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The spontaneous pair production of charged scalars in a near-extremal Kerr-Newman (KN) black hole
is analytically studied. It is shown that the existence condition for pair production is equivalent to the
violation of the Breitenlohner-Freedman bound in an AdS2 space. The mean number of produced pairs in
the extremal black hole has a thermal interpretation, in which the effective temperature for the Schwinger
effect in the AdS2 space persistently holds, while the mean number in the near-extremal black hole has an
additional factor of the Schwinger effect in the Rindler space. In addition, the holographic dual conformal
field theory (CFT) descriptions of charged scalar pair production are realized in both the J andQ pictures in
terms of the KN/CFTs correspondence.
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I. INTRODUCTION

Spontaneous pair production from a black hole provides
important information about quantum aspects of the vac-
uum in curved spacetime. Pair production, especially from
a charged black hole, intertwines two remarkable quantum
processes—namely, the Schwinger mechanism [1] caused
by electromagnetic force, and the Hawking radiation
caused by tunneling through the horizon [2]. The leading
term of the pair-production rate is expected to come from
the associated processes occurring at the near-horizon
region: the separation of virtual pairs by the causal
boundary for the Hawking radiation and by the dominating
electric field for the Schwinger mechanism. Therefore, one
can mainly focus on quantum field theory in the near-
horizon geometry of charged black holes and obtain the
leading term of the pair-production rate outside the black
hole. In particular, in the near-extremal limit, the near-
horizon geometry turns out to have an enhanced symmetry.
A well-known example is the near-horizon geometry of a
near-extremal Reissner-Nordström (RN) black hole, which
is the Bertotti-Robinson solution with AdS2 × S2 isometry.
The existence of such AdS structures in the background

spacetime allows one to obtain analytical results for the
field equation.
In the previous study [3–5], the spontaneous pair

production of charged scalars and spinors has been sys-
tematically investigated in the near-extremal RN black hole
without backreactions. Interestingly, it has been shown that
the existence condition for pair production is equivalent to
the violation of the Breitenlohner-Freedman (BF) bound
in the AdS2 (or warped AdS3) spacetime, which, in turn,
just guarantees the cosmic censorship conjecture during the
pair-production process. From the dual conformal field
theory (CFT) side, the violation of the BF bound for the
probe field makes the conformal dimensions of its dual
operator complex numbers, which indicates instability for
the dual CFT. Following the techniques in the RN/CFT
correspondence [6–9], the holographic description of
pair production in the near-extremal RN black hole has
been found.
The pair production from a near-extremal RN black hole

exhibits interesting features [3,4]—in particular, a thermal
interpretation. The AdS2 × S2 geometry in the near-horizon
region of the extremal RN black hole gives, except for
different quantum numbers for S2, the same Schwinger
effect in a constant electric field in the AdS2 space, which
has a thermal interpretation in terms of the effective
temperature consisting of the Unruh temperature for
accelerating charges due to the electric field and the
AdS curvature [10]. The effective temperature is an

*cmchen@phy.ncu.edu.tw
†sangkim@kunsan.ac.kr
‡sunjiarui@sysu.edu.cn
§foue.tang@gmail.com

PHYSICAL REVIEW D 95, 044043 (2017)

2470-0010=2017=95(4)=044043(10) 044043-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.95.044043
http://dx.doi.org/10.1103/PhysRevD.95.044043
http://dx.doi.org/10.1103/PhysRevD.95.044043
http://dx.doi.org/10.1103/PhysRevD.95.044043


extension of the Unruh temperature in AdS2 [11] to the
Schwinger effect in that space. The pair-production rate in
the near-extremal RN black hole, however, has an addi-
tional factor due to a small deviation from the extremality,
which also has another interpretation of the Schwinger
effect in a Rindler space with the surface gravity of the
black hole for the acceleration [12]. The Schwinger effect
and the thermal interpretation in Ref. [10] seem to
persistently hold as far as pairs are dominantly produced
in the region of AdS2 × C for a compact space C.
Another interesting example is the near-horizon geom-

etry of a near-extremal Kerr-Newman (KN) black hole
which contains a warped AdS3 ¼ AdS2 × S1 structure. It is
thus expected that we will obtain analytical results for the
pair production of probe fields in that geometry. In
addition, as has been shown, the RN/CFT duality can be
incorporated into theQ (charge) picture of the more general
KN/CFTs dualities [13–18], while there exists another J
(angular momentum) dual CFT picture in terms of the Kerr/
CFT duality [19–21]. Hence, it is interesting to check the
holographic description of the pair production in the near-
extremal KN black hole in both the Q and the J pictures.
In this paper, we will study the spontaneous pair-

production process of charged scalars in the near-extremal
KN black hole without backreactions. The Klein-Gordon
equation of the probe charged scalar field can be separated
into radial and angular equations. Though the angular
coordinates are not spherical symmetric and the separation
constant can only be numerically determined, the angular
part is expected to contribute the same factor to the flux
at the near-horizon region and at the asymptotic AdS
boundary. Therefore, the angular part will not affect the
vacuum persistence amplitude, the mean number of pro-
duced pairs, or the absorption cross-section ratio. The radial
equation, our main consideration, can be solved exactly in
terms of the hypergeometric functions. Following previous
works [3,4], we adopt the “particle viewpoint” and impose
the boundary condition of no incoming flux at the asymp-
totic boundary. Using the fluxes, we then derive the
Bogoliubov coefficients (vacuum persistence and mean
number of pairs) and the absorption cross-section ratio.
We also propose a thermal interpretation for the pair

production in the extremal KN black hole, in which the
effective temperature of the Unruh temperature for accel-
erating charges and the AdS curvature gives exactly the
same form as that in the extremal RN black hole. The
thermal interpretation holds for the near-extremal KN
black hole, as it does for the near-extremal RN black
hole. To explain a physical origin of the leading term for the
pair production, we employ the Hamilton-Jacobi action
approach and then compute the instanton action from the
phase-integral formula in the complex plane of the near-
horizon region. The Boltzmann factor for the Schwinger
effect is a consequence of two simple poles at both the inner
and outer horizons, in which there is no reason to exclude

the quantum tunneling process from the inner horizon just
adjacent to the outer horizon of the near-extremal black
hole. Finally, based on the near-extremal KN/CFTs corre-
spondence [13–18], we investigate the holographic dual
CFTs descriptions of the scalar pair production in both
the J and Q pictures by comparing the absorption cross-
section ratio computed both from the near-extremal KN
black hole and from their dual CFTs, and show that they
agree with each other—namely, the pair production in a
near-extremal KN black hole indeed can be characterized
by two individual CFTs by taking appropriate limits.
The outline of the paper is as follows: In Sec. II, we

review basic properties of the near-horizon geometry of
the near-extremal KN black hole. In Secs. III and IV, we
analytically solve the field equation for the probe charged
scalar field in the near-extremal KN black hole and obtain
the vacuum persistence amplitude, the mean number of
produced pairs and the absorption cross-section ratio. In
Sec. V, the thermal interpretation of the pair production is
presented. Then, in Sec. VI we give the holographic
descriptions of the pair production based on the
KN/CFTs dualities. The conclusion is drawn in Sec. VII,
and in the Appendix we list some useful properties of the
hypergeometric functions.

II. NEAR-HORIZON GEOMETRY
OF KERR-NEWMAN

The four-dimensional Einstein-Maxwell theory

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − F2
½2�Þ ð1Þ

admits the Kerr-Newman (KN) black hole solution, in
natural units c ¼ G ¼ ℏ ¼ 1, as follows:

ds2 ¼ −
Δ − a2sin2θ

Σ

�
dt̂þ ð2Mr̂ −Q2Þasin2θ

Δ − a2sin2θ
dφ̂

�
2

þ Σ
�
dr̂2

Δ
þ dθ2 þ Δsin2θ

Δ − a2sin2θ
dφ̂2

�
;

A½1� ¼
Qr̂
Σ

ðdt̂ − asin2θdφ̂Þ; ð2Þ

where

Σ ¼ r̂2 þ a2cos2θ; Δ ¼ r̂2 − 2Mr̂þ a2 þQ2: ð3Þ

This is the most general black hole, carrying three physical
quantities: massM, electric charge Q, and angular momen-
tum J ¼ Ma. The inner horizon r̂− and the outer horizon

r̂þ are located at r̂� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
. The thermo-

dynamical properties of KN black holes are described by
two essential quantities, the Hawking temperature and the
Bekenstein-Hawking entropy:
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TH ¼ κ̂

2π
¼ r̂þ − r̂−

4πðr̂2þ þ a2Þ ;

SBH ¼ Âþ
4

¼ πðr̂2þ þ a2Þ; ð4Þ

where κ̂ and Âþ are the surface gravity and the area of the
outer horizon. Besides this, the first law of thermodynamics
of the KN black hole reads

δM ¼ THδSBH þΦHδQþ ΩHδJ; ð5Þ

in which ΦH ¼ Qr̂þ
r̂2þþa2 is the electric potential at the polar

points of the horizon andΩH ¼ a
r̂2þþa2 is the angular velocity

of the KN black hole.
From the “orthodox” limit for rotating back holes [22], it

is convenient to rewrite the KN metric in the ADM form as

ds2 ¼ −
ΣΔ

ðr̂2 þ a2Þ2 − Δa2sin2θ
dt̂2 þ Σ

Δ
dr̂2 þ Σdθ2

þ ðr̂2 þ a2Þ2 − Δa2sin2θ
Σ

× sin2θ

�
dφ̂ −

að2Mr̂ −Q2Þ
ðr̂2 þ a2Þ2 − Δa2sin2θ

dt̂

�
2

: ð6Þ

In the extremal limit, i.e. M2 ¼ r20 with r20 ≡Q2 þ a2, the
horizons degenerate to r̂ ¼ r̂þ ¼ r̂− ¼ r0. To derive the
near-horizon geometry of a near-extremal KN black hole,
the angular velocity ΩH at the horizon should be firstly
“removed” by the coordinate transformation

φ̂ → φ −
a

r20 þ a2
t̂; ð7Þ

and then, taking the following near-horizon and near-
extremal limit with ε → 0,

r̂→ r0þεr; t̂→
r20þa2

ε
t; M→ r0þε2

B2

2r0
; ð8Þ

one obtains the near-horizon solution of the near-extremal
KN black hole as

ds2 ¼ ΓðθÞ
�
−ðr2 − B2Þdt2 þ dr2

r2 − B2
þ dθ2

�
þ γðθÞðdφþ brdtÞ2; ð9Þ

A½1� ¼ −Q
�
r20 − a2 cos2 θ
r20 þ a2 cos2 θ

rdtþ r0a sin2 θ
r20 þ a2 cos2 θ

dφ

�
; ð10Þ

where

ΓðθÞ ¼ r20 þ a2cos2θ;

γðθÞ ¼ ðr20 þ a2Þ2sin2θ
r20 þ a2cos2θ

;

b ¼ 2ar0
r20 þ a2

: ð11Þ

The spacetime (9) contains a warped AdS3 geometry,
which allows the dual CFTs description for the KN black
hole.

III. SCALAR FIELD IN KN BLACK HOLE

The action for a probe charged scalar field Φ with mass
m and charge q is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
DαΦ�DαΦ −

1

2
m2Φ�Φ

�
; ð12Þ

where Dα ≡∇α − iqAα, with ∇α being the covariant
derivative in a curved spacetime. The corresponding
Klein-Gordon equation is

ð∇α − iqAαÞð∇α − iqAαÞΦ −m2Φ ¼ 0: ð13Þ

The scalar field in the metric (9) is assumed to have the
following form:

Φðt; r; θ;φÞ ¼ e−iωtþinφRðrÞΘðθÞ; ð14Þ

which separates the Klein-Gordon equation as

∂r½ðr2 − B2Þ∂rR� þ
�½ωðr20 þ a2Þ − qQ3rþ 2nar0r�2

ðr20 þ a2Þ2ðr2 − B2Þ

−m2ðr20 þ a2Þ − λ

�
R ¼ 0; ð15Þ

1

sin θ
∂θðsin θ∂θΘÞ −

�½nðr20 þ a2 cos2 θÞ þ qQar0 sin2 θ�2
ðr20 þ a2Þ2 sin2 θ

−m2a2 sin2 θ − λ

�
Θ ¼ 0; ð16Þ

where λ is a separation constant. In addition, the radial
equation (15) may be viewed as the equation of motion

for a probe scalar field with the effective mass m2
eff ¼

m2 − ð2nar0−qQ3Þ2
ðr2

0
þa2Þ3 þ λ

r2
0
þa2 propagating in an AdS2 spacetime

with the AdS radius L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ a2

p
. It has been shown

from the pair production of scalars and spinors in the near-
extremal RN black hole that the existence condition for pair
production is the appearance of an instability—i.e., the
violation of the Breitenlohner-Freedman (BF) bound of the
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field in the AdS2 spacetime—which guarantees the exist-
ence of the propagating modes of the field [3,4]. For the
near-extremal KN black hole, the corresponding relation is

m2
eff < −

1

4ðr20 þ a2Þ

⇒ m2ðr20 þ a2Þ − ð2nar0 − qQ3Þ2
ðr20 þ a2Þ2 þ λþ 1

4
< 0: ð17Þ

The radial flux of the scalar field (14) in the spacetime
(9) can be expressed as

D ¼
Z

dθdφi
ffiffiffiffiffiffi
−g

p
grrðΦDrΦ� −Φ�DrΦÞ

¼ iðr20 þ a2Þðr2 − B2ÞðR∂rR� − R�∂rRÞS; ð18Þ

where the contribution from the angular part is symboli-
cally denoted by

S ¼ 2π

Z
dθ sin θΘΘ�; ð19Þ

which will contribute the “same” factor for the flux at
the near-horizon region and at the asymptotic region.1

Therefore, it does not show up in the flux ratios, and
consequently, it will not affect the physical quantities such
as the mean number of produced pairs and the absorption
cross-section ratio, etc.

IV. PAIR PRODUCTION

The general solution of the radial equation (15) can be
found in terms of the hypergeometric functions,

RðrÞ ¼ c1ðr− BÞi2ð~κ−κÞðrþBÞi2ð~κþκÞ

× F

�
1

2
þ i~κþ iμ;

1

2
þ i~κ − iμ; 1þ i~κ − iκ;

1

2
−

r
2B

�

þ c2ðr− BÞ−i
2
ð~κ−κÞðrþBÞi2ð~κþκÞ

× F

�
1

2
þ iκþ iμ;

1

2
þ iκ − iμ; 1− i~κ þ iκ;

1

2
−

r
2B

�
;

ð20Þ

with parameters

~κ ¼ ω

B
; κ ¼ qQ3 − 2nar0

r20 þ a2
;

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 −m2ðr20 þ a2Þ − λ −

1

4

r
; ð21Þ

in which μ2 is positive due to the BF-bound violation in
Eq. (17). It turns out that this solution is a generalization of
the corresponding result for the RN black holes [3] with
different parameters.
In the near-horizon region, the solution (20) can be

expanded around r ¼ B (we assume ~κ > κ to cover the
extremal limit B → 0):

RHðrÞ ≈ cðinÞH ð2BÞi2ð~κþκÞðr − BÞ−i
2
ð~κ−κÞ

þ cðoutÞH ð2BÞi2ð~κþκÞðr − BÞi2ð~κ−κÞ; ð22Þ

where

cðinÞH ¼ c2; cðoutÞH ¼ c1: ð23Þ

In the asymptotic boundary (r → ∞) of the metric (9), the
hypergeometric function can be transformed into another
form (see the Appendix), so that we have

RBðrÞ ≈ cðinÞB ðr − BÞ−1
2
−i
2
ð~κþκÞ−iμðrþ BÞi2ð~κþκÞ

þ cðoutÞB ðr − BÞ−1
2
−i
2
ð~κþκÞþiμðrþ BÞi2ð~κþκÞ

≈ cðinÞB r−
1
2
−iμ þ cðoutÞB r−

1
2
þiμ; ð24Þ

where

cðinÞB ¼ c1ð2BÞ12þi~κþiμ Γð1þ i~κ − iκÞΓð−2iμÞ
Γð1

2
− iκ − iμÞΓð1

2
þ i~κ − iμÞ

þ c2ð2BÞ12þiκþiμ Γð1 − i~κ þ iκÞΓð−2iμÞ
Γð1

2
þ iκ − iμÞΓð1

2
− i~κ − iμÞ ;

ð25Þ

cðoutÞB ¼ c1ð2BÞ12þi~κ−iμ Γð1þ i~κ − iκÞΓð2iμÞ
Γð1

2
− iκ þ iμÞΓð1

2
þ i~κ þ iμÞ

þ c2ð2BÞ12þiκ−iμ Γð1 − i~κ þ iκÞΓð2iμÞ
Γð1

2
þ iκ þ iμÞΓð1

2
− i~κ þ iμÞ :

ð26Þ

Using the approximate solutions near both the inner and
outer boundaries, the corresponding fluxes of each mode
can be obtained via (18)

1Note that this asymptotic region means the r → ∞ limit of
Eq. (9), but it is still in the near-horizon region of the near-
extremal KN black hole in Eq. (6) due to the coordinate
transformations in Eq. (8). Although Eq. (9) only describes
the near-horizon property of the near-extremal KN black hole in
the original t̂, r̂ and φ̂ coordinates, it contains a warped AdS3
geometry in the new t, r and φ coordinates which has the new
near-horizon limit r → B and asymptotic region r → ∞, and the
Schwinger effect occurs in the whole region from the horizon to
the asymptotic boundary of the geometry in Eq. (9). In addition,
the warped AdS3 geometry allows a holographic dual CFT
description at the asymptotic boundary r → ∞ [18,21].
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DðinÞ
B ¼ −2ðr20 þ a2ÞμjcðinÞB j2S;

DðinÞ
H ¼ −2Bðr20 þ a2Þð~κ − κÞjcðinÞH j2S;

DðoutÞ
B ¼ 2ðr20 þ a2ÞμjcðoutÞB j2S;

DðoutÞ
H ¼ 2Bðr20 þ a2Þð~κ − κÞjcðoutÞH j2S; ð27Þ

where S is defined in Eq. (19).
For scalar particles, the flux conservation is jDincidentj ¼

jDreflectedj þ jDtransmittedj, and the Bogoliubov relation is
jαj2 − jβj2 ¼ 1, in which the vacuum persistence amplitude
jαj2 and the mean number of produced pairs jβj2 are given
by the ratios of the fluxes in the Coulomb gauge

jαj2 ≡ Dincident

Dreflected
; jβj2 ≡Dtransmitted

Dreflected
: ð28Þ

Moreover, from the viewpoint of the scattering process of
an incident flux from the asymptotic boundary, we can
define the absorption cross-section ratio as

σabs ≡Dtransmitted

Dincident
¼ jβj2

jαj2 : ð29Þ

The spontaneous pair production can be revealed by two
different boundary conditions—namely, the outer boundary
condition in which there is no incoming flux at the
asymptotic outer boundary, and the inner boundary con-
dition in which there is no outgoing flux at the black hole
horizon. It has been shown that these two boundary
conditions are actually equivalent to each other due to
the unitarity of the scattering matrix and give the same
result [3]. In the following, we will adopt the particle point
of view—i.e., impose the outer boundary condition (see

Fig. 1) by setting cðinÞB ¼ 0. By substituting

c1¼−c2ð2BÞiðκ−~κÞ
Γð1− i~κþ iκÞΓð1

2
þ i~κ− iμÞΓð1

2
− iκ− iμÞ

Γð1
2
þ iκ− iμÞΓð1

2
− i~κ− iμÞΓð1− iκþ i~κÞ

ð30Þ

into Eq. (26), we have

cðoutÞB ¼ −c2ð2BÞ12þiκ−iμ sinhð2πμÞ sinhðπ ~κ − πκÞ
coshðπ ~κ − πμÞ coshðπκ þ πμÞ

×
Γð1 − i~κ þ iκÞΓð2iμÞ

Γð1
2
− i~κ þ iμÞΓð1

2
þ iκ þ iμÞ ; ð31Þ

and we obtain the vacuum persistence amplitude and the
mean number, respectively,

jαj2 ¼ Dincident

Dreflected
¼ jDðoutÞ

H j
jDðinÞ

H j
¼ coshðπκ − πμÞ coshðπ ~κþ πμÞ
coshðπκþ πμÞcoshðπ ~κ − πμÞ ;

ð32Þ

jβj2 ¼Dtransmitted

Dreflected
¼ jDðoutÞ

B j
jDðinÞ

H j
¼ sinhð2πμÞsinhðπ ~κ− πκÞ
coshðπκþ πμÞcoshðπ ~κ− πμÞ ;

ð33Þ

and the absorption cross-section ratio,

σabs ¼
Dtransmitted

Dincident
¼ jDðoutÞ

B j
jDðoutÞ

H j
¼ sinhð2πμÞsinhðπ ~κ−πκÞ
coshðπκ−πμÞcoshðπ ~κþπμÞ :

ð34Þ

Similarly to the RN black hole case, jβj2 is related with σabs
through jβj2ðμ → −μÞ → −σabs. If we take the extremal
limit B → 0; i.e. ~κ → ∞, we have

jαj2 ¼ coshðπκ − πμÞ
coshðπκ þ πμÞ e

2πμ;

jβj2 ¼ sinhð2πμÞ
coshðπκ þ πμÞ e

πμ−πκ;

σabs ¼
sinhð2πμÞ

coshðπκ − πμÞ e
−πμ−πκ: ð35Þ

For the sake of self-completeness, the angular equation
for ΘðθÞ can be expressed as

1

sin θ
∂θðsin θ∂θΘÞ −

�
n2

sin2 θ
− λ1 sin2 θ − λ2

�
Θ ¼ 0;

ð36Þ

where

λ1 ¼ m2a2 −
ðqQr0 − naÞ2
ðr20 þ a2Þ2 a2;

λ2 ¼ λ −
2naðqQr0 − naÞ

r20 þ a2
: ð37ÞFIG. 1. Outer boundary condition: No incoming flux at

asymptotic.
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This equation can be transformed into the confluent Heun
equation. But the angular part contributes the “same” factor
for the flux both at the near-horizon region (r ¼ B) and at
the asymptotic region (r → ∞). Therefore, its explicit
solution is not necessary for our consideration of pair
production. However, the regularity for the angular solution
should give a constraint on the separation parameter λ,
which can be found numerically. Another interesting
remark is that the existence condition for the pair produc-
tion (violation of the BF bound) for RN black holes just
turns out to guarantee the cosmic censorship conjecture
during the pair-production process. Such a connection,
however, is not so obvious for KN black holes.

V. THERMAL INTERPRETATION

In terms of instanton actions Sa ¼ 2πκ, ~Sa ¼ 2π ~κ and
Sb ¼ 2πμ from the relativistic field equation, we write the
mean number of produced pairs (33) as

N ¼ jβj2 ¼
�
e−SaþSb − e−Sa−Sb

1þ e−Sa−Sb

��
1 − e− ~SaþSa

1þ e− ~SaþSb

�
: ð38Þ

Note that the mean number (38) has a similar form to that
of charged scalars in a near-extremal RN black hole in
Ref. [3], except for different quantum numbers, since the
near-horizon geometry is the warped AdS3 × S1 for the
near-extremal KN black hole, while it is AdS2 × S2 for
the near-extremal RN black hole. Following Refs. [12,23],
by introducing an effective temperature and its associated
one

TKN ¼ m̄
Sa − Sb

¼ TU þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
U þ R

8π2

r
;

T̄KN ¼ m̄
Sa þ Sb

¼ TU −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
U þ R

8π2

r
; ð39Þ

where

m̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −

λþ 1=4
2

R

r
; ð40Þ

and

TU ¼ κ

2πm̄ðr20 þ a2Þ ¼
qQ3 − 2nar0
2πm̄ðr20 þ a2Þ2 ;

R ¼ −
2

r20 þ a2
; ð41Þ

the mean number (38) can be expressed as

N ¼ e
m̄

TKN ×

 
e−

m̄
TKN − e−

m̄
T̄KN

1þ e−
m̄

T̄KN

!
×

8<
:e−

m̄
TKNð1 − e−

ω̂−qΦH−nΩH
TH Þ

1þ e−
ω̂−qΦH−nΩH

TH e−
m̄

TKN

9=
;:

ð42Þ

Here, TH is the Hawking temperature, and ΦH;ΩH are the
chemical potential and angular velocity at r ¼ B:

TH¼
B̂
2π

; ΦH¼−
Q3B̂
r20þa2

; ΩH¼
2ar0B̂
r20þa2

; ð43Þ

in which ω̂ ¼ εω and B̂ ¼ εB are quantities measured in
the “original” coordinates of KN black holes (2). However,
the result (42) is independent on the parameter ε; thus, here
and after we do not elaborately distinguish ðω̂; B̂Þ from
ðω; BÞ in such a situation.
The physical interpretation of each term of Eq. (42) is

that the first parenthesis is the Schwinger effect with the
effective temperature TKN in AdS2 [10], and the second
parenthesis is the Schwinger effect in the Rindler space
[24], in which the Unruh temperature is given by the
Hawking temperature and the charge has the chemical
potentials of ΦH and ΩH, while the effective temperature
for the Schwinger effect due to the electric field on the
horizon is determined by TKN.
The mean number of produced pairs above and the

absorption cross-section ratio in the previous section have
been obtained using the exact solution in the near-horizon
geometry of an extremal or near-extremal KN black hole.
Below, by applying the phase-integral formula, we derive
the instanton actions from the Hamilton-Jacobi action for
the field equation, which lead to the mean number. This
method allows one to understand the physical origin of
each term as a consequence of simple poles in the complex
plane of space [25], and further also connects the inter-
pretation to other physical systems involving the Schwinger
effect in curved spacetimes [26].
The Hamilton-Jacobi action together with the phase-

integral formula explains the origin of the subleading terms
as well as the leading Boltzmann factor in Eq. (38). By
substituting RðrÞ ¼ eiSðrÞ into the radial equation (15), we
obtain the Hamilton-Jacobi action in the complex plane of
z ¼ r:

SðzÞ ¼
Z

dz
z2 − B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω − κzÞ2 − m̄2ðr20 þ a2Þðz2 − B2Þ

q
:

ð44Þ

The phase-integral formula for the action along a path Γ in
the z plane gives a complex amplitude

NS ¼ eiSΓ ; ð45Þ
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whose imaginary part due to simple poles determines the
pair-production rate or the decay rate of the vacuum [3,25].
First, in the case of the near-extremal KN black hole, the

action (44) has two simple poles at z ¼ �B and another
simple pole at the infinity z ¼ ∞ from the large z
expansion, and thereby the residues S� and S∞, respec-
tively. Further, the square root has a pair of complex roots
in the complex plane, so a branch cut may be introduced
as in Fig. 2 to exclude the roots and make the integrand
an analytic function. Then, the Cauchy residue theorem
along the contour of Fig. 2 enclosing the simple poles at
z ¼ �B gives the leading term

eið−2πiÞðω−κB2B −ωþκB
2B þμÞ ¼ e−ðSa−S∞Þ ¼ e−

m̄
TKN ; ð46Þ

where the third term in the parenthesis is the residue
from the infinity. On the other hand, the contour integral of
Fig. 3 provides another instanton action for the exact pair-
production rate (38)

~Sa ¼ ðS− − S∞Þ − ðSþ − S∞Þ ¼ 2π
ω

B
¼ 2π ~κ: ð47Þ

A few comments are in order. The directions of the contours
are chosen by the causality reason. The Schwinger effect in a

near-extremal black hole is a consequence of both the inner
and outer horizons, which differs from the Hawking radi-
ation of charges in a nonextremal black hole originated from
the outer horizon only.
Second, in the case of the extremal KN black hole, we

use the small z expansion, which has a simple pole at z ¼ 0
and the residue −κ. Thus, the clockwise contour integral
gives the leading term

eið−2πiÞð−κþμÞ ¼ e−ðSa−S∞Þ ¼ e−
m̄

TKN ; ð48Þ

where the second term comes from the simple pole at
infinity. Note that Eq. (48) is the same as Eq. (46).

VI. DUAL CFT DESCRIPTION

The KN black hole was shown to have twofold dual CFT
descriptions [16,18], which are called the J (angular
momentum) picture in terms of the Kerr/CFT correspon-
dence [19,21] and the Q (charge) picture based on the RN/
CFT correspondence [6,9]. Following previous studies on
the holographic description of the pair production in the
near-extremal RN black hole [5], it is interesting to analyze
the holographic dual of the pair production in the KN black
hole in both of the two pictures.
The absorption cross-section ratio of the charged scalar

field in Eq. (34) can be rewritten as

σabs ¼
sinhð2πμÞ

π2
sinhðπ ~κ − πκÞ

����Γ
�
1

2
þ iðμ − κÞ

�����2

×

����Γ
�
1

2
þ iðμþ ~κÞ

�����2; ð49Þ

with the parameters ~κ; κ, and μ defined in (21). From the
field/operator duality, the charged scalar field in the near-
extremal KN black hole is dual to a scalar operator in the
two-dimensional CFT. In the present case, the conformal
dimensions ðhL; hRÞ of the operator can be read from the
asymptotic expansion of the bulk charged scalar field at the
AdS boundary in Eq. (24), which are given by [20]

hL ¼ hR ¼ 1

2
þ iμ: ð50Þ

On the other hand, the absorption cross-section ratio of the
dual scalar operator in the two-dimensional CFT has the
universal form, namely

σabs ∼ T2hL−1
L T2hR−1

R sinh
�

~ωL

2TL
þ ~ωR

2TR

�����Γ
�
hL þ i

~ωL

2πTL

�����2

×

����Γ
�
hR þ i

~ωR

2πTR

�����2; ð51ÞFIG. 3. The contour integral for the subleading term in the near-
extremal KN black hole.

FIG. 2. The contour integral for the leading Boltzmann factor in
the extremal KN black hole.
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where TL and TR are the left- and right-hand temperatures
of the dual CFT; and ~ωL¼ωL−qLΦL and ~ωR¼ωR−qRΦR
are the total excited energy of the left- and right-hand
sectors, in which ðqL; qRÞ and ðΦL;ΦRÞ are, respectively,
the charges and chemical potential of the dual left- and
right-hand operators.
Before comparing Eq. (49) with Eq. (51), let us recall

that for the near-extremal KN black hole, its entropy and
temperature are

SBH ¼ πðr̂2þ þ a2Þ ⇒ SBH ∼ πðr20 þ a2 þ 2r0BÞ; ð52Þ

TH ¼ r̂þ − r̂−
4πðr̂2þ þ a2Þ ⇒ TH ¼ B

2π
: ð53Þ

Then we will discuss the holographic description of the
pair production in the near-extremal KN black hole in the J
and Q pictures, respectively.

A. J picture

The left- and right-hand central charges for the J picture
are [16,18]

cJL ¼ cJR ¼ 12J; ð54Þ

and the associated temperatures are

TJ
L ¼ r̂2þ þ r̂2− þ 2a2

4πaðr̂þ þ r̂−Þ
; TJ

R ¼ r̂þ − r̂−
4πa

; ð55Þ

which leads to the near-extreme results

TJ
L ¼ r20 þ a2

4πar0
; TJ

R ¼ B
2πa

: ð56Þ

The CFT microscopic entropy is calculated from the Cardy
formula via

SCFT ¼ π2

3
ðcLTL þ cRTRÞ ¼ πðr20 þ a2 þ 2r0BÞ; ð57Þ

which agrees with area entropy of the near-extremal KN
black hole.
Furthermore, we need to identify the first law of

thermodynamics of the black hole with that of the dual
CFT; i.e., δSBH ¼ δSCFT

δM − ΩHδJ −ΦHδQ
TH

¼ ~ωL

TL
þ ~ωR

TR
; ð58Þ

in which the angular velocity and chemical potential (at
r ¼ B) are

ΩH ¼ 2ar0
r20 þ a2

B; ΦH ¼ −
Q3B

r20 þ a2
: ð59Þ

Note that in the J picture, TL ¼ TJ
L and TR ¼ TJ

R. In
addition, the charge of the probe scalar field is turned off
in order to only “feel” the rotation of the KN black hole;
thus, the variation of the conserved charges of the KN
black hole are δM ¼ ω, δJ ¼ −n, δQ ¼ 0. Subsequently,
the excitation of the total energy for the dual J-picture CFT
are determined to be

~ωJ
L ¼ n and ~ωJ

R ¼ ω

a
; ð60Þ

and then we have ~ωL
2TL

¼ −πκ and ~ωR
2TR

¼ π ~κ, in which q is
set to zero. Consequently, in the J picture of the KN/CFT
duality, the absorption cross-section ratio of the scalar field
(with q ¼ 0) in Eq. (49) matches well with that of its dual
scalar operator in Eq. (51).

B. Q picture

The left- and right-hand central charges for theQ picture
are [16,18]

cQL ¼ cQR ¼ 6Q3

l
; ð61Þ

where the parameter l is the measure of the Uð1Þ bundle
formed by the background Maxwell field, which has a
geometrical interpretation of the radius of the embedded
extra circle in the fifth dimension, and the associated left-
and right-hand temperatures are

TQ
L ¼ ðr̂2þ þ r̂2− þ 2a2Þl

4πQðr̂þr̂− − a2Þ ;

TQ
R ¼ ðr̂2þ − r̂2−Þl

4πQðr̂þr̂− − a2Þ ; ð62Þ

which, in the near-extreme case, can be expressed as

TQ
L ¼ ðr20 þ a2Þl

2πQ3
; TQ

R ¼ r0Bl
πQ3

: ð63Þ

Besides, the CFT microscopic entropy computed from the
Cardy formula

SCFT ¼ π2

3
ðcLTL þ cRTRÞ ¼ πðr20 þ a2 þ 2r0BÞ ð64Þ

reproduces the macroscopic entropy of the near-extremal
KN black hole, too.
In the Q picture, the modes characterizing the rotation

of the charged probe scalar field—namely n—should be
turned off in order that the charged probe will only interact
with the charge of the black hole; i.e., δM ¼ ω, δJ ¼ 0,
δQ ¼ −q. Again, we use the identification between the
thermodynamics of the black hole and its dual CFT—
namely, Eq. (58), with TL ¼ TQ

L and TR ¼ TQ
R . Then the

excitation of the total energy of the dual Q picture CFT are
obtained as
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~ωQ
L ¼ −ql and ~ωQ

R ¼ 2r0lω
Q3

; ð65Þ

namely, ~ωL
2TL

¼ −πκ and ~ωR
2TR

¼ π ~κ. Therefore, in the Q
picture of the KN/CFT duality, the absorption cross-
section ratio of the charged scalar field (with n ¼ 0) in
Eq. (49) also matches well with that of its dual scalar
operator in Eq. (51). Moreover, since the mean number of
produced pairs jβj2 of the charged probe scalar field is
associated with its absorption cross-section ratio via
jβj2ðμ → −μÞ → −σabs, the holographic description of
jβj2 can be understood in both the J and Q pictures.

VII. CONCLUSIONS

In this paper, we have extended the previous study on the
spontaneous production of charged pairs in the near-
extremal RN black hole to the case of the near-extremal
KN black hole. The near-horizon warped AdS3 geometry of
the near-extremal KN black hole allows us to obtain the
analytic form of the vacuum persistence amplitude, the
mean number of produced pairs, and the absorption cross-
section ratio of charged scalars. We have found a universal
feature of the Schwinger mechanism in extremal charged
black holes, nonrotating or rotating. The violation of the
BF bound of the charged scalar in the AdS2 space is a
necessary condition for pair production. But its connection
to the cosmic censorship conjecture is not so obvious as in
the RN black holes.
The pair-production rate has a thermal interpretation,

with the effective temperature consisting of the Unruh
temperature for accelerating charge and the AdS curvature.
We have employed the Hamilton-Jacobi action and the
phase-integral formula to compute the decay rate of the
field due to spontaneous pair production. It is shown that
the Boltzmann factor for the Schwinger effect in the near-
extremal KN black hole comes from two simple poles
located at the inner and outer horizons. There is no a priori
reason to prevent the quantum tunneling process from the
inner horizon, since it is located just adjacent to the outer
horizon, contrary to a nonextremal KN black hole.
Since the near-extremal KN black hole has the twofold

dual CFT descriptions associated with the J picture and

the Q picture, we have thus analyzed the holographic
dual CFT descriptions of the pair production by compar-
ing the absorption cross-section ratio of the bulk charged
scalar field and that of its dual scalar operator in the dual
CFT in both of these two pictures and found they agree
with each other. Furthermore, in addition to presenting a
clear description of the spontaneous pair production of
scalars, our results also give more information about the
CFT dual of the near-extremal KN black hole. Note that
although we only focused on the near-horizon region of
the near-extremal KN black hole, similar analysis can be
used to study the Schwinger effect in nonextremal black
holes (away from the near-horizon region) in the low-
frequency limit. It also would be interesting to take into
account the backreaction to the background geometry
to give a more precise picture of the pair-production
process.
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APPENDIX: HYPERGEOMETRIC FUNCTIONS

There are a number of mathematical properties for the hypergeometric function Fðα; β; γ; zÞ. In particular, the following
ones are useful for our analysis:

(i) Transformation formula:

Fðα; β; γ; zÞ ¼ ΓðγÞΓðβ − αÞ
ΓðβÞΓðγ − αÞ ð1 − zÞ−αF

�
α; γ − β; α − β þ 1;

1

1 − z

	

þ ΓðγÞΓðα − βÞ
ΓðαÞΓðγ − βÞ ð1 − zÞ−βF

�
β; γ − α; β − αþ 1;

1

1 − z

	
: ðA1Þ
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(ii) Special values:

Fðα; β; γ; 0Þ ¼ 1; Fðα; β; γ; 1Þ ¼ ΓðγÞΓðγ − α − βÞ
Γðγ − αÞΓðγ − βÞ : ðA2Þ

In addition, the following properties of the gamma function are also needed in our computation:

Γðαþ 1Þ ¼ αΓðαÞ; ΓðαÞΓð1 − αÞ ¼ π

sinðαπÞ ; ðA3Þ

����Γ
�
1

2
þ iy

�����2 ¼ π

coshðπyÞ ; jΓð1þ iyÞj2 ¼ πy
sinhðπyÞ ; jΓðiyÞj2 ¼ π

y sinhðπyÞ : ðA4Þ
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