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We numerically investigate the interior of a four-dimensional, spherically symmetric charged black hole
accreting neutral null fluid. Previous study by Marolf and Ori suggested that late infalling observers
encounter an effective shock wave as they approach the outgoing portion of the inner horizon. Nonlinear
perturbations could generate an effective gravitational shock wave, which manifests as a drop of the area
coordinate r from inner horizon value r− towards zero in an extremely short proper time duration of the
infalling observer.We consider three different scenarios: a) A charged black hole accreting a single (ingoing)
null fluid; b) a charged black hole perturbed by two null fluids, ingoing and outgoing; c) a charged black hole
perturbed by an ingoing null fluid and a self-gravitating scalar field. While we do not observe any evidence
for a gravitational shock in the first case, we detect the shock in the other two, using ingoing timelike and null
geodesics. The shock widthΔτ decreases rapidly with a fairly good match to a new, generalized exponential

law, Δτ ∼ e−
R

κ−ð ~VfÞd ~Vf , where ~Vf is a specific timing parameter for the ingoing timelike geodesics and

κ−ð ~VfÞ is a generalized (Reissner-Nordström-like) surface gravity of the charged black hole at the inner
horizon. We also gain new insight into the internal (classical) structure of a charged black hole perturbed by
two null fluids, including strong evidence for the existence of a spacelike r ¼ 0 singularity. We use a finite-
difference numerical codewith double-null coordinates combinedwith an adaptive gaugemethod in order to
solve the field equations from the region outside the black hole down to the vicinity of the r ¼ 0 singularity.
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I. INTRODUCTION

A. Background

The study of the internal structure of classical black holes
(BHs) has been an enduring research field in the last couple of
decades. Two classes of models were of particular interest:
perturbations on a charged BH background [1–18] and
perturbations on a spinning BH background [19–26]. The
research considered the effects of perturbations on the BH
geometry and the differences from the corresponding non-
perturbed geometries, the Reissner-Nordström (RN) geom-
etry in the charged case and the Kerr geometry in the spinning
case. Both classes of models share a similar horizon structure
[of an (outer) event horizon (EH) and an inner horizon (IH)];
while the perturbed spinning class is believed to be closely
related to realistic astrophysical BHs, the perturbed charged
class (usually) offers a simpler analysis due to spherical
symmetry. RN geometry has a well-known r ¼ 0 timelike
singularity;Kerrgeometryhas a timelike r¼0 ring singularity.
The study of the perturbed geometries focused specifically on
the development of additional singularities inside the BHs.
The IH of RN and Kerr geometries also operates as

Cauchy Horizon (CH), a null hypersurface that marks the
boundary of physical predictability.1 Penrose pointed out

that this hypersurface is a locus of infinite blueshift in both
geometries; [1] he predicted it should develop curvature
singularity in the presence of perturbations. Hiscock
confirmed this prediction with analytical analysis of an
ingoing null fluid perturbation. [4] Hiscock used the
Reissner-Nordström-Vaidya (RNV) model, [27] represent-
ing a neutral null fluid—a stream of massless particles—
flowing on a charged black hole background. This model
has two variants, ingoing and outgoing, distinguished by
the null direction of the fluid; Hiscock used the ingoing
variant. He discovered that a nonscalar curvature singu-
larity develops at the ingoing section of the IH (which is
CH in this scenario). Some time later, Poisson and Israel
have diagnosed the development of a singularity at the CH
of a different model, the mass inflation model; [6,7] this
model includes two null fluids, ingoing and outgoing,
flowing on a charged BH background. In this case,
however, the singularity is scalar and there is a divergence
of the mass function at the vicinity of the singular CH.
Despite of this, Ori has later proved that this null singularity
is deformationally weak [8] in the Tipler sense ([28], see
also Ref. [29]); the metric tensor components approach a
finite value on the CH and an infalling observer only
experiences finite tidal distortion at the crossing of the
CH. During the 1990’s, numerical investigations of self-
gravitating scalar field perturbations on a charged back-
ground [10,12] suggested that in this case the singular CH
is a subject to a process of “focusing”; the area coordinate r
monotonically decreases along CH up to the point where it

1The overlap between the IH and CH is not necessarily full; the
IH has two arms, distinguished by their null direction [ingoing (u)
or outgoing (v)]. In a typical gravitational collapse scenario, only
one arm of the IH is CH (the ingoing one).
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vanishes and the singularity becomes spacelike. The
analysis of perturbations on a spinning background
revealed a similar general picture; [19–22,26] in this case
too, a weak null curvature singularity develops at the CH.

B. Shock wave at the inner horizon

Marolf and Ori (MO) have recently demonstrated ana-
lytically the existence of additional null (effective) singu-
larity at the outgoing portion of the IH, an effective shock
wave singularity. [30] An infalling observer experiences a
finite (effective) jump in the values of various perturbation
fields across the IH at late times. This change actually
occurs on a finite proper time duration Δτ; however, this
duration decreases exponentially with infall time and
becomes unresolvable for an observer of given sophisti-
cation. The observer may experience a metric discontinuity
if the perturbation is nonlinear; this metric discontinuity, or
gravitational shock, manifests as an (effective) sheer drop
in the value of the area coordinate r (where gθθ ¼ r2).
MO have considered specifically a wide variety of test

perturbations (scalar field, electromagnetic and gravita-
tional perturbations) on RN and Kerr backgrounds and
nonlinear scalar field perturbation on a spherical charged
background. They estimated that their arguments should be
relevant to nonlinear perturbations on a spinning BH
background as well but did not include a full analysis of
such case. Their scenarios were asymptotically flat and
asymptotically static; they relied upon known properties of
RN and Kerr geometries. MO argued that the shock wave
singularity is “stronger” and more violent than the CH
singularity; an infalling observer experiences integrated
deformation across the IH which does not decrease with
infall time, but remains fixed and of order unity.
More recently, Eilon and Ori (EO) have confirmed

numerically the existence of the shock wave. [31] EO
considered two different scenarios, the evolution of a test
scalar-field on RN background and the evolution of a self-
gravitating scalar field on a dynamical charged BH back-
ground. They have demonstrated the existence of the shock
in the scalar fieldΦðτÞ in both cases, and in rðτÞ in the self-
gravitating case. EO also confirmed MO’s prediction about
the exponential decrease in Δτ (the exponential sharpening
rate) of the shock; they have defined characteristic Δτ
widths for both ΦðτÞ and rðτÞ and showed that they
decrease exponentially with infall time. Although most
of their analysis was based on timelike geodesics, EO were
the first to exhibit the shock on null geodesics; they
displayed the gravitational shock in rðλÞ (where λ is the
affine parameter) on a three-dimensional graph using a
dense set of null geodesic. The geodesics’ sheer drop in r at
the IH created a vertical wall-like structure; they argued that
this may be the clearest visual presentation of the shock.
Fig. 1 illustrates the gravitational shock scenario con-

sidered by EO through the relevant Penrose diagram. The
internal (classical) structure of the BH in this case is well

known (with the possible exception of the shock wave), and
includes a strong spacelike r ¼ 0 singularity and a weak
null singularity at the CH. The shock is located at the
outgoing IH of the BH at late times (the solid green line).
The full blue curve and the dashed blue line represent a late
timelike geodesic and a late null geodesic, accordingly;
both cross the IH and reach the spacelike r ¼ 0 singularity.
Due to the gravitational shock, the journey from the
IH (r ¼ r−) to r ¼ 0 takes an extremely short proper time
duration Δτ (or an affine parameter interval Δλ).2 Fig. 1
describes the case of a self gravitating scalar field pertur-
bation on an eternal RN background. However, EO shock
results could be also attributed to the case of a spherical
charged collapse; they could describe the dynamics outside
a collapsing charged shell or star.3 The shock wave
phenomenum, as argued by MO and EO, is a general
phenomenum of perturbed charged or spinning BHs; it is
not limited to the eternal RN (or Kerr) scenarios.

FIG. 1. Penrose diagram of a charged BH perturbed by a self
gravitating scalar field. Solid black diagonal lines denote null
infinity; dashed black diagonal lines denote the event horizon
(EH). Dashed-dotted line denotes the inner horizon (IH); the
ingoing IH functions as a Cauchy horizon (CH). Wavy lines
denote the timelike r ¼ 0 singularity of the initial RN spacetime
and the spacelike r ¼ 0 singularity of the perturbed spacetime.
An effective gravitational shock wave develops along the solid
green line denoted “S” (at the outgoing IH). The full blue line
represents a typical timelike geodesic that crosses the shock; the
dashed blue line is a typical null geodesic. The shock manifests as
a sharp drop in the values of the area coordinate r along both
geodesics, from r− to zero, in an extremely short proper time
duration Δτ (timelike geodesic) or an affine parameter intervalΔλ
(null geodesic).

2The affine parameter λ has normalization freedom; however,
for any fixed choice of normalization constant Δλ still decreases
rapidly with infall time, as the “vertical wall” picture of EO
demonstrated.

3A small region inside the BH at the vicinity of RN original
timelike r ¼ 0 singularity (in the left border of Fig. 1) should be
omitted from the numerical results in order to make this
interpretation valid; however, the shock is not influenced by this
omission.
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EO considered a single type of perturbation, a neutral
massless scalar-field. They also considered a relatively
simple scenario, asymptotically flat BH accreting a single
scalar field pulse that decays at late times. However, as
Hamilton and Avelino has pointed out, [32] realistic
astrophysical BHs steadily accrete dust and cosmic micro-
wave background (CMB) photons on cosmological time-
scales. We wish to extend EO research to a more realistic
accretion scenario, and to a different type of perturbation, a
neutral null-fluid, which could represent (up to some
extent) CMB photons. Due to scope limitations, we focus
our analysis on the gravitational shock, the shock in the
area coordinate r. We consider in the current paper three
different physical scenarios; all three include long-term
accretion of a null-fluid stream by a charged BH. In the first
scenario, the ingoing null-fluid stream is the only pertur-
bation; we do not detect a gravitational shock in this case.
In the second and third scenarios we add an outgoing null-
fluid pulse and a self-gravitating scalar-field pulse (accord-
ingly) to the ingoing null-fluid stream. We detect a
gravitational shock wave in both scenarios, and uncover
different behavior of the shock due to the accretion of the
null-fluid stream. The sharpening rate of the shock differs
from the EO (and MO) result—our shock sharpens more
rapidly, with a fairly good match to a generalized expo-
nential sharpening rate law. MO and EO used (mostly)
timelike geodesics in their shock analysis, though EO had
some results taken from null geodesics. We employ both
timelike and null geodesics, alternately, throughout our
entire analysis. In the course of our shock exploration, we
uncover two interesting results on the internal (classical)
structure of a charged BH perturbed by two null fluids—
strong evidence for the existence of a spacelike r ¼ 0
singularity and a possible, uncertain indication to the
presence of a null, non-naked, r ¼ 0 singularity.
The motivation for our third scenario, a mixed null-fluid/

scalar field perturbation, requires a further explanation. The
dynamics of scalar field perturbation are different from
those of null fluid perturbation and more interesting in
the sense that they are more similar to those of realistic
gravitational or electromagnetic perturbations. EO have
already demonstrated the presence of a shock in the case of
self gravitating scalar field perturbation; here, we are
interested in observing the effect of the null fluid stream
on a previously generated shock. This scenario also allows
a better comparison of our shock results with EO results
than the two null fluids case, as the mixed scenario is
basically EO’s scenario with the addition of an ingoing null
fluid stream. Lastly, the mixed scenario is a “toy model” for
an astrophysical BH accreting both dust (simulated by the
scalar field) and radiation (simulated by the null fluid).
The paper has the following structure: The problem is

formulated in terms of unknown functions, field equations,
and initial data setup in Sec. II. The description in this
section is mostly general and applies for all three scenarios,

which are distinguished from each other by initial data
setup. We sketch this separation schematically in Sec. II;
the details are described in Secs. IV–VI. The numerical
algorithm is discussed in Sec. III; we describe in this
section the numerical solver of the field equations and
outline additional important calculations and the presenta-
tion of numerical results. Since the field equations and the
numerical algorithm were discussed extensively in a
previous paper [33] and are quite similar to those used
by EO, we only describe them briefly here, focusing on the
differences from EO setup. We then analyze the case of a
single ingoing null-fluid stream on a charged background
in Sec. IV. In particular, we exhibit the lack of evidence for
gravitational shock. The case of two null fluids (ingoing
and outgoing) on a charged background is analyzed in
Sec. V, where we demonstrate the existence of a gravita-
tional shock wave and analyze the rate of shock sharpening.
We do the same for the third case, an ingoing null-fluid
stream with a self-gravitating scalar-field pulse on a
charged background, in Sec. VI. We summarize and discuss
our results in Sec. VII.

II. FIELD EQUATIONS

We consider in this paper three different physical
scenarios: (i) a preexisting RN BH accreting a single
(ingoing) null fluid; (ii) two null fluids, ingoing and
outgoing, flowing on a charged BH background; (iii) a
preexisting RN BH accreting a single (ingoing) self-
gravitating scalar-field pulse and a single (ingoing) null
fluid. We investigate these cases using the same set of field
equations solved by the same numerical algorithm; they are
distinguished by initial conditions choice (see section II A).
The null fluid is neutral and minimally coupled. The

scalar field is the same self-gravitating scalar field used by
EO; it is uncharged, massless and minimally coupled,
satisfying the massless Klein-Gordon equation □Φ ¼ 0.
In all three cases the initial RN geometry has mass M0 and
charge Q. The line element in double-null coordinates
ðu; v; θ;φÞ is

ds2 ¼ −eσðu;vÞdudvþ rðu; vÞ2dΩ2; ð1Þ

where dΩ2 ≡ dθ2 þ sin2 θdφ2. In principle, our three
unknown functions are the metric functions σðu; vÞ and
rðu; vÞ and the scalar field Φðu; vÞ, although in the single
null fluid and two null fluids cases the scalar field is
trivially solved (Φðu; vÞ ¼ 0).
The field equations are given by Gμν ¼

8πðTΦ
μν þ TQ

μν þ TNF
μν Þ, where TΦ

μν and TQ
μν are the energy-

momentum tensors of the scalar and electromagnetic fields;
TNF
μν is the energy-momentum tensor of the null fluid and

satisfies (see e.g. Ref. [7])

TNF
μν ¼ ρinkμkν þ ρoutlμlν; ð2Þ
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where ρin, ρout are constants, kμ a radial null vector pointing
inward and lμ a radial null vector pointing outward. This
tensor has only two nonvanishing components in double
null coordinates, TNF

vv and TNF
uu . TNF

vv corresponds to the first
term in Eq. (2), the ingoing null fluid; TNF

uu corresponds to
the second term, the outgoing null fluid. We henceforth
define the null fluid by these components (rather than ρin,
ρout, kμ and lμ) for the sake of simplicity. Overall, our field
equations consist of three evolution equations,

r;uv ¼ −
r;u r;v
r

−
eσ

4r

�
1 −

Q2

r2

�
; ð3Þ

σ;uv ¼
2r;u r;v

r2
þ eσ

2r2

�
1 −

2Q2

r2

�
− 2Φ;uΦ;v; ð4Þ

Φ;uv ¼ −
1

r
ðr;u Φ;v þr;v Φ;u Þ; ð5Þ

and two constraint equations,

r;uu −r;u σ;u þrðΦ;u Þ2 þ 4πrTNF
uu ¼ 0; ð6Þ

r;vv −r;v σ;v þrðΦ;v Þ2 þ 4πrTNF
vv ¼ 0: ð7Þ

The derivation of the field equations is fairly standard
and, with the exclusion of the null fluids terms, has been
discussed extensively in a previous paper [33] (in Sec. II
and the Appendix) and in other works. [14] However, the
addition of the null fluid to the model is trivial; it
contributes a single term for each of the constraint
equations (6) and (7), while the evolution equations remain
unchanged. The evolution and constraint equations are
consistent; the constraint equations need only be imposed
at the initial rays. Hence TNF

uu and TNF
vv do not have

“evolution equations”; they are calculated on every point
of the grid from the constraint equations.

A. Characteristic initial conditions

The characteristic initial hypersurface includes two
null rays, u ¼ u0 and v ¼ v0. We choose four functions
on each initial ray, which correspond to two initial con-
ditions for the unknowns σ and Φ and two initial functions
for the energy-momentum components TNF

uu and TNF
vv .

The function r is determined by a choice of a single
parameter—rðu0; v0Þ≡ r0—and numerical solution of the
constraint equations—Eq. (6) at v ¼ v0 and Eq. (7) at
u ¼ u0.
The line element (1) implies that initial conditions choice

for σ is equivalent to a gauge choice for the null coordinates
u and v. A gauge transformation v → v0ðvÞ; u → u0ðuÞ
does not change r or Φ, but it does change σ, according to

σ → σ0 ¼ σ − ln

�
du0

du

�
− ln

�
dv0

dv

�
: ð8Þ

Our initial conditions choice for σ corresponds to the
maximal-σ gauge, defined by

σðu0; vÞ ¼ 0; σmaxðuÞ ¼ 0; ð9Þ

where σmaxðuÞ is a function which specifies the maximal
value of σ on each constant u line (at the range
v0 ≤ v ≤ vmax). This adaptive gauge addresses and solves
a numerical resolution loss problem, inherent to long-time
simulations in double-null coordinates near the EH (see
Ref. [33]). The gauge condition σmaxðuÞ ¼ 0 translates to
initial condition on σðu; v0Þ via extrapolation procedure,
explained in Sec. VII of Ref. [33].
Table I outlines the initial functions choice for our

scenarios. We focus here on the fundamental differences
between the scenarios—which initial functions vanish and
which do not—and not on the details of the nonvanishing
functions, described later at the relevant sections (IVA, VA
and VI A). Note that σ and TðNFÞ

vv have the same basic
definition in all three cases.

B. Black hole mass and surface gravity

Our shock analysis requires an estimation of the
(growing) BH mass during the simulation and its changing
surface gravity at the IH. We use the mass function
mðu; vÞ introduced in Ref. [7], which in our coordinates
translates to

TABLE I. Initial functions choice for the three different
physical scenarios considered in this paper. The table outlines
the separation between the scenarios by their initial functions
choice; it is created by different choices for the energy momen-
tum tensor component of the outgoing null fluid (TNF

uu ) and the
scalar field Φ. The table also contains initial functions choice for
the energy momentum tensor component of the ingoing null fluid
(TNF

vv ) and the metric function σ. The condition σmaxðuÞ ¼ 0
refers to the maximal-σ gauge condition; the maximal value of σ
on each u ¼ const grid ray is set to be zero. This condition
translates to initial condition on σðu; v0Þ via extrapolation
procedure, explained in Sec. VII of Ref. [33].

Function\
scenario

Single null
fluid

Two null
fluids Mixed

σ σðu0; vÞ ¼ 0 σðu0; vÞ ¼ 0 σðu0; vÞ ¼ 0
σmaxðuÞ ¼ 0 σmaxðuÞ ¼ 0 σmaxðuÞ ¼ 0

Φ Φðu0; vÞ ¼ 0 Φðu0; vÞ ¼ 0 Φðu0; vÞ ≠ 0
Φðu; v0Þ ¼ 0 Φðu; v0Þ ¼ 0 Φðu; v0Þ ¼ 0

TNF
uu TNF

uu ðu0; vÞ ¼ 0 TNF
uu ðu0; vÞ ¼ 0 TNF

uu ðu0; vÞ ¼ 0

TNF
uu ðu; v0Þ ¼ 0 TNF

uu ðu; v0Þ ≠ 0 TNF
uu ðu; v0Þ ¼ 0

TNF
vv TNF

vv ðu0; vÞ ≠ 0 TNF
vv ðu0; vÞ ≠ 0 TNF

vv ðu0; vÞ ≠ 0

TNF
vv ðu; v0Þ ¼ 0 TNF

vv ðu; v0Þ ¼ 0 TNF
vv ðu; v0Þ ¼ 0
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m ¼ ð1þ 4e−σr;u r;v Þr=2þQ2=2r: ð10Þ

We also follow EO ansatz for the event horizon
location—the (first) u value where r;v, evaluated at the
final ingoing ray of the numerical grid v ¼ vmax, changes
its sign from positive to negative.4 We denote this value as
uh. We define the black hole mass mBHðvÞ as the value of
the mass function along the event horizon,

mBHðvÞ≡mðuh; vÞ:

This is a monotonically increasing function in our
simulation. The values of the EH and IH also changes,
according to

r�ðvÞ ¼ mBHðvÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

BHðvÞ −Q2

q
; ð11Þ

and they imply a steady change in the BH surface gravity at
the EH and IH,

κ�ðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

BHðvÞ −Q2
p

r2�ðvÞ
: ð12Þ

We specifically denote the values of the BH mass,
EH, IH and surface gravity at last ingoing ray v ¼ vmax
as mBH;vmax; r�;vmax and κ�;vmax accordingly.5

The functions r�ðvÞ and κ�ðvÞ could be reexpressed
in terms of a different advanced null coordinate VðvÞ with
the appropriate gauge transformation, as we indeed do
below.

III. NUMERICAL ALGORITHM

We solve the field equations on a double-null grid; the
grid has fixed spacings in u and v (denoted Δu, Δv). We
choose Δu ¼ Δv ¼ M0

N , where M0 is the initial BH mass
and N is assigned several different values on each run
(usually 80,160,320,640), in order to confirm numerical
convergence. The numerical solution begins on the initial
ray u ¼ u0 and progresses towards the final ray u ¼ umax;
along each u ¼ const ray the solution is advanced from

v ¼ v0 to v ¼ vmax.
6 The evolution equations (3)–(5) are

discretized using a standard finite-differences scheme; we
also apply a predictor-corrector scheme with second order
accuracy, as described in detail in Sec. III of Ref. [33]. The
numerical convergence of our unknown functions is usually
second order convergence; however, there is a typical
decline in performance at the close vicinity of the r ¼ 0
singularity (r ∼ 0.1 or less, with some variations) to first
order convergence. This effect is (partially) caused by
numerical (artificial) fluxes generated by the solution of the
constraint equation (6) at the close vicinity of the singu-
larity. In order to avoid these fluxes, we choose umax value
such as rðu; v0Þ never falls below 0.1.

A. Geodesics definitions

The previous section described the generation of results
on a numerical double-null grid; however, shock analysis
requires consideration of results on ingoing geodesics.
MO’s original analysis had considered timelike geodesics;
EO demonstrated that null geodesics could be effective as
well for the exploration of the gravitational shock, although
they mainly focused on timelike geodesics. We consider
here alternately timelike and null geodesics. Since the
derivation of both types has already been described in detail
by EO, we give here just a quick summary of geodesic
definitions and behavior, focusing on the differences from
EO setup. A full description of the derivation could be
found at the appendix of EO.

1. Timelike geodesics

Timelike geodesics are more “physical” than null geo-
desics in the sense that they describe the trajectories of
actual (test) observers or probes falling into the BH. In our
double-null grid, timelike geodesics are a series of bent
curves vðuÞ that typically do not cross grid points. They
extend along the entire grid, from the initial ray u ¼ u0 up to
u ¼ umax, unless they encounter r ¼ 0 (or v ¼ vmax) before
u ¼ umax. We derive these curves by solving the geodesic
equation and use second order interpolation in order to find
the unknown functions on these curves. In addition, we
calculate the proper time τ for each geodesic; we set τ ¼ 0
on each geodesic to be the time in which it crosses the EH.
MO and EO considered a family of radial geodesics

related to each other by time translation, or a time-
translated set of geodesics (TTSG).7 TTSG are especially

4This u value typically falls between two grid points in the
numerical simulation. We find the exact uh value via standard
interpolation procedure. Given the two points ðuh1; vmaxÞ and
ðuh2; vmaxÞ and their r;v values r;h1v and r;h2v (where r;h1v is the last
positive value of r;v and r;h2v is the first negative value of r;v), we
estimate uh as uh ¼ uh2r;h1v −uh1r;h2v

r;h1v −r;h2v
. All the numerical results on the

EH are evaluated in the same fashion.
5Note that we use the exact RN expression for the surface

gravity. While it could be argued to be relevant for the single null
fluid case as well, its relevance for the case of two null fluids and
the mixed case is less clear. Nevertheless, we find this expression
useful in our analysis and it enables comparison with MO and EO
results.

6The numerical solution on the initial rays u ¼ u0 and v ¼ v0
is actually a solution of ODEs, not PDEs; as explained in Sec. II
A, we solve the constraint equations (6) and (7) in order to find
rðu; v0Þ and rðu0; vÞ, accordingly.

7In the case of a self-gravitating scalar-field perturbation
described by EO, this symmetry was merely approximated,
not exact. The approximation improved with the increase in v
(due to the decay in the scalar field), up to the point in which the
results could not be distinguished from those expected on an
exact set of TTSG.
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useful for gravitational shock analysis since they share the
same rðτÞ function up to the location of the shock (if
exists). Hence observation of shock formation and develop-
ment is very simple. Unfortunately, time translation sym-
metry is a property of static geometries and thus no longer
available in our case.
We define our family of timelike geodesics in a similar

fashion to EO approximated TTSG in the self-gravitating
scalar-field case, using an analogy to the behavior of exact
radial TTSG in RN spacetime with energy parameter
E ¼ −ut ¼ 1. For these RN geodesics, _r satisfies

_r ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −

�
1 −

2M
r

þQ2

r2

�s
;

where M and Q are the mass and charge parameters of RN
BH. This relation reduces to −ð2M=r −Q2=r2Þ1=2 in the
case of E ¼ 1; we replace M with mðu0vÞ, the initial mass
parameter at the first point of the geodesic, to obtain

_rðu0; vÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðu0; vÞ
rðu0; vÞ

−
Q2

rðu0; vÞ2

s
: ð13Þ

Eq. (13) defines our radial timelike geodesic family and
supplies the required initial condition for the solution of the
geodesic equation. In the self gravitating scalar field case
analyzed by EO, this definition reproduces, asymptotically,
the behavior of an exact radial TTSG in RN spacetime. In
our case it does not, since our simulation is not asymp-
totically static. Our geodesic family should not be consid-
ered an approximated TTSG by any means, but rather as a
family of radial timelike geodesics (weakly) correlated by
their initial _r value.

2. Null geodesics

Null geodesics are “simpler” than timelike geodesics
since in our double-null grid they are just v ¼ const grid
rays. We do not need to solve the geodesic equation in order
to find their shape; we do not need to interpolate our grid
results; we just need to define and calculate an appropriate
affine parameter λ and associate it to a certain v ¼ const ray
in our grid. This “straight line” behavior is also convenient
to shock analysis since it allows a clear observation of the
gravitational shock in three-dimensional graphs.
The derivation of the affine parameter is described in

appendix A2 of EO. The affine parameter λ has normali-
zation freedom; we fix this freedom by demanding dλ

dr ¼ −1
at the EH. We also set λ ¼ 0 to be the EH crossing time on
each null geodesic.

3. Timing parameters

Shock analysis requires the assignation of a timing
parameter value for each geodesic, which is particularly

important for the analysis of the shock sharpening rate. In
principle, a timing parameter assignment involves two
distinct choices; the choice of an appropriate time coor-
dinate and the choice of a specific point on the geodesic in
which the coordinate is evaluated. MO and EO used the
same timing parameter for their timelike geodesics, veh, the
value of Eddington advanced time coordinate at the EH
crossing.8 Since in our scenarios we do not have a relevant
RN (or asymptotically RN) geometry to associate this
coordinate with, this choice is no longer an option. Instead,
we use timing parameters based on RNV advanced time
coordinate. We use two variants of this coordinate, the
initial ray RNV advanced time coordinate, denoted V, and
the event horizon RNV advanced time coordinate, denoted
~V. Both variants are derived through association with the
ingoing RNV metric [Eq. (A1)]. The derivation of each
variant and their interpretation in our different scenarios are
described at Sec. A 1 of the Appendix.
The association of such timing parameter to null geo-

desics is pretty straightforward; since they are simply
v ¼ const lines, they also have a single value of V or ~V.
The association of timing parameter to timelike geodesics
is more complex. We consider in this paper two timing
parameters for timelike geodesics, Vh, which is the value of
V at the EH crossing, and ~Vf, which is the last ~V value of
the geodesic.

B. Presentation of numerical results

As we already mentioned above, we have employed
several grid refinement levels in our simulation. Most of the
numerical results displayed in this paper are based on data
from the best resolution, N ¼ 640. There are two excep-
tions: (i) The contour graphs of rðu; vÞ (Figs. 3, 6, and 12)
are based on data from N ¼ 640, but there is a sampling
procedure involved in order to avoid memory problems. We
specify the sampling rate in u and v (Δsu, Δsv) on the
caption of each figure; we have chosen it with care in order
to avoid misrepresentation of the results. (ii) The graphs
which display data along individual timelike geodesics
[Figs. 4(a), 7(a) and 13(a)] also display data from the
second best resolution (N ¼ 320) in dashed curves (where
the N ¼ 640 data is displayed in solid curves). However,
the results from the different resolutions overlap, and the
N ¼ 320 data is indistinguishable. The shifted versions of
these graphs [Figs. 7(c) and 13(c)] include just the data
from N ¼ 640.
We use standard general relativistic units in which

c ¼ G ¼ 1, and an additional unit choice which fixes

8In the case of a self-gravitating scalar-field perturbation
described by EO, this coordinate was redefined as an Eddington-
like advanced time coordinate rather than exact Eddington coor-
dinate, i.e. it reproduced the expected behavior of Eddington
advanced time coordinate in RN spacetime asymptotically.

EHUD EILON PHYSICAL REVIEW D 95, 044041 (2017)

044041-6



the initial RN mass parameter asM0 ¼ 1. We also set u0 ¼
v0 ¼ 0 in the numerics.

IV. SINGLE NULL FLUID CASE

We begin our analysis with the simplest case, a preex-
isting RN BH accreting a single (ingoing) null-fluid.
Although we do not observe a gravitational shock in this
case, it allows us to establish the descriptions of the ingoing
null-fluid stream and the basic shock wave analysis before
the study of more complex cases. We first describe the
setup of initial data for the initial RN geometry and TNF

vv ; we
move on to describe the resultant structure of spacetime and
the location of the domain of integration in it; we then
demonstrate the lack of evidence for a gravitational shock
presence.

A. Basic parameters and initial conditions

The initial RN geometry could be described in
Schwarzschild coordinates as

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2; ð14Þ

where f ≡ 1�2M0=rþQ2=r2. Following EO choice, we
choose here an initial mass of M0 ¼ 1 (which is actually a
unit choice) and a charge parameter Q ¼ 0.95.
The ingoing null-fluid stream is defined on the initial ray

u ¼ u0; it begins at a certain r value on this ray (denoted r1)
and does not cease up to the maximal grid ray v ¼ vmax.
The stream has the general form

TNF
vv ðu0; vÞ ¼

�
A1ð1 − er1−rÞ2 1

r2r;2u
j r ≥ r1

0 j otherwise;
ð15Þ

where A1 is an amplitude parameter and r, r;u are functions
of v along the initial ray. We have selected this form to
emulate the behavior of a linear null fluid at late times9 we
have achieved this goal, as demonstrated in Sec. A 2 of the
Appendix. The factor ð1 − er1−rÞ2 ensures a smooth (and
quick) transition from the null phase to the linear phase. We
choose r1¼10; this value is reached on the initial ray u¼u0
at v3 ≈ 12.54 (or V3 ≈ 5.63). Although the stream does not
cease in our simulation, we assume it ceases at some point
in the future, denoted v ¼ v4 (or V ¼ V4), so that the
asymptotic spacetime has RN geometry with a new (and
unknown) mass parameter mfinal and a charge parameter

Q ¼ 0.95.10 The amplitude A1 monitors the mass contri-
bution of the stream; we choose A1 ¼ 3.4555203 × 10−4

which yields a mass of mBH;vmax ¼ 2.5. This mass fits EH
value of rþ;vmax ≃ 4.812, IH value of r−;vmax ≃ 0.1875,
and an extreme value of the IH surface gravity at v ¼ vmax,
κ−;vmax ≃ 65.8.
The remaining initial values are taken according to the

first column of Table I. In particular, TNF
vv vanishes on

v ¼ v0; the outgoing null fluid TNF
uu and the scalar field Φ

vanish on both initial rays (u ¼ u0 and v ¼ v0); σ conforms
on both rays with the maximal-σ gauge condition [Eq. (9)].
r is calculated numerically on both rays from the solution of
the constraint equations, Eq. (6) at v ¼ v0 and Eq. (7) at
u ¼ u0.
The domain of integration is u0 ¼ v0 ¼ 0, umax ¼

260.5421875,11 and vmax ¼ 120. The value of r in the
initial vertex is r0 ¼ 5 and it grows up to r≃ 49.47 at
rðu0; vmaxÞ. The other two corners of the grid are
rðumax; v0Þ≃ 0.1004 and rðumax; vmaxÞ≃ 0.1868.

B. The structure of spacetime

The location of the numerical grid in spacetime and the
structure of spacetime are illustrated in Fig. 2. The outgoing
initial ray u ¼ u0 is located outside the BH, while the
ingoing initial ray v ¼ v0 penetrates the BH and passes the
outgoing IH. Panel (b) demonstrates that spacetime could
be divided into three distinct patches: (i) the initial RN
geometry (RN1, at v < v3) with mass parameter M0 and
charge Q; (ii) the ingoing null-fluid stream region
(v3 ≤ v ≤ v4), denoted RNVi; (iii) the final RN Geometry
(RN2, at v > v4), with mass parametermfinal and chargeQ,
which is not covered by our simulation. All three patches of
spacetime are extendable; the only “neighboring” singu-
larity is the original timelike r ¼ 0 singularity of the initial
RN geometry.12 (There are also similar singularities of
RNV geometry and the final RN geometry, but they are not

9A linear (ingoing) null-fluid is a null fluid with linear
contribution to the mass function in RNV advanced time
coordinate,mðVÞ. The linear form is favored due to its simplicity;
it was also favored in different models of Vaidya [34] and charged
Vaidya [35,36] spacetimes due to the self-similar nature it allows
in these models and the ability to derive the internal structure
analytically.

10Note that this choice introduces some approximation on our
derivation of the EH location (see Sec. II B); the actual u value of
the EH is expected to be lower than uh. However, as v4 is
undetermined, one could take it to be arbitrarily close to vmax, so
the deviation could be small.

11The values of umax are typically not round due to the rðu; v0Þ
cutoff near the singularity (at r ¼ 0.1). See Sec. III.

12There are several consistent choices and assumptions in-
volved in the drawing of spacetime diagrams in this paper
(including Fig. 1). We assume that the initial RN geometry
belongs to an eternal RN spacetime for the sake of simplicity; this
geometry could be a result of a (more physical) collapse scenario
as well. The past ingoing EH in the diagrams belongs to this
initial RN geometry, where the outgoing EH and IH and the
ingoing IH belong to the final RN (or perturbed charged)
geometry. We also assume there are no additional perturbations
in spacetime besides those defined on our domain of integration,
although we do extend these perturbations backward in time to
their source (either null infinity or the ingoing EH).
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drawn in this diagram since they are not in the vicinity of
the grid).
This structure is demonstrated by the numerical

results of rðu; vÞ, depicted as a contour graph in Fig. 3.

Panel (a) describes the entire grid; in particular, one could
notice the zone outside the BH as a region in which r values
rise with v (at the bottom of the graph, up to uh ≃ 69.29).
Panel (b) focuses at the vicinity of u¼umax¼260.5421875.

FIG. 2. Penrose diagrams illustrating the structure of spacetime in the single null fluid case. Both panels describe the location of the
numerical domain of integration and the ingoing null fluid stream in spacetime; while panel (a) focuses on initial data, panel (b) analyzes
the different patches of spacetime. In both panels, the domain’s limits are denoted by a double black line; solid black lines denote null
infinity; dashed black lines denote the EH; dashed-dotted black lines denote the IH. Wavy vertical lines denote the timelike r ¼ 0
singularity of RN geometry; dotted black lines denote the ingoing null-fluid stream limits v ¼ v3 and v ¼ v4. The blue curve in panel
(a) represents the ingoing null-fluid stream on the initial ray u ¼ u0; its shape roughly describes the stream contribution to the mass
function derivative m;V . The dashed part of the curve represents the extension of the stream outside the domain of integration up to its
termination at v ¼ v4. Panel (b) demonstrates that spacetime could be divided into three distinct patches; patches RN1 and RN2 fit the
initial RN geometry and the final RN geometry accordingly; they are separated by the ingoing null-fluid stream patch RNVi (diagonal
blue stripes).
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FIG. 3. Numerical results for rðu; vÞ in the single null fluid case. Both panels display contour graphs of rðu; vÞ based on numerical
results; panel (a) displays results on the entire grid and panel (b) displays a zoom deep inside the BH, near u ¼ umax ¼ 260.5421875.
The panels use different color code and different level choices for r for the sake of visibility. The zoom in panel (b) reveals that the grid
ends regularly. Panel (a) is based on the results of N ¼ 640 sampled in a coarse resolution ðΔsu ¼ Δsv ¼ 0.1Þ, while panel (b) is based
on N ¼ 640 results with a sampling on v alone ðΔsv ¼ 0.05Þ.
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This high zoom level (of order of 0.2 in u) demonstrates
that the grid ends regularly.

C. Gravitational shock absence

The lack of evidence for a gravitational shock is
demonstrated in Fig. 4. Panel (a) displays numerical results
for rðτÞ on a family of ingoing radial timelike geodesics;
panel (b) displays similar results for rðλÞ on a series of
ingoing radial null geodesics, or grid rays. In both cases,
rðτÞ=rðλÞ is a smooth curve for all the geodesics; we
see it drops to the expected IH value (the dashed black
curve) and “freezes” there (the earliest geodesics, e.g. the
timelike Vh ¼ 0 or the null V ¼ −3.2 actually pass this
value).
Due to the lack of time translation symmetry, the

geodesics reaches their corresponding (different) r− values
at different values of τ=λ. This characteristic impedes shock
observation due to “scale stretching”; we deal with this
problem in the next section.

V. TWO NULL FLUIDS CASE

We construct our two null fluids case through the
inclusion of an outgoing null fluid pulse in the initial data
setup described in Sec. IVA. In addition to demonstrating
the existence of a gravitational shock wave, we uncover
some interesting results on the internal structure: a strong
evidence for the existence of a spacelike r ¼ 0 singularity,
and a possible indication for the existence of a null,

non-naked, r ¼ 0 singularity. The structure of this section
is similar to the previous section with one exception: since
our shock analysis has positive results, we provide an
additional analysis of the shock sharpening rate, and
compare it to MO and EO’s result.

A. Basic parameters and initial conditions

The initial spacetime in this case is the same as in the
previous section—RN spacetime with mass parameter
M0 ¼ 1 and charge parameter Q ¼ 0.95. The ingoing null
fluid stream is also identical to the stream described in
section IVA; it has the same initial function TNF

vv on the
initial outgoing ray u ¼ u0 [Eq. (15)] and the same
parameters (begins at r1 ¼ 10=v3 ≈ 12.54=V3 ≈ 5.63 and
has an amplitude of A1 ¼ 3.4555203 × 10−4). However,
we now include an outgoing null-fluid pulse, defined on the
initial ingoing ray v ¼ v0 by

TNF
uu ðu; v0Þ ¼

�
A2

16ðra−rÞ3ðr−rbÞ3
πðra−rbÞ6 r;2u j rb ≤ r ≤ ra

0 j otherwise:
ð16Þ

where A2 is an amplitude parameter and r; r;u are functions
of u along the initial ray. The polynomial form has compact
support and is limited to a certain r range (rb ≤ r ≤ ra,
which translates to a certain u range, u1 ≤ u ≤ u2) in order
to control the mass function. The factor r;2u allows us to
avoid a numerical problem of “mass blow up” at the EH,
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FIG. 4. Gravitational shock absence in the single null fluid case. Panel (a) presents r as a function of proper time τ along a family of
ingoing radial timelike geodesics; panel (b) presents r as a function of affine parameter λ along a series of ingoing radial null geodesics.
In both panels, geodesics are solid lines, distinguished by different colors and different timing parameter values; the timing parameter is
Vh (the value of initial ray RNV advanced time at the EH) for timelike geodesics and V for null geodesics. Panel (a) contains timelike
geodesics at the range 0 ≤ Vh ≤ 80, where Vh increases by increments of 5 from left (Vh ¼ 0) to right ðVh ¼ 80Þ; panel (b) contains
grid null rays at the range −3.3 < V < 95.7, with irregular V values and irregular increments of V from left ðV ≃ −3.2Þ to right
ðV ≃ 95.6Þ. The dashed black curve denotes the corresponding IH value of the geodesics; r−ðVhÞ in panel (a) and r−ðVÞ in panel (b).
Gravitational shock absence manifests in the smooth shape of rðτÞ=rðλÞ.
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a possible hazard of our gauge choice.13 We choose the
amplitude as A2 ¼ 12.0, and the pulse limits as ra ¼ 1.54
and rb ¼ 0.7, which translates to u1 ≃ 16.47 and u2 ≃
253.72. Since the EH is located at uh ≃ 69.29,14 the
outgoing pulse begins well outside the BH and ends deep
inside the BH; the location of the pulse and its general shape
are illustrated in panel (a) of Fig. 5. Although the pulse has
a simple shape in r, the factor r;2u dampens it greatly at the
vicinity of the EH; as a result, the effect of the pulse outside
the BH turns out to be rather minor, while the effect inside
the BH is much more pronounced, as demonstrated below.
However, the outgoing pulse does decrease the mass of the
BH, as nowmBH;vmax ¼ 2.4925. This mass fits EH value of
rþ;vmax ≃ 4.797, IH value of r−;vmax ≃ 0.1881, and surface
gravity value of κ−;vmax ≃ 65.1.
The remaining initial values are taken according to the

second column of Table I. In particular, TNF
vv vanishes on

v ¼ v0; TNF
uu vanishes on u ¼ u0; the scalar field Φ

vanishes on both initial rays and σ conforms on both rays
with the maximal-σ gauge condition [Eq. (9)].
The domain of integration is u0 ¼ v0 ¼ 0, umax ¼

253.7375, and vmax ¼ 120. The value of r in the initial

vertex is r0 ¼ 5 and it grows up to r≃ 49.47 at rðu0; vmaxÞ.
The third corner of the grid is rðumax; v0Þ≃ 0.1326;
however, there are no numerical results available in the
fourth corner of the grid ðumax; vmaxÞ due to the presence of
a spacelike singularity.

B. The structure of spacetime

Figure 5(b) reveals the complex structure of spacetime—
it consists of eight patches of different effective spacetime
(although only six are covered in our simulation). The
initial RN patch (RN1) borders an outgoing null-fluid patch
(RNVo) at u ¼ u1 and an ingoing null-fluid patch (RNVi)
at v ¼ v3. There are two additional RN patches: the
asymptotic RN patch (RN2, at u < u1 and v > v4) is
not covered in our simulation and has unknown mass
parameter mfinal; the internal RN patch (RN3, at u > u2
and v < v3) is located deep inside the BH (after the
outgoing null-fluid pulse) and has mass parameter
m3 ≈ 1.569.15 The patch where the fluids intersect (TNF,
at u1 ≤ u ≤ u2, v3 ≤ v ≤ v4) contains the shock wave and a
spacelike r ¼ 0 singularity; we also see a possible indica-
tion for a section of null r ¼ 0 singularity, as we discuss
below. There are additional single fluid patches where the
null fluids separate, which are (in principle) extendable.

FIG. 5. Penrose diagrams illustrating the structure of spacetime in the case of two null fluids. Both panels describe the location of the
numerical domain of integration and the null fluids in spacetime; while panel (a) focuses on initial data, panel (b) analyzes the different
patches of spacetime. In both panels, the domain’s limits are denoted by a double black line; solid black lines denote null infinity; dashed
black lines denote the EH; dashed-dotted black lines denote the IH. Wavy lines denote the timelike r ¼ 0 singularity of RN geometry, as
well as the spacelike r ¼ 0 singularity and the (suspected) null r ¼ 0 singularity that develop in this case. Dotted black lines denote the
ingoing null-fluid stream limits v ¼ v3 and v ¼ v4, as well as the outgoing null-fluid pulse limits u ¼ u1 and u ¼ u2. The blue curve in
panel (a) represents the ingoing null-fluid stream on the initial ray u ¼ u0. The red curve represents the outgoing null-fluid pulse on the
initial ray v ¼ v0; its shape roughly reflects the shape of the pulse in Tuu but with a different choice for the coordinate u [say,
u0 ¼ −rðu; v0Þ], which simplifies its form. Panel (b) demonstrates that spacetime could be divided into eight distinct patches: three
patches of RN geometry (RN1, RN2 and RN3, initial, asymptotic and internal accordingly), two patches of ingoing null-fluid stream
(RNVi, diagonal blue stripes), two patches of outgoing null-fluid pulse (RNVo, diagonal red stripes), and the patch in which both fluids
intersect and the spacelike singularity develops (TNF, the checkered purple patch).

13Due to our gauge selection [Eq. (9)], the value of r is frozen
on the initial ray v ¼ v0 at the vicinity of the EH and r;u vanishes
there (as explained in Ref. [33]). If TNF

uu ðuh; v0Þ is nonvanishing
we would have diverging pulse mass at the EH.

14The difference between this value and the one in the single
null fluid case is of order 10−3.

15Due to the proximity of u2 ≃ 253.72 to umax ¼ 253.7375,
this value is somewhat uncertain. The numerical error is of order
0.002 but convergence quality is poor.
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At first glance, the numerical results for rðu; vÞ (Fig. 6)
appears quite similar to the single null fluid case; panel (a),
which displays results on the entire grid, seems almost
identical to panel (a) of Fig. 3. A zoom near u ¼ umax ¼
253.7375 [panels (b) and (c)] reveals a fundamental differ-
ence; while in the single null fluid case the grid ended
regularly, in case of two null fluids we detect a r ¼ 0
singularity which breaks down the numerics (the border
with the criss-cross patch, in which results are unavailable).
The exact nature of this singularity is somewhat open to
debate. While it clearly contains a spacelike section—the
diagonal border of the criss-cross patch in panel (b), which
extends from v ∼ 22 up to vmax ¼ 120—it may also contain

a null (v ¼ const) section, which is indicated at the top left
of panel (b) and the focus of panel (c). If this is indeed a null
section and not a different spacelike section, it is not well
known; this is not a naked singularity which is a known
phenomenon in Vaidya [34] and charged Vaidya [35,36]
geometries. The null classification is uncertain, however,
mainly due to the proximity to the edge of the grid
(where numerical fluxes may cause unexpected effects)16
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FIG. 6. Numerical results for rðu; vÞ in the case of two null fluids. The panels display contour graphs of rðu; vÞ based on numerical
results; panel (a) displays results on the entire grid; panel (b) displays a zoom deep inside the BH, near u ¼ umax ¼ 253.7375; panel
(c) displays a further zoom on the top left corner of panel (b). Panel (a) uses different color code and different level choice for r from
panels (b) and (c) for the sake of visibility. The criss-cross patch on panels (b) and (c) represents a region in which numerical results are
unavailable due to the r ¼ 0 singularity. Panel (b) reveals the presence of a spacelike r ¼ 0 singularity; it manifests as the diagonal
border of the criss cross patch. Panels (b) and (c) hints on the presence of a null r ¼ 0 singularity, represented by the (approximately)
vertical border of the criss-cross patch. Panel (a) is based on N ¼ 640 numerical results sampled in a lower resolution
ðΔsu ¼ Δsv ¼ 0.1Þ, while panels (b) and (c) are based on N ¼ 640 numerical results without any sampling.

16For instance, we suspect that the slight turn left of this section
of the singularity at u ¼ umax ¼ 253.7375 is an artifact due to
numerical fluxes.
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and the short span of this section (∼0.03 in u). We
also note that despite the way this section is drawn in
Fig. 5, it is uncertain if this section begins at the
end of the outgoing null fluid pulse ðu2 ≃ 253.72Þ or
earlier. We conclude that this section (and the nature
of singularities in this case in general) requires

further study, which is beyond the scope of the current
paper.

C. Gravitational shock detection

The gravitational shock wave is demonstrated in Figs. 7
and 8. Panel (a) of Fig. 7 presents rðτÞ on a family of
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FIG. 7. Gravitational shock wave in the case of two null fluids. Panel (a) presents rðτÞ for a family of radial timelike geodesics;
panel (b) presents rðλÞ for a series of ingoing radial null geodesics. Geodesics are solid lines, distinguished by different colors and
different timing parameter values; the timing parameter is Vh for timelike geodesics and V for null geodesics. The dashed black curve in
panels (a) and (b) denotes the evolving IH value of the geodesics; r−ðVhÞ in panel (a) and r−ðVÞ in panel (b). Panel (c) displays the same
timelike family of panel (a), but shifted in r and τ [by subtracting the specific r−ðVhÞ value of each geodesic from rðτÞ and shifting τ by a
constant factor (τshift¼ði−1Þ×0.01−τðiÞf for the i-th geodesic from the left, where i ¼ 1;…17 and τðiÞf is the last proper time value of the
geodesic)]. Panel (d) displays the same null series of panel (b), but shifted in r and λ in a similar fashion [subtraction of the specific r−ðVÞ
value of each geodesic from rðλÞ and a shift of λ by λshift¼ði−1Þ×0.01−λðiÞf for the i-th geodesic from the left, where i ¼ 1;…15 and λðiÞf
is the last affine parameter value of the geodesic). Panels (a) and (c) contain timelike geodesics at the range 0 ≤ Vh ≤ 80, where Vh
increases by increments of 5 from left (Vh ¼ 0) to right ðVh ¼ 80Þ; panels (b) and (d) contain grid null rays at the range−3.3 < V < 92.6,
with irregular V values and irregular increments of V from left ðV ≃ −3.2Þ to right ðV ≃ 92.5Þ. Gravitational shock manifests as a sharp
drop or “break” in rðτÞ=rðλÞ at the IH; the shock is first seen clearly on Vh ¼ 20=V ¼ 20.1, and is easier to observe in panels (c) and (d).
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timelike geodesics; panel (b) displays rðλÞ on a series of
null geodesics. In both cases the shock manifests as a sharp
“break” or a vertical “drop” in rðτÞ=rðλÞ, located at the
specific crossing point of r ¼ r− of the geodesic. Since the
aforementioned “scale stretching” problem prevents a close
inspection of the break (and obscures the shock), we draw
the geodesics together by a simple shift in r and τ=λ in
panels (c) and (d) of Fig. 7. These panels display the same
geodesics as panels (a) and (b) (accordingly), but each
curve is now shifted by a different constant r− and a
different constant τ=λ; the shift by r− allows us to confirm
more clearly that the shock is indeed located at the specific
r− value of each geodesic.
The shock does not form immediately after the null fluid

stream begins (at V ≃ 5.63). The first clear observation
of the shock is seen in the timelike geodesic Vh ¼ 20 [fifth
from the left in panels (a)/(c)] or in the null geodesic

V ¼ 20.1 [fourth from the left in panels (b)/(d)].17

However, panels (c) and (d) indicate that once the shock
forms it sharpens very quickly; for instance, it is hard to
differentiate between the sharp features of timelike geo-
desics in the range 30 ≤ Vh ≤ 70 in panel (c).
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FIG. 8. Gravitational shock wave in the case of two null fluids. Panel (a) displays rðλÞ for a series of ingoing radial null geodesics; panel
(b) displays the same set of geodesics, shifted in r and λ in a similar fashion to Fig. 7(d); here we subtract the specific r−ðVÞ value of each
geodesic from its rðλÞ and shift λ by −λf (the specific final λ value of the geodesic). The geodesics are solid lines, distinguished by
different colors. The set consists of grid null rays at the range −3.3 < V < 95.7with irregular V values and increments of V; the series of
Fig. 7(b) is a subset of this series. In both panels, the results are cut in r and λ in order to allow visibility. The shock manifests as a sharp
“break” or drop in rðλÞ at the IH (r−ðVÞ). Panel (b) demonstrates this better due to the shift.

17We emphasize that Vh and V are different timing parameters,
even though they are based on the same coordinate; a timelike
geodesic crosses the horizon at a certain V ¼ Vh value but
reaches r ¼ r− at a higher, V > Vh, value. So the timelike
geodesic Vh ¼ 20 is actually “later” in terms of shock develop-
ment than the null geodesic V ¼ 20, even though the geodesics
intersect at the EH. Also, we note that it appears for both
geodesics [timelike Vh ¼ 20 and null V ¼ 20.1, in panels (c) and
(d)] like the shock begins “prematurely,” at r > r−. This is a scale
artifact which vanishes with a zoom in; the geodesics are actually
still smooth at the apparent breaking point.
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While Fig. 7 demonstrates the shock very clearly
[especially panels (c) and (d)], the visual effect remains
somewhat limited: isolated and localized. We wish to
reconstruct EO’s more global “vertical wall” representation
of the shock. For this purpose, Fig. 8 presents rðλÞ of a
series of null geodesics in a three-dimensional graph. The
geodesics are taken from a similar V range to the one in
Fig. 7(b) but with a denser sampling. Panel (a) presents the
exact rðλÞ curves of the geodesics; panel (b) presents the
same geodesics, shifted by constant r− and λ values in a
similar fashion to panels (c) and (d) of Fig. 7. Although the
earliest geodesics are smooth, we can see in panel (a) that
each late geodesic “breaks” to a sheer drop at a different r
value. In panel (b) we confirm that this value is indeed the
appropriate r−ðVÞ value of the geodesic; we see the
formation of the infamous “vertical wall”.

D. Shock sharpening rate

MO predicted from analytical considerations that any
characteristic Δτ width of the shock18 is expected to
decrease exponentially according to Δτ ∼ e−κ−veh , where
κ− was the constant RN (or Kerr) surface gravity at
the IH and veh was their timing parameter for timelike
geodesics—the value of Eddington advanced time coor-
dinate at the EH. EO have confirmed MO prediction
numerically. We do not expect this relation to hold in
our case since we have a slowly growing surface gravity at
the IH. We also have different timing parameters, the
aforementioned Vh and ~Vf (defined at Sec. III AC and as
yet unused). We expect that if we chose our timing
parameters wisely they should admit a simple analytical
expression for the shock sharpening rate.
In order to analyze the sharpening rate, we first need to

define a specific characteristic Δτ width of the shock. We
again follow EO ansatz and define Δτ as the proper time
duration to drop from 0.75r−ðvÞ to 0.25r−ðvÞ along the
geodesic.19 Figure 9 presents the rapid decrease in this
characteristic width as a function of the timing parameter
Vh. Each point in this figure represents the characteristic
shock width of a single timelike geodesic from Fig. 7(a);
our characteristic width is unavailable for geodesics in the
range Vh < 25 since they do not reach r ¼ 0.25r−ðvÞ in
our simulation. The decrease in lnðΔτÞ is very rapid,
reaching extreme orders of lnðΔτÞ ∼ −1200; the nonlinear
pattern of the decrease confirms our suspicion that the
simple exponential law of MO is no longer valid.

We consider two new generalized sharpening rate laws in
Fig. 10, each associated with a different timing parameter.

We consider the possible sharpening rate law Δτ ∼
e−

R
κ−ðVhÞdVh in panel (a), by comparing κ−ðVhÞ to the

derivative

− d lnðΔτÞ
dVh

; we consider the possible law Δτ ∼ e−
R

κ−ð ~VfÞd ~Vf

in panel (b) by comparing κ−ð ~VfÞ to the derivative

− d lnðΔτÞ
d ~Vf

.20 The derivatives and κ− curves were calculated

using Matlab spline cubic interpolation. Both sharpening
rate laws offers a match that seems too good to be
coincidental; we argue that the second sharpening rate
law offers a slightly better match due to a better asymp-
totic match.

VI. THE MIXED CASE: AN INGOING NULL
FLUID WITH A SELF GRAVITATING

SCALAR FIELD

We construct our mixed case through the addition of an
ingoing self-gravitating scalar-field pulse to the initial data
setup described in Sec. IVA. We also slightly modify our
ingoing null-fluid stream in order to preserve its mass
contribution. EO have already demonstrated the existence
of a gravitational shock in the self-gravitating scalar-field
case; here we are interested in the effect of the null-fluid
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FIG. 9. Gravitational shock width decrease in the case of two
null fluids. The graphs presents lnðΔτÞ as a function of the timing
parameter Vh. Each point represents a single radial timelike
geodesic from the family of Fig. 7(a) (at the range 25 ≤ Vh ≤ 80,
where Vh increases by increments of 5). The nonlinear behavior
of lnðΔτÞ suggests that the original MO’s linear relation indeed
breaks as expected due to the change in κ−ðVhÞ.

18Characteristic width was (generally) defined as the proper
time duration between two points near the IH on a timelike
geodesic on which the perturbation (or r) receives different
values. We follow MO and EO and focus our sharpening rate
analysis on timelike geodesics as well.

19Note, however, that in EO case r− was constant (the IH value
of the asymptotic RN BH) and in our case it is a function of v.

20The associated κ− value of each geodesic is calculated by
submitting mBHðvÞ at the last v value of the geodesic (deep inside
the shock) in Eq. (12). We then associate this value with the
chosen timing parameter of the geodesic, Vh or fVf.
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stream on a previously generated shock. Again, we
demonstrate the shock presence and analyze its sharpening
rate by the same methods of the previous section.

A. Basic parameters and initial conditions

The initial RN spacetime has the same parameters as in
the previous two cases—initial mass parameter of M0 ¼ 1
and charge parameter of Q ¼ 0.95. We define an ingoing
self-gravitating scalar-field pulse on the initial ray u ¼ u0
in the same fashion as EO did,

Φðu0; vÞ ¼
�
A3

64ðv−v1Þ3ðv2−vÞ3
ðv2−v1Þ6 j v1 ≤ v ≤ v2

0 j otherwise;
ð17Þ

where A3 is an amplitude parameter. Similar to the outgoing
null-fluid pulse from the previous section, this scalar-field
pulse has compact support on the initial ray u ¼ u0, and is
limited to a certain v range, v1 ≤ v ≤ v2. We choose v1 ¼ 1
and v2 ¼ 7 (like EO did)21 but a slightly higher value of A3

than EO’s (A3 ¼ 0.1201) in order to set the mass contri-
bution of the pulse to the BH to be ΔmΦ;vmax ≃ 0.5. The
relative location of the pulse and its shape are illustrated in
panel (a) of Fig. 11. The ingoing null fluid stream has the
same form of Eq. (15), but we slightly raise its amplitude as
well (to A1 ¼ 4.267591 × 10−4) in order to preserve the
mass contribution to the BH (ΔmNF;vmax ≃ 1.5). The
stream begins at r1 ¼ 10, which is now equivalent to

v3≃14.77 or V3 ≃ 7.35. Overall we get a BH with a mass
ofmBH;vmax ≃ 3.0; the corresponding EH and IH values are
rþ;vmax ≃ 5.846 and r−;vmax ≃ 0.1544, and the correspond-
ing IH surface gravity is κ−;vmax ≃ 119.4. The EH is
reached earlier than the previous two cases, at uh ≃ 42.9.
The remaining initial values are taken according to the

third column of Table I. In particular, TNF
vv vanishes on

v ¼ v0; TNF
uu vanishes on both initial rays; the scalar fieldΦ

vanishes on v ¼ v0 and σ conforms on both rays with the
maximal-σ gauge condition [Eq. (9)].
The domain of integration is u0¼v0¼0, umax¼298.65,

and vmax ¼ 120. The value of r in the initial vertex is r0 ¼ 5
and it grows up to r≃ 40.02 at rðu0; vmaxÞ. The third corner
of the grid is rðumax; v0Þ≃ 0.1003; the fourth corner
ðumax; vmaxÞ is located (again) beyond a spacelike singularity.

B. The structure of spacetime

The structure of spacetime in this case (displayed on
Fig. 11) is simpler than the case of two null fluids in several
respects: there are only four patches of spacetime, and only
three of them are covered in our simulation; the borders
between the patches are always v ¼ const rays; spacetime
is (mostly) nonextendable due to presence of a (well
known) spacelike r ¼ 0 singularity.22 The initial RN patch
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FIG. 10. Shock sharpening rate in the case of two null fluids. Panel (a) tests the possible connection Δτ ∼ e−
R

κ−ðVhÞdVh by comparing

the increasing κ−ðVhÞ to the derivative − d lnðΔτÞ
dVh

; panel (b) tests the possible connection Δτ ∼ e−
R

κ−ð ~VfÞd ~Vf by comparing κ−ð ~VfÞ to the

derivative− d lnðΔτÞ
d ~Vf

. Both relations provide a fairly good match; we argue there is a slight advantage for the second [Δτ ∼ e−
R

κ−ð ~VfÞd ~Vf of

panel (b)], due to a better asymptotic match. The calculations of the derivatives and κ− curves are based on Matlab cubic spline
interpolation of data from the geodesics of Fig. 9.

21This range is equivalent to −6.64 ≤ V ≤ 0.

22The ingoing CH at the border of the last patch PC3 also
contains a well known curvature singularity, though a weak one.
While this singularity does not prevent the extension of spacetime
in the physical sense, the extension is not well defined (not
unique).
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ends at v ¼ v1; it is followed by perturbed charged patch
(PC1) which contains a self gravitating scalar-field pertur-
bation. The spacelike singularity and the gravitational
shock wave originate from this patch; it ends at the
beginning of the null fluid stream at v ¼ v3. The second
perturbed charged patch (PC2) contains the null fluid
stream as well as the (slowly decaying) scalar-field; this
is the most interesting patch to us, and it ends with the null
fluid stream at v ¼ v4. The last perturbed charged patch
(PC3) contains, again, just the slowly decaying scalar field.
Asymptotically, the geometry of this patch outside the BH
and at the close vicinity of the EH is RN geometry with
some unknown massmfinal. This patch is not covered in our
simulation.
The numerical results for rðu; vÞ (Fig. 12) demonstrate

the spacelike r ¼ 0 singularity very clearly; this time it is
even noticeable at the full grid level [panel (a)], although a
closer zoom [panel (b)] is needed in order to reveal its
spacelike nature (the curved shape of the border of the criss
cross patch). This zoom also offers us some puzzlement in
the form of two seemingly null sections of the singularity;
one vertical v ¼ const section of the border (begins at
u ∼ 295) and one horizontal u ¼ const section of the
border (begins at v ∼ 7). We focus on these sections on
panels (c) and (d). We argue that these sections are not
likely to represent true null singularity sections, however,

for several reasons. Panels (c) and (d) reveal a smooth
transition between these sections and spacelike sections;
the truly null sections appear much shorter in these
panels.23 The quick succession of null-spacelike-null-
spacelike sections raises further skepticism. Lastly, these
sections are located mostly in the patch PC1, before the null
fluid stream (the vertical section is entirely in PC1; the
horizontal section ends at v ∼ 15, where PC2 begins at
v≃ 14.77); scalar-field perturbation is not known to
generate null r ¼ 0 singularities. We tend to conclude that
these sections are actually spacelike sections and suggest
that the changes in appearance of the spacelike singularity
represent changes of phases in spacetime [e.g. the end of
the main scalar field pulse (on v ¼ 7 at u ¼ u0, slightly
later on higher u values), and the beginning of the null fluid
stream]. We are aware this explanation raises further doubts
regarding the nature of the suspected null r ¼ 0 singularity
in the two null fluids case (Sec. V B); we have already

FIG. 11. Penrose diagrams illustrating the structure of spacetime in the mixed case. Both panels describe the location of the
numerical domain of integration and the different perturbations in spacetime; while panel (a) focuses on initial data, panel (b) analyzes
the different patches of spacetime. In both panels, the domain’s limits are denoted by a double black line; solid black lines denote null
infinity; dashed black lines denote the EH; dashed-dotted black lines denote the IH. Wavy lines denote the timelike r ¼ 0 singularity
of the initial RN geometry, as well as the spacelike r ¼ 0 singularity that develops in this case. Dotted black lines denote the limits of
the ingoing scalar-field pulse on the initial ray u ¼ u0 (v ¼ v1 and v ¼ v2) and the ingoing null-fluid stream limits v ¼ v3 and v ¼ v4.
The blue curve in panel (a) represents the ingoing null-fluid stream on the initial ray u ¼ u0. The red curve represents the ingoing
scalar-field pulse on the same initial ray; its shape reflects directly the shape of the pulse in Φ. Panel (b) demonstrates that spacetime
could be divided into four distinct patches: one patch of initial RN geometry (RN), and three patches of perturbed charged geometry
(PC1, PC2 and PC3). PC1 and PC3 are perturbed only by the scalar field; PC2 is perturbed by the null fluid stream and the scalar field.
The patch PC3 is not covered in our simulation and has asymptotically RN geometry outside the BH (and at the close vicinity
of the EH).

23The vertical null section seems to begin at u ∼ 295 on panel
(b) and on u ∼ 298 on panel (c); the horizontal null section seems
to begin at v ∼ 11 on panel (b) and on v ∼ 12.8 on panel (d).
Further zoom on panel (c) shortens the vertical section even
further; further zoom on panel (d), however, does not change
the length of the horizontal section, perhaps due to resolution
limit.
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agreed that further research is needed in order to confirm its
existence.

C. Gravitational shock detection

The gravitational shock wave is demonstrated in Figs. 13
and 14. Panels (a) and (c) of Fig. 13 display the shock in rðτÞ
of timelike geodesics; panels (b) and (d) display the shock in
rðλÞ of null geodesics. Again, panels (c) and (d) display the
same geodesics as panels (a) and (b) but with a shift in r and

τ=λ in order to allow clearer observation of the shock. The
general picture is very similar to the case of two null fluids;
the shock manifests as a clear vertical drop in rðτÞ=rðλÞ,
located at the appropriate r− value of the geodesic. The main
difference is that now the shock begins earlier, due to the
scalar-field pulse; it could be observed as early as the timelike
geodesic Vh ¼ 5 or the null geodesic V ¼ 8.4. In panels (a)
and (b), one could notice the short break between the end of
the scalar field pulse and the beginning of the null fluid
stream on which r− is roughly constant; this break is located
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FIG. 12. Numerical results for rðu; vÞ in the mixed case. The panels display contour graphs of rðu; vÞ based on numerical results;
panel (a) displays results on the entire grid; panel (b) displays a zoom deep inside the BH, near u ¼ umax ¼ 298.65; panels (c) and
(d) display further zooms on panel (b). Panel (a) uses different color code and different level choice for r from panels (b)-(d) for the sake
of visibility. The criss-cross patch in all panels represents a region in which numerical results are unavailable due to the r ¼ 0 singularity.
Panel (b) reveals the presence of a spacelike r ¼ 0 singularity; it manifests as the curved border of the criss cross patch. There are also a
horizontal section and a vertical section of the border in panel (b) that could have hinted on the existence of two sections of null
singularity; we argue in the text that this is not likely here. Panels (c) and (d) focus on these sections. Panel (a) is based on N ¼ 640
numerical results sampled in a lower resolution ðΔsu ¼ Δsv ¼ 0.1Þ; panel (b) is based on N ¼ 640 results with a sampling on v alone
ðΔsv ¼ 0.05Þ; panels (c) and (d) are based on N ¼ 640 results without any sampling.
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between the timelike geodesics Vh ¼ 0 and Vh ¼ 5 in panel
(a) and the null geodesics V ¼ 1 and V ¼ 8.4 in panel (b).24

After this break r−ðvÞ continues to decrease.
We demonstrate the “vertical wall” representation of

the shock through null geodesics in a three-dimensional
graph in Fig. 14. Panel (a) displays the true rðλÞ curves of

the geodesics while panel (b) displays shifted curves.
Again, we use geodesics from the same range of
Fig. 13(b) but with a denser sampling. Here, unlike the case
of two null fluids, all the geodesics seem “broken”, each one
breaks to a sheer drop at a different r value. Panel (b) con-
firms that this is indeed the right r−ðVÞ value.

D. Shock sharpening rate

We turn next to analyze the sharpening rate of the shock
by the same method used in Sec. V D. Fig. 15 presents the
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FIG. 13. Gravitational shock wave in the mixed case. Panel (a) presents rðτÞ for a family of radial timelike geodesics;
panel (b) presents rðλÞ for a series of ingoing radial null geodesics. Geodesics are solid lines, distinguished by different colors
and different timing parameter values; the timing parameter is Vh for timelike geodesics and V for null geodesics. The dashed black
curve in panels (a) and (b) denotes the evolving IH value of the geodesics; r−ðVhÞ in panel (a) and r−ðVÞ in panel (b). Panels (c) and
(d) display the same set of geodesics as panels (a) and (b) (accordingly) but shifted by constant factors in the same fashion as panels (c)
and (d) of Fig. 7. Panels (a) and (c) contain timelike geodesics at the range 0 ≤ Vh ≤ 75, where Vh increases by increments of 5 from left
(Vh ¼ 0) to right ðVh ¼ 75Þ; panels (b) and (d) contain grid null rays at the range 0 < V < 81.5, with irregular V values and irregular
increments of V from left ðV ≃ 1Þ to right ðV ≃ 81.4Þ. Gravitational shock manifests as a sharp drop or “break” in rðτÞ=rðλÞ at the IH;
the shock is first seen clearly on Vh ¼ 5=V ¼ 8.4 [the second geodesic from the left in panels (a) and (c)/panels (b) and (d)] and is easier
to observe in panels (c) and (d).

24Although the shock is not well developed in the geodesics
Vh ¼ 0 and V ¼ 1 and V ¼ 8.4 is already inside the null fluid
stream.
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decrease in the characteristic width of the shock Δτ (the
same width defined in Sec. V D). Each point represents a
single timelike geodesic from Fig. 13(a); in this case we
have characteristic widths for all of them. The decrease in
lnðΔτÞ is extreme, reaching orders of lnðΔτÞ ∼ −3250.
Figure 16 considers the same two suggested sharpening

rate laws as Fig. 10, Δτ ∼ e−
R

κ−ðVhÞdVh in panel (a) and

Δτ ∼ e−
R

κ−ð ~VfÞd ~Vf in panel (b), by checking the relevant
matches between κ− and the derivative of − lnðΔτÞ.
The match for both laws is, again, fairly good but not
perfect; we notice a clear difference between the curves
of κ− and the derivatives in the early phase (Vh ≲ 30,
~Vf ≲ 45) as well as additional difference for the first law at
interim Vh values ð40≲ Vh ≲ 70Þ. We (again) argue

that the second connection (Δτ ∼ e−
R

κ−ð ~VfÞd ~Vf ) provides
a better description of the sharpening rate due to the
better match between κ− and the relevant derivative of
− lnðΔτÞ.
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FIG. 14. Gravitational shock wave in the mixed case. Panel (a) displays rðλÞ for a series of ingoing radial null geodesics;
panel (b) displays the same set of geodesics, shifted in r and λ in a similar fashion to Fig. 8(b). The geodesics are solid lines,
distinguished by different colors. The set consists of grid null rays at the range 0 < V < 81.5 with irregular V values and increments of
V; the series of Fig. 13(b) is a subset of this series. In both panels the results are cut in r and λ in order to allow visibility. The shock
manifests as a sharp “break” or drop in rðλÞ at the IH (r−ðVÞ). Panel (b) demonstrates this better due to the shift.

0 10 20 30 40 50 60 70 80
−3500

−3000

−2500

−2000

−1500

−1000

−500

0

V
h

ln
(Δ

τ)

FIG. 15. Gravitational shock width decrease in the mixed
case. The graphs presents lnðΔτÞ as a function of the timing
parameter Vh. Each point represents a single radial timelike
geodesic from the family of Fig. 13(a) (at the range 0 ≤ Vh ≤ 75,
where Vh increases by increments of 5).
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VII. DISCUSSION

Although we did not observe the gravitational shock
wave in the single null fluid case, we have detected it in the
case of two null fluids and in the mixed ingoing null-fluid/
self-gravitating scalar-field case. In both cases the shock
manifests as a sharp break or a sheer drop in rðτÞ (or rðλÞ)
of timelike (or null) geodesics, located at the crossing point
of r ¼ r−ðvÞ of the geodesic. r−ðvÞ decreases monotoni-
cally due to null fluid accretion; the match between the
shock location to r ¼ r−ðvÞ is conserved throughout the
process. The characteristic width of the shock Δτ decreases
rapidly in both cases. Since MO’s original sharpening rate
law is no longer valid, we have tested two generalized
sharpening rate laws through a match between κ− curve and
the relevant derivatives of − lnðΔτÞ. We have discovered

that the generalized sharpening rate law Δτ ∼ e−
R

κ−ð ~VfÞd ~Vf

offers a fairly good match to the shock sharpening rate in
both cases, though not perfect. In addition, we have gained
new insight into the internal (classical) structure of the BH
in the case of two null fluids perturbation; our numerical
rðu; vÞ results provided strong evidence for the existence of
a spacelike r ¼ 0 singularity, and a possible indication for
the existence of a null non-naked r ¼ 0 singularity,
although this indication is uncertain and requires further
research.
Our gravitational shock differs from the one EO dis-

cussed (in the self-gravitating scalar field case) in two main
respects. Our r−ðvÞ decreases due to long term accretion;
EO observed MO original sharpening rate law of the

shock, Δτ ∼ e−κ−veh , while we observed a generalized

law (Δτ ∼ e−
R

κ−ð ~VfÞd ~Vf ), although it follows immediately
that EO sharpening rate law is just a private case of our
generalized sharpening rate in the case of a constant κ−,
with the proper change in timing parameter selection.
The existence of a spacelike r ¼ 0 singularity in case of

two null fluids perturbation is not entirely surprising.
Besides the well known spacelike singularity of the self-
gravitating scalar-field case, [10,15] a spacelike singularity
is known to develop in a special two null fluids case, where
the ingoing and the outgoing null fluid fluxes are equal and
time-independent; [37–39] in this case spacetime is homog-
enous and a spacelike singularity develops from the outset,
without a null singularity at the CH at all. In our two null
fluids case, however, the fluxes are unequal (and time
dependent); as far as we are aware of, the existence of a
spacelike r ¼ 0 singularity in this case has not been
demonstrated before in publications.
The minor mismatch in our sharpening rate law graphs

[the differences between the curve of κ− and the curves of
the derivatives of − lnðΔτÞ] may be caused by timing
parameter choice. We discuss at some length in Sec. A 1 of
the Appendix the differences between the variants of RNV
advanced time; we argue that ~V should be a “better” RNV
coordinate than V deep inside the BH (at the shock region)
as it is calculated closer to the shock. (similar argument
should also apply on the choice to evaluate the timing
parameter at the shock location instead of the EH crossing).
It follows logically that ~Vf is a better timing parameter than
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FIG. 16. Shock sharpening rate in the mixed case. We test the same connections as in Fig. 10; panel (a) tests Δτ ∼ e−
R

κ−ðVhÞdVh and

panel (b) tests Δτ ∼ e−
R

κ−ð ~VfÞd ~Vf . Again, both relations provide a fairly good match but the second [Δτ ∼ e−
R

κ−ð ~VfÞd ~Vf of panel (b)],
offers a better asymptotic match. The calculations of the derivatives and κ− curves are based on Matlab cubic spline interpolation of data
from the geodesics of Fig. 15.
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Vh as it describes the dynamics of spacetime inside the BH
more accurately. But what if the “right” timing parameter
actually belongs to a third variant of RNV advanced time
coordinate, calculated in the vicinity of the shock instead of
the EH? Such calculation is technically problematic in the
current version of the code,25 but may resolve some of the
differences between the curves. In the mixed case, we have
an even better reason to doubt the accuracy of our timing
parameter choice; as discussed in the Appendix, at the early
stages of the simulation, when the scalar field is dominant,
the coordinates of our timing parameters are not “good”
RNV coordinates, only approximated RNV coordinates;
thus, we expect them to be less successful in describing
accurately the development of the shock at this stage.
Indeed, the mismatch in the mixed case is very dominant in
the early stage. The mismatch may be, in theory, an artifact
of our cubic spline interpolation procedure; we do not
believe this to be the case since the interpolated series of
Figs. 9 and 15 seem to describe a reasonably smooth
function sampled at a decent resolution. Moreover, the
mismatch is more obvious at low values of the timing
parameter Vh and the function lnðΔτÞ is actually milder
there.
We recognize two possible issues that could potentially

compromise the reliability of our numerical results. The
first issue is the fact that our simulation is entirely classical,
while we expect quantum gravity to become relevant at the
close vicinity of the r ¼ 0 singularity. The second issue is
the decline in performance of the numerical solver near this
singularity (discussed in Sec. III). We argue that while
quantum gravity may replace the r ¼ 0 singularity with a
regular extension of spacetime, it is irrelevant for our
shock results, and even for the general location of the
(would be) r ¼ 0 spacelike singularity. We demonstrate
this by a simple calculation of Planck length in our units
(c ¼ G ¼ M0 ¼ 1). From units considerations, the reduced
Planck constant satisfies ℏ ∝ GM2

0=c, so we can find that in
our units ℏ ≈ 4.74 × 10−78.26 Planck length turns out to be a

square root of this number in our units since lP ¼
ffiffiffiffiffi
ℏG
c3

q
≈

2.18 × 10−39. This number is many orders of magnitude
below the lowest r value in which we maintain numerical
reliability (of order r ∼ 10−2).
We classify our numerical results into three categories of

numerical reliability. We consider the shock detection

results to be highly reliable: (i) they are confirmed by
two different and independent mechanisms, results on
timelike and null geodesics; (ii) they begin quite far from
the r ¼ 0 singularity (r ≈ 0.48 in the case of two null fluids
perturbation, r ≈ 0.34 in the mixed case); (iii) they are
supported by numerical convergence indicators [e.g. the
overlap of N ¼ 320 and N ¼ 640 timelike geodesics
results in Figs. 4(a), 7(a) and 13(a)]. The second category
contains results we consider reliable: the detection of a
spacelike r ¼ 0 singularity in the case of two null fluids
and our sharpening rate law analysis. The exact location of
the spacelike singularity might be slightly distorted due to
numerical performance (or resolution limits) issues, but its
spacelike nature is a clear and consistent feature across the
grid. Our sharpening rate analysis is based on highly
reliable timelike geodesics data but involves an interpola-
tion mechanism which may slightly distort the curves
shape, but not alter the basic match between the curves
of κ− and the derivatives of − lnðΔτÞ (also, since both
κ− and the derivative curves are interpolated in the same
fashion, they are unlikely to be distorted in different
directions). As we have already elaborated, the detection
of a null r ¼ 0 section of the singularity in the case of two
null fluids belongs to the third category—it is uncertain and
requires further research.
Our research could be extended in many directions. Due

to the limited scope of this paper, we have focused our
attention on the gravitational shock (or the shock in the
metric function r). Nevertheless, the shock is expected to
manifest in the scalar field as well. It could be interesting to
analyze the effect of the null fluid stream on the shock in
the scalar field Φ in the mixed case, as a “toy model” for
interaction between two different types of perturbations in
the context of the shock; astrophysical BHs are expected to
accrete matter as well as radiation. It could also be
enlightening to study how the shock manifests, if at all,
in various curvature scalars; MO and EO have not dis-
cussed their behavior specifically in the context of the
shock, but equivalent studies have been made regarding
CH, a well known curvature singularity in the perturbed
charged (or spinning) case (see e.g. Ref. [26] for a recent
numerical study in Kerr).
We believe that the most acute next step in the numerical

study of the shock is the extension of the research to
spinning BHs. Astrophysical BHs are expected to be
spinning; for instance, in recently detected gravitational
waves events GW150914 [40] and GW151226, [41] the
outcome of the mergers was BHs with a significant spin,
a=m ∼ 0.7. As far as we are aware, there had been no
numerical verification of the shock existence in the spin-
ning case. This numerical study would be extremely
challenging due to the lack of spherical symmetry.
A different research direction stemming from our

research is the numerical study of the internal structure
of charged BHs perturbed by two null fluids. Possible

25The calculation is difficult due to the presence of mass
inflation inside the BH and the unavailability of the derivative r;u.
As explained in the Appendix, either m or r;u is needed for the
calculation of RNV advanced time coordinate in our algorithm.

26The calculation requires an assumption regarding the actual
value of the initial black hole mass, M0. We take it to be of order
of a stellar BH, M0 ¼ 5 M⊙ ≈ 1031 Kg. Since the value of
Planck length in our units turns out to be inverse proportional to
the mass, our argument is even stronger for supermassive BH, of
mass order of ∼105 M⊙ or more.
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concrete objectives are determining the exact nature of the
spacelike r ¼ 0 singularity and the possible existence of a
null, non-naked r ¼ 0 singularities. This research would
require an improvement in the numerical performance of
our algorithm near the singularity; both the ODE solver of
the constraint equation on the initial ray u ¼ u0 [Eq. (6)]
and the grid bulk solver of the PDEs need to be
“immunized” against the singularity. A possible mecha-
nism may be a special gauge selection. EO have used a
special gauge variant of the maximal-σ gauge, called the
singularity approach gauge. This variant was intended to
resolve the approach to a contracting CH on the grid final
ray v ¼ vmax. If this gauge could be generalized to resolve
any approach to r ¼ 0 (on any v value), it should be a
suitable candidate for this research.
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APPENDIX: RNV ADVANCED
TIME COORDINATE

1. Definition, numerical calculation
and interpretation

The definition and calculation of the RNVadvanced time
coordinate is identical for all the scenarios in this paper,
although the meaning and the interpretation of the coor-
dinate differ. We now describe spacetime with a new
metric, the ingoing RNV metric. The line element is
defined [in the coordinates ðV; r; θφÞ� as

ds2¼−
�
1−

2mðVÞ
r

þQ2

r2

�
dV2þ2dVdrþ r2dΩ2: ðA1Þ

In order to find RNV advanced time coordinate V as a
(numerical) function of the numerical coordinate v, we
have applied two different methods: (i) we calculated V
using the coordinate transformation from RNV metric to
our metric [given by the line element of Eq. (1)]; (ii) we
considered an outgoing null ray that satisfies ds2 ¼ 0 and
dΩ2 ¼ 0. The results of these two independent calculations
are denoted below as VaðvÞ and VbðvÞ, accordingly. We
hereby explain both methods and demonstrate that they
yield consistent results.
The standard metric coordinate transformation satisfies

g0μν ¼ gαβ ∂xα
∂xμ

∂xβ
∂xν. In particular, since ∂V

∂u ¼ 0, guv yields

guv ¼ −
eσ

2
¼ gαβ

∂xα
∂u

∂xβ
∂v ¼ ∂r

∂u
∂V
∂v :

We can isolate ∂V
∂v and integrate to obtain

VaðvÞ ¼ −
Z

eσ

2r;u
dv: ðA2Þ

Alternately, we may consider an outgoing null ray
u ¼ const. Since this geodesic satisfies ds2 ¼ 0 and
dΩ2 ¼ 0, we obtain from the line element [Eq. (A1)]

2dVdr ¼
�
1 −

2mðVÞ
r

þQ2

r2

�
dV2:

Now we can isolate dV
dr and integrate to obtain

VbðvÞ ¼
Z

2

ð1 − 2mðVÞ
r þ Q2

r2 Þ
dr: ðA3Þ

In both methods, the integration is performed retroac-
tively, after the functions r;u ðvÞ, rðvÞ andmðvÞ are known.
We use a simple numerical integration scheme that replaces
Eq. (A2) with

Vaðvþ ΔvÞ ¼ VaðvÞ −
eðσðvÞþσðvþΔvÞÞ=2

r;u ðvÞ þ r;u ðvþ ΔvÞΔv; ðA4Þ

and Eq. (A3) with

VbðvþΔvÞ

¼ VbðvÞþ
4Δr

2− 2mðvÞ
rðvÞ − 2mðvþΔvÞ

rðvþΔvÞ þ Q2

rðvÞ2 þ Q2

rðvþΔvÞ2
: ðA5Þ

This integration scheme is second order accurate. We fix
the integration constant, or the origin of the coordinate, by
the choice to identify V ¼ 0 with the end of the scalar-field
pulse in the mixed case (v ¼ 7). We opted to keep this
choice in the single null fluid case and the two null fluids
case as well, despite the absence of the scalar-field pulse,
for the sake of uniformity.
In principle, the procedure implied by Eq. (A4) and (A5)

could be performed along any outgoing null ray and yield
different variants of RNV advanced time coordinate. We
have calculated two variants: along the initial ray u ¼ u0
and along the EH, u ¼ uh. We call the first variant the
initial ray RNV advanced time coordinate, denoted V, and
the second variant the horizon RNV advanced time coor-
dinate, denoted ~V. We employed both methods a and b to
calculate V (although we display in the rest of the paper Va

as V), and we employed the second method to calculate ~V
(since r;u along the horizon was more difficult to obtain).
While the derivation of the coordinate according to

Eq. (A4) and (A5) is rather straightforward, the
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interpretation of the coordinate is more elusive. For
instance, in the presence of outgoing null fluid or a (strong)
self-gravitating scalar field, the mass function m is no
longer a function of v alone. The derivation of RNV
advanced time on such patch holds little meaning—the
coordinate functions as a RNV coordinate along a single
null ray. A similar claim holds for the usage of RNV
advanced time derived in one (eligible) spacetime patch in
another (eligible) spacetime patch, separated from the first
patch by a region of outgoing null fluid or scalar field
perturbations. The mass function in both patches may be a
function of v alone, but it is a different function of v. Thus a
coordinate calculated in the first patch does not function as
RNV advanced time coordinate in the other patch—it is
disconnected from the mass function of the second patch.
In the scenarios considered in this paper, the situation is

relatively simple to analyze. In the single null fluid case,
RNV advanced time is an “exact” RNV coordinate on the
entire domain of integration, since the mass function m is
indeed a function of v alone on the whole grid. In the case
of two null fluids, V is an exact RNV coordinate up to the
beginning of the outgoing null fluid region at u ¼ u2 (i.e.,
V functions as an exact RNV coordinate on the region
u0 ≤ u ≤ u2). For u > u2, V is just an approximated RNV
coordinate. ~V is an approximated RNV coordinate on the
whole grid (since the horizon is located inside the outgoing
null fluid region). Still, since the effect of the outgoing null
fluid is relatively minor up to the innermost part of the BH,
this approximation is sensible; one might argue that deep

inside the BH ~V is a “better” approximated RNV coor-
dinate, since the extent of outgoing null fluid that separates
between the horizon and this region is smaller. In the mixed
case, both V and ~V are approximated RNV coordinates on
the whole grid due to the presence of a self-gravitating
scalar field; however, at late times, when the scalar field
scatters and decays, the quality of the approximation
improves, and asymptotically both coordinates functions
as a “good” RNV coordinate. This type of behavior may be
termed as the behavior of a RNV-like advanced time
coordinate, which is the equivalent of Eddington-like
advanced time coordinate defined by EO.
Fig. 17 displays numerical results for VaðvÞ; VbðvÞ and

~VðvÞ in the case of two null fluids [Fig. 17(a)] and in the
mixed case [Fig. 17(b)].The single null fluid casewas omitted
as it is less interesting in this context (Va andVb are identical
to those of the two null fluids case and ~V is not needed). As
expected, the differences between Va and Vb are negligibly
small. The difference betweenVðvÞ and ~VðvÞ is significant in
the case of two null fluids and smaller in the mixed case.

2. Linear mass function derivation

We turn next to consider the specific ingoing null fluid
stream defined by Eq. (15); we demonstrate that it has a
linear contribution to the mass function mðVÞ at late times.
This property is gauge dependent and may vanish in a
gauge transformation. We begin with a previous result of
Poisson and Israel, [7]
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FIG. 17. Numerical results for RNVadvanced time coordinate as a function of the numerical v coordinate. Panel (a) describes the case
of two null fluids and panel (b) describes the mixed case. The initial ray RNVadvanced time coordinate V is evaluated in two methods,
Va and Vb, and the horizon RNVadvanced time coordinate ~V is evaluated by a single method (b). While the differences between Va and
Vb are extremely small in both cases (roundoff oriented, ≲10−14 in the case of two null fluids and ≲10−12 in the mixed case) the
difference between ~V and V is noticeable in the case of two null fluids (maximal difference is jV − ~Vj ≈ 2.9) and small in the mixed case
[maximal difference is jV − ~Vj ≈ 0.06, although all three curves overlap in the scale of panel (b)].
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m;a ¼ 4πr2Tb
ar;b ;

where Tab ≡ TNF
μν is the energy-momentum tensor of the

null fluid. We discuss here the ingoing null fluid stream on
the initial ray u ¼ u0, so we are interested in finding m;v.
After the appropriate index lowering and submitting
guv ¼ 2e−σ , we obtain

m;v ¼ 4πr2guvTNF
vv r;u¼ −8πr2e−σTNF

vv r;u :

Inserting the nonvanishing part of TNF
vv ðu0; vÞ from Eq. (15)

yields

m;v ðu0; vÞ ¼ −8πA1e−σð1 − er0−rÞ2 1

r;u
:

We are interested in finding m;V ¼ m;v dv
dV. We can see

from Eq. (A2) that dv
dV ¼ −2r;u e−σ , so

m;V ðu0; VÞ ¼ 16πA1e−2σð1 − er0−rÞ2:

Recalling that on our initial ray σðu0; vÞ ¼ 0, we get the
final result

m;V ðu0; VÞ ¼ 16πA1ð1 − er0−rÞ2: ðA6Þ

The factor ð1 − er0−rÞ2 approaches 1 with the rise in r,
yielding the required constant m;V [or linear mðVÞ].
Figure 18 displays the numerical m;V ðVÞ and confirms
that it fits the expected behavior.
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