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The pioneering discovery of gravitational waves (GWs) by Advanced LIGO has ushered us into an era of
observational GWastrophysics. Compact binaries remain the primary target sources for GWobservation, of
which neutron star-black hole (NSBH) binaries form an important subset. GWs from NSBH sources carry
signatures of (a) the tidal distortion of the neutron star by its companion black hole during inspiral, and
(b) its potential tidal disruption near merger. In this paper, we present a Bayesian study of the measurability
of neutron star tidal deformability ΛNS ∝ ðR=MÞ5NS using observation(s) of inspiral-merger GW signals
from disruptive NSBH coalescences, taking into account the crucial effect of black hole spins. First, we find
that if nontidal templates are used to estimate source parameters for an NSBH signal, the bias introduced in
the estimation of nontidal physical parameters will only be significant for loud signals with signal-to-noise
ratios greater than ≃30. For similarly loud signals, we also find that we can begin to put interesting
constraints on ΛNS (factor of 1–2) with individual observations. Next, we study how a population of
realistic NSBH detections will improve our measurement of neutron star tidal deformability. For an
astrophysically likely population of disruptiveNSBH coalescences, we find that 20–35 events are sufficient
to constrain ΛNS within�25%–50%, depending on the neutron star equation of state. For these calculations
we assume that LIGO will detect black holes with masses within the astrophysical mass gap. In case the
mass gap remains preserved in NSBHs detected by LIGO, we estimate that approximately 25% additional
detections will furnish comparable ΛNS measurement accuracy. In both cases, we find that it is the loudest
5–10 events that provide most of the tidal information, and not the combination of tens of low-SNR events,
thereby facilitating targeted numerical-GR follow-ups of NSBHs. We find these results encouraging,
and recommend that an effort to measure ΛNS be planned for upcoming NSBH observations with the
LIGO-Virgo instruments.
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I. INTRODUCTION

The Advanced LIGO (aLIGO) observatories completed
their first observing run “O1” early in 2016, operating at a
factor of 3–4 higher gravitational-wave (GW) strain sensi-
tivity than their first-generation counterparts [1]. During
O1, they made the first direct observation of gravitational
waves [2]. Emitted by a pair of coalescing black holes,
these waves heralded an era of observational GW astro-
physics as they traveled through Earth. Towards the end of
this decade, we expect aLIGO to reach its design sensi-
tivity. In addition to the U.S.-based efforts, we also expect
the French-Italian detector Advanced Virgo [3], Japanese
detector KAGRA [4,5], and LIGO-India [6] to begin
observing at comparable sensitivities within a few years.
With a global network of sensitive GW observatories, we
can expect GWastronomy to face significant developments
over the coming years.

Coalescing compact binaries of stellar-mass black holes
(BH) and/or neutron stars (NS) are the primary targets for
the second generation GW detectors [7–18]. A binary
system of black holes was recently observed by aLIGO
[2]. Previously, stellar-mass black holes had only been
observed by inference in mixed binaries with stellar
companion (through electromagnetic observations of the
companion) [19–21]. Neutron stars, on the other hand, have
had numerous sightings. Thousands of electromagnetically
emitting neutron stars, or pulsars, have been documented
[22], in varied situations: as radio pulsars [22,23], in binary
systems with a stellar companion [22–25], and in binary
neutron stars (BNSs) [22,23,26–28]. Mixed binaries of
black holes and neutron stars are an astrophysically
interesting class of systems [15,16,29,30], which has not
yet been detected. We expect to observe Oð10Þ mixed
binaries per year with aLIGO [31].
Neutron star-black hole (NSBH) binaries are of

interest for multiple reasons. For instance, they have been
long associated with (as possible progenitors of) short*prkumar@cita.utoronto.ca
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gamma-ray bursts (SGRBs) [32–40]. Depending on their
equation of state (EoS), NSs can get disrupted by the tidal
field of their companion BHs. Once disrupted, most of the
NS material falls into the hole over an Oð1 msÞ time scale,
with the rest partly getting ejected as unbound material and
partly forming an accretion disk around the BH. This
short lived (0.1 − 1s) disk-BH system is hypothesized to
drive SGRBs through the production of relativistic jets
[38,39,41–44]. However, whether or not such a system
forms depends also on the nature of the BH. Massive BHs
(with mBH ≳ 12 M⊙), as well as BHs with large retrograde
spins, tend to swallow the NS whole without forming
a disk [45]. On the other hand, low-mass BHs with
mBH ∈ ½3 M⊙; 12 M⊙�,1 can disrupt their companion NSs
much before merger, forming long-sustained disks that are
required to sustain SGRBs [42,46–49]. A coincident detec-
tion of both GWs and gamma rays from an NSBH merger
will provide us with a unique opportunity to confirm this
hypothesized link between NSBH mergers and GRBs [50].
Another question that compact object mergers can help

answer is “what is the nature of matter at nuclear densities
supported by NS”? A large fraction of the past work aimed
at measuring NS matter effects from GW signals has
consisted of inquiries about BNSs [51–62]. In this paper,
we will instead focus on NSBHs. During the course of early
inspiral, the tidal field of the BH produces a deformation in
its companion NS. The quadrupolar moment of the star
associated with this deformation also depends on its
material properties, through an EoS-dependent tidal
deformability parameter ΛNS. This induced quadrupolar
moment changes over the orbital time scale, resulting in the
emission of GWs in coherence with the orbital waves.
These waves draw more energy from the orbit and increase
the inspiral rate [as compared to an equivalent binary black
hole (BBH)] [63]. Closer to merger, the strong tidal field of
the BH can disrupt the NS. The quadrupolar moment of the
disrupted binary system falls monotonically over a milli-
second time scale [41,42,64–66], resulting in the damping
of GW amplitude. This penultimate stage also depends
strongly on the internal structure and energy transport
mechanism of the NS, and carries the strongest tidal
signature in the GW spectrum [43,46].
Gravitational waves emitted by coalescing NSBH bina-

ries carry subtle hints of the NS EoS from inspiral through
to merger. During early inspiral, the tidal dephasing is
relatively weak and has a frequency dependence equivalent
to a fifth Post-Newtonian (PN) order effect [67]. Closer to
merger, a disruptive fate of the NS can result in a strong
suppression of GWemission above a cutoff frequency [66].
Some past studies of tidal measurements with NSBH
binaries have used PN inspiral-only waveforms [68]. In

doing so, however, they ignore (i) the merger signal which
could contain significant information for NSBHs, and
(ii) the errors due to unknown vacuum terms in PN
waveforms, which could dominate over the tidal terms
themselves [69,70]. Some other studies that account for
merger effects via the use of complete numerical simu-
lations [45] are limited in the binary parameter space
they sample. Others that do the same through the use of
phenomenological waveform models [65,71] use the Fisher
matrix to estimate ΛNS measurement errors. Fisher matrix
estimates may become unreliable at realistic signal-to-noise
ratios (SNRs) [72], such as those as we might expect in the
upcoming observing runs of GW detectors [31], and we
improve such studies with a fully Bayesian treatment of the
problem here.
In this paper we study the measurability of neutron star’s

tidal deformability from realistic binaries of low-mass BHs
and NSs by aLIGO. We also probe how tidal effects affect
the estimation of other binary parameters for the same class
of systems. This study improves upon previous work in the
following ways. First, we include tidal effects during
inspiral and merger in a consistent way, by using the
waveform model of Lackey et al. [65] (abbreviated
henceforth to “LEA”). Second, we include the effect of
black hole spin on tidal GW signals, in addition to the effect
of BH mass, tidal deformability of the NS, and the SNR.
Third, we perform a complete Bayesian analysis, instead of
using the Fisher matrix approximation. Fourth, we explore
how our measurement errors decrease as we gain informa-
tion from multiple (realistic) events.
We now outline the main questions and results discussed

in this paper. First, we probe the effect of ignoring tidal
effects in the recovery of nontidal binary parameters, such
as component masses and spins. This is the case for current
and planned aLIGO efforts. To do so, we first use the
enhanced-LEA (or “LEAþ,” see Sec. II A) model to
generate a set of realistic signals; and then use nontidal
(BBH) waveform filters to estimate the underlying binary
masses and spins with a Markov-chain Monte Carlo. Here
and throughout, we use the zero-detuning high-power
design sensitivity curve [1] to characterize the expected
detector noise. We find that, for individual events, ignoring
tidal effects will affect mass and spin estimation only
marginally; only for very loud signals (SNRs≳ 30) will the
systematic biases be large enough to exceed the underlying
statistical uncertainty. Furthermore, detection searches can
ignore tidal effects without loss of sensitivity.
Second, we study the ability of aLIGO to constrain

neutron star tidal deformability with a single observation of
an NSBH merger. For this, we use the same setup for signal
waveforms as before, but replace the filter template model
with one that includes tidal effects from inspiral through to
merger (i.e. LEAþ) [65]. For most binaries with BH
masses outside of the mass gap (2–5 M⊙ [73–76] and/or
realistic signal-to-noise ratios (SNR), we find it difficult to

1The upper limit on BH mass that allows for NS disruption
may very well be higher, depending strongly on the magnitude of
BH spin [46].
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put better than a factor of 2 bound on ΛNS with a single
observation. As we can see from Fig. 6, it is only at SNRs
ρ≳ 20–30 (under otherwise favorable circumstances, such
as a stiff equation of state) that we are able to bring this
down to a �75% bound on ΛNS. For signals louder than
ρ ¼ 30, we can constrain ΛNS to a much more meaningful
degree (within �50% of its true value). While this is
discouraging at first, we turn to ask: what if we combine
information from a population of low-SNR observations?
The EoS of matter at nuclear densities is believed

to be universal among all neutron stars. The Tolman-
Oppenheimer-Volkoff equation [77–79] would then predict
that NS properties satisfy a universal relationship between
ΛNS and mNS. As the final part of this paper, we combine
information from multiple observations of realistic NSBH
systems and perform a fully Bayesian analysis of how our
estimation of ΛNS changes as we accumulate detections.
This is similar to an earlier study [80] aimed at binary
neutron stars. We restrict ourselves to a population of NSs
with masses clustered very tightly around 1.35 M⊙ (with a
negligible variance), and negligible spins. We sample
different nuclear EoSs by sampling entire populations
fixing different values for the NS tidal deformability. For
all populations, we take source locations to be uniformly
distributed in spatial volume, and source orientations to be
uniform on the 2-sphere. To summarize, we find the
following: (a) Our median estimate for ΛNS starts out prior
dominated, but converges to within 10% of the true value
within 10–20 detections. (b) Measurement uncertainties for
ΛNS, on the other hand, depend on ΛNS itself. We find that
for hard equations of state (with ΛNS ≥ 1000), 10–20
observations are sufficient to constrain ΛNS within
�50%. For softer equations of state, the same level of
certainty would require substantially more (25–40) obser-
vations. (c) Further, if the astrophysical “mass gap” [73–76]
is real, we find that 20%–50% additional observations
would be required to attain the same measurement accuracy
as above. (d) Putting tighter constraints on the ΛNS of a
population would require 50þ NSBH observations,
in any scenario. (e) It is the loudest 5–10 events that will
furnish the bulk of tidal information, and not the combi-
nation of a large number of low-SNR events. All of the
above is possible within a few years of design aLIGO
operation [81].
In this paper, we restrict our parameter space to span

mass ratios q ≔ mBH=mNS ∈ ½2; 5�, dimensionless BH spin
(aligned with orbit) χBH ∈ ½−0.5;þ0.75�, and dimension-
less NS tidal deformability ΛNS≔Gð c2

GmNS
Þ5λ∈ ½500;2000�.

These ranges are governed by the calibration of the LEAþ
model which we use as filters. Most of the disruptive
NSBH simulations that LEAþ has been calibrated to
involve 1.35 M⊙ NSs, and it is unclear how reliable the
model is for different NS masses [65,82]. This motivates us
to conservatively fix NS masses to 1.35 M⊙ in our
simulated signals (not templates). But, since the domain

of calibration of LEAþ excludes NS spin completely, we
fix χNS ¼ 0 in both signals as well as filter templates. We
expect the effect of ignoring NS mass and spin variations in
our NSBH populations to be less severe than for BNSs [83],
considering the higher mass ratios of NSBHs. The accuracy
of our quantitative results depends on the reliability of
LEAþ, which is the only model of its kind in current
literature. A more recent work [82] improves upon the
amplitude description of LEAþ, but needs to be augmented
with a compatible phase model. Overall, we expect our
broad conclusions here to hold despite modeling inaccur-
acies (with errors not exceedingOð10%Þ [82]). Finally, our
results apply to LIGO instruments at design sensitivity,
which they are projected to attain by 2019 [1,50].
The remainder of the paper is organized as follows.

Section II discusses data analysis techniques and resources
used in this paper, such as the waveform model, and
parameter estimation algorithm. Section III discusses the
consequences of ignoring tidal effects in parameter esti-
mation waveform models. Section IV discusses the meas-
urability for the leading order tidal parameter ΛNS at
plausible SNR values. Section V discusses the improve-
ment in our measurement of ΛNS with successive (multiple)
observations of NSBH mergers. Finally, in Sec. VI we
summarize our results and discuss future prospects with
Advanced LIGO.

II. TECHNIQUES

A. Waveform models

Lackey et al. (LEA) [65] developed a complete
inspiral-merger waveform model for disrupting NSBHs.
Theirs is a frequency-domain phenomenological model
that includes the effect of BH and NS masses and spins

fmBH; χBH; mNSg≡ ~θ and NS tidal deformability ΛNS. It
was calibrated to a suite of 134 numerical relativity (NR)
simulations of NSs inspiraling into spinning BHs, with NS
masses ranging between 1.2 M⊙ ≤ mNS ≤ 1.45 M⊙, mass
ratios 2 ≤ q ≤ 5, and BH spins −0.5 ≤ χBH ≤ þ0.75. They
also sample a total of 21 two-parameter nuclear EoSs to
cover the spectrum of NS deformability. The GW strain
~hðfÞ per the LEA model can be written as

~hNSBHðf; ~θ;ΛNSÞ ¼ ~hBBHðf; ~θÞAðf; ~θ;ΛNSÞeiΔΦðf;~θ;ΛNSÞ;

ð1Þ

with NS spin χNS ¼ 0 identically. Here, ~hBBH is an under-
lying BBH waveform model. In the original LEA model,
this was taken to be the SEOBNRv1 model [84] of the
effective one body (EOB) family [85]. The factor Að·Þ
adjusts the amplitude of the BBH model to match that of an
NSBH merger of otherwise identical parameters, with NS-
matter effects parametrized by ΛNS. During early inspiral
this term is set to unity, but is a sensitive function of ΛNS
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close to merger. The term with ΔΦ corrects the waveform
phasing. During inspiral, ΔΦ is set to the PN tidal phasing
corrections, at the leading and next-to-leading orders [67];
close to merger, additional phenomenological terms are
needed. Both A and ΔΦ are calibrated to all 134 available
NR simulations.
In this paper we use LEA for our signal and template

modeling, but switch the underlying BBH model to
SEOBNRv2 (and refer to it as enhanced-LEA or “LEAþ”)
[86]. We using the reduced-order frequency-domain
version of SEOBNRv2, which has the additional benefit of
reducing computational cost [87]. We expect this enhance-
ment from LEA → LEAþ to make our conclusions more
robust because: (a) the SEOBNRv2 model is more accurate
[88,89], and (b) the differences between the two EOB
models are caused by the inaccuracies of SEOBNRv1 during
the inspiral phase, many orbits before merger [88]. Since
LEA only augments inspiral phasing with PN tidal terms,
our change in the underlying BBH model does not change
LEA’s construction, and increases the overall model
accuracy during inspiral. Finally, we note that we approxi-
mate the full GW signal with its dominant l ¼ jmj ¼ 2
modes, which are modeled by LEAþ. For use in future
LIGO science efforts, we have implemented the LEAþ
model in the LIGO ALGORITHMS LIBRARY [90].

B. Bayesian methods

The process of measuring systematic and statistical
measurement errors involves simulating many artificial
GW signals, and inferring source binary parameters from
them using Bayesian statistics. We start with generating a
signal waveform, using the model LEAþ, and injecting it
in zero noise to obtain a stretch of data dn. Source intrinsic

parameters ~Θ ≔ fmBH; mNS; χBH;ΛNSg are reconstructed

from this injected signal. Extrinsic parameters ~θ ≔ ftc;ϕcg
representing the time of and phase at the arrival of signal
are marginalized over numerically and analytically (respec-
tively), while source location and orientation parameters
such as its luminosity distance, sky location, inclination
and polarization angles are absorbed into a normalization,
as describe later, and subsequently maximized over. This is
justified because in this paper we consider the single-
detector case. Using Bayes’ theorem, the joint inferred

probability distribution of ~Θ can be evaluated as

pð ~Θjdn;HÞ ¼ pðdnj ~Θ; HÞpð~ΘjHÞ
pðdnjHÞ : ð2Þ

Here, pð~ΘjHÞ is the a priori probability of binary param-

eters ~Θ taking particular values, given H—which denotes
all our collective knowledge, except for expectations on
binary parameters that enter our calculations explicitly.
Throughout this paper, we impose priors that are uniform in

individual component masses, BH spin, and the tidal
deformability of the NS. In addition, we restrict mass
ratios to q ≥ 2, as LEAþ is not calibrated for 1 ≤ q ≤ 2.

pðdnj ~Θ; HÞ is the likelihood of obtaining the given stretch

of data dn if we assume that a signal parametrized by ~Θ is
buried in it, and is given by

pðdnj ~Θ; HÞ≡ Lð~ΘÞ ¼ N exp
�
−
1

2
hdn − hjdn − hi

�
; ð3Þ

where h≡ hð~ΘÞ is a filter template with parameters ~Θ,
h·j·i is a suitably defined detector-noise weighted inner
product,2 and N is the normalization constant that absorbs
source distance, orientation and sky location parameters.
As in Ref. [91] we use a likelihood that is maximized over
the template norm, allowing us to ignore the extrinsic
parameters that only enter in the template norm throughN .

As a result, we only need to sample over ~Θ (or ~Θ − fΛNSg
in the case of nontidal templates). The denominator in
Eq. (2) is the a priori probability of finding the particular
signal in dn and we assume that each injected signal is as
likely as any other. From the joint probability distribution

pð ~Θjdn;HÞ so constructed, extracting the measured prob-
ability distribution for a single parameter (say α) involves
integrating

pðαjdn;HÞ ¼
Z

d ~Θαpð~Θjdn;HÞ; ð5Þ

where ~Θα is the set of remaining parameters, i.e. ~Θα ≔
~Θ − fαg.
We use the ensemble sampler Markov-chain

Monte Carlo algorithm implemented in the EMCEE package

[92], to sample the probability distribution pð~Θjdn;HÞ. We
run 100 independent chains, each of which is allowed to
collect 100,000 samples and combine samples from chains
that have a Gelman-Rubin statistic [93] close to unity. This
procedure yields about 10,000 independent samples. One
simplification we make to mitigate computational cost is to
set the frequency sampling interval to Δf ¼ 0.4 Hz, which
we find to be sufficient for robust likelihood calculations in
zero noise [91]. We integrate Eq. (5) to obtain marginalized
probability distributions for the NS tidal deformability

2The inner product h·j·i is defined as

hajbi≡ 4Re

�Z
∞

0

~aðfÞ ~bðfÞ�
SnðjfjÞ

df

�
; ð4Þ

where ~aðfÞ is the Fourier transform of the finite time series aðtÞ,
and SnðjfjÞ is the one-sided amplitude spectrum of detector noise.
In this work, we use the zero-detuning high-power design
sensitivity curve [1] for Advanced LIGO, with 15 Hz as the
lower frequency cutoff.
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parameter: pðΛNSjdn;HÞ. We will quote the median value
of this distribution as our measured value for ΛNS, and the
90% credible intervals associated with the distribution as
the statistical error bars.

III. HOW IS PE AFFECTED IF WE IGNORE
NS MATTER EFFECTS?

Past (and future) efforts with Advanced LIGO have used
(or plan to use) BBH waveform templates to search for and
characterize NSBH sources. In doing so, they ignore the
signature of NS tidal effects on the emitted GWs. In this
section we present a fully Bayesian analysis of the effect of
this simplification on the recovery of nontidal parameters
from NSBH signals.
We inject LEAþ NSBH signals into zero noise, and run

a Markov-chain Monte Carlo sampler on them using
equivalent BBH templates (same model, tidal terms→0).
We fix mNS ¼ 1.35 M⊙ and χNS ¼ 0, and explore a range
of NS equations of state via the single tidal deformability
parameter ΛNS ∈ f500; 800; 1000; 1500; 2000g. Our injec-
tions also span a rectangular grid in the BH parameter
space, with vertices at q ∈ f2; 3; 4; 5g, i.e. mBH ∈
f2.7 M⊙; 4.05 M⊙; 5.4 M⊙; 6.75 M⊙g, and BH spins
χBH ∈ f−0.5; 0;þ0.5;þ0.75g. Finally, we sample all
other source-related parameters that determine the signal
strength but not character,3 by sampling the SNR ρ ∈
f20; 30; 50; 70g. Our choice of injection parameters here is
motivated by two factors: (i) previous studies of the
signatures of NS tidal effects on gravitational waves
[45,46,95] (which suggest that necessary conditions for
the observation of tidal effects with aLIGO include high
SNRs and a low-mass spinning companion BH); and
(ii) technical constraints of our chosen LEAþmodel
[65]. At design sensitivity, if we expect 0.2–300 NSBH
detections a year [81], we can expect to see 0.02–25
disruptive4 NSBH mergers a year, of which we will have
0.005–7 observations with ρ ≥ 20, and 0.002–3 a year with
ρ ≥ 30. Therefore, our injection parameters span a physi-
cally interesting subset of NSBH binaries, which is also
likely observable in the near future. For our Bayesian
priors, we choose uniform distributions for both component
masses and black hole spin: mBH ∈ ½1.2; 25�M⊙; mNS ∈
½1.2; 3�M⊙; and −0.75 ≤ χBH ≤ þ0.75.

The effect of ignoring tidal corrections in templates will
manifest as a systematic shift of recovered median param-
eter values away from what they would be if we had used
tidal templates with identical priors. In zero noise, we
expect the probability distributions recovered using tidal
templates to be multidimensional Gaussians with the
maximum likelihood parameter values approaching their
true values. If the priors are not restrictive, we expect the
recovered median to also converge to the true value.
However, the LEA model imposes significantly more
restrictive priors (both mass ratio and spin) than
SEOBNRv2 [65,86], which shifts the median value of
parameters recovered using our tidal templates away from
their true value. If we use LEAþ priors for our nontidal
templates, it would add a caveat to our original question
“can we estimate nontidal NSBH parameters with equiv-
alent BBH templates.” Instead, we approximate the median
tidally recovered parameters by their true injected values, as
one would expect to recover with an ideal model for tidally
disruptive NSBH mergers. With this caveat, we estimate
systematic measurement bias/errors as the differences
between median and injected parameter values. As an
illustration, in Fig. 1 we show the recovered probability
distributions for binary mass ratio η for three NSBH
injections, with ρ ¼ 20 (left), 30 (middle), and ρ ¼ 50
(right), and other parameters held fixed (mNS ¼ 1.35 M⊙,
χNS ¼ 0, mBH ¼ 5.4 M⊙, χBH ¼ þ0.5 and ΛNS ¼ 2000).
In each panel, both the true and median values of η are
marked, and we use the shift between the red and green
vertical lines as our estimate of systematic measurement
errors. Darker shading in all panels marks 90% credible
intervals, whose width ðΔηÞ90.0% we use as a direct measure
of our statistical measurement uncertainty/error.5 For the
illustrated binary, we see clearly that even when the signal
is moderately loud, with ρ ¼ 20, statistical errors dominate
over systematics for η. As we turn up the SNR further, the
two error sources become comparable at ρ ∼ 30, and
systematic errors dominate finally when ρ≃ 50.
Credible intervals ðΔXÞ90% showing the precision with

which X ¼ fMc; η; χBHg can be measured are presented in
Appendix A. We remind ourselves that this precision is
only meaningful so long as the measurement is accurate to
begin with. Therefore, we define RX as the ratio between
systematic and statistical errors associated with the meas-
urement of parameter X,

RX ¼ ðXMedian − XInjectedÞ
ðΔXÞ90% ; ð6Þ

in order to compare the relative magnitude of both. Only
when jRXj ≪ 1 can we ignore tidal effects in our templates

3For aligned-spin signals and aligned-spin templates both, we
only consider the contribution of the dominant l ¼ jmj ¼ 2
waveform multipoles. This approximation has the additional
benefit of combining the dependence of the waveforms on
inclination, polarization and sky location angles, as well as on
distance, into the luminosity or effective distance. This quantity
only appears as an overall scaling factor, and therefore only
affects signal strength [94].

4We assume here that BH mass values are uniformly likely
from 2 M⊙ to ∼35 M⊙ [2], but NSs are disrupted in NSBH
mergers only if q ≤ 6 and χBH ≥ 0 [45,46].

5We generalize the notation ðΔXÞ90.0% to mean the 90%
credible interval width for any measured source parameter X.
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without hampering the measurement of nontidal parameters
from NSBH signals. When RX approaches a few tens of
percent of unity, we can begin to favor tidal templates for
NSBH studies.
We start with calculating RMc

as a function of various
source parameters and show it in Fig. 2. Mc is the leading
order mass combination that affects the GW strain emitted
by compact binaries as they spiral in, and is therefore

determined the most precisely. We notice immediately that
for ρ ≤ 30 the systematics are well under control and we
can obtain reliable chirp mass estimates for NSBH signals
using BBH templates. For louder and less likely SNRs
(ρ≃ 50), we find that RMc

can become comparable to
unity, but only if the BH has prograde spin χBH ≳ 0.4, and
the true NS tidal deformability is large enough, such that
ΛNS ≳ 1000. We therefore conclude that only for very loud

FIG. 1. Illustrative posterior probability distributions for mass ratio η at different SNR values: We show here probability distributions
for mass ratio η as measured for the same signal at different SNRs. The intrinsic parameters of the source are: q ¼ mBH=mNS ¼
5.4 M⊙=1.35 M⊙ ¼ 4, χBH ¼ þ0.5, and ΛNS ¼ 2000; and the signal is injected at SNRs ρ ¼ f20; 30; 50g (left to right). The templates
ignore tidal effects. In each panel, the dashed red line marks the median value ηMedian, while the dashed green line shows the true value
ηInjected. The darker shading shows the recovered 90% credible interval for η, ðΔηÞ90%. Comparing systematic and statistical errors, we
find that, at ρ ¼ 20, the η measurement is dominated by statistical errors; at ρ ¼ 30, the two become comparable; and for louder signals
(ρ≃ 50), the systematic errors dominate.

FIG. 2. Ratio of systematic to statistical errors in measuring Mc, ignoring tidal effects: We show here the ratio of systematic and
statistical measurement uncertainties for the binary chirp mass over the NSBH parameter space. Each panel shows the same as a function
of BH mass and spin. NS mass is fixed at mNS ¼ 1.35 M⊙, and its spin is set to zero. Down each column, we can see the effect of the
increasing tidal deformability of the NS at fixed SNR. Across each row, we can see the effect of increasing the signal strength (SNR),
with the tidal deformability of the NS fixed. We show dashed contours for RMc

¼ 10%; 25%; 50%;…, with interleaving filled color
levels separated by 5%. For BBHs, the statistical errors dominate systematic ones for contemporary waveform models [89,97]. We find
that it is not much different for NSBH binaries, until we get to very high SNRs ρ≳ 70.
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signals, with ρ≳ 50–70, will the inclusion of tidal terms in
template models improveMc estimation. For lower SNRs,
inclusion of new physical content in templates will instead
get washed out by detector noise. In addition, we also note
that RMc

≥ 0 always, i.e. Mc is always being overesti-
mated. This is to be expected since the tidal deformation of
the NS drains energy faster from the orbit during inspiral
(as compared to the BBH case), and its disruption close to
merger reduces GW signal power at high frequencies. Both
of these effects make the resulting signal resemble a BBH
signal of higher chirp (or total) mass, although we expect
the latter effect to be dominant [96].
Next, in Fig. 3, we show the ratio of measurement errors

Rη for the symmetric mass-ratio. Going through the figure
from left to right, we find that for realistic SNRs (ρ ≤ 30)
the systematics remain below statistical errors for η
measurement. The worst case is of the most deformable
NSs (ΛNS ¼ 2000), but even for them systematics in η are
2× smaller than the statistical measurement errors. Moving
to louder signals with ρ≃ 50, we find that for binaries of
fairly deformable NSs (ΛNS ≳ 1500) and low-mass BHs
(mBH ≤ 5 M⊙) that have prograde spins (χBH ≳þ0.4), our
measurement of mass ratio can be seriously compromised
by ignoring tidal physics in template models. This pattern is
continued at even higher SNRs, as we can see from Fig. 3.
We therefore conclude that, even if under moderate
restrictions on BH and NS parameters, ρ ¼ 30–50 is loud
enough to motivate the use of tidal templates in aLIGO data
analyses. In addition, we also notice that, unlike for Mc,
the median value of η is always lower than its true value,

which is what we expect if we want BBH templates to fit
NSBHs that disrupt and merge at lower frequencies.
Moving on from mass to spin parameters, we now

consider the measurement of BH spin angular momentum
χBH. The ratio of systematic and statistical errors for χBH
are shown in Fig. 4. The presentation of information in this
figure is identical to that of Figs. 2 and 3. A diverging color
map is used so that both extremes of the color bar range
point to large systematic biases, while its zero (or small)
value lies in the middle. For the lowest SNR considered
(ρ ¼ 30), χBH bias is about 2× smaller than its statistical
measurement uncertainty, and is therefore mostly negli-
gible. Both do become somewhat comparable, but only
when we have the most deformable NSs in orbit around
low-mass BHs. At higher SNRs (ρ≃ 50–70), we find that
the systematics in χBH measurement can dominate com-
pletely, especially for binaries containing mass-gap violat-
ing BHs and/or deformable NSs with ΛNS ≥ 1000. From
Fig. 4 we additionally note that when the source spin
magnitudes approach the highest allowed, i.e. at both
extremes of the x axes, χBH × RχBH < 0. This is to be
expected because the median of the recovered posterior
distributions for χBH can only get pushed inwards from the
boundaries.
Summarizing these results, we find that irrespective of

system parameters, below a signal-to-noise ratio of 30, our
measurements of mass and spin parameters of astrophysical
NSBH binaries will remain limited by the intrinsic uncer-
tainty due to instrument noise, and do not depend on
whether we include tidal effects in template models.

FIG. 3. Ratio of systematic to statistical errors in measuring η, ignoring tidal effects: This figure is similar to Fig. 2 with the difference
that here we show the ratio of systematic and statistical error sources for the symmetric mass ratio η and not chirp mass. We find that for
fairly loud GW signals, at ρ≃ 50, not including the effects of tidal deformation of the NS on GW emission can become the dominant
source of error for astrophysical searches with Advanced LIGO. However, for quieter signals with ρ ≤ 30, it will have a negligible effect
on the measurement of η. We remind the reader that the SNRs here are always single detector values.
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However, when the signal-to-noise ratio exceeds 30 the
systematic bias in binary mass and spin measurements
become comparable to and can exceed the uncertainty due
to noise. Of the different nontidal parameters considered,
we find that the measurement of η degrades worst (in a
relative-error sense) due to the use of BBH templates in
deciphering an NSBH signal. Of all the subcategories, we
find that tidal templates could especially help with the
parameter estimation of astrophysical mass-gap violating
NSBH binaries.

IV. WHAT DO WE GAIN BY USING TEMPLATES
THAT INCLUDE NS MATTER EFFECTS?

In the previous section, we showed that the effects of the
tidal deformation of NSs by their companion BHs become
discernible in the GW spectrum under certain favorable
conditions, including (a) BH mass is sufficiently small,
(b) BH spin is positive aligned, i.e. χBH ≳þ0.4, (c) the NS
is not very compact, with ΛNS ≳ 1000, and (d) the source
location and orientation are such that its GW SNR≳ 30.
Both conditions (a) and (b) enhance the tidal distortion of
the star and increase the number of orbits the system goes
through at small separation, where the differences between
NSBH and BBH signals are maximal. Conditions (a)–(c)
also reduce the onset frequency of the disruption of the NS,
allowing for it to happen earlier in the orbit. We expect that
these conditions are also the ones which should maximize
the likelihood of measuring tidal effects in NSBH signals.
Here, we turn the question around to ask: under similarly
favorable circumstances, can we gain insights about the
internal structure of neutron stars from GW observations?

In this section, we calculate the accuracy with which we
measure ΛNS from single GWobservations. We sample the
same set of disruptive NSBH mergers as in the previous
section, i.e. those with q ¼ f2; 3; 4; 5g, χBH ¼ f−0.5;
0;þ0.5;þ0.75g, and ΛNS¼f500;800;1000;1500;2000g;
fixing the NS mass mNS ¼ 1.35 M⊙ and χNS ¼ 0. For
each unique combination of these parameters, we inject
LEAþ signals into zero noise and perform a fully
Bayesian parameter estimation analysis of each with
LEAþ templates. Our priors on component masses and
spins remain as in the previous section, with mass ratio
additionally restricted to 2 ≤ q ≤ 6, and ΛNS sampled
uniformly from [0, 4000]. As an illustration of individual
injections, we show the recovered probability distribution
for ΛNS for three specific configurations in Fig. 5. We
fix q¼mBH=mNS¼5.4M⊙=1.35M⊙¼4, with χBH¼þ0.5,
and vary ΛNS over f1000; 1500; 2000g between the three
panels. The SNR is fixed at ρ ¼ 50. The darker shaded
regions mark the 90% credible interval on ΛNS. We note
that ΛNS is estimated to within �2000 of its true value
at this SNR. Another interesting thing to note is that
while ðΔΛNSÞ90% slowly grows with ΛNS, the fractional
uncertainty

δΛ90%
NS ≔ ðΔΛNSÞ90%=ΛNS ð7Þ

decreases instead. Further illustrations, showing the corre-
lation between tidal and nontidal parameters, are presented
in Appendix B. We will continue here to focus on the
measurement of ΛNS itself.
In Fig. 6 we show the main results of this section. In each

panel, as a function of black hole mass and spin, we show

FIG. 4. Ratio of systematic to statistical errors in measuring χBH, ignoring tidal effects: This figure shows the ratio of the systematic
and statistical measurement errors for BH spins RχBH . Information is arranged identically to Figs. 2, and 3, with the level spacing of filled
contours increased to 15%. Similar to the case of mass parameters, we find that below ρ ≈ 30, ignoring tidal effects in templates
introduces minor systematic effects, which remain subdominant to the statistical measurement uncertainties.
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the measured 90% credible interval widths ðΔΛNSÞ90%.
These correspond to the full width of the dark shaded
regions in the illustrative Fig. 5. The effect of increasing
signal strength can be seen as we go from left to right in
each row. The effect of the NS tidal deformability param-
eter ΛNS on its own measurability can be seen by

comparing panels within each column, with the NS
becoming more deformable from top to bottom. A uniform
pattern emerges in the leftmost column, which corresponds
to ρ ¼ 20. We find that at this signal strength, our
measurement of ΛNS is dominated by the width of our
prior on it. The 90% credible intervals span the entire

FIG. 5. Illustrative posterior probability distributions for NS tidal deformability ΛNS: We show here probability distributions recovered
for the NS tidal deformability parameter ΛNS from three GW injections, with parameters q ¼ mBH=mNS ¼ 5.4 M⊙=1.35 M⊙ ¼ 4,
χBH ¼ þ0.5, and ΛNS ¼ f1000; 1500; 2000g from left to right. The injection SNR is fixed at ρ ¼ 50. The templates include tidal effects,
with a prior 0 ≤ ΛNS ≤ 4000. In each panel, the dashed red line marks the median value for ΛNS, and the dashed green line marks its true
value. The darker shading shows the 90% credible interval, whose width ðΔΛNSÞ90% is a direct measure of our statistical uncertainty. By
comparing the measurement uncertainty for these three injections, we see that ðΔΛNSÞ90% grows very slowly with ΛNS. Therefore, the
fractional measurement error—ðΔΛNSÞ90%=ΛNS—decreases monotonically as ΛNS increases (with signal strength fixed).

FIG. 6. Statistical uncertainty in ΛNS measurement: Here we show the statistical uncertainty in the measurement of ΛNS. In each panel,
the same is shown as a function of the BH mass and spin, keeping ΛNS and injection’s SNR ρ fixed (noted in the panel). Rows contain
panels with the same value of ΛNS, with ρ increasing from left to right. Columns contain panels with the same value of ρ, with ΛNS

increasing from top to bottom. Contours at ðΔΛNSÞ90% ¼ f50%; 75%; 100%; 150%; 200%g × ΛInjected
NS demarcate regions where we can

constrain the ΛNS parameter well (within a factor of 2 of the injected value). We note that, as expected, the measurement accuracy for
ΛNS improves with (i) increasing SNR, (ii) increasing ΛNS, (iii) increasing BH spin, and (iv) decreasing BH mass.

MEASURING NEUTRON STAR TIDAL DEFORMABILITY … PHYSICAL REVIEW D 95, 044039 (2017)

044039-9



allowed range for ΛNS, making a reasonable estimation of
ΛNS at ρ≃ 20 difficult. Increasing the signal strength to
ρ ¼ 30 gives marginally better results, bringing down the
statistical uncertainties to within �75–100% of the true
ΛNS value.6 It is not until we reach an SNR as high as
ρ≳ 50, can we put meaningful [i.e. Oð10%Þ] constraints
on ΛNS. For example, with a single observation of a
q ¼ 4 binary with χBH ≥ 0.6 and ρ ¼ 50,7 we would be
able to estimate ΛNS to within �40% of its true value
(which is equivalent to measuring the ratio of NS radius
to mass with an uncertainty of about �10%). These
results agree well with Sec. III, and are consistent with
Fisher matrix estimates at high SNRs [65].
Amongst other source parameters, BH mass and spin

play a dominant role. A smaller BH with a larger spin
always allows for a more precise measurement on ΛNS.
We can see this in the bottom right corner of each panel
in Fig. 6, which corresponds to low-mass BHs with large
spins, and is simultaneously the region of smallest
measurement errors on ΛNS. The actual deformability
of the NS also plays an important role on its own
measurability. For example, when ΛNS ≤ 1000, it is fairly
difficult to meaningfully constrain ΛNS without requiring
the source to be close (≈100 Mpc) with a GW SNR
ρ≳ 50. Quantifying this further, in Fig. 7 we show the
minimum signal strength required to attain a certain level
of credibility in our ΛNS measurement, as a function of
BH properties. The NS is allowed the most favorable
(hardest) EoS considered, with Λtrue

NS ¼ 2000. We first
note that, even with the most favorable BH and NS
properties, achieving a �50% measurement certainty on
ΛNS will require a GW SNR ρ≳ 30. If we additionally
restrict BH masses to lie outside of the so-called
astrophysical mass gap [73–76], we will simultaneously
need to restrict BH spins to χBH ≳þ0.5 to obtain the
same measurement credibility at the same source
location.
It is interesting to note that the parameter ranges most

favorable to the measurability of ΛNS are also those which
produce relatively more massive postmerger disks [44].
That is, the subset of NSBHs that potentially produce
SGRBs (using a sufficiently large disk mass as an indicator)
would be the same subset most favorable for measurement
of tidal effects. Therefore the rate of SGRBs in the local
universe (allowing for the fraction that are produced by
NSBHs versus BNSs) would be an indicator of the rate of
events most favorable for nuclear equation of state
measurements.
In summary, with a single moderately loud (ρ≲ 30) GW

signal from a disruptive BHNS coalescence, we can

constrain the NS compactness parameter ΛNS within
�100% of its true value. To measure better with one
observation, we will need a more fine-tuned source, with
ρ ≥ 30 and high BH spins, or ρ ≥ 50. Finally, we note
that these results are conservative, and BHs with spins
χBH > 0.75 will prove to be even more favorable labo-
ratories for ΛNS measurement. However, we are presently
unable to explore this case in quantitative detail due to
waveform model restrictions [65], which will also restrict
our analyses of GW signals during the upcoming LIGO
observing runs.

V. COMBINING OBSERVATIONS: LOOKING
FORWARD WITH ADVANCED LIGO

In the previous section, we showed that single observa-
tions of NSBH coalescences at moderate SNRs have little
information about the internal structure of neutron stars that
will be accessible to Advanced LIGO at its design
sensitivity. We expect all neutron stars to share the same
equation of state, and hence the same ΛNSðmNSÞ. In
addition, we know that the mass distribution of (most)
NSs that have not been spun up to millisecond periods
(which are the ones we focus on in this paper, by setting
χNS ≈ 0) is narrowly peaked around ∼1.35 M⊙ [98].
Therefore, information from multiple NSBH observations
can be combined to improve our estimation of ΛNS. We
explore the same in this section within a fully Bayesian
framework. We refer the reader to Refs. [60,61,99] for
similar analyses of BNS inspirals.
An intuitive understanding of the problem is gained by

considering first multiple identical sources with realistic
but different SNRs. Let us consider the case of a population

FIG. 7. We show here, as a function of BH mass and spin, the
minimum signal strength (SNR) required to constrain ΛNS within
an interval of width equal to 100% of its true value, i.e. with
�50% error bars. The NS mass is fixed at 1.35 M⊙, spin at zero,
and ΛNS ¼ 2000. We can see that, even in the most conducive
circumstances with large aligned χBH and a comparable mass BH,
we can only constrain ΛNS to better than �50% if the SNR is
≳29. In the era of design sensitivity LIGO instruments, we expect
this to happen approximately once in a year of observation [81].

6The symmetric error bars of �X% correspond to δΛ90%
NS ¼

2X%.
7For an optimally oriented source with q¼4;mNS¼1.35M⊙;

χBH¼0.6, an SNR of ρ ¼ 50 corresponds to a luminosity
distance of ≈113 Mpc.
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of optimally oriented binaries,8 distributed uniformly in
spatial volume out to a maximum effective distance9 Dmax.
Dmax is set by the minimum SNR threshold ρmin at which a
source is considered detectable.10 Next, we divide this
volume into I concentric shells, with radii Di. If we have a
measurement error σ0 for ΛNS, associated with a source
located at D ¼ D0, the same error for the same source
located within the ith shell would be σi ¼ σ0

Di
D0
.

Reference [56] calculated that the combined error σ from
N independent measurements of ΛNS in such a setting to be

1

σ2
¼

XI

i¼1

Ni

σ2i
¼

�
D0

σ0

�
2XI

i¼1

Ni

D2
i

¼
�
D0

σ0

�
2
Z

Dmax

0

4πD2n
D2

dD ¼
�
D0

σ0

�
2 3N
ðDmaxÞ2 ; ð8Þ

where Ni is the number of sources within the ith shell (such
that N ≔

P
Ni), and n is the number density of sources in

volume. The root-mean-square (rms) averaged measure-
ment error from N sources is then [56]

σavg ≔
1ffiffiffiffiffiffiffiffiffiffi
1=σ2

p ¼ σ0
D0

Dmax 1ffiffiffiffiffiffiffi
3N

p ; ð9Þ

given a fiducial pair ðσ0; D0Þ. It is straightforward to deduce
from Eq. (9) that measurement uncertainty scales as 1=

ffiffiffiffi
N

p
,

and the uncertainty afforded by a single observation with a
high SNR ρc can be attained with N ¼ ρ2c=300 realistic
observations that have ρ ≥ ρmin. E.g., to get to the level of
certainty afforded by a single observation with ρ ¼ 70, we
would need 49=3 ≈ 16–17 realistic (low SNR) detections.
While we discussed Eq. (9) for a population of optimally

oriented sources, it is valid for a more general population
distributed uniformly in effective volume [56] (∝ D3).
However, it still only applies to sources with identical
masses and spins, and we overcome this limitation by
performing a fully Bayesian analysis next.

A. Astrophysical source population

Imagine that we have N stretches of data, d1; d2;…; dN ,
each containing a single signal emitted by an NSBH binary.
Each of these signals can be characterized by the nontidal

source parameters ~θ ≔ fmBH; mNS; χBH; χNS; ~αg, and
fΛNSg, where ~α contains extrinsic parameters, such as
source distance, inclination, and sky location angles. As
before, let H denote all of our collective prior knowledge;
for instance, H includes our assumption that all NSs in a
single population have the same deformability parameter
ΛNS, and that its cumulative measurement is therefore
possible. The probability distribution for ΛNS, given N
unique and independent events, is

pðΛNSjd1; d2;…; dN;HÞ

¼ pðd1; d2;…; dN jΛNS; HÞpðΛNSjHÞR
pðΛNSjHÞpðd1; d2;…; dN jΛNS; HÞdΛNS

; ð10Þ

¼ pðΛNSjHÞQipðdijΛNS; HÞR
pðΛNSÞpðd1; d2;…; dN jΛNS; HÞdΛNS

; ð11Þ

¼
pðΛNSjHÞQiðpðΛNSjdi; HÞ pðdiÞ

pðΛNSjHÞÞR
pðΛNSjHÞpðd1; d2;…; dN jΛNS; HÞdΛNS

; ð12Þ

where Eqs. (10) and (12) are application of Bayes’ theorem,
while Eq. (11) comes from the mutual independence of all
events. Assuming in addition that all events are equally
likely: pðdiÞ ¼ pðdjÞ ¼ pðdÞ, we get

pðΛNSjd1; d2;…; dN;HÞ

¼ pðΛNSÞ1−N ×
pðdÞNR

pðΛNSÞpðd1; d2;…; dN jΛNS; HÞdΛNS

×
Y
i

pðΛNSjdi; HÞ; ð13Þ

where the prior probability pðΛNSjHÞ is written pðΛNSÞ for
brevity. A priori, we assume that no particular value of ΛNS
is preferred over another within the range [0, 4000], i.e.

pðΛNSjHÞ ¼ 1

4000
Rect

�
ΛNS − 2000

4000

�
: ð14Þ

With a uniform prior, the first two factors in Eq. (13) can be
absorbed into a normalization factor N , simplifying it to

pðΛNSjd1; d2;…; dN ;HÞ ¼ N
YN
i¼1

pðΛNSjdi; HÞ: ð15Þ

In the second set of terms in Eq. (15) [of the form
pðΛNSjdi;HÞ], each is the probability distribution for
ΛNS inferred a posteriori from the ith observation by
marginalizing

pðΛNSjdi; HÞ ¼
Z

pð~θ;ΛNSjdi; HÞd~θ; ð16Þ

8An optimally oriented binary is one which is located directly
overhead the detector, with the orbital angular momentum
parallel to the line joining the detector to the source. Such a
configuration maximizes the observed GW signal strength in the
detector.

9The effective distance D is a combination of distance to the
source, its orientation, and its sky location angles; and has a one-
to-one correspondence with SNR for nonprecessing sources. This
is so because for such sources their location and orientation
remain constant over the time scales within which they sweep
through aLIGO’s sensitive frequency band.

10We take this as ρmin ¼ 10 throughout.
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where pð~θ;ΛNSjdi; HÞ is the inferred joint probability dis-

tributionof all source parameters ~θ ∪ fΛNSg for the ith event,
as given by Eq. (2). We note that Fig. 5 illustrates
pðΛNSjdi; HÞ for three individual events. By substituting
Eqs. (14)–(16) into Eq. (15), we calculate the probability
distribution forΛNS asmeasuredusingN independent events.
Our goal is to understand the improvement in our

measurement of ΛNS with the number of recorded events.
To do so, we simulate a population11 of N events, and
quantify what we learn from each successive observation
using Eq. (15). This allows us to quantify how rapidly our
median estimate for ΛNS converges to the true value, and
how rapidly our credible intervals for the same shrink, with
increasingN. Finally, we generate and analyze an ensemble
of populations in order to average over the stochastic
process of population generation itself.
In order to generate each population, the first step is to

fix the NS properties: (i) NS massmNS ¼ 1.35 M⊙, (ii) NS
spin χNS ¼ 0 and (iii) NS tidal deformability ΛNS ¼ fixed
value chosen from f500; 800; 1000; 1500; 2000g. Next, we
generate events, by sampling BH mass (uniformly) from
mBH ∈ ½3 M⊙; 6.75 M⊙�, BH spin (uniformly) from
χBH ∈ ½0; 1�, orbital inclination from ι ∈ ½0; π�, and source
location uniform in spatial volume.12 We restrict ourselves
to positive aligned BH spins, since binaries with anti-
aligned spins have very little information to add at realistic
SNRs, as demonstrated in Fig. 6. This is to be taken into
account when the number of observations is related to
detector operation time. We repeat this process until we
have an ordered set of N events. Since we want to analyze
not just a single realization of an astrophysical population,
but an ensemble of them, we make an additional approxi-
mation to mitigate computational cost. Complete Bayesian
parameter estimation is performed for a set of simulated
signals whose parameters are the vertices of a regular
hypercubic grid (henceforth “G”) in the space of
fqg × fχBHg × fρg, with each sampled at q¼f2;3;4;5g,
χBH ¼ f−0.5; 0; 0.5; 0.75g, and ρ ¼ f10; 20; 30; 50; 70g.
All events in each population draw are substituted by their
respective nearest neighbors on the grid G. Our chosen
signal parameter distribution is different from some other
studies in literature, which often sample from more
astrophysically motivated population distribution functions
[99]. We chose one that is sufficiently agnostic in absence
of actual known NSBHs, and pragmatic enough for
generating population ensembles.
In Fig. 8 we show illustrative results for a single

population with neutron star deformability ΛNS ¼ 800.
In the top panel, each curve shows the probability

distributions for ΛNS as inferred from N events, with N
ranging from 1–80. We also mark the 90% credible
intervals associated with each of the probability distribution
curves. The first few observations do not have enough
information to bound ΛNS much more than our prior from
Eq. (14) does. In the bottom panel, we present information
derived from the top panel. The line-circle curve shows the
measured median value from N observations. The pair of
dashed (dotted) horizontal lines mark �25% (�50%) error
bars. At each N, the range spanned by the filled region is
the 90% credible interval deduced from the same events.
This figure somewhat quantifies the qualitative deductions
we made from the left panel. We find that the median does
track the true value quickly, reaching within its 10% with
10–15 observations. This is as one expects of injections in
zero noise where random fluctuations are unable to shift the
median away from the true value, so long as the measure-
ment is not restricted by the prior. With the same informa-
tion, our credible intervals also shrink to �25%. In Fig. 9

FIG. 8. Recovery of ΛNS for an increasingly large population of
BH-NS signals. Top: Posterior probability distributions for ΛNS
(colored curves), and associated 90% credible intervals (grey
vertical lines), shown for different number of accumulated
observations N. Distributions are normalized to unit area.
Bottom: Measured median value of ΛNS (as solid circles) and
the associated 90% credible intervals (as the vertical extent of
filled region), shown as a function of number of observations N.
Solid horizontal line indicates the true value of ΛNS ¼ 800.
Dashed and dotted horizontal lines (a pair for each line style)
demarcate �25% and �50% error bounds.

11A population here is an ordered set of events, and an event
itself is the set of parameters describing one astrophysical NSBH
binary.

12We distribute sources out to distances where the SNR
remains ρmin ¼ 10.
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we show further results from four independent populations
for ΛNS ¼ f500; 1000; 1500; 2000g. As in the right panel
of Fig. 8, the line-circle curves track the median ΛNS, while
the filled regions show the associated 90% credible
intervals. From the figure, we observe the following:
(i) the shrinkage of credible interval widths with increasing
N happens in a similar manner for eachΛNS, and (ii) it takes
approximately 20 events to distinguish definitively (with
90% credibility) between deformable NSs with ΛNS¼2000
and compact NSs with ΛNS¼500, or equivalently to
distinguish between hard, moderate and soft nuclear
equations of state. This is comparable to what has been
found for binary neutron stars [80,83,100].
So far we have discussed individual realizations of NSBH

populations. The underlying stochasticity of the population
generation process makes it difficult to draw generalized
inferences (from a single realization of anNSBHpopulation)
about the measurability of ΛNS. In order to mitigate this, we
discuss ensembles of population draws next. In Fig. 10 we
show themedianΛNS as a function of the number of observed
events, for four population ensembles, with a hundred
population draws in each ensemble. Let us focus on
the top left panel first. In it, we show the median ΛNS for
all populations in four ensembles, with true ΛNS ¼
f2000; 1500; 1000; 500g from top to bottom. Populations
highlighted in color are simply those that we discussed in
Fig. 9. Dash-dotted horizontal lines demarcate �10% error
intervals around the true ΛNS values. The panel just below it
shows the range ofΛNS that encloses themedianΛNS for 90%
of the populations in each ensemble. In other words, this
panel shows the range of ΛNS within which the median ΛNS
value for 90% of NSBH populations is expected to lie. From
these panels, we observe that our median ΛNS values will be
within 10% of the true value after ∼25 detections of less

deformable neutron stars (ΛNS ≤ 1000), or after as few as 15
detections of more deformable neutron stars (ΛNS ≥ 1500).
This is not surprising because we inject simulated signals in
zeronoise,which ensures that themedian not be shifted away
from the truevalue. That it takes15þ events for themedian to
approach the true value is a manifestation of the fact that the
measurement is limited by the prior on ΛNS when we have
fewer than 15 events. The results discussed in Figs. 8 and 9
and the left two panels of Fig. 10 apply to the parameter
distribution spanned by the grid G. This distribution allows
formBH as low as 2.7 M⊙ (i.e. q ¼ 2). Given that disruptive
signatures are strongest for smallmBH,we now investigate an
alternate paradigm in which no black hole masses fall within
the mass gap 2–5 M⊙ suggested by astronomical observa-
tions [73–76]. We will henceforth denote our standard
paradigm, which does not respect the mass gap, as paradigm
A, with paradigm B being this alternate scenario. Both right
panels of the figure are identical to their corresponding left
panels, but drawn under population paradigm B. Under this
paradigm, we expectedly find that information accumulation
is much slower. It would take 25–40 detections with ρ ≥ 10
under this paradigm for our median ΛNS to converge within
10% of its true value.
Finally, we investigate the statistical uncertainties

associated with ΛNS measurements. We use 90% credible
intervals as our measure of the same. First, we draw an
ensemble of a hundred populations each for ΛNS ¼
f500; 1000; 1500; 2000g. For each population i in each
ensemble, we construct its 90% credible interval
½Λ90%

NS i−;Λ
90%
NS iþ�. Next, we construct the interval ½X−; Y−�

that contains Λ90%
NS i− for 90% of the populations in each

ensemble, and similarly ½Xþ; Yþ� for Λ90%
NS iþ. Finally, in

the left panel of Fig. 11, we show the conservative width
jYþ − X−j that contains the 90% credible intervals for 90%
of all populations in each ensemble.13 From top to bottom,
the population ΛNS decreases from ΛNS ¼ 2000 → 500,
corresponding to decreasingly deformable NSs with softer
equations of state. We observe the following: (i) for mod-
erately hard to hard equations of state with ΛNS ≥ 1000, we
can constrain ΛNS within �50% using only 10–20 events,
and within �25% (marked by black circles) with 25–40
events; (ii) for softer equations of statewithΛNS < 1000, we
will achieve the same accuracy with 20–30 and 50þ events,
respectively; and (iii) for the first five or so observations,
our measurement spans the entire prior allowed range:
ΛNS ∈ ½0; 4000�, as shown by the plateauing of the 90%
credible intervals towards the left edge to 90% of 4000, i.e.
3600. The right panel in Fig. 11 is identical to the left one,
with the difference that populations are drawn under
paradigm B, which does not allow for BH masses to fall
within the mass gap.We find that for NSs withΛNS ≤ 1000,
it would take 25–40 events to constrain ΛNS within �50%

FIG. 9. Improvement in ΛNS measurement accuracy for differ-
ent NS EoS: In this figure, the filled regions show how our
measurement of ΛNS improves as the number of observed events
(N, shown on x axis) increases. Each color corresponds to an
independent population with its true value of ΛNS given in the
legend. For each population, we show the median ΛNS value (as
filled circles), as well as the associated 90% credible intervals for
the measurement (as the vertical extent of the filled region about
the median), as functions of N.

13With source parameters sampled under paradigm A, in which
mass-gap is not respected.
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FIG. 10. No mass gap, top left: The top figure shows the median value of the recovered probability distribution for ΛNS, as a function
of the number of observed events N. There are four ensembles of curves, corresponding to ΛNS ¼ f500; 1000; 1500; 2000g, with a
hundred independent population draws within each ensemble. One curve in each ensemble is highlighted in color, representing the
realizations already plotted in Fig. 9. In the same color we show �10% error bounds on ΛNS with horizontal dash-dotted lines. No mass
gap, bottom left: Here we show the interval of ΛNS values within which the median ΛNS lies for 90% of the populations in each ensemble
shown in the top left panel. We observe that within 10–25 observations, the median of the measured cumulative probability distribution
for ΛNS converges to within 10% of its true value. Mass gap, right column: These panels are identical to their counterparts on the left,
with the only difference that the BH masses in each population are restricted to lie outside the astrophysical mass gap (i.e. paradigm B).
The difference that we observe under this paradigm is that we need more (30þ) events to achieve the same (10%) measurement accuracy
for populations with ΛNS < 1000. For more deformable neutron stars, 10–25 events would suffice.

FIG. 11. No mass gap (left): This panel shows the width of the ΛNS interval within which the 90% credible intervals for ΛNS lie, for
90% of the populations in each ensemble, as a function of the number of observed eventsN. Details of how this is calculated are given in
the text. The populations are sampled under paradigm A, which allows BH masses to fall within the astrophysical mass gap. Each panel
corresponds to a unique value of populations’ ΛNS, decreasing from 2000 → 500 as we go from top to bottom. One curve in each
ensemble is highlighted in color (thin lines), representing the realizations already plotted in Fig. 9. Mass gap (right): This panel shows
populations drawn under paradigm B, which respects the mass gap. We find that with approximately 25 or so events, we begin to put
statistically meaningful constraints on ΛNS, restricting it to within�50% of the true value. We can expect to achieve this with a few years
of design aLIGO operation [81]. Further tightening of ΛNS credible intervals will require 40þ events.
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and 50þ events to constrain it within �25%. This is
somewhat slower than paradigm A, as is to be expected
since here we preclude the lowest mass ratios, which
correspond to signals with largest tidal signatures. For
ΛNS > 1000 we find that we can constrain ΛNS within
�50% with a similar number of events as for paradigm A,
but will need more (30–40 as compared to 25–40) events to
further constrain it to within�25% of the true value. Under
either paradigms, we find that measuring ΛNS better than
25% will require Oð102Þ observations of disruptive NSBH
mergers. These results demonstrate that our probed set of
disruptive NSBH mergers is as informative of NS tidal
properties as are BNS populations, if we assume a uniform
mass distribution for NSs and zero NS spins, and possibly
more if NS masses are not distributed uniformly [83].
However, being a subset of all NSBH binaries, the accu-
mulation of information from NSBH signals in general may
be slower than from binary neutron stars, depending on the
distribution of BH masses in coalescing NSBH binaries.
Do all events matter? In Ref. [60] the authors demonstrate

that the overwhelming majority of information about the NS
equation of state comes from the loudest∼5 events in the case
of binary neutron star detections, and not from the combined
effect of a large number of low-SNR systems. The question
naturally arises if the same is true for NSBH sources as well.
Therefore, in Fig. 12 we reevaluate the accumulation of
informationwith each successiveNSBHdetection, sorting the
events in each population by their SNR instead of simulated
chronology. We find the same qualitative behavior as in the
case of BNSs [60]. Whether or not there is an astrophysical
mass gap, we find that the bulk of tidal information
will be furnished by the loudest 5–10 NSBH detections of
aLIGO detectors. This result is especially encouraging to NR
follow-up efforts for GW detections, as we now know that
only a handful of loudest NSBH events (with SNRs
ρ≳ 20–30) are the ones that may merit full numerical-GRþ
magnetohydrodynamical follow-up simulations.

To summarize, in this sectionwe study the improvement
in our measurement of NS deformability parameter ΛNS
with an increasing number of events. We do so by
simulating plausible populations of disrupting NSBH
binaries (with ρ ≥ 10). We find that: (i) for more deform-
able neutron stars (harder equation of states), the median
value of ΛNS comes within 10% of the true value with as
few as 10 events, while achieving the same accuracy for
softer equations of state will take 15–20 source detections;
(ii) the statistical uncertainty associated with ΛNS meas-
urement shrinks towithin�50%with 10–20 events, and to
within �25% with 50þ events, when source ΛNS ≥ 1000;
(iii) for softer equations of state, the same could take 25–40
and 50þ events, respectively for the two uncertainty
thresholds; and (iv) if BHs really do observe the astro-
physical mass gap, the information accumulation is some-
what slower than if they do not. We conclude that within
20–30 observations, aLIGO would begin to place very
interesting bounds on the NS deformability, which would
allow us to rule out or rank different equations of state for
neutron star matter. Within this population, we also find
that it will be the loudest 5–10 events that will furnishmost
of the tidal information. Our key findings are summarized
in Figs. 10–12.

VI. DISCUSSION

The pioneering observation of gravitational waves by
Advanced LIGO harbingers the dawn of an era of gravi-
tational-wave astronomy where observations would finally
drive scientific discovery [101]. As confirmed by the first
observations [18,101,102], stellar-mass compact binary
mergers emit GWs right in the sensitive frequency band
of the LIGO observatories, and are their primary targets.
Neutron star-black hole binaries form a physically distinct
subclass of compact binaries. We expect to detect the
first of them in the upcoming observing runs [103], and

FIG. 12. This figure is similar to Fig. 11, with the only difference being that events in each population have been sorted according to
their signal strength (SNR), instead of their simulated chronology. We note that information about the tidal deformability of neutron stars
comes primarily from the loudest 5–10 events, whether we allow BHmasses in the mass gap (left panel) or restrict them tomBH ≥ 5 M⊙
(right panel). The left inset zooms in on the main figure for the first 15 events. The right inset shows the actual (ensemble mean) SNR
value for each event. We find that events with ρ≳ 20–30 provide the bulk of tidal information in our analysis.
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subsequently at a healthy rate of 0.2–300 mergers a year
when aLIGO detectors reach design sensitivity [31].
NSBH binaries are interesting for various reasons.

Unlike BBHs, the presence of matter allows for richer
phenomena to occur alongside the strong-field gravitational
dynamics. The quadrupolar moment of the NS changes
during the course of inspiral, which increases the inspiral
rate of the binary and alters the form of the emitted
gravitational waves. Close to merger, under restricted but
plausible conditions, the neutron star is disrupted by the
tidal field of its companion black hole and forms an
accretion disk around it. This disruption reduces the
quadrupolar moment of the system, and decreases the
amplitude of the emitted GWs from the time of disruption
through to the end of ringdown. Both of these phenomena
are discernible in their gravitational-wave signatures alone.
In addition, if the neutron star matter is magnetized, the
magnetic winding above the remnant black hole poles can
build up magnetic fields sufficiently to power short gamma-
ray bursts (SGRB) [38,39,41–44]. Therefore a coincident
observation of gravitational waves from an NSBH merger
and a SGRB can potentially confirm the hypothesis that the
former is a progenitor of the latter [32–40].
In this paper we study the observability of tidal sig-

natures in the gravitational-wave spectrum of NSBH
binaries. More specifically, we investigate three questions.
First, what is the effect of not including tidal effects in
templates while characterizing NSBH signals? Second, if
we do include tidal effects, how well can we measure the
tidal deformability of the NS (parametrized by ΛNS) from
individual NSBH signals? Third, as we observe more and
more signals, how does our knowledge of ΛNS improve? In
the following, we summarize our main findings.
First, we study the effects of not including tidal terms in

our search templates while characterizing NSBH signals.
We expect that the waveform template that best fits the
signal would compensate for the reduced number of
degrees of freedom in the template model by moving away
from the true parameters of the binary. This should result in
a systematic bias in the recovered values of nontidal source
parameters, such as its masses and spins. In order to
quantify it, we inject tidal signals into zero noise, and
perform a Bayesian parameter estimation analysis on them
using templates without tidal terms. We use the LEAþ
model (cf. Sec. II A) to produce tidal waveforms that
incorporate the effect of NS distortion during inspiral,
and of its disruption close to merger. Our injected signals
sample the region of NSBH parameter space where NS
disruption prior to binary merger is likely and can be
modeled using LEAþ. Their parameters are given
by combinations of q¼mBH=mNS¼f2;3;4;5g, χBH¼
f−0.5;0;0.5;0.75g and ΛNS¼f500;800;1000;1500;2000g.
Other parameters, such as source location and orientation,
that factor out of hðtÞ as amplitude scaling are cosampled
by varying ρ ¼ f20; 30; 50; 70g.

At low to moderate SNRs (ρ≲ 30), we find that using
BBH templates does not significantly hamper our estima-
tion of nontidal parameters for NSBH signals. In the worst
case, when the BH mass is within the astrophysical mass
gap [73–76] and its spin is positive aligned, the systematic
biases in η and χBH measurements do become somewhat
comparable to statistical errors (ratio ∼0.5–0.8) under very
restrictive conditions,14 but never exceed them. At high
SNRs (ρ≳ 50), systematic biases in Mc become larger
than the statistical uncertainties. For η and χBH the differ-
ence is more drastic with the systematics reaching up to 4×
the statistical errors. We therefore conclude that ρ≃ 30–50
is loud enough to motivate the use of tidal templates for
even the estimation of nontidal parameters from NSBH
signals. We also conclude that low-latency parameter
estimation algorithms, designed to classify GW signals
into electromagnetically active (NSBH and NSNS) and
inactive (BBH) sources, can use BBH templates to trigger
GRB alerts [50,104–108] for NSBH signals with low to
moderate SNRs (ρ≲ 30). This is so because the primary
requirement of identifying NS-X binaries (X ¼ fNS;BHg)
can be achieved just as easily with BBH templates, on the
basis of the smaller component’s mass.15 We also speculate
that NSBH detection searches are unlikely to be affected by
the choice of ignoring tidal effects in matched-filtering
templates, if these effects are too subtle to manifest in
parameter estimation below ρ≃ 30.
Second, we turn the question around to ask: can we

measure the tidal effects if our template models did account
for them? Tidal effects in our waveform model are
parametrized using a single deformability parameter
ΛNS ∝ ðR=MÞ5NS. In order to quantify the measurability
of ΛNS, we inject the same tidal signals as before, and this
time perform a Bayesian analysis on them using tidal
templates. The results are detailed in Sec. IV. At low SNRs
(ρ≃ 20), we find that the best we can do is to constrainΛNS
within�75% of its true value at 90% credible level; this too
only if the BH is spinning sufficiently rapidly, with
χBH ≳þ0.7, and the NS has ΛNS ≳ 1000. At moderate
SNRs (ρ≃ 30), we can constrain ΛNS a little better, i.e.
within �50% of its true value. This level of accuracy,
however, again requires that BH spin χBH ≳þ0.7 and
ΛNS ≳ 1000. Binaries with smaller BH spins and/or softer
NS EoSs will furnish worse than �75% –�100% errors
for ΛNS. This trend continues as we increase the SNR from
ρ ¼ 30–50. It is not before we reach an SNRs as high as
ρ≃ 70 that we can shrink ΛNS errors substantially with a
single observation (i.e. within �25% of its true value). In
summary, we find that with a single but moderately loud

14Those conditions being: a companion BH with mass mBH ≲
4.5 M⊙ (i.e. in the astrophysical mass-gap), and the hardest NS
EoS amongst those considered in this work (with ΛNS ≃ 2000).

15The smaller component mass is unlikely to be significantly
biased by missing tidal effects in filter templates below ρ≃ 30, as
we show above.
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NSBH signal, Advanced LIGO can begin to put a factor of
1–2× constraints on the NS tidal deformability parameter.
These constraints can subsequently be used to assess the
likelihood of various candidate equations of state for
nuclear matter, and possibly to narrow the range they span.
Third, knowing that single observations can furnish only

so much information about the NS equation of state, we
move on to investigate how well we do with multiple
signals. In order to quantify how ΛNS measurement
improves with the number of observed events N, we
generate populations of NSBH signals and combine the
information extracted from each event. The population
generation procedure is as follows. The neutron star mass is
held fixed at 1.35 M⊙, its spin at χNS ¼ 0, and its tidal
deformability is fixed to each of ΛNS ¼ f500; 1000; 1500;
2000g. Black hole mass is sampled uniformly from the
range ½2; 5� × 1.35 ¼ ½2.7; 6.75�M⊙, and spin from
χBH ∈ ½0; 1�. As before, our parameter choice here is given
by the intersection set of the mass range that allows for
neutron star disruption and the range supported by LEAþ
[44,65,109]. In order to keep the computational cost
reasonable, we make an additional approximation. For
every population generated, we replace the parameters of
each event by their nearest neighbor on the uniform grid G,
which has vertices at q¼f2;3;4;5g×χBH ¼f−0.5;0;
0.5;0.75g×ΛNS¼f500;800;1000;1500;2000g×ρ¼f10;
20;30;50;70g. This way, we only have to run full Bayesian
parameter estimation analysis on this fixed set of signals.
There are two sources of error that enter the deductions we
make from a single population generated in the manner
described above. First, since the injection parameters are
pushed to their nearest neighbor on a grid, we find discrete
jumps inΛNS errors as a function ofN. Second, an individual
population is one particular realization of a stochastic
process and could have excursions that may never be found
in another population. To account for both of these limi-
tations, we generate an ensemble of populations, and
conservatively combine information from all of them.16

We probe two astrophysical paradigms, one that allows for
BH masses to lie within the astrophysical mass gap (para-
digm A), and one that does not (paradigm B). For paradigm
A, we find the following: (i) for the softer equations of state
that result in less deformable neutron stars, 15–20 detections
bring the measured probability distribution for ΛNS entirely
within the prior, which ensures that the median ΛNS tracks
the true value towithin 10%. (ii) For NSBHpopulations with
more deformable NSs (ΛNS > 1000), the same is achievable
within as few as 10 (or 15 at most) realistic observations.
(iii) The statistical uncertainty associated with ΛNS meas-
urement can be restricted to be within �50% using 10–20
observations when ΛNS > 1000), and using 25–40 obser-
vations for softer equations of state. All of the above is
possible within a few years of design aLIGO operation [81],

if astrophysical BHs are allowed masses <5 M⊙ (i.e. in the
mass gap). However, further restrictingΛNS will require 50þ
NSBH observations. For paradigm B, we find the informa-
tion accumulation to be somewhat slower. While the
quantitative inferences for populations with ΛNS > 1000
are not affected significantly, we find that ΛNS < 1000
populations require 10%–20% more events to attain the
same measurement accuracy as under paradigm A. In either
case, the accumulation of information from the general
NSBH population will likely be slower than from BNS
inspirals [60,61,83,99], depending on the mass distribution
of stellar-mass black holes. Though, template models for the
latter may be more uncertain due to missing point-particle
PN terms at orders comparable to tidal terms [60]. We
conclude that within as few as 20–30 observations of
disruptive NSBH mergers, aLIGO will begin to place
interesting bounds on NS deformability. This, amongst other
things, will allow us to rank different equations of state for
neutron star matter from most to least likely, within a few
years’ detector operation. We also find that, within this
population, the loudest 5–10 events (with SNRs ρ≳ 20–30)
will provide us with most of the tidal information, and will
therefore merit full NR follow-up. Our methods and results
are detailed in Sec. V.
Finally, we note that the underlying numerical simula-

tions used to calibrate the waveform model used here have
not been verified against independent codes so far. It is
therefore difficult to assess the combined modeling error of
LEAþ and its effect on our results. Our results here are,
therefore, limited by the limitations of our waveformmodel,
and presented with this caveat. However, we do expect the
combined effect of modeling errors to not affect our
qualitative conclusions, especially since the underlying
point-particle component of LEAþ includes all high-order
terms, unlike past BNS studies [60,61] In the future, we plan
to further the results presented here by using more recent
tidal models [82,110], which may improve upon LEAþ.17
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APPENDIX A: STATISTICAL UNCERTAINTY
IN MEASURING NONTIDAL PARAMETERS

In Fig. 13, we show how precisely can we measure
nontidal NSBH parameters X ¼ fMc; η; χBHg using BBH
templates. The three panels correspond to Mc (top), η
(middle), and χBH (bottom), and show the width of these
credible intervals ðΔXÞ90% as a function of BH mass/spin
(within each subpanel), and NS properties, i.e. ΛNS

(downwards in each column).18 From the leftmost column,
we find that: (i) at ρ ¼ 20 the chirp mass is measured
remarkably well—to a precision of 0.16% of its true value,

FIG. 13. Statistical measurement uncertainty for NSBH parameters, ignoring tidal effects: We show here the statistical uncertainty
associated with our measurement of nontidal parametersMc; η, and χBH (at 90% credibility), over the signal parameter space. Individual
panels show the same as a function of BH mass and spin. Across each row, we see the effect of increasing signal strength (i.e. SNR) with
the tidal deformability of the NS ΛNS fixed. Down each column, we see the effect of increasing ΛNS, at fixed SNR. Tidal effects are
ignored in templates.

18We restrict NS mass to 1.35 M⊙ and its spin to zero. Varying
its tidal deformability ΛNS does not significantly change the
measurement uncertainties for nontidal binary parameters, as is
evident from comparing the two rows in each panel of Fig. 13.
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and (ii) so is χBH. (iii) The dimensionless mass ratio η is
determined more loosely, with 25þ% uncertainty. If the
signal is even louder (ρ ≥ 30), all three measurements gain
further precision, especially η, for which the relative errors
shrink down to single-digit percents. We remind ourselves
that these results do not tell the full story since the precision
of a measurement is only meaningful if the measurement is
accurate to begin with. In our case there are tidal effects that
have not been incorporated into our search (BBH) tem-
plates, which can lead to a systematic bias in parameter
recovery. We refer the reader to Sec. III for a comparative
study of both systematic and statistical errors.

APPENDIX B: ILLUSTRATIONS
OF BAYESIAN POSTERIORS

In Fig. 14 we show the correlation of mass, spin, and tidal
parameter measurements. We keep the binary parameters as
in Fig. 5, with ΛNS ¼ 2000, and set ρ ¼ 20 (left panel) or
ρ ¼ 50 (right panel).We find that themeasurement ofΛNS is
weakly degenerate with other parameters, and at realistic
SNRs it would improve by a few tens of percent if we knew
nontidal parameters to better accuracy. The predominant
factor that would enhance the measurement accuracy for
ΛNS is nevertheless the signal strength. Only when ρ≳ 50
can we expect ΛNS measurement to be limited by its

degeneracy with nontidal parameters (at a factor of few
level), as also reported by previous studies [65].

APPENDIX C: PHENOMENOLOGY OF ΛNS
MEASUREMENT ERRORS

Here, we quantitatively explore the dependence of our
statistical uncertainties for ΛNS on the number of events, as
well as on the true NS deformability itself. First, we will
focus on the dependence on N. We assume a power-law
dependence of the form δΛNS ∝ 1=Nα. For each of the 100
populations for each of ΛNS ¼ 500–2000, we compute the
exponentα as a function of the number of observed eventsN,
and show it in Fig. 15. There are 100 × 5 ¼ 500 curves on
the figure, with one highlighted for each value of the
population’s ΛNS. These highlighted values are only special
in the sense that they correspond to populations discussed
earlier in this section (cf. Figs. 8 and 9). We immediately
observe two things: (i) there is a globally similar dependence
on N for all populations, and (ii) information accumulates
faster than 1=

ffiffiffiffi
N

p
. In fact, we find that if δΛNS ∝ 1

Nα, α lines
in the range 0.7þ0.2

−0.2 . Next, we focus on the dependence of
δΛNS on ΛNS of the population itself. As suggested by
Fisher-matrix studies [65], and as forN, we assume the form
δΛNS ∝ Λβ

NS. From each set of 100 populations with a given
ΛNS value, we draw one at random, and form a set of five

FIG. 14. Illustrative posterior probability distributions for NSBH parameters, for signals at different SNRs: We illustrate here two sets
of two-dimensional joint probability distributions, differing only in signal strength, with ρ ¼ 20 in the left panel, and ρ ¼ 50 in the right.
The injected parameters are q ¼ mBH=mNS ¼ 5.4 M⊙=1.35 M⊙ ¼ 4, χBH ¼ þ0.5, and ΛNS ¼ 2000. Contours are shown for
f1−; 2−; 3−;…gσ confidence levels. Templates include tidal effects, as evident in the bottom rows of both panels which show the
correlation of ΛNS with nontidal parameters. Contrasting the two panels illustrates the effect of increasing the SNR on various parameter
measurements.
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similarly drawn populations, one for each of ΛNS ¼
f500; 800; 1000; 1500; 2000g. With each set, we determine
β for a different number of observed events N. In all, we
make 100 independent five-population sets and show the
value of β measured from each in Fig. 16. We find that the
assumed relation δΛNS ∝ Λβ

NS gets fairly robust for larger
values of N, with β converging to β ¼ 0.5þ0.33

−0.33 . The fact
that 0 < β < 1 implies that the relative error δΛNS=ΛNS

decreases with increasing ΛNS, while the absolute error
increases. From these results, we conclude that the meas-
urement uncertainty for ΛNS after N observations is

δΛNS ∝
Λ
0.5þ0.33

−0.33
NS

N0.7þ0.2
−0.2

: ðC1Þ

We also find that while these results are inferred from
paradigm A populations, paradigm B gives very similar
results.

APPENDIX D: CHOICE OF UNDERLYING
BBH MODEL IN LEA

The waveform model used in this paper is a variant of
those calibrated in Ref [65]. In that work, the authors also
calibrate a tidal prescription with the phenomenological
model IMRPhenomC [111] as the base BBH model. Previous
work [88,89] has shown that IMRPhenomC can exhibit
pathological behavior for mass ratios q≳ 4 and/or nonzero
black hole spins. We compute noise-weighted inner prod-
ucts between the two variants for 2,000,000 points sampled
over the NSBH parameter space, and show the results in
Fig. 17. We restrict the comparison to frequencies that are
affected by the tidal disruption of the NS, by integrating the
inner products from f ¼ maxð15; 0.01=MÞ Hz {whereM is
expressed in seconds [1 M⊙ ≃ 4.925μS, see Eqs. (32)–(34)
of [65]]}. We find that the differences between the two
variants of LEAþ have mismatches of a few percent, while
the tidal corrections contribute at a subpercent level. We
conclude that the differences of the underlying BBH model
in LEAþ dominate over its tidal calibration, and since
SEOBNRv2 has been shown to be more reliable than
IMRPhenomC [88,89], we recommend the use of SEOBNRv2-
based LEAþ in upcoming LIGO-Virgo analyses.

FIG. 16. In this figure, which is similar to Fig. 15, we quantify
the dependence of δΛNS on ΛNS itself. Of the five families of
simulated NSBH populations, we construct 100 independent sets
taking one population from each family. With each of these 100
sets, and assuming a power-law dependence: δΛNS ∝ Λβ

NS, we
estimate β and show it in this figure as a function of the number of
observed events N. The thicker curve corresponds to the
populations discussed in Fig. 9. We find that β can be estimated
to lie within ½1=6; 5=6� with a likely value close to 1=2. Since
0 < β < 1, the relative error δΛNS=ΛNS decreases as the star gets
more deformable, while the absolute error δΛNS increases.

FIG. 17. We compare two alternatives of the tidal NSBH model
from Ref. [65], which differ in their underlying BBH prescrip-
tions. One which we use in this study uses SEOBNRv2, while the
other uses IMRPhenomC as its base. In this figure, we show the
normalized overlap (match) between the two for 2,000,000 points
sampled uniformly in the NSBH parameter space. We find that
for q≳ 4 the discrepancies between IMRPhenomC and SEOBNRv2
as reported in [88] dominate over tidal terms.

FIG. 15. Assuming a power-law dependence of the measure-
ment error on the number of events: δΛNS ∝ 1=Nα, we show α in
this figure as a function of the number of observed events N.
Shown are five families of 100 population draws each, with each
family corresponding to one of ΛNS ¼ f500; 800; 1000; 1500;
2000g. Each grey curve corresponds to one of these 100 × 5 ¼
500 populations. The thicker curves, one from each family, show
the population we discussed in Figs. 8 and 9. We find that a power
law is a good approximation for the concerned dependence, and
information accumulates faster than 1=

ffiffiffiffi
N

p
. We estimate

α≃ 0.7þ0.2
−0.2 .
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