum in
this sector is given by the rotationally invariant hedgehog
solution. Similarly, the distributions of all quantities for
the Q ¼ 3 baby Skyrmion at ω → −1 correspond to the
system of three solitons of unit charge placed at the vertices
of an equilateral triangle. As ω → 1, the rotational invari-
ance of the global minimum in this sector is not violated,
although due to electromagnetic repulsion, the size of the
configuration is much larger than at ω ¼ 0. The 1þ 2
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FIG. 7. Total energy, electromagnetic energy, magnetic flux, and angular momentum per charge for Q ¼ 1–5 with double vacuum
potential (18) and g ¼ 0.3. For Q ¼ 1 our results agree well with those presented in [28].
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configuration remains a local minimum in this limit. A
similar scenario holds in the sector of degree five.
In the sector of degree four in the limitω → −1we found

new rather peculiar solution, whose magnetic properties are
different from the pattern we described above. Indeed, there
is a configuration with dihedral D4 symmetry of all
characterictics, including the magnetic flux distribution.
This is a bounded system of four Q ¼ 1 Skyrmions, placed
at the vertices of a square. However, for a given set of
parameters of the model, this solution corresponds to the
local minimum as ω≲ −0.85. Another solution of a new
type appears as a global minimum instead, its magnetic
field distribution is different, there is a sharp negative
minimum at the center, surrounded by four segments of
positive values of the magnetic field. The energy density is
featuring the discrete dihedral symmetry with a sharp peak
at the center of the configuration. This configuration could
only be found in the rangesω ∈ ½−0.75;−1�. Atω ¼ −0.85
both configurations of degree four are degenerate in energy,
see Fig. 8. Beyond this point the old solution continues to
exist as a saddle point of the total energy functional3

As ω → 1, we found two different Q ¼ 4 solutions, one,
which represent a global minimum, is rotationally invar-
iantly hedgehog, another configuration, which energy is
slightly higher, represent a system of well separated charge
2 solitons in the attractive scalar channel.

V. SUMMARY

The objective of this work is to introduce a class of new
solitons in the gauged (2þ 1)-dimensional Maxwell-Chern-
Simons-Skyrme model and investigate their properties. This
model can be implemented in the description of the integer
quantum Hall effect, where planar Skyrmions are coupled to
the magnetic flux and possess electric charge.

We show that the electromagnetic interaction in this
system may strongly affect the usual structure of multi-
soliton solutions, in particular the rotational invariance may
be broken due to strong electric repulsion between the
constituents. Since the usual pattern of interactions between
the planar Skyrmions depends on the particular form of the
potential term, we analyzed two possibilities, related with
choice of the weakly bounding potential and the double
vacuum potential.
The presence of the Chern-Simons term, which breaks

the time- and space-reversal symmetry, in both cases yields
the magnetic flux and electric charge of the configuration.
In the former case, for a given particular value of the gauge
coupling constant g ¼ 0.3 and with the usual choice of the
parameters of the potential, the solitons remain well
separated for all range of values of the electric potential.
In the latter case the rotationally invariant configurations
remain to be global minima in all sectors for all positive
values of the electric potential. In the opposite limit, as
ω → −1, the symmetry becomes broken to the dihedral
group. Clearly, increase of the strength of the gauge
coupling may provide different results, in particular it
may yield recovering of the rotational invariance of the
solutions. Investigation of the corresponding dependency
could be an interesting study, which is, however, beyond
the purposes of this work.
Notably in the strong coupling limit both the total

magnetic flux and the electric charge, associated with
the solitons via the Chern-Simons term, become effectively
quantized, although they both are not topological charges.
Finally, we found a new type of the electrically charged

Q ¼ 4 multisolitons centered around a magnetic flux. It
might be an interesting problem to investigate which new
types of solutions may appear in the sectors of higher
topological degree.
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Note added in proof.—Recently an independent investiga-
tion of the same system, appeared in Ref. [46], where the
rotationally invariant soliton solutions of the gauged baby
Skyrme model with a Chern-Simons term were considered.
The results of that paper are completely compatible
with ours.
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FIG. 8. Energy of Q ¼ 4 solutions vs ω in the model (1) with
double vacuum potential (18) at g ¼ 0.3 for old (dotted) and new
(solid line) configurations.

3Note that this type of bifurcations was observed in the system
of isospinning solitons of degree four in the Faddeev-Skyrme
model [45].

GAUGED BABY SKYRME MODEL WITH A CHERN-SIMONS TERM PHYSICAL REVIEW D 95, 045002 (2017)

045002-13



[1] A. A. Bogolubskaya and I. L. Bogolubsky, Stationary topo-
logical solitons in the two-dimensional anisotropicHeisenberg
modelwith a Skyrme term, Phys. Lett. A 136, 485 (1989); , On
stationary topological solitons in a two-dimensional aniso-
tropic Heisenberg model, Lett. Math. Phys. 19, 171 (1990).

[2] R. A. Leese, M. Peyrard, and W. J. Zakrzewski, Soliton
scatterings in some relativistic models in (2þ 1)-
dimensions, Nonlinearity 3, 773 (1990).

[3] B. M. A. G. Piette, W. J. Zakrzewski, H. J. W. Mueller-
Kirsten, and D. H. Tchrakian, A modified Mottola-Wipf
model with sphaleron and instanton fields, Phys. Lett. B
320, 294 (1994); B. M. A. G. Piette, B. J. Schroers, andW. J.
Zakrzewski, Multisolitons in a two-dimensional Skyrme
model, Z. Phys. C 65, 165 (1995).

[4] T. H. R. Skyrme, A Non-Linear Field Theory, Proc. R. Soc.
A 260, 127 (1961).

[5] B.M. A. G. Piette, B. J. Schroers, and W. J. Zakrzewski,
Dynamics of baby skyrmions, Nucl. Phys. B439, 205 (1995).

[6] R. A. Battye and M. Haberichter, Isospinning baby Sky-
rmion solutions, Phys. Rev. D 88, 125016 (2013).

[7] A. Halavanau and Y. Shnir, Isorotating baby Skyrmions,
Phys. Rev. D 88, 085028 (2013).

[8] R. S. Ward, Planar Skyrmions at high and low density,
Nonlinearity, 17, 1033 (2004).

[9] I. Hen and M. Karliner, Rotational symmetry breaking in
baby Skyrme models, Nonlinearity 21, 399 (2008).

[10] J. Jäykkä, J. M. Speight, and P. Sutcliffe, Broken Baby
Skyrmions, Proc. R. Soc. A 468, 1085 (2012).

[11] P. Salmi and P. Sutcliffe, Aloof Baby Skyrmions, J. Phys. A
48, 035401 (2015).

[12] P. Jennings and T. Winyard, Broken planar Skyrmions—
statics and dynamics, J. High Energy Phys. 01 (2014) 122.

[13] T. Gisiger and M. B. Paranjape, Baby Skyrmion string-
sPhys. Lett. B 384, 207 (1996).

[14] T. Gisiger and M. B. Paranjape, Solitons in a baby-Skyrme
model with invariance under area-preserving diffeomor-
phisms, Phys. Rev. D 55, 7731 (1997).

[15] K. Arthur, G. Roche, D. H. Tchrakian, and Y. S. Yang,
Skyrme models with self-dual limits: d ¼ 2; 3, J. Math.
Phys. (N.Y.) 37, 2569 (1996).

[16] C. Adam, T. Romanczukiewicz, J. Sanchez-Guillen, and A.
Wereszczynski, Investigation of restricted baby Skyrme
models, Phys. Rev. D 81, 085007 (2010).

[17] S. Bolognesi and P. Sutcliffe, A low-dimensional analogue
of holographic baryons, J. Phys. A 47, 135401 (2014).

[18] M. Elliot-Ripley and T. Winyard, Baby Skyrmions in AdS,
J. High Energy Phys. 09 (2015) 009.

[19] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y.
Matsui, N. Nagaosa, and Y. Tokura, Real-space observation
of a two-dimensional skyrmion crystal, Nature (London)
465, 901 (2010).

[20] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch,
A. Neubauer, R. Georgii, and P. Boni, Skyrmion Lattice in a
Chiral Magnet, Science 323, 915 (2009).

[21] A. N. Bogdanov and D. A. Yablonsky, Sov. Phys. JETP 95,
178 (1989); A. N. Bogdanov, JETP Lett. 62, 247 (1995).

[22] S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A.
Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel,
Spontaneous atomic-scale magnetic skyrmion lattice in two
dimensionsNat. Phys. 7, 713 (2011).

[23] S. M. Girvin, in Aspects topologiques de la physique en
basse dimension. Topological Aspects of Low Dimensional
Systems (Springer, Berlin Heidelberg, 1999), p. 53.

[24] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G.
Niklowitz, and P. Boni, Topological Hall Effect in the A
Phase of MnSi, Phys. Rev. Lett. 102, 186602 (2009).

[25] J. Gladikowski, B. M. A. G. Piette, and B. J. Schroers,
Skyrme-Maxwell solitons in (2þ 1)-dimensions, Phys.
Rev. D 53, 844 (1996).

[26] A. Samoilenka and Y. Shnir, Gauged multisoliton baby
Skyrme model, Phys. Rev. D 93, 065018 (2016).

[27] C. Adam, C. Naya, J. Sanchez-Guillen, and A. Were-
szczynski, Lifshitz field theories with SDiff symmetries,
J. High Energy Phys. 03 (2013) 012

[28] A. Yu. Loginov, Rotating Skyrmions of the (2þ 1)-
dimensional Skyrme gauge model with a Chern-Simons
term, JETP 118, 217 (2014).

[29] T. Weidig, The Baby skyrme models and their multiskyr-
mions, Nonlinearity, 12, 1489 (1999).

[30] C. Adam, C. Naya, J. Sanchez-Guillen, and A.
Wereszczynski, The gauged BPS baby Skyrme model,
Phys. Rev. D 86, 045010 (2012).

[31] B. J. Schroers, Bogomol'nyi solitons in a gauged O(3) sigma
model, Phys. Lett. B 356, 291 (1995).

[32] R. Jackiw and S. Templeton, How superrenormalizable
interactions cure their infrared divergences, Phys. Rev. D
23, 2291 (1981).

[33] J. F. Schonfeld, A mass term for three-dimensional gauge
fields, Nucl. Phys. B185, 157 (1981).

[34] S. Deser, R. Jackiw, and S. Templeton, Three-Dimensional
Massive Gauge Theories, Phys. Rev. Lett. 48, 975 (1982).

[35] S. K. Paul and A. Khare, Charged vortices in Abelian Higgs
model with Chern-Simons term, Phys. Lett. B 174, 420
(1986).

[36] K. Arthur, D. H. Tchrakian, and Y. S. Yang, Topological
and nontopological self-dual Chern-Simons solitons in a
gauged O(3) sigma model, Phys. Rev. D 54, 5245 (1996).

[37] H. J. de Vega and F. A. Schaposnik, Electrically Charged
Vortices in Nonabelian Gauge Theories With Chern-simons
Term, Phys. Rev. Lett. 56, 2564 (1986).

[38] S. R. Coleman, Q-balls, Nucl. Phys. B262, 263 (1985);
Erratum, Nucl. Phys. B269, 744(E) (1986).

[39] M. S. Volkov and E. Wohnert, On the existence of spinning
solitons in gauge field theory, Phys. Rev.D 67, 105006 (2003).

[40] J. J. Van der Bij and E. Radu, On rotating regular non-
Abelian solutions, Int. J. Mod. Phys. A 17, 1477 (2002).

[41] V. Paturyan, E. Radu, and D. H. Tchrakian, Rotating regular
solutions in Einstein-Yang-Mills-Higgs theory, Phys. Lett.
B 609, 360 (2005).

[42] E. Radu and D. H. Tchrakian, Spinning U(1) gauged sky-
rmions, Phys. Lett. B 632, 109 (2006).

[43] Y. Yang, Solitons in Field Theory and Nonlinear Analysis
(Springer-Verlag, New York, 2001).

[44] M. Hale, O. Schwindt, and T. Weidig, Simulated annealing
for topological solitons, Phys. Rev. E 62, 4333 (2000).

[45] D. Harland, J. Jäykka, Y. Shnir, and M. Speight, Isospinning
hopfions, J. Phys. A 46, 225402 (2013).

[46] F. Navarro-Lerida, E. Radu, and D. H. Tchrakian, The effect
of Chern-Simons dynamics on the energy of electrically
charged and spinning vortices, arXiv:1612.05835.

A. SAMOILENKA and YA. SHNIR PHYSICAL REVIEW D 95, 045002 (2017)

045002-14

http://dx.doi.org/10.1016/0375-9601(89)90301-0
http://dx.doi.org/10.1007/BF01045888
http://dx.doi.org/10.1088/0951-7715/3/3/011
http://dx.doi.org/10.1016/0370-2693(94)90659-9
http://dx.doi.org/10.1016/0370-2693(94)90659-9
http://dx.doi.org/10.1007/BF01571317
http://dx.doi.org/10.1098/rspa.1961.0018
http://dx.doi.org/10.1098/rspa.1961.0018
http://dx.doi.org/10.1016/0550-3213(95)00011-G
http://dx.doi.org/10.1103/PhysRevD.88.125016
http://dx.doi.org/10.1103/PhysRevD.88.085028
http://dx.doi.org/10.1088/0951-7715/17/3/014
http://dx.doi.org/10.1088/0951-7715/21/3/002
http://dx.doi.org/10.1098/rspa.2011.0543
http://dx.doi.org/10.1088/1751-8113/48/3/035401
http://dx.doi.org/10.1088/1751-8113/48/3/035401
http://dx.doi.org/10.1007/JHEP01(2014)122
http://dx.doi.org/10.1016/0370-2693(96)00805-2
http://dx.doi.org/10.1103/PhysRevD.55.7731
http://dx.doi.org/10.1063/1.531529
http://dx.doi.org/10.1063/1.531529
http://dx.doi.org/10.1103/PhysRevD.81.085007
http://dx.doi.org/10.1088/1751-8113/47/13/135401
http://dx.doi.org/10.1007/JHEP09(2015)009
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1126/science.1166767
http://dx.doi.org/10.1038/nphys2045
http://dx.doi.org/10.1103/PhysRevLett.102.186602
http://dx.doi.org/10.1103/PhysRevD.53.844
http://dx.doi.org/10.1103/PhysRevD.53.844
http://dx.doi.org/10.1103/PhysRevD.93.065018
http://dx.doi.org/10.1007/JHEP03(2013)012
http://dx.doi.org/10.1134/S1063776114020150
http://dx.doi.org/10.1088/0951-7715/12/6/303
http://dx.doi.org/10.1103/PhysRevD.86.045010
http://dx.doi.org/10.1016/0370-2693(95)00833-7
http://dx.doi.org/10.1103/PhysRevD.23.2291
http://dx.doi.org/10.1103/PhysRevD.23.2291
http://dx.doi.org/10.1016/0550-3213(81)90369-2
http://dx.doi.org/10.1103/PhysRevLett.48.975
http://dx.doi.org/10.1016/0370-2693(86)91028-2
http://dx.doi.org/10.1016/0370-2693(86)91028-2
http://dx.doi.org/10.1103/PhysRevD.54.5245
http://dx.doi.org/10.1103/PhysRevLett.56.2564
http://dx.doi.org/10.1016/0550-3213(85)90286-X
http://dx.doi.org/10.1103/PhysRevD.67.105006
http://dx.doi.org/10.1142/S0217751X02009886
http://dx.doi.org/10.1016/j.physletb.2005.02.001
http://dx.doi.org/10.1016/j.physletb.2005.02.001
http://dx.doi.org/10.1016/j.physletb.2005.10.020
http://dx.doi.org/10.1103/PhysRevE.62.4333
http://dx.doi.org/10.1088/1751-8113/46/22/225402
http://arXiv.org/abs/1612.05835

