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We discuss quantum radiation of a massless scalar field from a spherically symmetric nonsingular black
hole with a finite lifetime. Namely, we discuss a sandwich black-hole model, where a black hole is
originally created by a collapse of a null shell of mass M, and later, after some time ΔV, it is disrupted by
the collapse of the other shell with negative mass −M. We assume that between the shells the metric is static
and either coincides with the Hayward metric or with a special generalization of it. We show that in both
cases for a sufficiently large parameter ΔV the radiation after the formation of the black hole practically
coincides with the Hawking result. We also calculate the radiation, emitted from the black hole interior.
This radiation contains a peak at the moment when the second shell intersects the inner horizon. In the
standard sandwich metric (with the Hayward interior) this outburst of energy is exponentially large. In the
modified metric, which includes an additional nontrivial redshift parameter, this exponent is suppressed.
This is a result of a significant decrease of the surface gravity of the inner horizon in the latter case.
We discuss possible consequences of this result in the context of the self-consistency requirement for
nonsingular models with quantum radiation.
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I. INTRODUCTION

General relativity is a remarkable theory which allows
one to understand spacetime and matter properties in a
strong gravitational field. It predicts black holes and is
important for a description of the early Universe. The
general relativity predictions in the weak-field approxima-
tion are confirmed by observations. The recent discovery
by LIGO of the coalescence of two black holes indicated
that general relativity is valid in the strong-field regime,
when its nonlinear effects are important. At the same time
Einstein’s general relativity theory is ultraviolet (UV)
incomplete. A well known problem of the theory is the
existence of singularities. Solutions of the Einstein equa-
tions, describing stationary black holes, have curvature
singularities in their interior. It is generally believed that the
theory should be modified in the domain where the
curvature becomes high. Several different approaches to
deal with this problem have been proposed. Theories of
quantum gravity, such as string theory and loop gravity, are
well-known examples. Recently a new, very promising UV-
complete modification of general relativity was proposed
[1–10]. It is called ghost-free gravity. Such a theory
contains an infinite number of derivatives and, in fact, is
nonlocal. A similar theory also appears naturally in the
context of the noncommutative geometry deformation of
Einstein gravity [11,12] (see the review [13] and references
therein). The application of the ghost-free theory of gravity
to the problem of singularities in cosmology and black

holes can be found in Refs. [14–27]. In spite of a number of
promising results, we still do not have a final conclusive
solution of this problem in ghost-free gravity. This is due to
the complexity of its equations, which are both nonlocal
and nonlinear.
There exists another approach, which became quite

popular recently. Roughly speaking it can be formulated
as follows. Suppose there exists such a fundamental theory
of gravity, in which black-hole solutions are regular and the
singularities are absent. What might be the properties of
black holes in such a theory? It is natural to expect, that the
modified theory of gravity should include some funda-
mental length scale l (or a related mass-scale parameter
μ ¼ l−1), and Einstein gravity gives an accurate descrip-
tion of the spacetime geometry in the domain where the
curvature is less than l−2. A large number of nonsingular
models of black holes have been proposed (see e.g. the
discussion and references in Ref. [28]).
A natural requirement of nonsingular black-hole

metrics is that at large radius they correctly reproduce
Schwarzschild, Kerr or other black-hole solutions of gen-
eral relativity. This means that the corresponding non-
singular black-hole metric possesses one or more arbitrary
parameters (such as mass, angular momentum and charge).
The curvature inside the black hole, being regular, never-
theless depends on the value of these parameters. In a
general case it may infinitely grow for a special limit of the
parameters. The requirement, that it does not happen and
the curvature always remains finite and limited by some
fundamental value (∼l−2), can be imposed as an additional
principle, which restricts the variety of nonsingular black-
hole models. The limiting curvature principle was first
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formulated by Markov [29,30] (see also Ref. [31]). For a
spherically symmetric black hole this principle, in particu-
lar, implies that the apparent horizon cannot cross the center
r ¼ 0. In other words, besides the outer part of the apparent
horizon there should also be an inner part, separated from
the center. When a black hole evaporates the event horizon
does not exist and the apparent horizon is closed. Such a
model was first proposed in Ref. [32], and later was
intensively discussed in the literature [16,33–43].
A general feature of nonsingular models of a black hole

with a closed apparent horizon is the following. All the
quanta which either fell into the black hole or were created
inside it are finally emitted to an external observer after the
complete evaporation of the black hole. Outgoing radial
null rays in the black-hole interior are accumulated in the
vicinity of the inner horizon. This is a consequence of the
negative value of the surface gravity at the inner horizon.
As a result one can expect that particles emitted from the
inner horizon at the final stage of the black-hole evapora-
tion would have large blueshift. In a self-consistent model,
when the backreaction of the created particles is properly
taken into account, this final burst of radiation should be
somehow suppressed. In the absence of the theory of
gravity which properly describes the black-hole interior
and the final state of the evaporating black hole, one can
estimate the quantum radiation in the adopted nonsingular
black-hole model. In such a case a consistency requirement
can be used as an additional test of the plausibility of the
model [44].
The present paper discusses this problem. Namely, we

study quantum radiation of massless particles from non-
singular black holes. To attack this problem we assume a
number of simplifications. To describe a spherically sym-
metric black hole which has a finite lifetime we consider the
following model. We assume that a black hole is formed as
a result of the collapse of the null shell of positive mass M
and ends its existence as a result of the collapse of another
null shell with negative mass −M. We call it a sandwich
black hole. Such a model was also considered earlier in the
interesting paper [45], where the problem of the black hole
entropy was discussed. Certainly such a model is quite
different from a “real” evaporating black hole. However, it
happens that because of its simplicity it might be useful for
a study of quantum effects in black holes with a closed
apparent horizon. We shall argue that some of its predic-
tions might be quite robust and remain valid for more
realistic “smooth models.” To estimate the quantum
radiation of the massless particles we use the result of
Christensen and Fulling [46], who derived the two-
dimensional quantum average of the stress-energy tensor
from the conformal anomaly. It is well known that this
approximation gives a rather good result for the Hawking
radiation (see e.g. Ref. [47]).
The paper is organized as follows. In Sec. II we discuss

generic properties of nonsingular black holes and collect

some useful formulas for the quantum energy flux at
infinity in an asymptotically flat spacetime. We also discuss
a classical scattering problem for a massless particle
propagating along radial geodesics from the past to future
null infinity. We derive a useful expression for a gain
function, which is the ratio of its final and initial energies.
In Sec. III we describe a sandwich model of a nonsingular
black hole. This section also contains general expressions
for the gain function and quantum energy flux for a
sandwich nonsingular black hole. In Sec. IV we discuss
a special case, when the metric between the null shells
coincides with the Hayward metric [35]. Such a “standard”
model is characterized by two parameters: its mass and the
time duration of its existence. We present both analytic and
numerical results and discuss the behavior of the quantum
radiation during the time of the black hole’s formation,
its existence, and its disruption. In Sec. V we discuss a
sandwich model where the regular metric between the
shells contains a nontrivial redshift factor. We calculate the
quantum energy flux from such a modified sandwich black
hole and demonstrate that the exponentially large peak of
the radiation from the inner horizon, which is present in the
“standard” model, can be suppressed by a proper choice of
the redshift function. This suppression effect is a conse-
quence of the reduction of the (negative) surface gravity of
the inner horizon. A discussion of the obtained results and
additional remarks are presented in Sec. VI.

II. NONSINGULAR MODELS OF EVAPORATING
BLACK HOLES

A. Spherically symmetric regular black holes

The most general spherically symmetric metric in the
four-dimensional spacetime can be written in the form

dS2 ¼ −A2FdV2 þ 2AdVdRþ R2dω2: ð2:1Þ

It contains two arbitrary functions of the advanced time V
and radius R. These coordinates have the dimensionality of
½length�, and the dimensionality of dS2 is ½length2�. In what
follows it is convenient to deal with dimensionless objects.
For this purpose one can use any length parameter as a
standard scale. For example, in the metrics that we shall
consider later it might be some fundamental scale l, or the
gravitational radius of the black hole. Sometimes, it is
convenient to use their combination, or other scales. We
denote this (unspecified at the moment) standard length
scale by σ and denote

dS2 ¼ σ2ds2; V ¼ σv; R ¼ σr;

FðV; RÞ ¼ fðv; rÞ; AðV; RÞ ¼ αðv; rÞ: ð2:2Þ

Thus one has
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ds2 ¼ −α2fdv2 þ 2αdvdrþ r2dω2: ð2:3Þ

It is easy to check that

f ¼ grr ¼ gμν∇μr∇νr: ð2:4Þ

Points where f ¼ 0 form an apparent horizon. We assume
that the spacetime is asymptotically flat. In this case the
function f at spatial infinity must take the value 1 in order
to escape a solid angle deficit

fðv; rÞjr→∞ ¼ 1: ð2:5Þ

Using an ambiguity in the choice of v, we impose the
following (gauge-fixing) condition:

αðv; rÞjr→∞ ¼ 1: ð2:6Þ
In what follows we consider, so-called, nonsingular

black holes (see, e.g., Ref. [28] and references therein).
One of the conditions, which is valid for such metrics, is the
requirement of the regularity of the metric at the center
r ¼ 0. Let R be the Ricci scalar, Sμν ¼ Rμν − 1

4
gμνR, and

Cμναβ be the Weyl tensor. Let us define the following
invariants that are quadratic in the curvature:

S2 ¼ SμνSμν; C2 ¼ CμναβCμναβ: ð2:7Þ

We call a metric (2.1) finite at the center, if the metric
functions f and α have the following expansions:

fðv; rÞ ¼ f0ðvÞ þ f1ðvÞrþ f2ðvÞr2 þ…; ð2:8Þ

αðv; rÞ ¼ α0ðvÞ þ α1ðvÞrþ α2ðvÞr2 þ…: ð2:9Þ

We call a finite-at-the-center metric (2.1) regular if the
invariants R, S2 and C2 are finite at r ¼ 0. This regularity
condition implies that

f0ðvÞ ¼ 1; f1ðvÞ ¼ α1ðvÞ ¼ 0: ð2:10Þ

An important consequence is that for a nonsingular black
hole the apparent horizon cannot cross the center r ¼ 0. In a
general case, when αðvÞ ≠ 1, the rate of the proper time τ at
the center differs from the rate of time v

dτ ¼ α0ðvÞdv: ð2:11Þ
The conditions (2.10) imply that the geometry near r ¼ 0 is
locally flat, and, in particular, there is no solid-angle deficit.

B. Static spacetime

Let us make a few remarks, concerning a special case
of the metric (2.1), when both metric functions, f and α,
are time independent. Denote by ξ ¼ ξα∂α ¼ ∂v the cor-
responding Killing vector. Then one has

ξ2 ¼ −α2f: ð2:12Þ

One can check that for such a metric the Killing horizon
coincides with the apparent horizon, and α is regular at the
horizon function. The surface gravity κ is defined as
follows:

ξβξα;β ¼H κξα: ð2:13Þ

Simple calculations give

κ ¼ 1

2
ðα∂rfÞjH: ð2:14Þ

C. Regular evaporating black hole models

We assume now that a regular metric (2.3) describes a
black hole, which was created as a result of spherical
collapse, and it disappears after some finite time, for
example, as a result of its quantum evaporation. For such
a system there exist parameters v− and vþ, such that

f ¼ α ¼ 1; for v < v− and v > vþ: ð2:15Þ

For definiteness, we can choose v− and vþ so, that in the
domain v− < v < vþ the spacetime curvature does not
vanish. The condition (2.6) fixes the coordinate v up to a
constant. We use this freedom to put v− ¼ 0. We also
denote q ¼ vþ.
Consider an incoming radial null ray described by the

equation v ¼ const. It propagates from the past null
infinity, I−, and reaches the center r ¼ 0. After passing
the center, it becomes an outgoing radial null ray. We shall
use diagrams where the angle variables are suppressed, so
that the radial null ray will be presented by a line which is
reflected at the origin r ¼ 0. We choose the retarded null
time parameter u− so that at r ¼ 0 one has u− ¼ v. In the
initial flat domain, where v < 0, one has u− ¼ v − 2r.
However, in a general case, for v > 0 this relation between
u− and v is not valid. In particular, in the final flat domain,
where v > q, the null coordinate uþ ¼ v − 2r differs from
u−, and one has the relations

uþ ¼ uþðu−Þ; u− ¼ u−ðuþÞ: ð2:16Þ

One can rewrite the first relation in the form uþ ¼ uþðvÞ.
This relation can be interpreted as establishing a map
between I−, parametrized by v, and Iþ, parametrized by uþ.
Let us describe a simple algorithm which allows one to

find the required map.
Case I. Consider first outgoing rays with u− < 0. They

cross both of the null surfaces v ¼ 0 and v ¼ q. The radius
of the first intersection is
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r− ¼ −
1

2
u−: ð2:17Þ

Denote by r ¼ rðvÞ a solution of the differential
equation

dr
dv

¼ 1

2
F ðv; rÞ; F ¼ αf; ð2:18Þ

with the initial condition

rð0Þ ¼ −u−=2: ð2:19Þ

This solution describes an outgoing null ray passing
through ð0; r−Þ. Denote by rþ the radius r where this ray
crosses the second null shell, rþ ¼ rðqÞ. Since in the final
domain, where v > q, the spacetime is flat, one has

uþ ¼ q − 2rðqÞ: ð2:20Þ

Equations (2.17)–(2.20) determine the required map.
Case II. Let 0 < u− < q and let rðvÞ be a solution of

Eq. (2.18) with the initial condition rðu−Þ ¼ 0. Then the
relation (2.20) determines the map.
Case III. Let u− > q. Then one has uþ ¼ u−.

D. Quantum fluxes at Iþ

In what follows, we study quantum radiation of a
massless scalar field from regular “black holes.” For the
calculation of the Hawking radiation one often uses a
decomposition of the quantum modes in spherical harmon-
ics. In such an analysis it was shown that the main
contribution to the radiation is given by S-modes [47]. If
one reduces to considering only S-modes, the theory is
effectively reduced to the quantum theory of the two-
dimensional (2D) massless scalar field in the ðt; rÞ sector of
the black hole geometry. We shall use a similar 2D
approximation for the estimation of the quantum energy
fluxes from a regular black hole [48].
An effective action for a two-dimensional conformal

scalar field is

S ¼ −
1

2

Z
d2x

ffiffiffiffiffiffi
−g

p ð∇φ̂Þ2; ð2:21Þ

where the two-dimensional metric is given by

ds2 ¼ −α2fdv2 þ 2αdvdr: ð2:22Þ

Let us notice that the rate of the energy emission, _E, is a
dimensionless quantity. For the quantum radiation it is
proportional to the Planck length squared, l2

Pl. Thus
one has

_E ¼ ðlPl=σÞ2E; ð2:23Þ

where E is the dimensionless rate of the energy emission.
The energy rate flux of massless particles, created from the
initial vacuum state, is given by the following expression:

E ¼ 1

48π

�
−2

d2P
du2

þ
�
dP
du

�
2
�
; ð2:24Þ

where

P ¼ ln

���� du−duþ

����: ð2:25Þ

This relation directly follows from a general result obtained
by Fulling and Christensen [46] for the quantum average of
the stress-energy tensor of a massless scalar field in two
dimensions, reconstructed from the conformal anomaly.
The same expression can also be obtained by the variation
of the Polyakov effective action with respect to the metric
[49,50].
The expression (2.24) for the energy flux contains two

terms. The second one is a square of the first derivative of P
and hence it is always positive. The first one, proportional
to the second derivative of P, can be either positive or
negative. Hence, for some periods of the retarded time uþ
the flux of the energy from the black hole can be negative.
However, the total emitted energy is always positive. This
can be easily checked. Really

Etot ¼
1

48π

�Z
∞

−∞
duþ

�
dP
duþ

�
2

− 2
dP
duþ

����
∞

−∞

�
: ð2:26Þ

For a nonsingular black hole, which exits during a finite
interval of time, the boundary terms vanish.
Quantum effects in nonsingular black holes were dis-

cussed earlier [44,51]. The main goal of this paper is to
study the quantum energy flux from a sandwich black hole.
In order to calculate this flux in the adopted 2D approxi-
mation it is sufficient to study the propagation of the radial
null geodesics from I− to Iþ. The function u−ðuþÞ, which
establishes a map Iþ → I−, allows one to find the function
P, which enters the expression (2.24) for the energy flux on
Iþ. In the next section we demonstrate that the function P
is a logarithm of the ratio of the energy of a classical
massless particle at Iþ to its initial energy at I−. It is
interesting that P is also related to the so-called radiation
entropyΔSradðuþÞ at retarded time uþ, defined in Ref. [45].
Namely, one has

ΔSradðuþÞ ¼ −
1

12
P: ð2:27Þ

E. Gain function

To better understand the main features of quantum
particle production by a black hole it is instructive to
consider the propagation of classical massless particles
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(photons) in its geometry. The motion of radial incoming
null rays in the metric (2.3) is rather simple. For these rays
one has v ¼ const, and the corresponding four-momentum
is lμ ¼ ð0; _r; 0; 0Þ. The dot means a derivative with respect
to the affine parameter λ [52]. The geodesic equation for the
null ray is

D2xμ

dλ2
≡ d2xμ

dλ2
þ Γμ

αβ

dxα

dλ
dxβ

dλ
¼ 0: ð2:28Þ

For the radial rays this equation is identically satisfied in the
ðθ;ϕÞ sector, while the only nonvanishing component of
the Christoffel symbol Γr

μν in the ðv; rÞ sector is

Γr
rr ¼

∂rα

α
: ð2:29Þ

The equation (2.28) is identically satisfied for μ ¼ v, and
for μ ¼ r it gives

ðα_rÞ_¼ 0: ð2:30Þ

This means that the quantity α_r is constant along the radial
incoming null ray. Consider a photon, which starts its
motion at I−, where α ¼ 1 and its energy is E− ¼ −_r.
When such a ray arrives to the center r ¼ 0, where f ¼ 1,
one has

_r0 ¼ −E−=α0: ð2:31Þ

Here α0 is the value of the redshift function α at the center.
The geometry near the center is regular. Let us introduce
Cartesian coordinates ðX; Y; ZÞ in its vicinity, and choose
their orientation so that the infalling photon passes the
center X ¼ Y ¼ Z ¼ 0 moving in the negative direction
along the X axis. Before it crosses the center one has r ¼ X.
After this, the photon continues its motion along the X
direction; however, for the outgoing photon one now has
r ¼ −X. This means that

_r0 ¼ E−=α0: ð2:32Þ

For the outgoing null ray one has

_r ¼ 1

2
αf _v ð2:33Þ

and f ¼ 1 at the center. Thus

ðα_vÞ0 ¼ 2
E−

α0
: ð2:34Þ

The outgoing null rays obey the equation

dr
dv

¼ 1

2
αf: ð2:35Þ

In a general case the metric functions α and f depend on
both r and v. We denote the four-momentum of the radial
outgoing null ray by kμ, and denote by λ its affine
parameter. Thus one has kμ ¼ ð_v; _r; 0; 0Þ, where a dot
denotes a derivative with respect to λ. The only non-
vanishing components of Γv

μν in the ðv; rÞ sector are

Γv
vv ¼

1

2α
½α2∂rf þ 2αf∂rαþ 2∂vα�: ð2:36Þ

Using Eq. (2.35) and the relation

_α ¼ _v∂vαþ _r∂rα; ð2:37Þ

one can write the v component of the equation (2.28) in the
form

ðα _vÞ_¼ −
1

2
αðαfÞ0 _v2: ð2:38Þ

The first integral of this equation is

α _v ¼ ðα_vÞv0 exp
�
−
1

2

Z
v

v0

∂rðαfÞdv
�
: ð2:39Þ

Suppose there exists a spacetime domain where the
metric is static, so that ∂vα ¼ ∂vf ¼ 0. We denote by ξ ¼
ξμ∂μ ¼ ∂v the corresponding Killing vector. Then the
energy of a photon, which moves in this domain

E ¼ −gμνξμkν ¼ α2f _v − α_r ¼ 1

2
α2f _v; ð2:40Þ

is conserved.
Consider the case of an evaporating black hole. If the

spacetime after black-hole evaporation is flat one can use
the relation (2.39) as follows. For large v the spacetime is
flat, so that f ¼ α ¼ 1 in this domain, and the energy Eþ of
the outgoing ray is

Eþ ¼ 1

2
_vIþ : ð2:41Þ

Denote by v0 the advanced time v when the incoming null
ray crosses the center; then using Eqs. (2.39) and (2.34)
one gets

β ¼ Eþ
E−

¼ 1

α0
exp

�
−
1

2

Z
∞

v0

∂rðαfÞdv
�
: ð2:42Þ

We call the ratio β of the final energy of a photon to its
initial energy a gain function.
Let us show now that the gain function is related to the

function P defined by Eq. (2.25). Namely one has

P ¼ ln β: ð2:43Þ
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Consider two nearby incoming radial null rays with
parameters v0 and v0 þ δv. They pass the center r ¼ 0
with the proper time interval difference δτ ¼ αðvÞδv.
When the second incoming ray reaches the center, the
first one has already passed it. It crosses the world line of
the second ray at a point (vþ δv, δr0 ¼ δτ), where
δrj0 ¼ δτ=2. Using Eq. (2.35) one can find how this
separation δr between two nearby outgoing rays, calculated
for v ¼ const, changes along the outgoing ray. Namely,
one has

dδr
dv

¼ 1

2
∂rðαfÞδr: ð2:44Þ

By integrating this equation one gets

δrjIþ ¼ δr0 exp

�
1

2

Z
∞

v0

∂rðαfÞdv
�
: ð2:45Þ

Since for a fixed value v δuþ ¼ 2δrjIþ and δu− ¼ δv0,
using the above results one obtains

du−
duþ

¼ δu−
δuþ

¼ β: ð2:46Þ

Thus the relation (2.43) is proved.
The obtained result has a quite simple explanation.

Consider a high-frequency wave packet ∼ exp½iΦðu−Þ�
emitted from I−. Its frequency, as measured by an observer
near I− is ω− ¼ dΦ=du−. In the adiabatic 2D approxi-
mation such a packet, when it arrives at Iþ has the form
∼ expðiΦðu−ðuþÞÞ, and its frequency is

ωþ ¼ dΦ=duþ ¼ dΦ
du−

du−
duþ

¼ βω−: ð2:47Þ

This relation is in accordance with the definition of the gain
function β.

III. QUANTUM RADIATION FROM
A SANDWICH BLACK HOLE

A. Double-shell model of a nonsingular black hole

A black hole after its formation becomes a source of
quantum radiation. An external observer registers an out-
going flux of Hawking radiation. As a result, the black hole
mass decreases and the black hole shrinks. One of the
options is that the black hole completely disappears in this
process. For a nonsingular spherical black hole this means
that the apparent horizon is closed, and the event horizon
does not exist. Strictly speaking, this object is not a black
hole (according to the standard definition), but its long-time
“imitation.” For simplicity, we shall use the term “black
hole” for these objects as well.
An important new feature of such nonsingular black

holes is that besides the standard Hawking flux there exists

an additional quantum radiation, coming from the black
hole interior. One should expect that, if the black hole
completely disappears as a result of evaporation, then the
total energy loss by the evaporating black hole must be
equal to the initial mass of this object. As we shall
demonstrate this condition imposes a severe self-
consistency restriction on the nonsingular models of black
holes. To illustrate this we consider a simple model.
Namely, we assume that a black hole is formed as a result
of the spherical collapse of a null shell of mass M, it exists
for a time ΔV, and then disappears, as a result of the
collapse of another null shell of mass −M (see Fig. 1).
During the time interval ΔV the metric is a static non-
singular one. The corresponding metric (in the dimension-
less form) is

ds2 ¼ αð−Fdv2 þ 2dvdrÞ þ r2dω2; ð3:1Þ
where F ¼ αf. α and F are functions of r for 0 < v < q,
while outside this interval α ¼ F ¼ 1. We call such a
model a sandwich black hole. Certainly, this model is quite
different from the expected behavior of the evaporating
black hole. However, they have the following common
feature: a finite time of the “black hole’s” existence [53].

B. Gain function for a sandwich black hole

For the sandwich black hole with a static interior the
formula for the energy gain is simplified. Consider an

FIG. 1. Spacetime of a sandwich black hole in ðv; rÞ coor-
dinates. The first null shell with the positive mass is shown by a
horizontal line v ¼ 0, while the second one, with the negative
mass, is shown by the horizontal line v ¼ q. The spacetime
before the first shell and after the second one is flat. We denote
these domains as I and III, respectively. The domain II is located
between the shells. Inner and outer horizons in the domain II are
the inner and outer branches of the apparent horizon, respectively.
Incoming and outgoing radial null rays are schematically shown
in this diagram.
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incoming radial photon with the initial energy Ei. After
crossing the first shell at the radius r− it passes through the
spacetime between the shells and leaves the sandwich black
hole with the energy Ef, crossing the second shell at rþ.
One has

β ¼ F−

Fþ
¼ dr−

drþ
: ð3:2Þ

Here F� is the quantity F calculated at the points of the
entrance, r−, and of the exit, rþ, of the photon in the
domain between the shells, respectively. In the last equality
we used the relation (2.42). For a photon, propagating
along a horizon rþ ¼ r−, one has F− ¼ Fþ ¼ 0. For this
case one uses the original formula (2.39). Since
1
2
ð∂rðαfÞH ¼ κH, one has

βH ¼ expð−κHqÞ: ð3:3Þ

Consider a beam of radial type II incoming photons with
the energy Ei crossing the first shell between r− and
r− þ Δr−. They will cross the second shell in the interval
ðrþ; rþ þ ΔrþÞ with the energy Ef. Then

E−Δr− ¼ Eþ
dr−
drþ

Δrþ ¼ E−
F−

Fþ
Δrþ ¼ EþΔrþ: ð3:4Þ

We define the rate of the energy flux E� ¼ E�=Δr�.
Then one has

Eþ ¼ β2E−: ð3:5Þ

Let us now calculate the gain function for the type II
photons [see Eq. (2.39)]. Such a photon starts its motion
from I− with v0 ∈ ð0; qÞ. For such an incoming photon
lμ ¼ ð−E−; 0Þ, where E− is its energy at I−. After passing
r ¼ 0 this photon becomes outgoing with the same energy,
and one has

ln β ¼ −
1

2

Z
q

v0

∂rðαfÞdv − ln α0: ð3:6Þ

For a double-shell model with a constant metric in the
interior one gets

β ¼ 1

Fþ
: ð3:7Þ

For the type III null ray the gain function is 1.

C. Quantum radiation from a sandwich black hole

We use the dimensionless form of the metric (2.3),
keeping the scale parameter σ arbitrary. In the adopted
model of a sandwich black hole

f ¼ α ¼ 1; for v < 0 and v > q; ð3:8Þ

while for v ∈ ð0; qÞ these functions depend only on r.
The equation (2.18) between the shells can be easily solved
with the following result. Denote

Q ¼
Z

r

0

dr
F

; F ¼ αf: ð3:9Þ

Then the solution is

v − 2QðrÞ ¼ C ¼ const: ð3:10Þ

1. Type I rays

This is the case when u− < 0, so that the corresponding
outgoing null ray intersects both of the null shells. In this
case one has

uþ ¼ q − 2rþ; u− ¼ −2r−; ð3:11Þ

Qðr−Þ ¼ QðrþÞ − q=2: ð3:12Þ
Equation (3.11) establishes relations between the retarded
times uþ and u− and the radii r− and rþ of the points where
this null ray crosses the null shells, while the relation (3.12)
determines a map between r− and rþ. The general
expression (2.24) for the energy flux E can be transformed
into a form that is more convenient for the calculations.
Using Eq. (3.11) one gets

P ¼ ln

���� dr−drþ

����; ð3:13Þ

E ¼ 1

192π

�
−2

d2P
dr2þ

þ
�
dP
drþ

�
2
�
: ð3:14Þ

Using Eq. (3.12) one gets

dr−
drþ

¼ F ðr−Þ
F ðrþÞ

ð3:15Þ

and, hence,

dP
drþ

¼ 1

F ðrþÞ
�
dF ðr−Þ
dr−

−
dF ðrþÞ
drþ

�
; ð3:16Þ

d2P
dr2þ

¼ 1

F 2ðrþÞ
�
−
dF ðr−Þ
dr−

dF ðrþÞ
drþ

þ
�
dF ðrþÞ
drþ

�
2

þ F ðr−Þ
d2F ðr−Þ
dr2−

− F ðrþÞ
d2F ðrþÞ
dr2þ

�
: ð3:17Þ

If we introduce the function

BðrÞ ¼ −2F ðrÞ d
2F ðrÞ
dr2

þ
�
dF ðrÞ
dr

�
2

; ð3:18Þ
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then

E ¼ 1

192π

Bðr−Þ − BðrþÞ
F 2ðrþÞ

; r− ¼ r−ðrþÞ: ð3:19Þ

2. Type II rays

In this case 0 < u− < q and the corresponding outgoing
null rays intersect only the second null shell with negative
mass. One has

uþ ¼ q − 2rþ; u− ¼ q − 2QðrþÞ: ð3:20Þ

For the calculation of the energy flux one can use Eq. (3.14)
with

P ¼ − lnF ðrþÞ: ð3:21Þ

To obtain derivatives of P one can use Eqs. (3.16)
and (3.17) by putting F ðr−Þ ¼ 1 in these relations. The
final result is

E ¼ −
1

192π

BðrþÞ
F 2ðrþÞ

: ð3:22Þ

For the type III rays one has uþ ¼ u− and the quantum
radiation vanishes, E ¼ 0.

D. Sandwich model with α= 1

Let us notice, that in the case when α ¼ 1 the above
expressions for the energy flux can be further simplified.
We define a function κ by the relations

κ2 ¼ jξ2w2j; wμ ¼
1

2
∇μ ln jξ2j; jξ2j ¼ f: ð3:23Þ

The quantity κ is nothing but the redshifted proper accel-
eration of the Killing observer at the point r

κ ¼ 1

2

dfðrÞ
dr

: ð3:24Þ

Denote by RðrÞ the scalar curvature at the point r

R ¼ −
d2fðrÞ
dr2

: ð3:25Þ

Then one can show that the function BðrÞ, which enters
Eqs. (3.19) and (3.22), can be written in the form

BðrÞ ¼ 4κ2ðrÞ þ 2RðrÞfðrÞ: ð3:26Þ

Both κ and R are finite and smooth functions at all
radii.

E. Quantum radiation from the near-horizon
domains

Let us demonstrate now how the relation (3.19) can be
used to calculate exactly the quantum energy flux in some
special cases. Namely, we assume that there exists a point
rH where F ðrHÞ ¼ 0. This point belongs to either the outer
or inner branch of the apparent horizon. The outgoing null
ray, which crosses the first shell at r− ¼ rH, propagates
along the horizon, and crosses the second shell at the same
radius rþ ¼ rH. Consider a narrow beam of outgoing null
rays, propagating in the vicinity of this horizon. Denote
y ¼ r − rH; then in the vicinity of the horizon one has

F ¼ F 0
Hyþ

1

2
F 00

Hy
2 þ 1

6
F 000

Hy
3 þ…: ð3:27Þ

We also denote by y� the values of y for the intersection of
the null ray with the first or second null shell, respectively.
Using Eq. (3.19) one finds

E ¼ 1

192π

F 000
H

F 0
H

y2þ − y2−
y2þ

: ð3:28Þ

In order to establish a relation between y− and yþ, it is
sufficient to use the linearized version of the equation (2.18)

Its solution with the initial data yð0Þ ¼ y− is

yðvÞ ¼ y− expðκHvÞ; ð3:30Þ

where κH ¼ 1
2
F 0

H is the surface gravity at the horizon. Thus
one has

yþ ¼ y− expðκHqÞ; ð3:31Þ

and

EH ¼ F 000
H

384πκH
½1 − expð−2κHqÞ�: ð3:32Þ

IV. STANDARD SANDWICH MODEL

A. Metric

To specify a sandwich model, one needs to specify a
static metric between the shells. We start with a simple
example. Namely, we put A ¼ 1 in Eq. (2.1). We assume
that F ¼ 1 outside the interval ð0;ΔVÞ, while inside it has
the form

F ¼ 1 −
2MR2

R3 þ 2Ml2
: ð4:1Þ
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The corresponding metric was considered by Hayward [35]
(see also Ref. [39]). We call this spacetime a standard
sandwich model.
The metric function (4.1) contains two parameters: the

mass M and the “fundamental length” l. In what follows
we assume that the mass M is large enough, so that the
function F has two positive zeros R1;2. In such a case it is
convenient to use R1;2 as two new parameters, instead ofM
and l. Moreover, we use the radius of the inner horizon R2

as a scale parameter σ. In addition to Eq. (2.2) we use the
following notation:

p ¼ R1=R2: ð4:2Þ
It is possible to check that fðrÞ, corresponding to the metric
function (4.1) has the form

fðrÞ ¼ ðr − r1Þðr − r2Þðr − r0Þ
r3 − r1r2r0

; ð4:3Þ

where

r1 ¼ p; r2 ¼ 1; r0 ¼ −
p

pþ 1
: ð4:4Þ

The parameter p is the position of the outer horizon in
dimensionless units, while the inner horizon is located at
r ¼ 1. The quantity r0 is negative. We call it an imaginary
horizon. The metrics (2.3) and (4.3) are uniquely specified
by two quantities: the mass parameter p and the duration of
the black hole’s existence, q ¼ ΔV=R2. Because of its
rather simple form, a part of the results can be obtained in
an analytical form. The dimensionless surface gravities,
calculated for each of these horizons, are

κ1 ¼
ðp − 1Þðpþ 2Þ
2pðp2 þ pþ 1Þ ;

κ2 ¼ −
ðp − 1Þð2pþ 1Þ
2ðp2 þ pþ 1Þ ;

κ0 ¼
ðpþ 1Þðpþ 2Þð2pþ 1Þ

2pðp2 þ pþ 1Þ : ð4:5Þ

The motion of the incoming radial null rays in this
geometry is rather simple. They are described by the
equation v ¼ const. Such rays pass through the center
r ¼ 0 and become outgoing. Outgoing null rays in the
standard sandwich black-hole geometry are shown in
Fig. 2. As we described earlier, there exist three different
kinds of these rays. Type I rays have their origin as
incoming rays with v < 0. In their propagation they cross
both of the shells. Rays that cross the first null shell with
r < 1 propagate near the origin, being accumulated near
the inner horizon from its inner side. Type I rays that cross
the first null shell between r ¼ 1 and r ¼ p are also
attracted to the inner horizon and are accumulated near
it from its outer side. Type I rays that cross the first shell at
r > p are propagating away from the outer horizon. All
incoming rays of type II, with the origin at 0 < v < q, after

passing the inner horizon cross the center r ¼ 0 and return
to the inner horizon from inside. They are accumulated in
the narrow domain in its vicinity. In other words, the inner
horizon plays the role of an attractor for the outgoing rays,
while the outer horizon repulses the rays. After the collapse
of the second shell with a negative mass, all the outgoing
null rays freely propagate to the future null infinity Iþ.
To establish a relation between the parameters u− and

uþ, which is required for the calculation of the quantum
energy flux, one needs to calculate the function Q, defined
by Eq. (3.9), which in the case under consideration takes
the form

Q ¼
Z

r

0

dr
f
: ð4:6Þ

One has the following expression for f−1 in the metric
(4.3):

f−1 ¼ 1þ 1

2κ1ðr − r1Þ
þ 1

2κ2ðr − r2Þ
þ 1

2κ0ðr − r0Þ
:

ð4:7Þ

A simple calculation gives

QðrÞ ¼ rþ 1

2κ2
ln jr − 1j

þ 1

2κ1
ln

�jr − pj
p

�
þ 1

2κ0
ln

�jr − r0j
jr0j

�
: ð4:8Þ

FIG. 2. This plot shows the outgoing radial null rays u ¼ const
propagating in the standard sandwich black hole with p ¼ 8 and
q ¼ 30.
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Equations (3.12) and (3.20) allow one to find relations
between uþ and corresponding u− for type I and II rays,
respectively. For u− > q, that is for rays of type III, one has
u− ¼ uþ. Figure 3 shows this function u−ðuþÞ for a
standard sandwich black hole with special values p ¼ 4
and q ¼ 8. For large negative uþ the function u−ðuþÞ
asymptotically tends to the straight line uþ ¼ u−. This
region corresponds to the “early” null rays with v ≪ 0.
After passing the center they cross both shells at large radii.
In other words, they always propagate in the domain with
small (but not vanishing) gravitational potential. This
potential is smaller when the value of −v is larger.
The conformal structure of the spacetime of the standard

sandwich black hole is shown in the Carter-Penrose
diagram of Fig. 4. To compactify the null coordinates
ðu; vÞ we used new coordinates u ¼ arctanðu=γÞ and v ¼
arctanðv=γÞ and corresponding Cartesian spacetime coor-
dinates ζ ¼ v − u and η ¼ vþ u. The parameter γ is an
arbitrary positive constant. We chose γ ¼ 3, for the better
presentation of the diagram. In these coordinates null rays
u ¼ const and v ¼ const are represented by straight lines
with the slope �1. The future null infinity Iþ and the past
null infinity I− are given by segments of the lines ηþ ζ ¼
π and η − ζ ¼ π. At both null infinities the asymptotic
Killing vector is normalized to unity. The solid (green) lines
in Fig. 4 depict the shells of infalling null matter at v ¼ 0
and v ¼ q. The dashed (red) lines between them corre-
spond to the inner and outer horizons of the standard
sandwich black hole. The curve corresponding to the center
of the black hole r ¼ 0 can be calculated using the function
u−ðuþÞ (see Sec. II B). The upper part of this curve (above
the second shell) is a vertical straight line.
Figure 5 shows the logarithm of the gain function

PðrþÞ ¼ ln β. This function has a peak in the vicinity of
the inner horizon, though the maximum of the gain function

is not exactly on the inner horizon. For the given parameters
of the standard sandwich black hole p ¼ 4, q ¼ 8 this
maximum is located slightly below the horizon. Note that in
a generic case the maximum can be either below or above
the inner horizon. For the black holes with a long lifespan
q ≫ jκ2j−1 the peak is exponentially narrow ∼ expð−jκ2jqÞ
and looks very sharp, but it is, in fact, a smooth function on
the top. Its amplitude is of the order of jκ2jq.

B. Hawking radiation

We demonstrate now that the Hawking result for the
quantum energy flux from a black hole is correctly

FIG. 3. This plot shows the function u−ðuþÞ for the standard
sandwich black hole with p ¼ 4, q ¼ 8. The dashed line depicts
an asymptotic u− → uþ, when uþ → −∞ or uþ > q.

FIG. 4. This is a Carter-Penrose diagram for the standard
sandwich black hole with the parameters p ¼ 3, q ¼ 3.

FIG. 5. This plot illustrates the function PðrþÞ ¼ ln β for the
standard sandwich black hole with p ¼ 4, q ¼ 8. Two dashed
vertical lines represent the position of the inner r ¼ 1 and outer
r ¼ p horizons. The values of P on the horizons are marked by
(red) dots. The (blue) square marks P at the point rþ ¼ 0. The
(green) diamond marks P at the point corresponding to r− ¼ 0.
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reproduced when the mass parameter p and the lifespan q
are large. In this case the metric function outside the
external horizon f can be approximated as follows:

f ¼ 1 −
p
r
; ð4:9Þ

and one has

κ ¼ p
2r2

; R ¼ 2p
r3

; B ¼ pð4r − 3pÞ
r4

: ð4:10Þ

The null rays with rþ > p cross both shells. Let us denote
Y ¼ yþ lnðy − 1Þ. Then, in the adopted approximation,
the relation (3.12) takes the form

YðyþÞ ¼
q
2p

þ Yðy−Þ; y� ¼ r�
p
: ð4:11Þ

The function Y vanishes at y ¼ y�, where

y� ¼ Wðe−1Þ ≈ 1.27846 ð4:12Þ

where WðzÞ is a Lambert W function. If yþ < y� then
YðyþÞ < 0 and Eq. (4.11) implies that Yðy−Þ < 0. That is,
both rþ and r− are close to the outer horizon, and the
energy flux connected with this beam of null rays can be
estimated by using Eq. (3.32). Let us consider the case
when yþ ≫ y�. In this domain YðyþÞ can be approximated
as YðyþÞ ∼ yþ and one has

BðyþÞp2 ≪ 1; fðyþÞ ≈ 1; ð4:13Þ

so that the relation (3.19) can be approximated as follows:

E ¼ Bðr−Þ
192π

: ð4:14Þ

If YðyþÞ < q=ð2pÞ than Eq. (4.11) shows that y− < y� and
Bðr−Þ ≈ p−2. When YðyþÞ ≫ q=ð2pÞ the quantity BðrÞ is
small. To summarize, in the interval rþ ∈ ðy�p; q=2Þ the
energy flux is approximately constant

E ¼ EHawk ¼
κ2

48π
¼ 1

192πp2
; ð4:15Þ

and for rþ > q=2 it quickly decreases and vanishes. The
expression (4.15) correctly reproduces the result for the
Hawking flux.
Figure 6 shows the result of the numerical calculation of

the energy flux from the standard sandwich black hole in its
external domain. A peak near the outer horizon describes
the emission of photons, created near the outer horizon,
which are “released” when the second shell crosses it.
The properties of this part of radiation are model depen-
dent. However, soon after this, the flux of the photons is

stabilized and reaches the values EHawk, given by
Eq. (3.32). When q ≫ p the duration of the phase of the
Hawking radiation is Δu ≈ q and the total energy emitted
during this phase is q=ð192πp2Þ. It is instructive to present
the obtained results in the dimensional form. We recall that
we put σ ¼ r− ≈ l. The duration of time of the Hawking
radiation phase is ΔU ¼ ΔV and the rate of the energy
emission, _E and total emitted energy, ΔE, are

_E ¼ l2
Pl

192πr2g
¼ π

12
ðkTÞ2; kT ¼ 1

4πrg
; ð4:16Þ

ΔE ¼ π

12
ðkTÞ2ΔV: ð4:17Þ

Equation (4.16) correctly reproduces the result of Ref. [46]
for the 2D energy flux, calculated from the trace anomaly.
Equation (4.17) implies that the total energy of the

Hawking radiation emitted by a standard sandwich black
hole is proportional to the duration of its existence, ΔV.
This is a natural result, which clearly demonstrates that the
quanta emitted in this process are created with a constant
rate near the horizon [54].

C. Quantum radiation from the inner horizon

As a result of the focusing property of the inner horizon,
the beam of the outgoing null rays crossing the second
null shell for small rþ ≪ p is sharply concentrated near
rþ ¼ 1. For this reason for the calculation of the quantum
radiation from the inner horizon one can use the following
approximation:

FIG. 6. This plot depicts the flux of particles emitted by the
standard sandwich black hole with p ¼ 8, q ¼ 1000 at the
moment v ¼ q in the range of radii from the outer horizon
r1 ¼ 8 until infinity. The dashed line denotes the asymptotic of
the Hawking radiation in the limit of q → ∞. At radii greater than
≈q=2 the flux vanishes. It corresponds to the coordinate
uþ − ≈ 0. Thus the tail of the Hawking radiation lasts ≈q.
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Qðr−Þ ¼
1

2κ1
ln

�jr− − pj
p

�
þ r−

þ 1

2κ2
ln jr− − 1j þ 1

2κ0
ln

�jr− − r0j
jr0j

�
;

QðrþÞ ¼
1

2κ2
ln ðjrþ − 1jÞ þ 1

þ 1

2κ1
ln

�jp − 1j
p

�
þ 1

2κ0
ln

�j1 − r0j
jr0j

�
: ð4:18Þ

Consider type I rays. By solving Eq. (3.12) one finds rþ as
a function of r−. Using the notations

yþ ¼ rþ − 1; y ¼ r− − 1;

B ¼ e−κ2q; Y ¼ Byþ; ð4:19Þ

one obtains

Y ¼ ZðyÞ;

ZðyÞ ¼ ye2κ2y
�
p − 1 − y
p − 1

�
κ2=κ1

�
1þ y − r0
1 − r0

�
κ2=κ0

;

dr−
drþ

¼ B
Z0 ; P ¼ − ln jZ0j þ lnB;

dP
drþ

¼ −B
Z00

Z02 ;
d2P
dr2þ

¼ −B2

�
Z000

Z03 − 2
Z002

Z04

�
;

E ¼ B2

192π

�
2
Z000

Z03 − 3
Z002

Z04

�
:

Let us notice, that the parameter q enters the expression for
E only in the combination B ¼ e−κ2q, which is a common
scaling factor of transformation between r− and rþ coor-
dinates. Namely, after rescaling rþ − 1 ¼ B−1Y the expres-
sion for B−2E as a function of Y has a universal behavior
independent of q. Since the surface gravity of the inner
horizon, κ2, is negative the scaling factor B for large q is
exponentially large. This fact reflects the following general
property of the radiation from the inner horizon. Quanta,
propagating near it, experience a huge blueshift and B is
the corresponding blueshift factor. Using this fact one can
estimate the total energy of the radiation, emitted from the
inner horizon as follows:

ΔE ∼ EΔuþ ∼ BΔE0; ð4:20Þ
where ΔE0 is the scale-invariant value of the energy, which
is of the order of 1.

D. Numerical results

We already mentioned that the numerical calculations for
large p and q are in agreement with the Hawking result for
standard sandwich black holes, provided the duration
parameter q is large enough. Now let us discuss quantum

radiation of the standard sandwich black hole in other
domains. Figure 7 shows the energy flux from a standard
sandwich black hole with parameters p ¼ 4, q ¼ 2. For
such a small value of the duration parameter q there is not
enough time to develop constant Hawking radiation. At the
moment of time when the outer horizon crosses the second
shell there exists a flash of radiation, which changes its sign
from positive (outside the horizon) to negative (in the
domain inside the outer horizon). The radiation emitted
between the outer and inner horizons remains relatively
small. The very intense outburst of energy occurs near the
inner horizon. We choose this small value of q just to be
able to show on the plot the radiation from all the domains.
As we already mentioned in the previous section, for higher
values of the duration parameter q the amplitude of the
radiation burst grows as ∼ expð−2κ2qÞ, while the width of
the peak decreases as ∼ expðκ2qÞ. Figure 8 shows the
energy burst from the inner horizon for the standard
sandwich black hole with parameters p ¼ 4, q ¼ 8. One
can also see in this figure that for the radii smaller than 1 the
energy flux becomes negative. This region in more detail is
shown in Fig. 9. An analysis shows that this region is
connected with type II rays.
Let us summarize. Until now we studied what was called

a standard sandwich black-hole model. In such a model the
metric between two null shells was chosen to coincide with
the Hayward metric [35]. A characteristic property of this
geometry is that α ¼ 1, so that a falling photon, when it
reaches the center, r ¼ 0, has the same energy, as at the
infinity. In other words, there is no red- or blueshift for such
photons. One of the consequences of this assumption is that
the surface gravity at the inner horizon is high, and for large
mass parameter p it is κ2 ≈ −1. As we demonstrated the
quantum radiation from the inner horizon of such a black
hole is high. For large duration parameter, q, the energy
emitted from it is proportional to expð2qÞ and easily
exceeds the mass of the black hole ∼p=2. This property
shows that such standard models are internally inconsistent.

FIG. 7. This plot depicts the flux of particles emitted by the
standard sandwich black hole with p ¼ 4, q ¼ 2 at the moment
v ¼ q in the range of radii from r ¼ 0 until r ¼ 16.
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Certainly, the standard sandwich model is quite different
from a “realistic” black hole, where the mass decrease is not
abrupt, but rather is a smooth and continuous function of v.
However one can expect that the main conclusion, concern-
ing the quantum inconsistency of such a model, still remains
valid.A reason for this is the following. The effect of the huge
energy outburst from the inner horizon is deeply connected
with the formula (2.42) for the energy gain parameter β. For
the Hayward metric α0 ¼ 1 and ∂rðfÞjf¼0 at the inner
horizon is negative. For a static metric this quantity is
negative and of the order of −1 (in the adopted units).
This property remains valid almost all the time during

evaporation of the black hole, provided its initial mass is
much larger than the Planck mass.

E. Possible role of quantum fluctuations

In the derivation of this result we assumed that the inner
horizon is an infinitely sharp surface. One might assume
that quantum fluctuations, that smear the horizon, can
dramatically modify the expression for the flux, emitted
from the inner horizon. Let us discuss this option and
demonstrate that such a mechanism for the energy outburst
suppression apparently does not work. In order to discuss
the possible role of quantum fluctuations one can use the
formalism developed in Refs. [55,56]. Namely, let us
assume that the mass parameter M in the metric function
(4.1) fluctuates and it is of the form

M ¼ M0 þ μðvÞ; μðvÞ ¼ μ0 cosðωvþ ϕÞ: ð4:21Þ

As a result, the map between I− and Iþ, which is
determined by the radial null rays, would depend on
μðuÞ. To describe a fluctuating horizon one should consider
the phase ϕ and the amplitude μ0 as stochastic variables. As
a result of averaging, the position of the horizon becomes
uncertain, and the horizon is effectively smeared. The
characteristic width of this broadening is determined by
the average value of μ0.
Let us consider a classical massless particle, propagating

in the vicinity of the inner horizon, and find how its gain
function is modified under the action of the fluctuations. To
estimate the gain function we use the expression (2.42). In
our case α ¼ α0 ¼ 1. Let us expand the function f in the
vicinity of the horizon

f ≈ κ2ðr − 1Þ þ ∂Mfjr¼1μðvÞ: ð4:22Þ

Thus

β ≈ expð−κ2qÞ exp b; ð4:23Þ

b ¼ −
1

2ω
∂r∂Mfjr¼1μ0½sinðωqþ ϕÞ − sinðϕÞ�: ð4:24Þ

For a small amplitude μ0 one gets hexp bi ≈ 1þOðhμ0i2Þ.
Thus small fluctuations of the horizon only slightly modify
the gain function and its leading term has the same form
∼ expð−κ2qÞ as in the absence of fluctuations. This implies
that the same conclusion should be valid for the value of the
outburst radiation from the inner horizon in this model.

V. QUANTUM RADIATION FROM A MODIFIED
SANDWICH BLACK HOLE

A. Modified model

We consider now a modified version of the sandwich
black hole, where the redshift factor α is present. Namely,

FIG. 9. This plot depicts the flux of particles emitted by the
standard sandwich black hole with p ¼ 4, q ¼ 8 at the moment
v ¼ q in the range of radii inside the inner horizon from the
center r ¼ 0 to r ¼ 0.8r2. For any given parameter p the shape of
the curve does not depend on q until the radius ~r ¼ rþð0Þ. The
position of this point depends on q and at large q we have
r2 − ~r ≈ expðκ2qÞ ≪ 1.

FIG. 8. This plot depicts the flux of particles emitted by the
standard sandwich black hole with p ¼ 4, q ¼ 8 at the moment
v ¼ q in the range of radii in the close vicinity of the inner
horizon r2 ¼ 1. The maximum amplitude of the radiation grows
exponentially with q as expð−2κ2qÞ, while the width of the peak
shrinks as expðκ2qÞ ≪ 1 (note that κ2 is negative).
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we consider a double-shell model and choose a modifica-
tion [28] of the Hayward metric between the null shells in
the form

ds2 ¼ −α2fdv2 þ 2αdvdrþ r2dω2;

f ¼
ðr − pÞðr − 1Þðrþ p

pþ1
Þ

r3 þ p2

pþ1

;

α ¼ rn þ 1

rn þ 1þ pk : ð5:1Þ

A similar static modification of the Hayward metric with a
time delay at the center was proposed in Ref. [57]. It was
shown there that to be physically plausible, regular black
hole metrics should incorporate a nontrivial time delay
between an observer at infinity and an observer in the
regular center. A generalization to the rotating case was also
considered in Ref. [58].
To stress that this model differs from the standard one

by the presence of the redshift function α we call it an
α-sandwich model. As earlier, we assume that p is large. In
order to preserve the correct Schwarzschild asymptotic
form of the metric one must put n ≥ 2. To preserve the
value of the surface gravity of the outer horizon at the level
of the order p−1, one must have n ≥ kþ 1. The surface
gravity of the inner horizon is of the order of κ2 ∼ −p−k. If
we assume that q is of the order of the Hawking evaporation
time, p3, then the “dangerous” blueshift factor, which
enters the expression for the rate of the energy emission by
the inner horizon, expð−2κ2qÞ becomes ∼ expð2p3−kÞ. For
large black holes p ≫ 1 this factor does not grow with the
black hole mass, if we assume that k ≥ 4. To be more
specific we present calculations for the special case
(k ¼ 4, n ¼ 6).
Figure 10 shows the outgoing null rays in the

α-sandwich black hole geometry. Incoming radial null
rays, as earlier, are described by the equation v ¼ const.
A comparison with Fig. 2 shows that the attraction of the
rays to the inner horizon is weakened. This is a reflection of
the fact, that the absolute value of the surface gravity κ2
is smaller, than in the standard model. For the chosen value
of q the outgoing rays are accumulated at the radius
r ≈ 2.1969 (in Fig. 10 it is marked on the second shell
by the yellow box). In this aspect the quantum radiation of
an α-sandwich black hole differs from that of the standard
one, where the peak of the radiation is located in the close
vicinity of the inner horizon. For larger q the accumulation
point shifts closer to the inner horizon. Note that typically
the width of this accumulation region is larger than in the
standard case.

B. Accumulation effect

The difference between the α-sandwich black hole and
the standard one comes from the effect of the α function on

the pace of time between the horizons. The choice of the
smooth function α in Eq. (5.1) guarantees that it has little
effect on the properties of the α-sandwich black hole near
and above the outer horizon, but it considerably slows
down time below some radius between r2 and r1. As a
consequence the surface gravity of the inner horizon is
much smaller than that of the outer horizon.
The effect of the accumulation of the outgoing null rays

has a simple explanation. Denote as usual by r� the radii of
intersection of a null ray with null shells. The rays emitted
in the intervalΔr− from the first shell cross the second shell
in the interval Δrþ. The gain function β, which is the ratio
Δr−=Δþ, describes the compression of the beam of the null
rays. The larger the value of β, the larger the compression.
Hence, the radius rþ, where the outgoing rays are accu-
mulated, corresponds to the ray with the maximum gain
function βðrþÞ. From the definition of the gain function
(3.2) it follows that the maximum is achieved when

d
drþ

β ¼ d
drþ

�
F ðr−Þ
F ðrþÞ

�
¼ 0: ð5:2Þ

It is easy to check that this condition is satisfied when r−
and rþ are connected by the relation

F 0ðr−Þ ¼ F 0ðrþÞ: ð5:3Þ

The behavior of the function F 0ðrÞ is qualitatively
similar for all sandwich black holes in question. It is
presented in Fig. 11. From the symmetry considerations it
is evident that the function F 0ðrÞ vanishes at r ¼ 0. Then it

FIG. 10. This plot shows the null rays u ¼ const propagating in
the α-sandwich black hole with p ¼ 8, q ¼ 30, and k ¼ 4, n ¼ 6.
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becomes negative. It has the value 2κ2, which is also
negative, on the inner horizon. It reaches a minimum and
then it increases. F 0ðrÞ changes its sign at some radius
between the horizons. On the outer horizon it is positive
and is equal to 2κ1. Finally it asymptotically vanishes at
large radii. Because of such a behavior this function has the
following property. Choose a point r ¼ ρ in the vicinity of
the inner horizon, where the slope F 00ðρÞ is negative. Then
there exists a point r ¼ ζðρÞ < r2, where the slope
F 00ðζðρÞÞ is positive, such that the following relation is
valid:

F 0ðρÞ ¼ F 0ðζðρÞÞ: ð5:4Þ

We call ζðρÞ a point conjugated to ρ. In order for the top of
the gain function at v ¼ q be located at ρ, the null ray
passing through it must be emitted at v ¼ 0 at ζðρÞ. That is
the following condition must be satisfied:

q ¼ 2

Z
ζðρÞ

ρ

dr
jF ðrÞj : ð5:5Þ

The relations (5.4) and (5.5) can be used to determine ρ ¼
ρðqÞ for the position of the accumulation point at time q.

C. Carter-Penrose diagram

Figure 12 shows the function u−ðuþÞ for the α-sandwich
black-hole with parameters p ¼ 4, q ¼ 8, and k ¼ 4,
n ¼ 6. The difference with Fig. 3 appears from the redshift
factor α near the center of the black hole. For the chosen
parameters of the α-sandwich black hole the outgoing null
rays emitted from the center r ¼ 0 in the interval between
the shells v ∈ ½0; q� do not have enough time to propagate
far from the center. They are concentrated near r ¼ 0 and,
when the second shell comes, are released altogether from
this narrow region and create an almost rectangular pulse
of high-frequency radiation propagating to infinity; the

duration of this pulse is approximately α0q. This radiation
results from the domain, corresponding to 0 < u− < q (see
the almost vertical part of the curve in Fig. 12).
The Carter-Penrose diagram for the α-sandwich black-

hole with parameters p ¼ 3, q ¼ 3, and k ¼ 4, n ¼ 6 is
shown in Fig. 13. We used the same coordinate trans-
formations as in the Carter-Penrose diagram for the
standard sandwich black hole (Fig. 4). Consider null rays
in the vicinity of the inner horizon. In the case of the
α-sandwich black hole, they cross the r ¼ 0 curve at larger

FIG. 12. This plot shows the function u−ðuþÞ for the
α-sandwich black hole with p ¼ 4, q ¼ 8, and k ¼ 4, n ¼ 6.
The dashed line depicts an asymptotic u− → uþ, when uþ → −∞
or uþ > q. The curve connecting the green and the blue dots,
which mark the points u− ¼ 0 and u− ¼ uþ ¼ q respectively, is
very close to a vertical line.

FIG. 11. This plot depicts the functions F 0ðrþÞ (black dashed
line) and F 0ðr−ðrþÞÞ (blue solid line) for the α-sandwich black
hole with p ¼ 8, q ¼ 30, and k ¼ 4, n ¼ 6. The maximum gain
function β is achieved at the point, where they cross each other at
negative values. For the given parameters this point is at
rþ ¼ ρ ≈ 2.1969.

FIG. 13. This is a Carter-Penrose diagram for the modified
α-sandwich black hole with the parameters p ¼ 3, q ¼ 3, and
k ¼ 4, n ¼ 6.
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angles than in the standard case (Fig. 4). This reflects the
smaller gain function and the smaller ultraviolet shift of
quanta in the modified case. Note that in Fig. 13 the r ¼ 0
curve between the shells looks very similar to the null line,
but, in fact, it is a timelike curve and its slope is a little bit
bigger than 1 by about α0 ¼ 1=ð1þ p4Þ.

D. Gain function

The logarithm of the gain function for the α-sandwich
black hole is shown in Fig. 14. It has a peak at the point of
the accumulation of rays. In comparison with the case of a
standard black hole (see Fig. 5) the peak of the gain
function has a smaller amplitude, looks smoother, and is
concentrated not at the inner horizon but rather mostly at
some finite radius above it. The position of the peak can be
found by solving numerically Eqs. (5.4) and (5.5). For
example, the numerical solution for the chosen values of the
parameters p ¼ 4 and q ¼ 8 gives the value ρ ¼ 1.842,
which identically coincides with the position of the
maximum of the peak of the logarithm of the gain function
in the plot presented at Fig. 14. We choose small values of
the parameters p and q in order to be able to illustrate the
behavior of the gain function in the total domain
rþ ¼∈ ½0;∞Þ. When q becomes large, the height of the
peak grows while its width becomes very narrow.
If we are interested in the case when both parameters p

and q are large, one can obtain an approximate solution of
the equations (5.4) and (5.5). Thus we assume that p is
large. We also assume that the time of the existence of the
sandwich black hole is larger than the Hawking evaporation
time, q ≥ p3.
For the α-sandwich black holes of the type (5.1) the

integral (5.5) can be taken exactly and be expressed in
terms of elementary functions. Though the result is very
cumbersome, one can find its leading asymptotic for
q ≥ p3. The result is

q
p4

≈
1

6

�
6 arctanh

�
1

r

�
þ 2 arctan r − 5π

þ 4 arctanð2r −
ffiffiffi
3

p
Þ þ 4 arctanð2rþ

ffiffiffi
3

p
Þ
�
: ð5:6Þ

We checked numerically that Eq. (5.6) is extremely
accurate for all values of q ≥ p3. One can see that the
dependence of ρ on the lifespan of the black hole comes
only via the combination q=p4. In the leading approxima-
tion the dependence of the integral on ζðρÞ drops out. Any
inaccuracy in the upper limit of the integral ΔζðρÞ ∼ p2=3

leads to a negligible correction Δρ ∼ p−10=3.
This approximation can also be used to derive another

fairly good approximation for F ðρðqÞÞ, which is valid for
all p3 < q < ∞ with an accuracy of about 20%:

F ðρÞ ¼
8<
:

− 1
p4 ð1 − 2q

3p4Þð72 q
p4Þ−8=7; p3 < q < p4;

− 8
p4 exp ð− 2q

p4 − 5π
6
Þ; q ≥ p4:

ð5:7Þ

In the same approximation one gets

ζðρÞ ≈ 51=6p2=3; F ðζðρÞÞ ≈ −
1

6
ð55=6p1=3 − 5Þ: ð5:8Þ

The maximum of the peak of the gain function can be
estimated as follows:

βmax ∼
jF ðζðρÞÞj
jF ðρÞj : ð5:9Þ

One can see that for p3 < q < p4 the maximum of the gain
function grows as a power of q, while for very large q ≥ p4

it grows exponentially with q. The width of the peak of the
gain function is proportional to F ðρÞ.
A new feature of the α-sandwich model is the appearance

of an almost rectangular pulse of the gain function at
r ∈ ½0; ~r�. Here ~r is defined by the condition r−ð~rÞ ¼ 0. It
means that the outgoing null ray emitted from the center
r ¼ 0 at the moment of arrival of the first shell (v ¼ 0)
reaches the second shell (v ¼ q) at the radius ~r.

E. Quantum radiation

The Hawking radiation in the black hole exterior is
practically the same as it is for the standard model with the
same p and q parameters (see Fig. 15). In other words,
the Hawking radiation practically does not depend on the
internal structure of the black hole. The small difference in
the flux is explained by the dependence of the surface
gravity of the outer horizon on the fundamental constant l.
For large p this effect is negligible.
Figure 16 shows the energy flux from an α-sandwich

black hole. Here we chose a small-mass black hole p ¼ 4
with the lifespan q ¼ 8. Though for these parameters the

FIG. 14. This plot illustrates the logarithm of the gain function
PðrþÞ ¼ ln β ¼ lnðdu−=duþÞ for the α-sandwich black hole with
p ¼ 4, q ¼ 8, and k ¼ 4, n ¼ 6. The two red circles represent
fluxes at the inner r ¼ 1 and outer r ¼ p horizons. The blue
square marks P at the point rþ ¼ 0. The green diamond marks P
at the point corresponding to r− ¼ 0.
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plateau of the Hawking radiation in the exterior of the black
hole is less pronounced, the structure of the quantum
radiation in its interior can be depicted in more detail.
The most important difference is the value of the amplitude
of the peak-shaped radiation from the black hole interior.
The position of the peak is shifted to a larger value of the
radius. Numerical calculations show that it practically
coincides with the position of the gain function for the same
parametersp and q. More importantly, for α-sandwich black
holes its height is greatly suppressed. If we increase the
lifetime q of the black hole, the peak becomes higher, its
width decreases, and its position shifts closer to the inner
horizon. At the same time the quantum radiation in the

black hole exterior becomes closer and closer to the constant
Hawking flux of duration q.
The amplitude of the peak radiation can be estimated

using Eq. (3.19). The maximum of quantum radiation at the
moment v ¼ q comes out from the radius, which is very
close to the radius ρ of the maximum of the gain function.
For large p and q the value of the function Bðr−Þ entering
Eq. (3.19) can be roughly estimated at the point of the
minimum of the functionF [see Eq. (3.26)]. Its value at this
point is BðζðρÞÞ ∼ 2.4p−2=3. Thus, the leading contribution
to the flux density is

Emax ∼
BðζðρÞÞ

192πF 2ðρÞ : ð5:10Þ

In order to obtain the estimation for the rate of the energy
flux at its maximum for large p and q ≥ p3 it is sufficient to
substitute the expression (5.7) for F 2ðρÞ in this expression.
As a result we get

192πEmax ∼

8<
:
42p22=3

ð q

p4
Þ16=7

ð1− 2q

3p4
Þ2 ; p3 < q < p4;

0.8p22=3 expð4qp4Þ; q ≥ p4:

In order to estimate the total energy emitted in this peak of
radiation one has to know the width of the peak. The width
of the peak of quantum radiation is basically the same as the
width of the peak Δr of the gain function. The latter can be
estimated from Eq. (5.9) and the condition Δrβmax∼R p
~r βðrþÞdrþ ¼ R p

0 dr− ¼ p:

½width of the peak� ∼ Δr ∼ p2=3jF ðρÞj: ð5:11Þ

Then the total energy flux for the black hole interior for
q ∼ p3 can be estimated using Eq. (5.10) as

192πΔEα ∼ 192πEmax × Δr ∼ jF ðρÞj−1: ð5:12Þ

Using Eq. (5.7) one can see that for a typical value of
q ∼ p3 the asymptotic jF ðρÞj ∼ p−20=7. Therefore, in this
case 192πΔEα ∼ p−20=7.
The corresponding energy flux for the standard model

for the same value of q ∼ p3 is

ΔE ∼ expðp3Þ: ð5:13Þ

This result means that the inclusion of a properly chosen
redshift function α allows one to suppress the exponential
outburst of the energy flux from the sandwich black hole
interior. We have to stress that even after suppression the
estimation of the total emitted energy ∼p2.9 is larger than
the initial mass of the black hole ∼p. Is this inconsistency
a consequence of the sandwich model adopted in this
paper with its unphysical switching-on and switching-off

FIG. 15. This plot depicts the flux of particles emitted from in
the α-sandwich black hole with p ¼ 8, q ¼ 1000, and k ¼ 4,
n ¼ 6 at the moment v ¼ q in the range of radii from the outer
horizon r1 ¼ 8 until infinity. The dashed line denotes the
asymptotic of the Hawking radiation in the limit of q → ∞.
At radii greater than ≈q=2 the flux vanishes. It corresponds to the
coordinate u− ≈ 0. The tail of the Hawking radiation lasts ≈q,
i.e., the lifespan of the black hole.

FIG. 16. This plot depicts the flux of particles emitted by the α-
sandwich black hole with p ¼ 4, q ¼ 8, and k ¼ 4, n ¼ 6 at the
moment v ¼ q. The red dots in the plot correspond to the fluxes
on the horizons at r ¼ 1 and r ¼ 4. We singled out the domain
outside the outer horizon, rescaled it in units of the Hawking flux,
and put it inside the figure. The green dot marks the point r ¼ ~r.
At radii 0 < r < ~r the flux is negative and almost constant.
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procedure? One can hope, that for more realistic evapo-
rating black hole models with a proper dependence of mass
on time, this inconsistency can be cured.
Note that the density of the energy fluxes can be either

positive or negative. Negative flux densities may appear for
a short period of time because of the quantum nature of the
emitted radiation. Nevertheless, as we already mentioned,
taking into account Eq. (3.14) and asymptotic properties of
the gain function that lead to the condition P0juþ¼�∞ ¼ 0,
one can show that the total flux of quantum radiation is
always positive.

VI. DISCUSSION

In the present paper we discussed quantum radiation
from spherically symmetric sandwich-type nonsingular
black holes. We calculated the quantum energy flux for
two types of black holes. In both cases the spacetime
contains two null shells. The first shell, with a positive
mass, creates the black hole. After some time this black
hole is disrupted as a result of the collapse of the second
shell with a negative mass. The two types of sandwich
black holes in question differ by the choice of the metric
between the shells. In the first case, which we called a
standard sandwich black hole, this metric coincides with
the Hayward solution. Such a model is characterized by
two parameters: the mass and the duration parameters.
Using the 2D approximation we calculated the energy flux
of a quantum massless scalar field in the background of
this geometry. We demonstrated that after the formation of
the black hole the calculated energy flux correctly
reproduces the Hawking result. For a black hole of large
mass and with large duration parameter the flux is
determined by the surface gravity of the outer horizon
and practically does not depend on the inner structure of
the black hole. This Hawking regime of radiation con-
tinues during the interval of time of the black hole
existence. This result clearly indicates that the outgoing
quantum flux is formed near the outer horizon during its
existence. The attempts to explain it as a result of the
creation of the flux at the moment of formation of the
black hole, which sometimes can be found in the liter-
ature, are wrong. A steady Hawking flux terminates at the
time, when a signal from the moment of intersection of the
outer horizon by the second shell reaches an external
observer.
Later the energy density of the radiation temporarily

becomes negative. However, its amplitude remains rather
small. This regime ends when a signal from the inner
horizon reaches the observer. At this moment there exists
a huge outburst of the radiation. The positive energy
density in the peak is proportional to expð2jκ2jqΔVÞ,
where κ2 is the (negative) surface density of the inner
horizon. The width of the peak is ∼ expð−jκ2jΔVÞ, so that
the total energy emitted during the outburst is exponen-
tially large, ΔE ∼ expðjκ2jΔVÞ. A similar result can be

expected for any model of a black hole with the inner
horizon with jκ1j ∼ l−1. For a large duration ΔV ≫ M the
emitted energy from this domain is much larger than
the black hole mass M. Thus such a model is not self-
consistent.
Hence, the backreaction of the quanta propagating near

the inner horizon on the geometry should greatly modify
the geometry in this domain. One of the options is that
after the backreaction is included, the surface gravity of the
inner horizon becomes small. In order to demonstrate how
the exponentially large radiation from the inner horizon can
be suppressed, we considered a so-called “modified
model,” proposed in Refs. [28,57,58]. This model includes
a nontrivial redshift function αðrÞ. We normalized this
factor so that at infinity it always has the value 1. In such a
case the value α0 of this parameter at the center character-
izes the redshift of a photon, propagating from infinity to
the center. An important new feature of an α-sandwich
black hole is that the surface gravity of the inner horizon
depends on the choice of α and can be made small.
We demonstrated that the gain function plays an impor-

tant role in understanding features of the quantum radiation
from the black hole interior. As we showed the peak of the
gain function is a result of the effect of the accumulation of
the outgoing null rays at some point in the black hole
interior. The position of this point depends on the time q of
the existence of the sandwich black hole. This effect is
generic for nonsingular black holes. The reason is that in
the vicinity of the center the gravity is not attractive, but
repulsive. As a result the velocity of the infalling null rays
inside the apparent horizon is slowed down and the radial
density of the beam of photons increases. We obtained
equations which determine the position of the peak of the
gain function for a given parameter q. Numerical compu-
tations of the quantum energy flux from the interior of the
black hole demonstrated that the amplitude and position of
the peak of the energy flux are strongly correlated with
similar characteristics as the peak of the gain function. We
used this result to obtain an estimation of the energy flux
from the black hole interior for large mass ∼p and q ≥ p3.
These results are applicable for both the standard and α-
sandwich black holes. The main result is that the expo-
nential peak of the energy outburst, which is characteristic
of the standard sandwich black holes is strongly suppressed
for the α-sandwich model. For a concrete α-sandwich
model, which we considered in this paper, the total
quantum energy, radiated from the interior of a black
hole with q ∼ p3 is proportional to ∼p2.9. It seams that
the exponential dependence of the energy emitted in the
standard sandwich model is a robust prediction of models
with a trivial redshift function α ¼ 1. The power in mass
energy release in the α models is still larger than the initial
mass of the black hole ∼p. However, it might be that this
result is a manifestation of the adopted model roughness. In
order to check this, one has to repeat the calculations,
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presented in this paper, with a more “realistic” evaporating
nonsingular black hole model. Let us mention that an
independent interesting approach to the self-consistency
problem are attempts to construct a regular black hole
model in the framework of a 2D dilaton gravity, that
includes both quantum radiation and its backreaction (see
e.g. Refs. [59–62]). Anyway, the search for (quantum)

consistent nonsingular models of black holes is an inter-
esting open problem which waits for its solution.
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