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From the basic concepts of general relativity, we investigate the rotation of the polarization angle by a
moving gravitational lens. In particular, we clarify the existing confusion in the literature by showing and
explaining why such rotation must explicitly depend on the relative motion between the observer and the
lens. We update the prediction of such effect on the double pulsar PSR J0737-3039 and estimate a rotation
angle of ∼10−7rad. Despite its tiny signal, this is 10 orders of magnitude larger than the previous prediction
by Ruggiero and Tartaglia [1], which apparently was misguided by the confusion in the literature.
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I. INTRODUCTION

Einstein’s theory of general relativity has been the
dominant theory of gravity for a century. Many of its
signature outcomes, such as light-bending, orbital preces-
sion, and gravitational waves, have been confirmed by
precision tests in astronomy [2–5]. One of the last pending
tests is the gravitational rotation of the polarization angle.
Since gravity directly affects the spacetime geometry, a
gravitational lens not only can bend the light ray, it may
also rotate the polarization. Such gravitational rotation of
polarization has not been measured so far.1 One obvious
reason is that it is usually very small. The rotation angle of a
linearly polarized light ray, caused by a gravitational lens, is
suppressed by two small numbers:

Δϕ ≈
4GM
r

· v: ð1Þ

HereM is the mass of the lens, r is the impact parameter—
the shortest distance when the light ray passes near the lens,
and v is the velocity of the lens. Unless the light goes
through somewhere comparable to the Schwarzschild
radius, the first factor is small. Unless the velocity is
almost relativistic, the second factor is small.
Luckily, an almost edge-on, compact pulsar binary

system, such as the double pulsar PSR J0737-3039, can

be a very strong candidate to measure such effect. Pulsar
signals are often highly polarized, allowing precise mea-
surements of its rotation. This system has an almost edge-
on orbit which allows the impact parameter to be very small
at the superior conjunction. Finally, its compact orbit, with
a two-hour period, means a large velocity. One main point
of this paper is to show that one can expect to have Δϕ ∼
10−7 from the double pulsar, which might be observable
given a dedicated observation campaign.
The gravitational rotation of polarization from this

double pulsar system was previously studied in [1].
They however derived a much smaller number which is
incorrect. In fact, various theoretical derivations of this
rotation of polarization have probably brought more con-
fusion than clarity since its first appearance in [7]. It was
summarized in [8] that three different values of Δϕ can be
derived from existing literature for seemingly identical
physical situations. Many authors disagreed on “whether
there is a nonzero rotation in Schwarzschild metric,” while
none of them correctly pointed out that it is not even a well-
defined question to ask. Although Eq. (1) has been derived
by some authors, such as in [6,9], they did not explicitly
explain why it is the correct result.
In this paper, we will resolve the confusion by deriving

Eq. (1) from the very basic concept of general relativity—
parallel transports. It turns out that Δϕ, despite being a
number, is not a gauge-invariant scalar. It is actually an
SOð2Þ projection of an SOð3; 1Þ tensor. The SOð3; 1Þ
rotation is a gauge-invariant property associated with a light
ray that starts and ends far away from the lens, but Δϕ
depends on which SOð2Þ we project to. Therefore, it is
natural for Δϕ to be gauge-dependent. More precisely,
the rotation of polarization depends on the frame of the
observer. Such observer or gauge dependence was the
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1The E-mode and B-mode in CMB are defined as the relative

angle between polarization and gradient. The observed leading-
order effect is a consequence of a rotated gradient but a fixed
polarization; thus, it does not count. The actual rotation of
polarization contributes to subleading effects, which are analyzed
in [6], and it is unclear whether we will eventually observe them.
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source of confusions. For example, one cannot simply ask
whether there are rotations in Schwarzschild metric without
specifying who the observer is. For an observer at rest,
there is indeed zero rotation; for a moving observer,
however, the rotation will be nonzero.
We also identify the “correct” gauge to compute such

rotation, in which the answer will agree with the actual
observation of double-pulsar signal from the earth. It
involves comparing the polarization of two signals, and
both are measured in the rest frame of the earth. Thus, it is
only natural that we calculate in the earth (observer’s)
frame. The v in Eq. (1) is the relative velocity between the
observer and the lens.
In Sec. II, we will provide an operational definition of

polarization rotation from the basic principles in general
relativity and explain the inevitable observer dependence.
In Sec. III, we will derive Eq. (1) in the small rotation limit
for one spin-less, point-mass lens. We then generalize it
into multiple lenses even with spins. In Sec. IV, we will
describe the observable effects on double pulsar. In Sec. V,
we conclude with a discussion of an appropriate observa-
tion campaign of future detection.

II. DEFINITION FROM SCRATCH

A. Parallel transport around a loop

Intuitively, one can imagine the polarization as a vector
attached to a light ray that is spacelike and orthogonal to the
direction of propagation. Let k be the null vector of the
light ray and e be a polarization vector, a parallel transport
of e should be valid in the geometric optic limit, i.e.,

ka∇aec ¼ ka∂aec þ kaebΓc
ab ¼ 0: ð2Þ

When the rotation is small, using the Born approximation,
we can integrate along a light ray from point A to point B to
get the change of polarization vector,

Δec ¼
Z

B

A
k̂aeb0Γc

abdl; ð3Þ

where e0 is the original vector and Δe is the change.
Straightforwardly, Δϕ≡ jΔej=jej could serve as a defini-
tion of how much a polarization vector has been rotated.
This however, cannot be the full story. That is because
Eq. (3) literally compares two vectors on the tangent spaces
of two different points. Such comparison is mathematically
meaningless. The two vectors must be in the same tangent
space to provide a meaningful rotation. Another way to
state the same problem is that the value of connections, Γc

ab,
depends on the coordinate choice. By choosing a different
gauge, one can change the value of the line integral of
Eq. (3) to any value.
Much of the literature used Eq. (3) and computed its

value in one very natural gauge, for example [6,9]. We can
probably call that the asymptotic Minkowski gauge or the

Schwarzschild gauge, in which Γc
ab falls off to zero

asymptotically away from matter sources as they would
in the Schwarzschild coordinate. It turns out that Eq. (3) in
such gauge happens to give the correct, gauge-independent
answer. Here we will explain why.
First of all, parallel transport is not limited to null rays.

One vector eμ at a point can be parallel transported along
any path by an integral similar to Eq. (3). After we parallel
transport from A to B along a null ray, we can again parallel
transport the resulting vector in B along another curve back
to A. If we compare the final vector back at A with the
initial vector, the result is a loop integral.

Δec ¼
Z

B

A
k̂aeb0Γc

abdlþ
Z

A

B
p̂aeb0Γc

abdl: ð4Þ

Since now we are comparing two vectors on the tangent
space of one point, it is mathematically meaningful. It is
also gauge invariant. The gauge freedom allows us to
change the value of Γc

ab locally but not globally, as there
will be constraints. Parallel transport in any close loop is
indeed one of those constraints. Its answer carries the
gauge-invariant information about spacetime curvature
enclosed by such loop, and it must be gauge invariant.
Equation (3) is just providing a convenient way to

evaluate such gauge-invariant loop integral. Assume that
we are in asymptotic Minkowski space, and both points
A and B are in the asymptotic region. We can then
choose this path from B back to A to stay in the
asymptotic region. In the asymptotic Minkowski gauge
that Γc

ab → 0 asymptotically, the segment of integral
through the asymptotic region contributes nothing.
Therefore, the line integral, Eq. (3), in the asymptotic
Minkowski gauge, gives exactly the gauge-invariant
answer of the loop integral in Eq. (4).
Furthermore, when there are multiple matter sources in

asymptotic Minkowski space, there is a well-defined,
common asymptotic Minkowski gauge. That simply means
Γc
ab is only nonzero near sources, decays away from

individual sources like in a Schwarzschild metric, and
the contribution from each source superimposes in the
region far away from all sources. Computing a gauge-
invariant loop integral in this gauge allows us to identify the
contributions to rotation from individual sources, since
only the segments of integral near sources have nonzero
contributions.
An actual observation, as we depict that in Fig. 1, is

closely related to a loop integral. What we have is a source
(pulsar) which constantly emits a fixed (albeit unknown)
polarization. We measure the polarization during a usual
time, which is a light ray from A1 to B1. And then we
compare it with the polarization measured when its binary
companion passes very close to the line of sight, which is
another light ray from A2 to B2. We take the difference
between these two measurements, which is a loop integral
if we add two extra timelike segments.
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Δec ¼ ecjB2
− ecjB1

¼
Z

B2

A2

k̂aeb0Γc
abdlþ

Z
B1

B2

p̂aeb0Γc
abdl

þ
Z

A1

B1

k̂aeb0Γc
abdlþ

Z
A2

A1

p̂aeb0Γc
abdl: ð5Þ

The two timelike segments, A1A2 and B1B2, and the light
ray A1B1, are all far away from the companion. They all
contribute nothing in the asymptotic Minkowski gauge.
Thus, the above loop integral can be calculated in the
asymptotic Minkowski gauge as only the line integral
A2B2. Such a line integral actually only has contributions
near the companion; thus, it is indeed the rotation of
polarization caused by the passage of the companion.2

B. Observer dependence

In the previous section, we explained that a given vector,
parallel transported along a loop, goes through a gauge-
invariant rotation. In the asymptotic Minkowski gauge,
such rotation can be calculated along a light ray. This
however, does not resolve all the confusion in the rotation
of polarization. The next problem is, which vector do we
rotate? Polarization lives in a two-dimensional plane, which
cannot be uniquely determined by a light ray. Thus, there is
no unambiguous answer to the question of “how much
rotation of polarization has a light ray gone through." We
need both the light ray and the observer’s 4-velocity to
determine the two-dimensional plane on which the polari-
zation lives. Therefore, “how much rotation” must have an
observer-dependent answer.
Mathematically, we can see that Eq. (3) is the leading-

order effect of a small rotation matrix,

ec ¼ ec0 þ Δec ¼ Λc
beb0 ¼ ðgcb þ Δc

bÞeb0; ð6Þ

where

Δcb ¼
Z

B

A
k̂aΓd

abgcddl: ð7Þ

By definition of a rotation matrix, Δcb has to be anti-
symmetric, which can be verified explicitly.

Δac ¼
Z

kbΓd
abgcddλ ¼

1

2

Z
kbð∂agbc þ ∂bgac − ∂cgabÞdλ

¼ 1

2

Z
kbð∂agbc − ∂cgabÞdλ: ð8Þ

Note that we have to drop the boundary term in the above
integral, which is allowed because this is effectively a loop
integral as we explained in the previous section. This
demonstrates that there is actually a full SOð3; 1Þ rotation,
Λa

b ≈ ðgab þ Δa
bÞ, that is associated with a loop, therefore

a light ray which starts and ends in asymptotic Minkowski
region.
This SOð3; 1Þ rotation is the gauge-invariant property

associated with the light ray, but it does not yet determine
the rotation of polarization, which is only an SOð2Þ. It also
contains extra information such as the deflection of the
light ray itself. Particularly, one needs to specify a two-
dimensional plane of polarization to determine which
SOð2Þ to project to. For any observer, the polarization
vectors are orthogonal to both the incoming light ray and its
own worldline. Thus, a projection to the co-dimension-two
surface orthogonal to the light ray and the observer
4-velocity is the desired SOð2Þ rotation of polarization.
Therefore, it is natural and necessary that polarization
rotation depends on the observer frame. This also explains
the v dependence in Eq. (1), which has to be the velocity of
the lens in the observer’s frame.

pulsar
1

2

1

2

earth
μ

μ

Δφ

v (out of the plane)
B

B

A

A

k’

k

FIG. 1. Parallel transport along a loop contains four segments:
bent light ray (solid black), worldline of the pulsar (thick, green,
left), worldline of the observer (thick, green, right), and an unbent
light ray (dashed, bottom). It leads to an SOð3; 1Þ rotation of the
tangent space, and contains the information of both deflection of
light (from kμ to k0μ) and the rotation of polarization, Δϕ. In
practice, we can measure this effect by comparing the pulsar
signal when the companion neutron star (blue dot) passes through
the line-of-sight (solid line) to the same signal in other times
(dotted line).

2This simplified story is true when both the emitter and
receiver are light so we can ignore their contribution to Γc

ab.
In reality, points A1, A2 are near the pulsar, and B1, B2 are on
earth, so neither is in the asymptotic region. Thus, the timelike
segments can be nonzero, and the null segments will have extra
contribution near the end points. Nevertheless, the extra con-
tributions to the null segments will cancel each other. The
timelike contributions has nothing to do with the companion,
and they are degenerate with an intrinsic variation of pulsar signal
or the telescope receiving function. We can simply observe and fit
such behavior when the companion is not passing through the
line-of-sight and subtract it from the data. Thus, treating them as
in the asymptotic region is a simple way to show the contribution
from the companion without loss of generality.
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One last possible confusion is why such dependence is
on the observer instead of the source, since they seem to
play equivalent roles in the integral of Eq. (3). Again, we
remind the readers that the apparent line integral in Eq. (3)
is a convenient illusion. The physically meaningful rotation
is defined by a loop, where one compares a vector to its
parallel transported outcome after going around the loop.
Thus, there does exist one unique point at which the
rotation is defined, which is where the two polarizations
are being compared. In practice, we will have no idea about
the actual polarization when the signal is emitted at the
pulsar. All we know are the polarizations we received on
earth, so this is the frame we have to choose.

C. Beyond Born approximation

The actual effect we will calculate in the rest of this paper
will be quite small, so the Born approximation is justified.
Nevertheless, the above abstract explanation must still be
true beyond the Born approximation, and we will use this
subsection to demonstrate that.
It is straightforward to actually solve the parallel-

transport equation, Eq. (2), instead of using the Born-
approximation integral in Eq. (3). A loop-parallel transport
back to the same point is obviously an SOð3; 1Þ rotation. So
one can see that up to getting the SOð3; 1Þ rotation,
everything we said in the previous section directly general-
izes beyond Born approximation. The only question is that
we have used the unique kμ to determine the SOð2Þ
projection in the Born approximation. Now the direction
of light is also deflected significantly, kμ → k0μ. Do we still
have an unambiguous way to determine which SOð2Þ to
project into?
The answer is yes, and this is how we do it. First of all,

the observer’s 4-velocity reduces SOð3; 1Þ down to SOð3Þ.
The light rays, before and after the deflection, k and k0, are
also reduced down to two spacelike vectors in the observ-
er’s frame, κ and κ0. As long as κ ≠ −κ0, there is a unique,
minimal SOð3Þ rotation that aligns them.3 Aligning κ and κ0
also merges their polarization planes, in which an SOð2Þ
rotation is uniquely defined. Thus, one can see that even
beyond Born approximation, the rotation of polarization is
still a well-defined, unambiguous, observer-dependent
SOð2Þ projection of a covariant SOð3; 1Þ tensor.

III. EXPLICIT CALCULATION

A. Point mass

We will treat the gravitational lens as a point mass and
model it with a Schwarzschild metric in the isotropic form,
expanded to the leading order of ðM=rÞ,

gabdxadxb ¼ −
�
1 −

2M
r

�
dt2

þ
�
1þ 2M

r

�
ðdx2 þ dy2 þ dz2Þ; ð9Þ

where r2 ¼ x2 þ y2 þ z2, and the Newton constant G is
conveniently set to 1. Instead of studying an arbitrary light
ray in the above coordinate, we will shift and boost this
metric such that the lens has arbitrary position and velocity,
and the relevant light ray is always x ¼ t. In principle, we
need six parameters, i.e. ðx0; y0; z0; vx; vy; vzÞ. By applying
symmetries, we can further simplify the problem so that
eventually only three will be needed.
First we use shift symmetries in x and t to set x0 ¼ 0,

which simply means that t ¼ 0 is defined as the time when
the light ray is closest to the lens. Next, we set vx ¼ 0, so
instead of letting the lens to have an x velocity, the
asymptotic observer who measures the polarization will
have a nonzero x velocity. This changes nothing because
the light ray is in the x direction, kμ ¼ ð1; 1; 0; 0Þ.
Independent of what x velocity the observer has, the plane
orthogonal to both the light ray and the observer will be the
y − z plane. Thus, we are always calculating the rotation of
polarization on the y − z plane. Finally, using rotational
symmetry on the y − z plan, we can set vz ¼ 0, leaving the
remaining three parameters to be vy ¼ v, y0 and z0.
Employing these symmetries significantly simplifies the

problem, and we illustrate the final situation in Fig. 2. Since
the lens is the center of the coordinate in Eq. (10), we need
to apply the appropriate coordinate transformation to
accommodate our symmetry choice:

γ ¼ ð1 − v2Þ−1=2; t → γðt − vyÞ;
y → γðy − vt − y0Þ; z → ðz − z0Þ: ð10Þ

The resulting metric becomes

gabdxadxb ¼ −
�
1 − γ2ð1þ v2Þ 2M

r

�
dt2

þ
�
1þ γ2ð1þ v2Þ 2M

r

�
dy2 −

8Mvγ2

r
dtdy

þ
�
1þ 2M

r

�
ðdx2 þ dz2Þ; ð11Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðy − vt − y0Þ2 þ x2 þ ðz − z0Þ2

p
.

While calculating the connections,

Γc
ab ¼

gcd

2
ð∂agbd þ ∂bgad − ∂dgabÞ; ð12Þ

we can treat the first gcd as the flat metric ηcd since we are
only keeping the leading-order result. This applies to any
gab that is not hit by a derivative in the calculation, e.g. the

3Note that there are many rotations which can align them, but
there is a unique minimal rotation that is rotating along the
direction orthogonal to both of them, ðκ × κ0Þ.
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one in Eq. (8). We also assume that both the null ray
direction and the polarization direction are only changed by
a small amount, i.e. the Born approximation. Thus, we can
compute Δab by Eq. (8) along the undeflected light ray
x ¼ t. Many components of gab are zero due to our choice
of symmetries, so it is straightforward to see that

Δzy ¼ −Δyz ¼
1

2

Z
∞

−∞
dt∂zgty

¼ −2Mvγ2z0

Z
∞

−∞

dt

½γ2ðvtþ y0Þ2 þ t2 þ z20�3=2
: ð13Þ

For v ≪ 1, we can perform the integral and keep only the
leading-order value to get

Δϕ≡ jΔyzj ≈
4Mvz0
y20 þ z20

¼ 4jJxj
r20

¼ 4Mjk · ðr0 × vÞj
r20

: ð14Þ

Here J is the lens’ angular momentum with respect to x ¼ 0;
i.e., the point where the light ray was closest to the lens. The
direction of the light ray ka determines which component of
J we care about, which is the x component in our symmetry
choice. The final, generalized format of Eq. (14) should be
straightforward from our symmetry choice. A more explicit
calculation in [9] led to the same result.

Furthermore, let us imagine that there is a continuous
source of signals. The light along the x direction continues
to shine while the lens is moving in its constant velocity in
the y direction. The light ray which is closest to the lens will
get the maximum rotation. In other words, we get maxi-
mum rotation when the lens’ velocity is orthogonal to its
distance to the light way. This corresponds to y0 ¼ 0 in the
above calculation.

ΔϕMax ¼
4M
z0

v: ð15Þ

This maximum rotation along a source trajectory is the
promised result in Eq. (1).

B. General case

The above point-mass calculation assumes that it carries
no spin. Many papers employed a Kerr metric instead to
calculate how the angular momentum from the spin also
contributes to the rotation of polarization. In the limit of
small rotations, we can instead generalize the above result
without explicitly starting from a Kerr metric because
Eq. (11) allows superposition when all lenses are not
moving too fast and are not too close to the light ray. At
the leading order (ignoring subleading velocity terms), the
metric of multiple moving point masses is given by

gabdxadxb ¼ −
�
1 − 2

X
n

mðnÞ

rðnÞ

�
dt2

þ
�
1þ 2

X
n

mðnÞ

rðnÞ

�
ðdx2 þ dy2 þ dz2Þ

− 8
X
i

mðnÞ

rðnÞ
ðvðnÞx dxþ vðnÞy dyþ vðnÞz dzÞ;

ð16Þ

rðnÞ ¼ ½ðx − xðnÞ0 − vðnÞx tÞ2

þ ðy − yðnÞ0 − vðnÞy tÞ2 þ ðz − zðnÞ0 − vðnÞz tÞ�1=2 ð17Þ
Their contributions to the total rotation also superimpose

linearly. If we further assume that the masses are distributed
in a small enough region such that their locations stay the
same during the passage of the light ray, the answer is very
simple:

Δϕ ¼ 4

����
X
n

mðnÞ v
ðnÞ
y zðnÞ0 − vðnÞz yðnÞ0

ðyðnÞ0 Þ2 þ ðzðnÞ0 Þ2
����: ð18Þ

Since their velocities are small, they are roughly in the same
location after the light ray goes through all of them, thus

xðnÞ0 do not matter at all.
Under these assumptions, Eq. (18) provides the general

answer to any mass and velocity distribution. By the

y

z

z

y

v

0

0

M

Δφ

FIG. 2. Using all symmetries, we can reduce any calculation of
polarization-rotation from a spin-less, point-mass lens to this
picture. The red dot at the origin is the light ray traveling in the x
direction. M is the mass of the lens. v is its velocity (only in y
direction). (y0, z0) is the location of the lens relative to the light
ray. Δϕ is the rotation of polarization, which is drawn in the
appropriate direction in the picture. One can visualize it as being
“dragged” by the motion of the lens.
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uniqueness theorem, the effect from a Kerr metric of mass
M and spin S can be mimicked by a two-particle system at
the leading order:

vð1Þz ¼ vð2Þz ¼ 0; vð1Þy ¼ v − δv; vð2Þy ¼ vþ δv;

yð1Þ0 ¼ yð2Þ0 ¼ y0; zð1Þ0 ¼ z0 − d; zð2Þ0 ¼ z0 þ d;

mð1Þ ¼ mð2Þ ¼ M=2; S ¼ MðδvÞd: ð19Þ

Taking d → 0 while holding S fixed, we get

Δϕ ¼ 4

����Mvz0 þ S
y20 þ z20

���� ¼ 4
jJx þ Sxj

r20
: ð20Þ

The spin of the point mass contributes in exactly the same
way as its “orbital” angular momentum around the light ray.
Intriguingly, although [9] agrees with Eq. (14), they
claimed that the spin does not contribute at all. We cannot
see any physical reason for such statement since Eq. (20)
seems to be the most natural result.

IV. EXAMPLE: DOUBLE PULSAR

Before putting in the actual numbers, let us first give a
rough estimation on the maximal rotation we can get from
the double pulsar system. Recall that the Schwarzschild
radius of the sun is roughly 3km, and these neutron stars are
slightly larger. A typical neutron star is slightly smaller than
10 times its own Schwarzschild radius, so we take the radius
of the lens neutron star to be 30km. If it is a slow pulsar, we
take the spin period to be about 1s. If the spin aligns with the
line of sight, we estimate its contribution in Eq. (20) as

jSxj ∼ 3km ×
30km=1s

c
× 30km ∼ 104m2:

We have used both c andG to make this quantity to have the
unit of length,2 which makes it easier to calculate the unitless
Δϕ. Similarly, assume the binary orbit is 109m, velocity is
about 0.1% speed of light, and the orbital tilt is 2 degrees,
so the impact parameter is roughly 109 × 2π=180≈
3.5 × 107m, then the orbital contribution is roughly

jJxj ≈ 3km × 10−3 × 109 × 2π=180 ≈ 107m2: ð21Þ

In this case, the spin contribution is negligible.
If the lens is a recycled (fast) neutron star, its period

would be ∼1ms, and its spin angular momentum is
increased by a factor of ∼1000. If it is also aligned with
the line of sight, the spin contribution will be comparable to
the orbital contribution. Fortunately, fast pulsars are usually
spun-up by accretion from the companion, so its spin is
usually aligned with the orbital plane. In our case, it means
that the spin is almost perpendicular to the line-of-sight, so
its contribution is again negligible.

Therefore, in either case, we can estimate the maximal
rotation from the orbital contribution only, which is about

Δϕ ≈ 4
107m2

½109m × 2π=180�2 ≈ 3 � 10−8: ð22Þ

The actual value for the double pulsar is slightly larger. In
Fig. 3, we calculated the signal Δϕ using the orbital
information of double pulsar system PSR J0737-3039
[3]. We ignore the spin contribution since they are
negligible as we explained. We can see that during a
rotation period, we can expect a maximal rotation of
polarization (Δϕ) at about 10−7rad. This happens when
the companion (lens) is almost in front of the pulsar. It is
well known that, at this moment, there will also be an
eclipse, so one may worry that we cannot actually see this
maximal rotation. We specifically zoomed in and blacked-
out the eclipsed. We found that the peak of the Δϕ curve is
significantly wider than the eclipse duration. Thus, for a
(relatively) long duration before and after the eclipse, we
can still observe Δϕ ∼ 10−7rad. We can also see that
although the double-pulsar is already quite edge-on, one
can hope to get luckier and discover another system whose
inclination angle is even closer to 90 degree. The resulting
rotation of polarization can be even larger.

FIG. 3. The angle of polarization rotation for binary pulsar PSR
J0737-3039, the signals are shifted to peak at π=2 only for
aesthetic reason. Top: Rotation angle Δϕ of millisecond pulsar A,
the grey area highlights the region blocked by eclipse. Bottom:
The inclination dependence on the peak rotation, assuming all
other orbital parameters unchanged. The dashed line indicates the
amplitude of the real signal.
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V. OBSERVATIONAL CONSIDERATIONS

Such a small swing in polarization angle will be
challenging to detect. For parameters of PSR J0737-
3039 with a polarized fraction of about 50% [10], raw
thermal sensitivity requires a signal-to-noise of at least 107

in polarization. For a pulsar self-noise-dominated telescope
such as FAST [11] or SKA [12] with a band width of
∼1 GHz, it requires 106 seconds of on target on-pulse
integration to achieve a 5 − σ detection. This is a sub-
stantial commitment of resources. On top of that, there are
practicalities one must consider carefully. First of all, any
given object can be only seen for a limited about of time
each day. This observable duration for FAST could be short
at the low declination of PSR J0737-3039, so SKA is likely
the more suitable facility. At a duty cycle of about 20%, this
requires a few years of observations with the full phase-2
telescopes. During superior conjunction, the companion’s
magnetosphere partially absorbs the pulsar, and plasma
faraday effects may also complicate the analysis.4

Despite the substantial efforts required, the pulsar is
likely to be monitored extensively for other reasons.
Thus, a detection may be eventually achieved over
decades of SKA operations. Alternatively, other more
optimal systems may be discovered, for example
pulsar–black hole systems. Our estimates indicate that
this effect is, in principle, observable in the foresee-
able future. The gravitational Faraday effect can be
added to the wish-list of pulsar tests of general
relativity.
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